1
|
Bakshi T, Pham D, Kaur R, Sun B. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. Int J Mol Sci 2022; 23:ijms23073742. [PMID: 35409101 PMCID: PMC8998389 DOI: 10.3390/ijms23073742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins involved in a large number of diseases. Both in the past and in recent times, the enzymes and chaperones regulating these PTMs have been constantly discovered to directly interact with each other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects N-glycan modification and disulfide bonding at selective sites in individual proteins is largely unknown. Here, we reviewed the literature to discover the current status in understanding the relationships between NG and DBs in individual proteins. Our results showed that more than 2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the associations between NG and DBs. We summarized both these proteins with the reported relationships in the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely understudied field, more investigations can be encouraged to unveil the hidden relationships of NG and DBs in the majority of membranes and secreted proteins for pathophysiological understanding and biotherapeutic development.
Collapse
Affiliation(s)
- Tania Bakshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - David Pham
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Raminderjeet Kaur
- Faculty of Health Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Bingyun Sun
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence:
| |
Collapse
|
2
|
Minimal features of efficient incorporation of the hemagglutinin-neuraminidase protein into sendai virus particles. J Virol 2013; 88:303-13. [PMID: 24155372 DOI: 10.1128/jvi.02041-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two transmembrane glycoproteins form spikes on the surface of Sendai virus, a member of the Respirovirus genus of the Paramyxovirinae subfamily of the Paramyxoviridae family: the hemagglutinin-neuraminidase (HN) and the fusion (F) proteins. HN, in contrast to F, is dispensable for viral particle production, as normal amounts of particles can be produced with highly reduced levels of HN. This HN reduction can result from mutation of an SYWST motif in its cytoplasmic tail to AFYKD. HNAFYKD accumulates at the infected cell surface but does not get incorporated into particles. In this work, we derived experimental tools to rescue HNAFYKD incorporation. We found that coexpression of a truncated HN harboring the wild-type cytoplasmic tail, the transmembrane domain, and at most 80 amino acids of the ectodomain was sufficient to complement defective HNAFYKD incorporation into particles. This relied on formation of disulfide-bound heterodimers carried out by the two cysteines present in the HN 80-amino-acid (aa) ectodomain. Finally, the replacement of the measles virus H cytoplasmic and transmembrane domains with the corresponding HN domains promoted measles virus H incorporation in Sendai virus particles.
Collapse
|
3
|
Sgarbanti R, Nencioni L, Amatore D, Coluccio P, Fraternale A, Sale P, Mammola CL, Carpino G, Gaudio E, Magnani M, Ciriolo MR, Garaci E, Palamara AT. Redox regulation of the influenza hemagglutinin maturation process: a new cell-mediated strategy for anti-influenza therapy. Antioxid Redox Signal 2011; 15:593-606. [PMID: 21366409 DOI: 10.1089/ars.2010.3512] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM The aim of this study was to determine whether GSH-C4, a hydrophobic glutathione derivative, affects in vitro and in vivo influenza virus infection by interfering with redox-sensitive intracellular pathways involved in the maturation of viral hemagglutinin (HA). RESULTS GSH-C4 strongly inhibited influenza A virus replication in cultured cells and in lethally infected mice, where it also reduced lung damage and mortality. In cell-culture studies, GSH-C4 arrested viral HA folding; the disulfide-rich glycoprotein remained in the endoplasmic reticulum as a reduced monomer instead of undergoing oligomerization and cell plasma-membrane insertion. HA maturation depends on the host-cell oxidoreductase, protein disulfide isomerase (PDI), whose activity in infected cells is probably facilitated by virus-induced glutathione depletion. By correcting this deficit, GSH-C4 increased levels of reduced PDI and inhibited essential disulfide bond formation in HA. Host-cell glycoprotein expression in uninfected cells was unaffected by glutathione, which thus appears to act exclusively on glutathione-depleted cells. INNOVATION All currently approved anti-influenza drugs target essential viral structures, and their efficacy is limited by toxicity and by the almost inevitable selection of drug-resistant viral mutants. GSH-C4 inhibits influenza virus replication by modulating redox-sensitive pathways in infected cells, without producing toxicity in uninfected cells or animals. Novel anti-influenza drugs that target intracellular pathways essential for viral replication ("cell-based approach") offer two important potential advantages: they are more difficult for the virus to adapt to and their efficacy should not be dependent on virus type, strain, or antigenic properties. CONCLUSION Redox-sensitive host-cell pathways exploited for viral replication are promising targets for effective anti-influenza strategies.
Collapse
Affiliation(s)
- Rossella Sgarbanti
- San Raffaele Pisana Scientific Institute for Research, Hospitalization, and Health Care, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yusoff K, Tan WS, Lau CH, Ng BK, Ibrahim AL. Sequence of the haemagglutinin‐neuraminidase gene of the Newcastle disease virus oral vaccine strain V4(UPM). Avian Pathol 2007; 25:837-44. [DOI: 10.1080/03079459608419185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Gupta PK, Sharma S, Walunj SS, Chaturvedi VK, Raut AA, Patial S, Rai A, Pandey KD, Saini M. Immunogenic and antigenic properties of recombinant soluble glycoprotein of rabies virus. Vet Microbiol 2005; 108:207-14. [PMID: 15916870 DOI: 10.1016/j.vetmic.2005.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 03/09/2005] [Accepted: 04/07/2005] [Indexed: 11/21/2022]
Abstract
Rabies virus glycoprotein is a type I transmembrane protein exposed on the surface on the mature virus particle that induces virus neutralizing antibodies. In the present study, 60 amino acid C-terminal hydrophobic anchor (transmembrane) and cytoplasmic domains of glycoprotein were deleted from full-length glycoprotein and fused with polyhistidine tag. The N-terminal viral signal peptide was also replaced with CD33 signal peptide for efficient secretion in mammalian cells. Following transfection of Madin Darby bovine kidney (MDBK) cells with plasmid encoding this soluble form of glycoprotein, polyclonal populations of stably transfected resistant cells were obtained after G418 selection. The protein was expressed as a glycosylated protein and secreted outside the cells utilizing N-terminal CD33 signal peptide. The secreted soluble glycoprotein was purified from cell culture supernatant by Ni--agarose affinity chromatography utilizing C-terminal polyhistidine tag. Like full-length glycoprotein, the expressed recombinant soluble glycoprotein was found to be immunogenic when injected in rabbits. In this study, we have assessed the potential of recombinant soluble glycoprotein as diagnostic antigen in ELISA and found that this recombinant protein can be used as diagnostic antigen in ELISA for detecting anti-glycoprotein antibodies in immunized host.
Collapse
Affiliation(s)
- Praveen K Gupta
- National Biotechnology Centre, Indian Veterinary Research Institute, Izatnagar, 243122 UP, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Saladino R, Ciambecchini U, Nencioni L, Palamara AT. Recent advances in the chemistry of parainfluenza-1 (Sendai) virus inhibitors. Med Res Rev 2003; 23:427-55. [PMID: 12710019 DOI: 10.1002/med.10036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purine and pyrimidine derivatives, antioxidants, fusion inhibitors, statins, prostaglandins, antibiotic nucleosides, inhibitors of Ca(2+) homeostasis, carbohydrate derivatives, antisense polynucleotides and chimeras, are described as inhibitors of parainfluenza-1 (Sendai) viral infections.
Collapse
Affiliation(s)
- Raffaele Saladino
- Agrobiological and Agrochemical Department, University of Tuscia, via San Camillo de Lellis snc, 00100, Viterbo, Italy.
| | | | | | | |
Collapse
|
7
|
Nencioni L, Iuvara A, Aquilano K, Ciriolo MR, Cozzolino F, Rotilio G, Garaci E, Palamara AT. Influenza A virus replication is dependent on an antioxidant pathway that involves GSH and Bcl-2. FASEB J 2003; 17:758-60. [PMID: 12594179 DOI: 10.1096/fj.02-0508fje] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Growing evidence indicates that viral replication is regulated by the redox state of the host cell. We demonstrate that cells of different origins display differential permissivity for influenza A virus replication, depending on their intracellular redox power as reflected by Bcl-2 expression and glutathione (GSH) content. Bcl-2 expressing cells were found to have higher intracellular levels of GSH and to produce lower amounts of virus than Bcl-2 negative cells. Two different steps in the virus life-cycle were involved in Bcl-2/GSH mediated viral inhibition: 1) expression of late viral proteins (in particular hemagglutinin and matrix); and 2) nuclear-cytoplasmic translocation of viral ribonucleoproteins (vRNPs). Buthionine-sulfoximine-induced inhibition of GSH synthesis in Bcl-2 expressing cells caused an increase in the expression of late viral proteins but did not restore vRNP export to the cytoplasm. Collectively, our findings show that both Bcl-2 expression and GSH content contribute to the host cell's ability to down-regulate influenza virus replication, although their effects are exerted at different stages of the viral life-cycle. In certain cell populations, this form of down-regulation might conceivably favor the establishment of persistent viral infection.
