1
|
Ollerton MT, Folkvord JM, Peachman KK, Shashikumar S, Morrison EB, Jagodzinski LL, Peel SA, Khreiss M, D’Aquila RT, Casares S, Rao M, Connick E. HIV-1 infected humanized DRAGA mice develop HIV-specific antibodies despite lack of canonical germinal centers in secondary lymphoid tissues. Front Immunol 2022; 13:1047277. [PMID: 36505432 PMCID: PMC9732419 DOI: 10.3389/fimmu.2022.1047277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
A major barrier in the use of humanized mice as models of HIV-1 (HIV) infection is the inadequate generation of virus-specific antibody responses. Humanized DRAGA (hDRAGA) mice generate antigen-specific class switched antibodies to several pathogens, but whether they do so in HIV infection and the extent to which their secondary lymphoid tissues (sLT) support germinal center responses is unknown. hDRAGA mice were evaluated for their ability to support HIV replication, generate virus-specific antibody responses, develop splenocyte subsets, and organize sLT architecture. hDRAGA mice supported persistent HIV replication and developed modest levels of gp41-specific human IgM and IgG. Spleens from uninfected and HIV infected hDRAGA mice contained differentiated B and CD4+ T cell subsets including germinal center (GC) B cells and T follicular helper cells (TFH); relative expansions of TFH and CD8+ T cells, but not GC B cells, occurred in HIV-infected hDRAGA mice compared to uninfected animals. Immunofluorescent staining of spleen and mesenteric lymph node sections demonstrated atypical morphology. Most CD4+ and CD8+ T cells resided within CD20hi areas. CD20hi areas lacked canonical germinal centers, as defined by staining for IgD-Ki67+cells. No human follicular dendritic cells (FDC) were detected. Mouse FDC were distributed broadly throughout both CD20hi and CD20lo regions of sLT. HIV RNA particles were detected by in situ hybridization within CD20+ areas and some co-localized with mouse FDC. Viral RNA+ cells were more concentrated within CD20hi compared to CD20lo areas of sLT, but differences were diminished in spleen and eliminated in mesenteric lymph nodes when adjusted for CD4+ cell frequency. Thus, hDRAGA mice recapitulated multiple aspects of HIV pathogenesis including HIV replication, relative expansions in TFH and CD8+ T cells, and modest HIV-specific antibody production. Nevertheless, classical germinal center morphology in sLT was not observed, which may account for the inefficient expansion of GC B cells and generation of low titer human antibody responses to HIV-1 in this model.
Collapse
Affiliation(s)
| | - Joy M. Folkvord
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Kristina K. Peachman
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Soumya Shashikumar
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States
| | - Elaine B. Morrison
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Linda L. Jagodzinski
- Diagnostics and Countermeasure Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sheila A. Peel
- Diagnostics and Countermeasure Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Mohammad Khreiss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Richard T. D’Aquila
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sofia Casares
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elizabeth Connick
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Huot N, Bosinger SE, Paiardini M, Reeves RK, Müller-Trutwin M. Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies. Front Immunol 2018; 9:780. [PMID: 29725327 PMCID: PMC5916971 DOI: 10.3389/fimmu.2018.00780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023] Open
Abstract
Combined antiretroviral therapies (cARTs) efficiently control HIV replication leading to undetectable viremia and drastic increases in lifespan of people living with HIV. However, cART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from which the virus generally rebounds soon after cART cessation. One major anatomical reservoir are lymph node (LN) follicles, where HIV persists through replication in follicular helper T cells and is also trapped by follicular dendritic cells. Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally do not progress to disease although displaying persistently high viremia. Strikingly, these hosts mount a strong control of viral replication in LN follicles shortly after peak viremia that lasts throughout infection. Herein, we discuss the potential interplay between viral control in LNs and the resolution of inflammation, which is characteristic for natural hosts. We furthermore detail the differences that exist between non-pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans and macaques regarding virus target cells and replication dynamics in LNs. Several mechanisms have been proposed to be implicated in the strong control of viral replication in natural host's LNs, such as NK cell-mediated control, that will be reviewed here, together with lessons and limitations of in vivo cell depletion studies that have been performed in natural hosts. Finally, we discuss the impact that these insights on viral dynamics and host responses in LNs of natural hosts have for the development of strategies toward HIV cure.