Collapse
Affiliation(s)
- Lucia Nencioni
- Department of Experimental Medicine and Biochemical Science, University of Rome La Sapienza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Srivastava IK, Stamatatos L, Legg H, Kan E, Fong A, Coates SR, Leung L, Wininger M, Donnelly JJ, Ulmer JB, Barnett SW. Purification and characterization of oligomeric envelope glycoprotein from a primary R5 subtype B human immunodeficiency virus. J Virol 2002; 76:2835-47. [PMID: 11861851 PMCID: PMC135955 DOI: 10.1128/jvi.76.6.2835-2847.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a major public health problem throughout the world, with high levels of mortality and morbidity associated with AIDS. Considerable efforts to develop an effective vaccine for HIV have been directed towards the generation of cellular, humoral, and mucosal immune responses. A major emphasis of our work has been toward the evaluation of oligomeric (o-gp140) forms of the HIV type 1 (HIV-1) envelope protein for their ability to induce neutralizing antibody responses. We have derived stable CHO cell lines expressing o-gp140 envelope protein from the primary non-syncytium-inducing (R5) subtype B strain HIV-1(US4). We have developed an efficient purification strategy to purify oligomers to near homogeneity. Using a combination of three detectors measuring intrinsic viscosity, light scattering, and refractive index, we calculated the molecular mass of the oligomer to be 474 kDa, consistent with either a trimer or a tetramer. The hydrodynamic radius (R(h)) of o-gp140 was determined to be 8.40 nm, compared with 5.07 nm for the monomer. The relatively smaller R(h) of the oligomer suggests that there are indeed differences between the foldings of o-gp140 and gp120. To assess the structural integrity of the purified trimers, we performed a detailed characterization of the glycosylation profile of o-gp140, its ability to bind soluble CD4, and also its ability to bind to a panel of monoclonal antibodies with known epitope specificities for the CD4 binding site, the CD4 inducible site, the V3 loop, and gp41. Immunogenicity studies with rabbits indicated that the purified o-gp140 protein was highly immunogenic and induced high-titer, high-avidity antibodies directed predominantly against conformational epitopes. These observations confirm the structural integrity of purified o-gp140 and its potential as a vaccine antigen.
Collapse
Affiliation(s)
- Indresh K Srivastava
- Department of Immunology and Infectious Diseases, Chiron Corporation, Emeryville, California 94608, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fouillot-Coriou N, Roux L. Structure-function analysis of the Sendai virus F and HN cytoplasmic domain: different role for the two proteins in the production of virus particle. Virology 2000; 270:464-75. [PMID: 10793005 DOI: 10.1006/viro.2000.0291] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the cytoplasmic domain (cytd) of the Sendai virus HN and F glycoproteins in the process of virus assembly and budding are evaluated. Recombinant Sendai virus (rSeV) mutants are generated carrying modifications in the cytd of each of the glycoprotein separately. The modifications include increasing truncations and/or amino acid sequence substitutions. Following steady-state (35)[S]methionine/cysteine labeling of the infected cells, the virus particle production is estimated. The radioactive virions in the cell supernatants are measured relative to the extent of the infection, assessed by the intracellular N protein signal. For both the F and HN cytd truncation mutants, the largest cytd deletions lead to a 20- to 50-fold reduction in virion production. This reduction cannot be explained by a reduction of the cell surface expression of the glycoproteins. For the F protein mutants, the virions produced in reduced amount always exhibit a normal F protein composition. It is then concluded that a threshold level of F is required for SeV assembly and budding. The rate or the efficiency with which this threshold is reached up appears to depend on the nature of the F cytd. A minimal cytd length is required as well as a specific sequence. The analysis of HN protein mutants brings to light an apparent paradox. The larger cytd truncations result in significant reduction of virion production. On the other hand, a normal virion production can take place with an underrepresentation of or, even, an undetectable HN in the particles. The HN uptake in virion is confirmed to depend on the previously proposed cytd SYWST signal (T. Takimoto, T. Bousse, E. C. Coronel, R. A Scroggs, and A. Portner. 1998. J. Virol. 72, 9747-9754.).
Collapse
Affiliation(s)
- N Fouillot-Coriou
- Department of Genetics and Microbiology, University of Geneva Medical School, Geneva, Switzerland
| | | |
Collapse
|
10
|
Ong HKA, Ali AM, Omar AR, Yusoff K. Cloning and expression of the HN gene from the velogenic viscerotropic Newcastle disease virus strain AF2240 in Sf9 insect cells. Cytotechnology 2000; 32:243-51. [PMID: 19002985 PMCID: PMC3449894 DOI: 10.1023/a:1008136326756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The haemagglutinin-neuraminidase (HN) gene ofNewcastle disease virus (NDV) strain AF2240, amplifiedfrom the viral genomic RNA ( approximately 1.8 kb) was directionallycloned and inserted into a baculovirus expressionvector system. The recombinant glycoprotein expressedin Spodoptera frugiperda (Sf9) cellsshowed haemagglutinin (HA), neuraminidase (NA) andhemadsorption activities. HA activity was detected inboth extra- and intra-cellular recombinant HN(recHNAF2240) samples. In addition, both HA andhemadsorption activities were inhibited by polyclonalanti-NDV sera. Furthermore, significant expression ofthe recombinant protein was observed on the surface ofinfected cells. SDS-PAGE analysis revealed thepresence of visually distinguishable bands between the70 and 80 kDa in size that were absent in thewild-type samples. Western blot analysis showed thatthe distinct approximately 63 kDa band and a approximately 75 kDa bandcorresponded to the unglycosylated and glycosylated HNglycoprotein respectively as reported in anotherstudy. These observations indicated that the HNrecombinant protein was not only expressed on thesurface of the infected cells as well as with theviral coat protein, but also appears to be functional.
Collapse
Affiliation(s)
- H. K. A. Ong
- Department of Biochemistry and Microbiology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| | - A. M. Ali
- Department of Biotechnology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| | - A. R. Omar
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| | - K. Yusoff
- Department of Biochemistry and Microbiology, Universiti Putra Malaysia, 434400 Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Knauer R, Lehle L. The oligosaccharyltransferase complex from yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1426:259-73. [PMID: 9878773 DOI: 10.1016/s0304-4165(98)00128-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Glycosylation of eukaryotic secretory and membrane-bound proteins is an essential and highly conserved protein modification. The key step of this pathway is the en bloc transfer of the high mannose core oligosaccharide Glc3Man9GlcNAc2 from the lipid carrier dolichyl phosphate to selected Asn-X-Ser/Thr sequences of nascent polypeptide chains during their translocation across the endoplasmic reticulum membrane. The reaction is catalysed by the enzyme oligosaccharyltransferase (OST). Recent biochemical and molecular genetic studies in yeast have yielded novel insights into this enzyme with multiple tasks. Nine proteins have been shown to be OST components. These are assembled into a heterooligomeric membrane-bound complex and are required for optimal expression of OST activity in vivo in wild type cells. In accord with the evolutionary conservation of core N-glycosylation, there are significant homologies between the protein sequences of OST subunits from yeast and higher eukaryotes, and OST complexes from different sources show a similar organisation as well.
Collapse
Affiliation(s)
- R Knauer
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
12
|
Olofsson S, Bolmstedt A, Biller M, Mårdberg K, Leckner J, Malmström BG, Trybala E, Bergström T. The role of a single N-linked glycosylation site for a functional epitope of herpes simplex virus type 1 envelope glycoprotein gC. Glycobiology 1999; 9:73-81. [PMID: 9884409 DOI: 10.1093/glycob/9.1.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A monoclonal antibody, B1C1, binding to an epitope of antigenic site II of the herpes simplex virus type 1 (HSV-1) glycoprotein gC-1, is a potent inhibitor of two important biological functions of gC-1: its binding to cell surface heparan sulfate and its binding to the receptor for complement factor C3b. Here, we have analyzed a B1C1-resistant HSV-1 variant (HSV-12762/B1C1B4.2), obtained after passage of wild type HSV-1 (HSV-12762) in the presence of high concentrations of B1C1. The transport of newly synthesized mutant gC-1 to the cell surface was comparable to that of wild type glycoprotein, but no binding of surface-associated mutant gC-1 to B1C1 was detected. However, mutant and wild type gC-1 bound equally well to other site II Mabs. Attachment of wild type but not mutant virus was inhibited by B1C1. Sequencing of the mutant gC-1 gene revealed only one nucleotide change, resulting in replacement of Thr150 by an Ile, in turn destroying an N-glycosylation site at Asn148. Loss of one complex type N-linked glycan was confirmed by endoglycosidase digestion and subsequent SDS-polyacrylamide gel electrophoresis. Circular dichroism analysis of purified gC-1 from cells infected with mutant or wild type virus did not reveal any difference in secondary structure between mutant and wild type gC-1. It was not possible to obtain a B1C1-resistant phenotype by nucleotide-directed mutagenesis of gC-1 where Asn148 was changed to a glutamine. These data demonstrated that the threonine of the glycosylation site and not the N-linked glycan in itself was essential for B1C1 binding
Collapse
Affiliation(s)
- S Olofsson
- Department of Clinical Virology, University of Göteborg, Guldhedsgatan 10 B, S-413 46 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Biller M, Bolmstedt A, Hemming A, Olofsson S. Simplified procedure for fractionation and structural characterisation of complex mixtures of N-linked glycans, released from HIV-1 gp120 and other highly glycosylated viral proteins. J Virol Methods 1998; 76:87-100. [PMID: 9923743 DOI: 10.1016/s0166-0934(98)00127-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HIV-1 gp120 is heavily glycosylated containing 24 N-glycosylation sites, and this makes elucidation of the significance of glycans at individual glycosylation sites a difficult task. A procedure is described where a complex mixture of biologically radiolabelled glycans of gp120, derived from a relatively small number of virus-infected cells may be characterized by a combination of N-glycanase release, single lectin separation, and normal phase HPLC (NP-HPLC). The method was applied in analysis of three N-linked glycosylation sites essential for the in vivo priming of T-cells, specific for an epitope in their vicinity (Sjölander, S., Bolmstedt, A., Akerblom, 1996. Virology 215, 124-133.). The carbohydrate compositions of wild type gp120 and of mutant variants gp120 lacking one, two, or all of these three active N-linked glycans were analysed. Cells were infected with r-vaccinia virus expressing wild-type gp120 or mutated gp120, or were infected with HIV-1BRU (wild type) or mutant virus variants. HIV-1 glycoproteins were purified by immunosorbent affinity chromatography and released glycans were separated on lectins, then analysed with NP-HPLC. Our data showed that the structural composition of glycans occupying two of the three glycosylation sites was heterogeneous but the site located adjacent to the T-cell epitope was equipped with one large, high mannose-type structure (> 11 units) with the capacity to cover a substantial part of the gp120 surface.
Collapse
Affiliation(s)
- M Biller
- Department of Virology, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
14
|
Cathomen T, Naim HY, Cattaneo R. Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 1998; 72:1224-34. [PMID: 9445022 PMCID: PMC124600 DOI: 10.1128/jvi.72.2.1224-1234.1998] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1997] [Accepted: 10/16/1997] [Indexed: 02/05/2023] Open
Abstract
The cytoplasmic tail of the measles virus (MV) fusion (F) protein is often altered in viruses which spread through the brain of patients suffering from subacute sclerosing panencephalitis (SSPE). We transferred the coding regions of F tails from SSPE viruses in an MV genomic cDNA. Similarly, we constructed and transferred mutated tail-encoding regions of the other viral glycoprotein hemagglutinin (H) gene. From the mutated genomic cDNAs, we achieved rescue of viruses that harbor different alterations of the F tail, deletions in the membrane-distal half of the H tail, and combinations of these mutations. Viruses with alterations in any of the tails spread rapidly through the monolayer via enhanced cell-cell fusion. Double-tail mutants had even higher fusion competence but slightly decreased infectivity. Analysis of the protein composition of released mutant viral particles indicated that the tails are necessary for accurate virus envelope assembly and suggested a direct F tail-matrix (M) protein interaction. Since even tail-altered glycoproteins colocalized with M protein in intracellular patches, additional interactions may exist. We conclude that in MV infections, including SSPE, the glycoprotein tails are involved not only in virus envelope assembly but also in the control of virus-induced cell fusion.
Collapse
Affiliation(s)
- T Cathomen
- Institut für Molekularbiologie, Universität Zürich, Hönggerberg, Switzerland
| | | | | |
Collapse
|
15
|
Schwalbe RA, Bianchi L, Brown AM. Mapping the kidney potassium channel ROMK1. Glycosylation of the pore signature sequence and the COOH terminus. J Biol Chem 1997; 272:25217-23. [PMID: 9312136 DOI: 10.1074/jbc.272.40.25217] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ROMK1, also known as Kir 1.1, is an inwardly rectifying K+ channel and is the prototypical member of the large Kir gene family. The accepted model of Kir topology predicts intracellular NH2 and COOH termini, and two membrane-spanning segments, M1 and M2, connected by an intramembranous pore-forming segment, H5. The sequence of H5 is similar in voltage-dependent K+ channels and features a strictly conserved GY/FG in its mid-region, which has been proposed as the selectivity filter of the pore. We have been using N-glycosylation substitution mutants to map the extracellular topology of ROMK1 biochemically and have described several loci in H5 that were glycosylated. We now report glycosylation at loci Tyr144 and Phe146, which indicates that the signature GYG sequence (143-145) rather than being intramembranous is extracellular. The COOH terminus was predicted to begin at position 178, but contrary to the model, we observed that position 257 was glycosylated and surrounding positions at 199, 222, and 298 were unglycosylated. N-Glycosylation sequon substitution at the latter three positions abolished K+/Na+ selectivity. Our results suggest a major revision of the topology of ROMK1 with H5 and the pore signature sequence now completely extracellular. The COOH terminus appears to form two additional membrane-spanning segments and to contribute to the ion conduction pathway.
Collapse
Affiliation(s)
- R A Schwalbe
- The Rammelkamp Center for Education and Research, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio 44109-1998, USA.
| | | | | |
Collapse
|
16
|
Arp J, LeVatte M, Rowe J, Perkins S, King E, Leystra-Lantz C, Foung SK, Dekaban GA. A source of glycosylated human T-cell lymphotropic virus type 1 envelope protein: expression of gp46 by the vaccinia virus/T7 polymerase system. J Virol 1996; 70:7349-59. [PMID: 8892853 PMCID: PMC190802 DOI: 10.1128/jvi.70.11.7349-7359.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Heterologous expression of the human T-cell lymphotropic virus type 1 (HTLV-1) envelope surface glycoprotein (gp46) in a vaccinia virus/T7 polymerase system resulted in the production of authentic recombinant gp46. Five differentially glycosylated forms of the surface envelope protein were produced by this mammalian system, as demonstrated by tunicamycin inhibition of N-glycosylation and N-glycan removal with endoglycosidase H and glycopeptidase F. These studies revealed that all four potential N-glycosylation sites in gp46 were used for oligosaccharide modification and that the oligosaccharides were mannose-rich and/or hybrid in composition. Conformational integrity of the recombinant HTLV-1 envelope protein was determined by the ability to bind to various HTLV-1-infected human sera and a panel of conformational-dependent human monoclonal antibodies under nondenaturing conditions. Furthermore, this recombinant gp46 was recognized by a series of HTLV-2-infected human sera and sera from a Pan paniscus chimpanzee infected with the distantly related simian T-cell lymphotropic virus STLVpan-p. Maintenance of highly conserved conformational epitopes in the recombinant HTLV-1 envelope protein structure suggests that it may serve as a useful diagnostic reagent and an effective vaccine candidate.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Bacteriophage T7/genetics
- Binding Sites, Antibody
- Cloning, Molecular
- DNA-Directed RNA Polymerases/genetics
- Epitopes/immunology
- Gene Expression
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/immunology
- Genetic Vectors
- Glycosylation
- HTLV-I Antibodies/immunology
- HTLV-I Antigens/chemistry
- HTLV-I Antigens/genetics
- HTLV-I Antigens/immunology
- HTLV-I Infections/blood
- HTLV-I Infections/immunology
- HeLa Cells
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 2/immunology
- Humans
- L Cells
- Mice
- Oligosaccharides/immunology
- Protein Conformation
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/immunology
- Simian T-lymphotropic virus 1/immunology
- Structure-Activity Relationship
- Tumor Cells, Cultured
- Vaccinia virus/genetics
- Viral Proteins
Collapse
Affiliation(s)
- J Arp
- Gene Therapy and Molecular Virology Group, John P. Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Palamara AT, Perno CF, Aquaro S, Buè MC, Dini L, Garaci E. Glutathione inhibits HIV replication by acting at late stages of the virus life cycle. AIDS Res Hum Retroviruses 1996; 12:1537-41. [PMID: 8911579 DOI: 10.1089/aid.1996.12.1537] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We investigated the effect of glutathione on the replication of human immunodeficiency virus (HIV) in chronically infected macrophages, a known reservoir of the virus in the body. We found that exogenous GSH strongly suppresses the production of p24gag protein as well as the virus infectivity. This is related to a dramatic decrease in both budding and release of virus particles from chronically infected cells (either macrophages or lymphocytes), together with a selective decrease in the expression of gp120, the major envelope glycoprotein, rich in intrachain disulfide bonds and thus potentially sensitive to the effect of a reducing agent such as GSH. Overall data suggest that GSH can interfere with late stages of virus replication. This would be in agreement with data obtained in cells exposed to herpesvirus type 1 (a DNA virus) or to Sendai (an RNA virus), showing that the suppression of virus replication by GSH is related to the selective inhibition of envelope glycoproteins. These results suggest a potential role of GSH in combination with other antivirals in the treatment of virus-related diseases.
Collapse
Affiliation(s)
- A T Palamara
- Department of Experimental Medicine and Biochemical Sciences, University of Rome, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Bernasconi E, Fasel N, Wittek R. Cell surface expression of a functional rubella virus E1 glycoprotein by addition of a GPI anchor. J Cell Sci 1996; 109 ( Pt 6):1195-201. [PMID: 8799810 DOI: 10.1242/jcs.109.6.1195] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rubella virus (RV) envelope glycoproteins E1 and E2 are targeted to the Golgi as heterodimers. While E2 contains a transmembrane Golgi retention signal, E1 is arrested in a pre-Golgi compartment in the absence of E2, and appears to require heterodimerization in order to reach the Golgi. Various forms of E1 with deletions in the ectodomain or lacking the cytoplasmic (CT) and transmembrane (TM) domains, as well as the 29 C-terminal amino acid residues of the ectodomain were also retained intracellularly. We therefore investigated the possibility of targetting E1 to the plasma membrane by addition of a glycosylphosphatidylinositol (GPI) anchor. We found that E1GPI was transported to the cell surface where it retained the hemadsorption activity characteristic of the wild-type E1/E2 heterodimer. Furthermore, coexpression of a mammalian GPI-specific phospholipase D (GPI-PLD) resulted in the release of E1GPI and in constitutive expression of a soluble form of E1. This study thus demonstrates that the GPI anchor has a dominant effect over the E1 pre-Golgi retention signal and that E1 is sufficient for hemadsorption.