Collapse
Affiliation(s)
- Nicolas Huot
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| |
Collapse
|
3
|
Zaunders J, Xu Y, Kent SJ, Koelsch KK, Kelleher AD. Divergent Expression of CXCR5 and CCR5 on CD4 + T Cells and the Paradoxical Accumulation of T Follicular Helper Cells during HIV Infection. Front Immunol 2017; 8:495. [PMID: 28553284 PMCID: PMC5427074 DOI: 10.3389/fimmu.2017.00495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 04/10/2017] [Indexed: 12/23/2022] Open
Abstract
Viral infection sets in motion a cascade of immune responses, including both CXCR5+CD4+ T follicular helper (Tfh) cells that regulate humoral immunity and CCR5+CD4+ T cells that mediate cell-mediated immunity. In peripheral blood mononuclear cells, the majority of memory CD4+ T cells appear to fall into either of these two lineages, CCR5−CXCR5+ or CCR5+CXCR5−. Very high titers of anti-HIV IgG antibodies are a hallmark of infection, strongly suggesting that there is significant HIV-specific CD4+ T cell help to HIV-specific B cells. We now know that characteristic increases in germinal centers (GC) in lymphoid tissue (LT) during SIV and HIV-1 infections are associated with an increase in CXCR5+PD-1high Tfh, which expand to a large proportion of memory CD4+ T cells in LT, and are presumably specific for SIV or HIV epitopes. Macaque Tfh normally express very little CCR5, yet are infected by CCR5-using SIV, which may occur mainly through infection of a subset of PD-1intermediateCCR5+Bcl-6+ pre-Tfh cells. In contrast, in human LT, a subset of PD-1high Tfh appears to express low levels of CCR5, as measured by flow cytometry, and this may also contribute to the high rate of infection of Tfh. Also, we have found, by assessing fine-needle biopsies of LT, that increases in Tfh and GC B cells in HIV infection are not completely normalized by antiretroviral therapy (ART), suggesting a possible long-lasting reservoir of infected Tfh. In contrast to the increase of CXCR5+ Tfh, there is no accumulation of proliferating CCR5+ CD4 T HIV Gag-specific cells in peripheral blood that make IFN-γ. Altogether, CXCR5+CCR5− CD4 T cells that regulate humoral immunity are allowed greater freedom to operate and expand during HIV-1 infection, but at the same time can contain HIV DNA at levels at least as high as in other CD4 subsets. We argue that early ART including a CCR5 blocker may directly reduce the infected Tfh reservoir in LT and also interrupt cycles of antibody pressure driving virus mutation and additional GC responses to resulting neoantigens.
Collapse
Affiliation(s)
- John Zaunders
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Yin Xu
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Kersten K Koelsch
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Anthony D Kelleher
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Moukambi F, Rodrigues V, Fortier Y, Rabezanahary H, Borde C, Krust B, Andreani G, Silvestre R, Petrovas C, Laforge M, Estaquier J. CD4 T Follicular Helper Cells and HIV Infection: Friends or Enemies? Front Immunol 2017; 8:135. [PMID: 28265271 PMCID: PMC5316554 DOI: 10.3389/fimmu.2017.00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
Follicular T helper (Tfh) cells, a subset of CD4 T lymphocytes, are essential for memory B cell activation, survival, and differentiation and assist B cells in the production of antigen-specific antibodies. Work performed in recent years pointed out the importance of Tfh cells in the context of HIV and SIV infections. The importance of tissue distribution of Tfh is also an important point since their frequency differs between peripheral blood and lymph nodes compared to the spleen, the primary organ for B cell activation, and differentiation. Our recent observations indicated an early and profound loss of splenic Tfh cells. The role of transcriptional activator and repressor factors that control Tfh differentiation is also discussed in the context of HIV/SIV infection. Because Tfh cells are important for B cell differentiation and antibody production, accelerating the Tfh responses early during HIV/SIV infection could be promising as novel immunotherapeutic approach or alternative vaccine strategies. However, because Tfh cells are infected during the HIV/SIV infection and represent a reservoir, this may interfere with HIV vaccine strategy. Thus, Tfh represent the good and bad guys during HIV infection.