Collapse
Affiliation(s)
- E Bernasconi
- Institut de Biologie Animale, Université de Lausanne, Switzerland
| | | | | |
Collapse
|
19
|
Palamara AT, Perno CF, Ciriolo MR, Dini L, Balestra E, D'Agostini C, Di Francesco P, Favalli C, Rotilio G, Garaci E. Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication. Antiviral Res 1995; 27:237-53. [PMID: 8540746 DOI: 10.1016/0166-3542(95)00008-a] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of glutathione (GSH) in the in vitro infection and replication of human herpes simplex virus type 1 (HSV-1) was investigated. Intracellular endogenous GSH levels dramatically decreased in the first 24 h after virus adsorption, starting immediately after virus challenge. The addition of exogenous GSH was not only able to restore its intracellular levels almost up to those found in uninfected cells, but also to inhibit > 99% the replication of HSV-1. This inhibition was concentration-dependent, not related to toxic effects on host cells and also maintained if the exogenous GSH was added as late as 24 h after virus challenge, i.e. when virus infection was fully established. Electron microscopic examination of HSV-1-infected cells showed that GSH dramatically reduced the number of extracellular and intracytoplasmic virus particles, whereas some complete nucleocapsids were still detected within the nuclei of GSH-treated cells. Consistent with this observation, immunoblot analysis showed that the expression of HSV-1-glycoprotein B, crucial for the release and the infectivity of virus particles, was significantly decreased. Data suggest that exogenous GSH inhibits the replication of HSV-1 by interfering with very late stages of the virus life cycle, without affecting cellular metabolism.
Collapse
Affiliation(s)
- A T Palamara
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baldwin AN, Shooter EM. Zone mapping of the binding domain of the rat low affinity nerve growth factor receptor by the introduction of novel N-glycosylation sites. J Biol Chem 1995; 270:4594-602. [PMID: 7876230 DOI: 10.1074/jbc.270.9.4594] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The binding of NGF (nerve growth factor) to the rat low affinity nerve growth factor receptor (p75NGFR) has been studied by site-directed mutagenesis of the receptor. Introduction of non-native N-glycosylation sites within the binding domain indicates that the second of the characteristic cysteine-rich repeats may be particularly important to NGF binding. Two mutants of the second repeat, S42N and S66N, are glycosylated and bind NGF at a drastically reduced level, while still maintaining a conformation recognized by the monoclonal antibody against p75, MC192. Alanine substitution at these sites does not affect NGF binding. Two other mutations that result in local structural changes in the second repeat also greatly decrease binding. One of these altered residues, Ser50, appears to play an essential structural role, since it cannot be replaced by Asn, Ala, or Thr without loss of both NGF binding and MC192 recognition on a Western. Glycosylation of selected sites in the other repeats has little effect on NGF binding or antibody recognition. The introduction of non-native N-glycosylation sites may provide a generally useful scanning technique for the study of protein-protein interactions.
Collapse
Affiliation(s)
- A N Baldwin
- Department of Neurobiology, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
21
|
Lafrance MH, Vézina C, Wang Q, Boileau G, Crine P, Lemay G. Role of glycosylation in transport and enzymic activity of neutral endopeptidase-24.11. Biochem J 1994; 302 ( Pt 2):451-4. [PMID: 8092997 PMCID: PMC1137249 DOI: 10.1042/bj3020451] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neutral endopeptidase (NEP, EC 3.4.24.11) is a major ectoenzyme of the brush-border membrane. The ectodomain of NEP contains five putative N-glycosylation sites. In order to determine the role of the addition of sugar moieties on the activity and intracellular transport of NEP, we have used site-directed mutagenesis to remove all or some of the five potential sites of sugar addition in membrane-bound and secreted forms of the enzyme. Expression of NEP glycosylation mutants in COS-1 cells showed that all five sites are used for sugar addition. Immunoblotting of NEP in COS-1 cell extracts or culture media indicated that total expression of normal membrane-bound NEP was not affected by mutations at glycosylation sites, whereas this expression level appeared to be strictly dependent on the number of glycosylation sites retained on the soluble form. The transport to the cell surface was also reduced by decreased glycosylation, but again the phenomenon appeared more drastic in the case of the soluble form than for the membrane-bound enzyme. Enzyme activity was decreased by deglycosylation. However, the presence of either of two crucial sites (sites 1 and 5; numbered from the N-terminus of the protein) was sufficient to recover close-to-normal enzymic activities. Transport to the cell surface and enzyme activity of NEP are thus both dependent on sugar residues, probably through different conformational constraints. These constraints seem to be local for enzyme activity but more global for transport to the cell surface.
Collapse
Affiliation(s)
- M H Lafrance
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Hemming A, Bolmstedt A, Jansson B, Hansen JE, Travis B, Hu SL, Olofsson S. Identification of three N-linked glycans in the V4-V5 region of HIV-1 gp 120, dispensable for CD4-binding and fusion activity of gp 120. Arch Virol 1994; 134:335-44. [PMID: 8129620 DOI: 10.1007/bf01310571] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Site-directed mutagenesis was used to study the biological significance of three N-linked glycans (linked to Asn406, Asn448, and Asn463), situated in the CD4-binding region of gp120. Mutagenesis was carried out in a phage M13 system, and the mutated env genes were inserted into recombinant vaccinia virus (r-vaccinia virus). To evaluate if the level of expression affected the biological phenotype of mutant gp120, we expressed the envelope glycoproteins using either a weak (7.5 K) or a strong (11 K) promoter of vaccinia virus. The expression of mutated env proteins was analyzed after infecting CD4-expressing HeLa cells with the r-vaccinia virus, by monitoring the ability of the infected cells to generate CD4-dependent syncytia. Env gene products lacking all three glycans as well as env gene products lacking different permutations of one or two glycans were analyzed. All mutated gp120 species had the expected electrophoretical mobility as anticipated from elimination of one, two, and three N-linked glycans, respectively. Moreover, all mutant env gene products demonstrated the same capacity to induce formation of syncytia, irrespective of using the weak or strong promoter for expression. These data indicate that the three N-linked glycans studied are dispensable for HIV env gene products to function in CD4-binding and the subsequent fusion step.
Collapse
Affiliation(s)
- A Hemming
- Department of Clinical Virology, University of Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Hu A, Kövamees J, Norrby E. Intracellular processing and antigenic maturation of measles virus hemagglutinin protein. Arch Virol 1994; 136:239-53. [PMID: 7518224 DOI: 10.1007/bf01321055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The intracellular processing and antigenic maturation of the measles virus (MV) hemagglutinin (H) protein in virus infected cells were probed with murine monoclonal antibodies (Mabs) that reacted with continuous and discontinuous epitopes. The antibodies distinguished between the immature, cotranslational monomeric form of the protein and the mature, dimeric hemagglutinin structure. This was evidenced by testing of immunoreactivity of the Mabs with synthetic peptides, by in vitro synthesized H protein analysis, and by pulse-chase analysis of gel separated monomeric and dimeric forms of the H protein. Time kinetics analysis showed that the protein was synthesized as monomers and most of them were converted into dimers with t1/2 about 30 min. The H protein remained endoglycosidase H (Endo H) sensitive up to 30 min and started to acquire partial resistance to Endo H between 30 and 60 min (t1/2 about 60 min) after synthesis. Oligomerization of the H protein was unaffected in virus infected cells treated with a compound (carbonylcyanide m-chlorophenylhydrazone, CCCP) that blocks transport from the endoplasmic reticulum (ER) to the Golgi complex. These results suggest that the H protein dimerization takes place in the ER before its transport to the medial Golgi complex. The Mabs specific for discontinuous epitopes reacted with the H protein in cells treated with CCCP. Thus conformational antigenic epitope formation appears to take place in the ER.
Collapse
Affiliation(s)
- A Hu
- Department of Virology, School of Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
24
|
Mulvey M, Brown DT. Formation and rearrangement of disulfide bonds during maturation of the Sindbis virus E1 glycoprotein. J Virol 1994; 68:805-12. [PMID: 8289384 PMCID: PMC236517 DOI: 10.1128/jvi.68.2.805-812.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The rigidly ordered icosahedral lattice of the Sindbis virus envelope is composed of a host-derived membrane bilayer in which the viral glycoproteins E1 and E2 reside. E1-E1 interactions stabilized by intramolecular disulfide bridges play a significant role in maintaining the envelope's structural integrity (R. P. Anthony and D. T. Brown, J. Virol. 65:1187-1194, 1991; R. P. Anthony, A. M. Paredes, and D. T. Brown, Virology 190:330-336, 1992). We have examined the acquisition of disulfide bridges within E1 during its maturation. Prior to exit from the endoplasmic reticulum, E1 folds via at least three intermediates, differing in the number and/or arrangement of their disulfides, into a single, compact form. This E1 species remains stable with respect to its disulfides until late in the secretory pathway, when E1 attains a metastable conformation. At this point, when appropriately triggered, intramolecular thiol-disulfide exchange reactions within E1 can occur, resulting in the generation of alternative E1 species. This metastable nature of mature E1 may have important implications for the mechanism of virus disassembly during the initial stages of the infection process (B. Abell and D. T. Brown, J. Virol. 67:5496-5501, 1993).
Collapse
Affiliation(s)
- M Mulvey
- Cell Research Institute, University of Texas at Austin 78713-7640
| | | |
Collapse
|
25
|
Li Y, Luo L, Rasool N, Kang CY. Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding. J Virol 1993; 67:584-8. [PMID: 8416385 PMCID: PMC237399 DOI: 10.1128/jvi.67.1.584-588.1993] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Conflicting results have been reported regarding the role of carbohydrate on human immunodeficiency virus (HIV) envelope glycoprotein gp120 in CD4 receptor binding. Glycosylated, deglycosylated, and nonglycosylated forms of HIV type 1 (HIV-1) and HIV-2 gp120s were used to examine CD4 receptor-binding activity. Nonglycosylated forms of gp120 generated either by deletion of the signal sequence of HIV-1 gp120 or by synthesis in the presence of tunicamycin failed to bind to CD4. In contrast, highly mannosylated gp120 bound to soluble CD4 molecules well. Enzymatic removal of carbohydrate chains from glycosylated gp120 by endoglycosidase H or an endoglycosidase F/N glycanase mixture had no effect on the ability of gp120 to bind CD4. An experiment which measured the ability of gp120 to bind to CD4 as an assay of the proper conformation of gp120 showed that carbohydrate chains on gp120 are not required for the interaction between gp120 and CD4 but that N-linked glycosylation is essential for generation of the proper conformation of gp120 to provide a CD4-binding site.
Collapse
Affiliation(s)
- Y Li
- Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Garaci E, Palamara AT, Di Francesco P, Favalli C, Ciriolo MR, Rotilio G. Glutathione inhibits replication and expression of viral proteins in cultured cells infected with Sendai virus. Biochem Biophys Res Commun 1992; 188:1090-6. [PMID: 1332709 DOI: 10.1016/0006-291x(92)91343-o] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Addition of reduced glutathione inhibited the production of Sendai virus in African green monkey kidney (AGMK) cells. This result could be accounted for by a direct action of GSH on viral replication. The inhibitory action was associated to an increase of the GSH intracellular level, while the host cell metabolism was unaffected. The antiviral effect was related to decrease and inactivation of the hemagglutinin-neuraminidase (HN) virus glycoprotein.
Collapse
Affiliation(s)
- E Garaci
- Department of Experimental Medicine and Biochemical Sciences, University of Rome, Tor Vergata, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Bulleid NJ, Bassel-Duby RS, Freedman RB, Sambrook JF, Gething MJ. Cell-free synthesis of enzymically active tissue-type plasminogen activator. Protein folding determines the extent of N-linked glycosylation. Biochem J 1992; 286 ( Pt 1):275-80. [PMID: 1520279 PMCID: PMC1133051 DOI: 10.1042/bj2860275] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue-type plasminogen activator (t-PA) is synthesized in mammalian cells as a mixture of two forms that differ in their extent of N-linked glycosylation. We have investigated the mechanism underlying this variation in glycosylation, using a cell-free system that consists of a rabbit reticulocyte lysate optimized for the formation of disulphide bonds and supplemented with dog pancreas microsomal membranes. Molecules of human t-PA synthesized in vitro are enzymically active and responsive to natural activators and inhibitors, and are glycosylated in a pattern identical with that of the protein produced in vivo. This demonstrates that t-PA synthesized in vitro folds into the same conformation as the protein synthesized in vivo. We show that the extent of glycosylation of individual t-PA molecules is dependent on the state of folding of the polypeptide chain, since the probability of addition of an oligosaccharide side chain at Asn-184 is decreased under conditions that promote the formation of enzymically active molecules. This variation in glycosylation is independent of the rate of protein synthesis.
Collapse
Affiliation(s)
- N J Bulleid
- Department of Biochemistry and Molecular Biology, University of Manchester, U.K
| | | | | | | | | |
Collapse
|
28
|
de Melo M, Mottet G, Orvell C, Roux L. Sendai virus M protein is found in two distinct isoforms defined by monoclonal antibodies. Virus Res 1992; 24:47-64. [PMID: 1378238 DOI: 10.1016/0168-1702(92)90030-d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of a monoclonal antibody defines a subset of Sendai virus M protein representing about 30% of total. This M protein acquires, during the hour following synthesis, an epitope not present on the bulk of M. This epitope maturation is observed in acutely as well as in persistently infected cells. It takes place in vivo in absence of other viral proteins, but it is not observed when the protein is synthesized in a reticulocyte lysate. Epitope maturation does not appear to result from phosphorylation, acylation or disulfide bond formation. If immunofluorescent staining seems to indicate a preferential association of this subset of M protein with nucleocapsids, this is not confirmed by immunogold staining or by nucleocapsid isolation. Incubation of cytoplasmic extracts or of purified M protein in conditions which do not favor M to M protein association results in a relative increase of M protein carrying the maturing epitope. It is concluded that M protein exists in two distinct isoforms.
Collapse
Affiliation(s)
- M de Melo
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
29
|
Qiu Z, Hobman TC, McDonald HL, Seto NO, Gillam S. Role of N-linked oligosaccharides in processing and intracellular transport of E2 glycoprotein of rubella virus. J Virol 1992; 66:3514-21. [PMID: 1583721 PMCID: PMC241132 DOI: 10.1128/jvi.66.6.3514-3521.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of N-linked glycosylation in processing and intracellular transport of rubella virus glycoprotein E2 has been studied by expressing glycosylation mutants of E2 in COS cells. A panel of E2 glycosylation mutants were generated by oligonucleotide-directed mutagenesis. Each of the three potential N-linked glycosylation sites was eliminated separately as well as in combination with the other two sites. Expression of the E2 mutant proteins in COS cells indicated that in rubella virus M33 strain, all three sites are used for the addition of N-linked oligosaccharides. Removal of any of the glycosylation sites resulted in slower glycan processing, lower stability, and aberrant disulfide bonding of the mutant proteins, with the severity of defect depending on the number of deleted carbohydrate sites. The mutant proteins were transported to the endoplasmic reticulum and Golgi complex but were not detected on the cell surface. However, the secretion of the anchor-free form of E2 into the medium was not completely blocked by the removal of any one of its glycosylation sites. This effect was dependent on the position of the deleted glycosylation site.
Collapse
Affiliation(s)
- Z Qiu
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
30
|
Sjöblom I, Glorioso JC, Sjögren-Jansson E, Olofsson S. Antigenic structure of the herpes simplex virus type 1 glycoprotein C: demonstration of a linear epitope situated in an environment of highly conformation-dependent epitopes. APMIS 1992; 100:229-36. [PMID: 1373286 DOI: 10.1111/j.1699-0463.1992.tb00865.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A continuous epitope, situated within or in close proximity to antigenic site II of the herpes simplex virus type 1-specified glycoprotein C (gC-1), was identified. The continuous linear nature of the epitope, defined by a monoclonal antibody C2H12, was established by three independent lines of evidence: (i) The epitope was detectable by immunoblot under denaturing and reducing conditions. (ii) The epitope was detectable by RIPA of extracts from TM-treated HSV-infected cells, despite the malfolding caused by this treatment. (iii) The epitope was detected in an approximately 5,000-dalton papain fragment of gC-1. A mapping analysis, primarily based on use of mutant virus, expressing truncated gC-1 molecules, suggested that the mapping position of the epitope was delimited by amino acids 120 and 230. Other epitopes of this region of gC-1 are highly conformation-dependent, and the existence of a linear epitope, accessible on native gC-1, may facilitate the elucidation of the functional anatomy of gC-1.
Collapse
Affiliation(s)
- I Sjöblom
- Department of Clinical Virology, University of Gothenburg, Sweden
| | | | | | | |
Collapse
|
31
|
N-linked glycosylation of rabies virus glycoprotein. Individual sequons differ in their glycosylation efficiencies and influence on cell surface expression. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50073-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Tifft C, Proia R, Camerini-Otero R. The folding and cell surface expression of CD4 requires glycosylation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50726-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Kayman SC, Kopelman R, Projan S, Kinney DM, Pinter A. Mutational analysis of N-linked glycosylation sites of Friend murine leukemia virus envelope protein. J Virol 1991; 65:5323-32. [PMID: 1895386 PMCID: PMC249012 DOI: 10.1128/jvi.65.10.5323-5332.1991] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The roles played by the N-linked glycans of the Friend murine leukemia virus envelope proteins were investigated by site-specific mutagenesis. The surface protein gp70 has eight potential attachment sites for N-linked glycan; each signal asparagine was converted to aspartate, and mutant viruses were tested for the ability to grow in NIH 3T3 fibroblasts. Seven of the mutations did not affect virus infectivity, whereas mutation of the fourth glycosylation signal from the amino terminus (gs4) resulted in a noninfectious phenotype. Characterization of mutant gene products by radioimmunoprecipitation confirmed that glycosylation occurs at all eight consensus signals in gp70 and that gs2 carries an endoglycosidase H-sensitive glycan. Elimination of gs2 did not cause retention of an endoglycosidase H-sensitive glycan at a different site, demonstrating that this structure does not play an essential role in envelope protein function. The gs3- mutation affected a second posttranslational modification of unknown type, which was manifested as production of gp70 that remained smaller than wild-type gp70 after removal of all N-linked glycans by peptide N-glycosidase F. The gs4- mutation decreased processing of gPr80 to gPr90, completely inhibited proteolytic processing of gPr90 to gp70 and Pr15(E), and prevented incorporation of envelope products into virus particles. Brefeldin A-induced mixing of the endoplasmic reticulum and parts of the Golgi apparatus allowed proteolytic processing of wild-type gPr90 to occur in the absence of protein transport, but it did not overcome the cleavage defect of the gs4- precursor, indicating that gs4- gPr90 is resistant to the processing protease. The work reported here demonstrates that the gs4 region is important for env precursor processing and suggests that gs4 may be a critical target in the disruption of murine leukemia virus env product processing by inhibitors of N-linked glycosylation.