Collapse
Affiliation(s)
- Félicien Moukambi
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Vasco Rodrigues
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Yasmina Fortier
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Chloé Borde
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Bernard Krust
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Guadalupe Andreani
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Ricardo Silvestre
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mireille Laforge
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| |
Collapse
|
5
|
Immune activation in HIV infection: what can the natural hosts of simian immunodeficiency virus teach us? Curr Opin HIV AIDS 2016; 11:201-8. [PMID: 26845673 DOI: 10.1097/coh.0000000000000238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The review summarizes studies in natural hosts, with a particular focus on the control of immune activation and new insights into viral reservoirs. We discuss why these findings are relevant for HIV research today. RECENT FINDINGS AIDS resistance in natural hosts is characterized by a rapid control of inflammatory processes in response to simian immunodeficiency virus infection despite persistent viremia. Although CD4 T cells are dramatically depleted in the intestine in primary infection, interleukin 17-producing T helper cells (Th17) are preserved and natural hosts lack microbial translocation. Thus, viral replication in the gut is not sufficient to explain mucosal damage, but additional factors are necessary. Natural hosts also display a lower infection rate of stem-cell memory, central memory and follicular helper T cells. The follicles are characterized by a lack of viral trapping and the viral replication in secondary lymphoid organs is rapidly controlled. Hence, the healthy status of natural hosts is associated with preserved lymphoid environments. SUMMARY Understanding the underlying mechanisms of preservation of Th17 and of the low contribution of stem-cell memory, central memory and follicular helper T cells to viral reservoirs could benefit the search for preventive and curative approaches of HIV. Altogether, the complementarity of the model helps to identify strategies aiming at restoring full capacity of the immune system and decreasing the size of the viral reservoirs.
Collapse
|
6
|
Moukambi F, Rabezanahary H, Rodrigues V, Racine G, Robitaille L, Krust B, Andreani G, Soundaramourty C, Silvestre R, Laforge M, Estaquier J. Early Loss of Splenic Tfh Cells in SIV-Infected Rhesus Macaques. PLoS Pathog 2015; 11:e1005287. [PMID: 26640894 PMCID: PMC4671657 DOI: 10.1371/journal.ppat.1005287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/28/2015] [Indexed: 11/28/2022] Open
Abstract
Follicular T helper cells (Tfh), a subset of CD4 T lymphocytes, provide crucial help to B cells in the production of antigen-specific antibodies. Although several studies have analyzed the dynamics of Tfh cells in peripheral blood and lymph nodes (LNs) during Aids, none has yet addressed the impact of SIV infection on the dynamics of Tfh cells in the spleen, the primary organ of B cell activation. We show here a significant decrease in splenic Tfh cells in SIVmac251-infected rhesus macaques (RMs) during the acute phase of infection, which persists thereafter. This profound loss is associated with lack of sustained expression of the Tfh-defining transcription factors, Bcl-6 and c-Maf but with higher expression of the repressors KLF2 and Foxo1. In this context of Tfh abortive differentiation and loss, we found decreased percentages of memory B cell subsets and lower titers of SIV-specific IgG. We further demonstrate a drastic remodeling of the lymphoid architecture of the spleen and LNs, which disrupts the crucial cell-cell interactions necessary to maintain memory B cells and Tfh cells. Finally, our data demonstrated the early infection of Tfh cells. Paradoxically, the frequencies of SIV DNA were higher in splenic Tfh cells of RMs progressing more slowly suggesting sanctuaries for SIV in the spleen. Our findings provide important information regarding the impact of HIV/SIV infection on Tfh cells, and provide new clues for future vaccine strategies.