Collapse
Affiliation(s)
- S C Kayman
- Laboratory of Retroviral Biology, Public Health Research Institute, New York, New York 10016
| | | | | | | | | |
Collapse
|
34
|
Sanchez A, Frey TK. Vaccinia-vectored expression of the rubella virus structural proteins and characterization of the E1 and E2 glycosidic linkages. Virology 1991; 183:636-46. [PMID: 1853566 DOI: 10.1016/0042-6822(91)90993-l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The maturation of rubella virus (RV) glycoprotein E2 from the single intracellular species (E2i; MW = 40 kDa) to the heterodisperse virion species (E2v; MW = 42 to 47 kDa), was studied by pulse-chase radiolabeling in Vero cells infected with RV or with recombinant vaccinia viruses (VVs) which express the entire RV structural protein open reading frame (VV-CE2E1) or glycoprotein E2 independently (VV-E2). The RV proteins expressed by the recombinant VVs comigrated with authentic RV intracellular proteins. In pulse-chase experiments, performed in both RV- and VV-CE2E1-infected cells, the amount of pulse-labeled E2i was substantially reduced during a 3- to 4-hr chase; during the same chase the amount of pulse-labeled E1 and C did not change. The concomitant appearance of the E2v forms was not observed. In contrast, in VV-E2-infected cells, no reduction in the amount of E2i occurred after as long as a 10-hr chase. Western blots using anti-E2 monoclonal antibodies showed that E2i was the predominant E2 species in cells infected with RV, VV-CE2E1, and VV-E2. However, minor amounts of three discrete species which comigrated within the extent of the E2v smear were also detected in cells infected with all three viruses, indicating that some degree of intracellular processing to E2v did occur. The disappearance of E2i during pulse-chase radiolabeling without the concomitant appearance of detectable E2v and the predominance of this labile form under steady-state conditions as revealed by Western blot analysis suggested that E2i was selectively turned over in both RV- and VV-CE2E1-infected cells. Such turnover was not apparent in VV-E2-infected cells, indicating that association with C and E1 was necessary for turnover to occur. Endoglycosidase digestion experiments and glycan differentiation assays revealed that E2v contained O-linked glycans. The presence of O-glycans on E2v accounted for part of the difference in size between E2v and E2i. Both virion E1 and E2 were found to contain high-mannose, hybrid-type, and complex-type N-glycans. Heterogeneity existed in the extent of processing of these glycans among individual E1 and E2 molecules.
Collapse
Affiliation(s)
- A Sanchez
- Department of Biology, Georgia State University, Atlanta 30302-4010
| | | |
Collapse
|
35
|
Gorman WL, Pridgen C, Portner A. Glycosylation of the hemagglutinin-neuraminidase glycoprotein of human parainfluenza virus type 1 affects its functional but not its antigenic properties. Virology 1991; 183:83-90. [PMID: 1647078 DOI: 10.1016/0042-6822(91)90120-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The hemagglutinin-neuraminidase (HN) glycoprotein of human parainfluenza virus type 1 (hPIV-1) has been shown to be similar in predicted protein sequence and structure to those of Sendai virus, but it is more highly glycosylated. Because glycosylation can modify protein structure and function, we investigated the effect of glycosylation on the antigenic structure and biological function of the HN of hPIV-1. Antigenic and functional analyses were carried out with purified hPIV-1 virions treated with Endoglycosidase F, which removes carbohydrate moieties, because treatment of hPIV-1-infected LLC-MK2 cells with an inhibitor of glycosylation resulted in virions which were deficient in both HN and F surface glycoproteins. No change in the antigenic structure of the HN of hPIV-1 was detected after carbohydrate removal; epitope recognition by a panel of 7 hPIV-1 HN monoclonal antibodies (MAbs) was unchanged compared to untreated virions. Moreover, there was no change in the cross-reactivity of 8 of 10 Sendai virus HN MAbs, and only a slight change in the remaining 2. Nor did carbohydrate removal appear to affect hemagglutinating or neuraminidase activities; hemagglutination titers with chicken erythrocytes (cRBC) were unchanged, and in vitro neuraminidase activity with a small substrate (N-acetylneuraminlactose) showed only a 20% reduction. However, elution of deglycosylated hPIV-1 from agglutinated cRBC as a result of neuraminidase activity was reduced by 80%. These results suggest that the enzymatic activity of hPIV-1 HN was not directly affected by carbohydrate removal but that the reduction in elution was due to a change in the interaction of the HN with the host receptor. This was further supported by a 2- to 16-fold reduction in the ability of all 7 hPIV-1 HN MAbs to inhibit hemagglutination of deglycosylated hPIV-1 virus. Such a change in HN-host receptor interaction was found to involve a change in receptor specificity because deglycosylated virus was able to fully agglutinate cRBC stripped of receptors required by the native, glycosylated virus. We propose the following model for our results: deglycosylation of the HN of hPIV-1 causes the hemagglutinating portion of the molecule to recognize a new receptor which is not susceptible to enzymatic cleavage by the neuraminidase.
Collapse
Affiliation(s)
- W L Gorman
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | |
Collapse
|
36
|
Collins PL, Mottet G. Homooligomerization of the hemagglutinin-neuraminidase glycoprotein of human parainfluenza virus type 3 occurs before the acquisition of correct intramolecular disulfide bonds and mature immunoreactivity. J Virol 1991; 65:2362-71. [PMID: 1707981 PMCID: PMC240588 DOI: 10.1128/jvi.65.5.2362-2371.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The posttranslational maturation of the hemagglutinin-neuraminidase (HN) glycoprotein of human parainfluenza type 3 virus (PIV3) was investigated in pulse-chase experiments in which folding was monitored by immunoprecipitation with conformation-dependent antibodies and gel electrophoresis under nonreducing conditions and oligomerization was monitored by chemical cross-linking and sedimentation in sucrose gradients. The acquisition of mature immunoreactivity and the formation of correct intramolecular disulfide bonds were concurrent events, with half-times of approximately 10 to 15 min. The finding that newly synthesized HN had little reactivity with postinfection cotton rat serum or with most of the members of a panel of HN-specific monoclonal antibodies indicated that the major epitopes of the PIV3 HN protein are highly conformational in nature. Chemical cross-linking studies indicated that the mature HN protein is present in homoligomers, which are probably tetramers. These findings are consistent with recent observations for the HN protein of Sendai virus (S.D. Thompson, W.G. Laver, K.G. Murti, and A. Portner, J. Virol. 62:4653--4660, 1988; S. Vidal, G. Mottet, D. Kolakofsky, and L. Roux, J. Virol. 63:892--900, 1989). Surprisingly, analysis of pulse-labeled HN protein by sedimentation on sucrose gradients after labeling periods of as little as 2 min indicated that it was present intracellularly only in oligomeric form. The same results were obtained when the labeling period was preceded by a 1.5-h cycloheximide treatment to clear the endoplasmic reticulum of presynthesized HN protein, which indicated that the oligomerization did not involve the incorporation of newly synthesized monomers into partially assembled oligomers. Subsequent chase incubations did not significantly alter the sedimentation profile or stability of the oligomeric forms, suggesting that oligomers detected after short labeling periods were tetramers. Association with cellular proteins did not appear to be responsible for the sedimentation of newly synthesized HN protein as an oligomer. The absence of a detectable monomeric form of intracellular HN protein raised the possibility that oligomerization is cotranslational, and it is possible that the type II membrane orientation of the HN protein might be an important factor in its mode of oligomerization.
Collapse
Affiliation(s)
- P L Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
37
|
Mann BJ, Torian BE, Vedvick TS, Petri WA. Sequence of a cysteine-rich galactose-specific lectin of Entamoeba histolytica. Proc Natl Acad Sci U S A 1991; 88:3248-52. [PMID: 2014248 PMCID: PMC51423 DOI: 10.1073/pnas.88.8.3248] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Entamoeba histolytica trophozoites adhere to human colonic mucins and epithelial cells by a cell surface galactose-specific lectin. This lectin, which is composed of two subunits linked by disulfide bonds, has been shown to be a protective antigen in an animal model of amebiasis. We have determined the sequence of the mature form of the 170-kDa heavy subunit from cDNA clones and PCR-amplified fragments. The heavy subunit sequence consisted of a putative extracellular domain containing 1209 amino acids with 16 potential sites for N-linked glycosylation, a 26-amino acid hydrophobic region, and a 41-amino acid cytoplasmic tail. The presence of N-linked oligosaccharides was confirmed by culturing amebae with tunicamycin, which resulted in a decrease in the heavy subunit molecular mass to 160 kDa and a loss of lectin activity. The extracellular domain was remarkable for an extensive cysteine-rich domain that shared identify with similar regions of several other cell surface proteins and appeared to confer protease resistance to the subunit.
Collapse
Affiliation(s)
- B J Mann
- Department of Medicine, University of Virginia, Charlottesville 22908
| | | | | | | |
Collapse
|
38
|
Kast WM, Roux L, Curren J, Blom HJ, Voordouw AC, Meloen RH, Kolakofsky D, Melief CJ. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc Natl Acad Sci U S A 1991; 88:2283-7. [PMID: 1848698 PMCID: PMC51215 DOI: 10.1073/pnas.88.6.2283] [Citation(s) in RCA: 237] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The only peptide of Sendai virus that is recognized by cytotoxic T lymphocytes (CTL) in B6 mice was found with (i) the use of recombinant vaccinia virus constructs containing separate genes of Sendai virus and (ii) a set of overlapping peptides completely spanning the identified nucleoprotein (NP) gene product. This immunodominant NP peptide is recognized by Sendai virus-specific CTL that are known to have therapeutic effects in vivo. By subcutaneous immunization, this peptide induced Sendai virus and NP peptide-specific CTL memory responses in vivo. Most importantly, mice that had been immunized with this peptide were protected against a lethal virus dose, indicating that viral peptides can be used as antiviral T-cell vaccines. The induction of T-cell memory by free peptide immunization potentially has wide applicability in biology and medicine, including protection against infectious disease.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Clone Cells
- Cytotoxicity, Immunologic
- Mice
- Mice, Inbred Strains
- Parainfluenza Virus 1, Human/genetics
- Parainfluenza Virus 1, Human/immunology
- Parainfluenza Virus 1, Human/pathogenicity
- Paramyxoviridae Infections/immunology
- Paramyxoviridae Infections/prevention & control
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/pharmacology
- Vaccinia virus/genetics
- Viral Vaccines/administration & dosage
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- W M Kast
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Grigera PR, Mathieu ME, Wagner RR. Effect of glycosylation on the conformational epitopes of the glycoprotein of vesicular stomatitis virus (New Jersey serotype). Virology 1991; 180:1-9. [PMID: 1701943 DOI: 10.1016/0042-6822(91)90002-s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The conformational epitopes reactive with neutralizing monoclonal antibodies (MAbs) appear to be clustered at the middle third of the glycoprotein (G) of the New Jersey serotype of vesicular stomatitis virus (VSV-NJ) and are flanked by two N-linked carbohydrate chains (W. Keil and R.R. Wagner, Virology 170, 392-407, 1989). We report here studies on the effect of glycosylation on the reactivity of VSV-NJ G protein derived from released virions or immunoprecipitated from pulse-labeled cells was not significantly affected in its reactivity with MAbs directed to epitope IV mapped toward the amino-terminus, nor to the centrally located conformational epitopes VI, VIII, and IX. However, there was a 5- to 15-fold decrease in the reactivity with MAb of epitopes VI, VIII, and IX on unglycosylated G protein either isolated from a ribosome-enriched membrane fraction or immunoprecipitated from whole VSV-infected cells labeled for 15 hr in the presence of tunicamycin. In sharp contrast, epitope V and to a somewhat lesser extent epitope VII exhibited decreased reactivity with their respective MAbs when unglycosylated G protein was isolated from released viral particles or from pulse-labeled cells infected with VSV-NJ in the presence of tunicamycin. Enzymatic removal of preformed carbohydrate chains with N-glycanase had little or no effect on the MAb-reactivity of epitopes V and VII, indicating that the carbohydrate chains per se do not influence the antigenic specificity of VSV-NJ G protein. These data suggest that the formation of N-linked carbohydrate chains influences the structure of the VSV-NJ G protein in such a way that epitopes V and VII are shielded from reactivity with their specific MAbs from an early stage of G-protein processing and to a much lesser extent epitopes VI, VIII, and IX at late stages of intracellular processing. These results are compatible with, but do not prove, the hypothesis that N-linked glycosylation plays a key role in promoting the formation and the stability of the disulfide bonds that determine the epitope-specific conformational integrity of the VSV-NJ glycoprotein.
Collapse
Affiliation(s)
- P R Grigera
- Department of Microbiology and Cancer Center, University of Virginia School of Medicine, Charlottesville 22908
| | | | | |
Collapse
|
40
|
Stirzaker SC, Poncet D, Both GW. Sequences in rotavirus glycoprotein VP7 that mediate delayed translocation and retention of the protein in the endoplasmic reticulum. J Cell Biol 1990; 111:1343-50. [PMID: 2170420 PMCID: PMC2116229 DOI: 10.1083/jcb.111.4.1343] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycosylation and translocation of the simian rotavirus protein VP7, a resident ER protein, does not occur co-translationally in vivo. In pulse-chase experiments in COS cells, nonglycosylated VP7 was still detectable after a 25-min chase period, although the single glycosylation site was only 18 residues beyond the signal peptide cleavage site. After labeling, glycosylated and nonglycosylated VP7 was recovered in microsomes but the latter was sensitive to trypsin (i.e., the nascent protein became membrane associated) but most of it entered the ER posttranslationally because of a rate-limiting step early in translocation. In contrast with the simian protein, bovine VP7 was glycosylated and translocated rapidly. Thus, delayed translocation per se was not required for retention of VP7 in the ER. By constructing hybrid proteins, it was further shown that the signal peptide together with residues 64-111 of the simian protein caused delayed translocation. The same sequences were also necessary and sufficient for retention of simian VP7 in the ER. The data are consistent with the idea that certain proteins are inserted into the ER membrane in a loop configuration.
Collapse
Affiliation(s)
- S C Stirzaker
- Commonwealth Scientific and Industrial Research Organization Division of Biomolecular Engineering, North Ryde, NSW, Australia
| | | | | |
Collapse
|
41
|
Collins PL. O glycosylation of glycoprotein G of human respiratory syncytial virus is specified within the divergent ectodomain. J Virol 1990; 64:4007-12. [PMID: 2164608 PMCID: PMC249701 DOI: 10.1128/jvi.64.8.4007-4012.1990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
cDNAs encoding the G glycoprotein of respiratory syncytial virus and the hemagglutinin-neuraminidase (HN) glycoprotein of parainfluenza virus type 3 were modified by site-specific mutagenesis and restriction fragment replacement to encode chimeric proteins consisting of the cytoplasmic and transmembrane domains of one protein fused to the ectodomain of the other. In the case of the HN ectodomain attached to the G transmembrane and cytoplasmic domains, cell surface expression of the chimera was reduced. Otherwise, the presence of the heterologous transmembrane and cytoplasmic domains had little effect on the processing of the HN or G ectodomain, as assayed by the acquisition of N-linked and O-linked carbohydrates, transport to the cell surface and, in the case of HN, folding, oligomerization, and hemadsorption activity. These results showed that the synthesis and processing of each ectodomain did not require the homologous transmembrane and cytoplasmic domains. In particular, O glycosylation of the G protein was specified fully by its ectodomain, even though this domain is highly divergent among the respiratory syncytial virus antigenic subgroups. In addition, whereas the cytoplasmic and transmembrane domains of the G protein were relatively highly conserved, they were nonetheless fully replaceable without significantly affecting processing.
Collapse
Affiliation(s)
- P L Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| |
Collapse
|
42
|
Spriggs MK, Collins PL. Intracellular processing and transport of NH2-terminally truncated forms of a hemagglutinin-neuraminidase type II glycoprotein. J Biophys Biochem Cytol 1990; 111:31-44. [PMID: 2164031 PMCID: PMC2116159 DOI: 10.1083/jcb.111.1.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Six amino-terminal deletion mutants of the NH2-terminally anchored (type II orientation) hemagglutinin-neuraminidase (HN) protein of parainfluenza virus type 3 were expressed in tissue culture by recombinant SV-40 viruses. The mutations consisted of progressive deletions of the cytoplasmic domain and, in some cases, of the hydrophobic signal/anchor. Three activities were dissociated for the signal/anchor: membrane insertion, translocation, and anchoring/transport. HN protein lacking the entire cytoplasmic tail was inserted efficiently into the membrane of the endoplasmic reticulum but was translocated inefficiently into the lumen. However, the small amounts that were successfully translocated appeared to be processed subsequently in a manner indistinguishable from that of parental HN. Thus, the cytoplasmic domain was not required for maturation of this type II glycoprotein. Progressive deletions into the membrane anchor restored efficient translocation, indicating that the NH2-terminal 44 amino acids were fully dispensable for membrane insertion and translocation and that a 10-amino acid hydrophobic signal sequence was sufficient for both activities. These latter HN molecules appeared to be folded authentically as assayed by hemagglutination activity, reactivity with a conformation-specific antiserum, correct formation of intramolecular disulfide bonds, and homooligomerization. However, most (85-90%) of these molecules accumulated in the ER. This showed that folding and oligomerization into a biologically active form, which presumably represents a virion spike, occurs essentially to completion within that compartment but is not sufficient for efficient transport through the exocytotic pathway. Protein transport also appeared to depend on the structure of the membrane anchor. These latter mutants were not stably integrated in the membrane, and the small proportion (10-15%) that was processed through the exocytotic pathway was secreted. The maturation steps and some of the effects of mutations described here for a type II glycoprotein resemble previous observations for prototypic type I glycoproteins and are indicative of close similarities in these processes for proteins of both membrane orientations.
Collapse
Affiliation(s)
- M K Spriggs
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
43
|
Abstract
From 10-min [35S]methionine pulse-labeled Sendai virus-infected BHK cells, an anti-BiP monoclonal antibody precipitated, along with the BiP protein, the hemagglutinin-neuraminidase protein (SV-HN) fivefold better than the fusion protein (SV-Fo). A minimal estimate of 30% of the newly made HN was complexed to BiP. The majority of the HN in the complex was endo-H sensitive and the molar ratio of BiP:HN was estimated to be 1:2. With time, HN dissociated from BiP, and the rate of dissociation was found to be inversely proportional to the rate at which HN acquired its native structure. It is proposed that association with BiP followed by slow release (i) is responsible for the HN slow maturation and (ii) represents a normal step in its maturation pathway.
Collapse
Affiliation(s)
- L Roux
- Department of Microbiology, University of Geneva Medical School, Switzerland
| |
Collapse
|
44
|
Gorman WL, Gill DS, Scroggs RA, Portner A. The hemagglutinin-neuraminidase glycoproteins of human parainfluenza virus type 1 and Sendai virus have high structure-function similarity with limited antigenic cross-reactivity. Virology 1990; 175:211-21. [PMID: 1689918 DOI: 10.1016/0042-6822(90)90201-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human parainfluenza virus type 1 (hPIV-1) is closely related to Sendai virus on the basis of cross-reactivity of antisera. We examined this association further by using monoclonal antibodies to the Sendai virus hemagglutinin-neuraminidase (HN) glycoprotein to determine the relationship between overall protein structure and the hemagglutination and neuraminidase functions. Of 10 monoclonal antibodies representing four nonoverlapping antigenic sites on the HN of Sendai virus, only 4 from two sites cross-reacted with hPIV-1, indicating a limited conservation of epitopes. One of these four inhibited the hemagglutinating activity of hPIV-1 comparably to Sendai virus, but none appreciably inhibited the neuraminidase activity of hPIV-1. The ability of some of these monoclonal antibodies to inhibit only hemagglutinating or neuraminidase activity of either virus provided evidence for two separate active sites on the HN molecule. To determine the overall structural relationship of the HNs of hPIV-1 and Sendai virus, we cloned and sequenced the HN gene of hPIV-1. The HN clone was made from genomic RNA and was identified by hybrid-arrested in vitro translation of mRNA. The predicted HN protein sequence of hPIV-1 was identical in length to that of Sendai virus and had a shared identity of 72%. There was a marked conservation of structural elements (cysteines, prolines, and glycines), which would predict a similar molecular conformation. However, there were 10 potential glycosylation sites on the HN of hPIV-1, compared with 5 on Sendai virus. Some of these sites may be responsible for the inability of the Sendai virus monoclonal antibodies to cross-react. The results of our study support a close structure-function relationship between hPIV-1 and Sendai virus but suggest limited antigenic cross-reactivity.
Collapse
Affiliation(s)
- W L Gorman
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | | | |
Collapse
|
45
|
Sodora DL, Cohen GH, Eisenberg RJ. Influence of asparagine-linked oligosaccharides on antigenicity, processing, and cell surface expression of herpes simplex virus type 1 glycoprotein D. J Virol 1989; 63:5184-93. [PMID: 2555549 PMCID: PMC251182 DOI: 10.1128/jvi.63.12.5184-5193.1989] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glycoprotein D (gD) is an envelope component of herpes simplex virus types 1 and 2. gD-1 contains three sites for the addition of N-linked carbohydrate (N-CHO), all of which are used. Three mutants were constructed by site-directed mutagenesis, each of which altered one N-CHO addition site from Asn-X-Thr/Ser to Asn-X-Ala. A fourth mutant was altered at all three sites. The mutant genes were inserted into an expression vector, and the expressed protein was analyzed in transiently transfected COS-1 cells. The mutant protein lacking N-CHO at site 1 (Asn-94) had a reduced affinity for monoclonal antibodies (MAbs) to discontinuous epitopes, suggesting that the conformation of the protein had been altered. However, the protein was processed and transported to the cell surface. The absence of N-CHO at site 2 (Asn-121) had no apparent effect on processing or transport of gD-1 but resulted in reduced binding of two MAbs previously shown to be in group VI. Binding of other MAbs to discontinuous epitopes (including other group VI MAbs) was not affected. The absence of N-CHO at site 3 (Asn-262) had no effect on processing, transport, or conformation of the gD-1 protein. The absence of N-CHO from site 1 or from all three sites resulted in the formation of high-molecular-weight aggregates or complexes and a reduction in MAb binding. However, these proteins were modified by the addition of O-glycans and transported to the cell surface. We conclude that the absence of the first or all N-linked carbohydrates alters the native conformation of gD-1 but does not prevent its transport to the cell surface.
Collapse
Affiliation(s)
- D L Sodora
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104-6003
| | | | | |
Collapse
|
46
|
Gompels UA, Minson AC. Antigenic properties and cellular localization of herpes simplex virus glycoprotein H synthesized in a mammalian cell expression system. J Virol 1989; 63:4744-55. [PMID: 2552150 PMCID: PMC251111 DOI: 10.1128/jvi.63.11.4744-4755.1989] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Herpes simplex virus type 1 glycoprotein H (HSV-1 gH) was synthesized in an inducible mammalian cell expression system, and its properties were examined. The gH coding sequence, together with the stable 5' untranslated leader sequence from xenopus beta-globin, was placed under control of the strong promoter from the human cytomegalovirus major immediate-early gene in an amplifiable plasmid which contains the simian virus 40 (SV40) virus origin for replication (ori). This expression vector was transfected into ts COS cells constitutively expressing a temperature-sensitive SV40 T antigen which allows utilization of the SV40 ori at permissive temperatures. The results of transient expression assays at the permissive temperature showed that HSV-1 gH could be synthesized in greater amounts than those produced by a high-multiplicity virus infection. The proteins produced were detected in Western blots (immunoblots) with a HSV-1 gH-specific polyclonal serum raised against a TrpE-gH fusion protein. The transfected gH had an apparent molecular weight of approximately 105,000, intermediate in size to those of the precursor (100,000) and fully processed forms (110,000) of HSV-1 gH from infections. Antigenicity was investigated by reactions with three virus-neutralizing monoclonal antibodies specific for conformational epitopes on gH. Only one of these monoclonal antibodies could immunoprecipitate the synthesized gH. However, equal recognition of the transfected gH was achieved by superinfection with virus. In addition, detectable amounts of gH were not expressed on the cell surface unless the cells were superinfected with virus. Studies with a temperature-sensitive mutant, ts1201, defective in encapsidation showed that the changes in antigenic structure and cell surface expression caused by superinfection with virus were not due simply to incorporation of gH into virions. These results suggest that gH requires additional virus gene products for cell surface localization and formation of an antigenic structure important for its function in mediating infectivity.
Collapse
Affiliation(s)
- U A Gompels
- Department of Pathology, University of Cambridge, United Kingdom
| | | |
Collapse
|
47
|
Wright KE, Salvato MS, Buchmeier MJ. Neutralizing epitopes of lymphocytic choriomeningitis virus are conformational and require both glycosylation and disulfide bonds for expression. Virology 1989; 171:417-26. [PMID: 2474891 DOI: 10.1016/0042-6822(89)90610-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lymphocytic choriomeningitis virus (Armstrong strain) bears two overlapping epitopes, GP-1A (A) and GP-1D (D), recognized by neutralizing antibodies on the major surface glycoprotein GP-1. Both are discontinuous conformational epitopes that require prior formation of disulfide bridges and addition of N-linked oligosaccharides. Using monoclonal antibodies specific for each of these epitopes, as well as for conformation-independent epitopes, we have investigated the requirements for biosynthesis and folding of the epitopes. The carbohydrate residues themselves do not appear to comprise critical informational components of these epitopes, but are required for proper folding of the nascent glycopeptide chain within the rough endoplasmic reticulum. These epitopes differ in their resistance to denaturation; epitope D is retained when denatured with SDS under nonreducing conditions, whereas epitope A is lost. Monoclonal antibodies to epitope A cross-react with several strains of LCMV. However, epitope D is detected in only a subset of isolates derived from the Armstrong strain of LCMV. By RNA sequence analysis, we have mapped a single amino acid change distinguishing those virions containing epitope D. Acquisition of binding activity of the epitope D-specific monoclonal correlates with a Thr----Ala or Thr----Lys mutation at amino acid 173 of the GP-1 molecule and concomitant disruption of a consensus N-linked glycosylation site.
Collapse
Affiliation(s)
- K E Wright
- Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | |
Collapse
|