Collapse
Affiliation(s)
- Félicien Moukambi
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
| | - Vasco Rodrigues
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
| | - Lynda Robitaille
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
| | - Bernard Krust
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Guadalupe Andreani
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
| | | | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Mireille Laforge
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| |
Collapse
|
7
|
Phetsouphanh C, Xu Y, Zaunders J. CD4 T Cells Mediate Both Positive and Negative Regulation of the Immune Response to HIV Infection: Complex Role of T Follicular Helper Cells and Regulatory T Cells in Pathogenesis. Front Immunol 2015; 5:681. [PMID: 25610441 PMCID: PMC4285174 DOI: 10.3389/fimmu.2014.00681] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B-cells, and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely, regulatory T cells (Tregs) and T follicular helper cells (Tfh). These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B-cell hyperplasia and increased germinal center activity. Antiretroviral therapy may reduce the lymphocyte activation, but not completely, and therefore, there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B-cell, or Treg dysfunction.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - Yin Xu
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - John Zaunders
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
8
|
Meditz AL, Folkvord JM, Lyle NH, Searls K, Lie YS, Coakley EP, McCarter M, Mawhinney S, Connick E. CCR5 expression is reduced in lymph nodes of HIV type 1-infected women, compared with men, but does not mediate sex-based differences in viral loads. J Infect Dis 2013; 209:922-30. [PMID: 24179109 DOI: 10.1093/infdis/jit575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1)-infected women have lower viral loads than men but similar rates of disease progression. We hypothesized that sex-based differences in CCR5 expression mediate viral load differences. METHODS CCR5 was analyzed by flow cytometry in disaggregated lymph node cells from untreated HIV-1-infected women (n = 28) and men (n = 27). The frequencies of HIV-1 RNA-producing cells in the lymph node were determined by in situ hybridization. Linear and generalized linear regression models were used. RESULTS The percentage of CCR5(+)CD3(+)CD4(+) cells was lower in women (mean, 12%) than men (mean, 16%; P = .034). Neither the percentage of CCR5(+)CD3(+)CD4(+) cells nor the CCR5 density predicted viral load or HIV-1 RNA-producing lymph node cells (P ≥ .24), after adjusting for CD4(+) T-cell count, race, and age. Women had marginally fewer HIV-1 RNA-producing cells (mean, 0.21 cells/mm(2)) than men (mean, 0.44 cells/mm(2); P = .046). After adjusting for the frequency of HIV-1 RNA-producing cells and potential confounders, the viral load in women were 0.46 log10 copies/mL lower than that in men (P = .018). CONCLUSIONS Reduced lymph node CCR5 expression in women did not account for the viral load difference between sexes. CCR5 expression did not predict viral load or frequencies of HIV-1 RNA-producing cells, indicating that physiologic levels of CCR5 do not limit HIV-1 replication in lymph node. Less plasma virus was associated with each HIV-1 RNA-producing cell in women as compared to men, suggesting that women may either produce fewer virions per productively infected cell or more effectively clear extracellular virus.
Collapse
Affiliation(s)
- Amie L Meditz
- Division of Infectious Diseases, Department of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Martinot AJ, Meythaler M, Pozzi LA, Dalecki Boisvert K, Knight H, Walsh D, Westmoreland S, Anderson DC, Kaur A, O'Neil SP. Acute SIV infection in sooty mangabey monkeys is characterized by rapid virus clearance from lymph nodes and absence of productive infection in germinal centers. PLoS One 2013; 8:e57785. [PMID: 23472105 PMCID: PMC3589484 DOI: 10.1371/journal.pone.0057785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/24/2013] [Indexed: 11/23/2022] Open
Abstract
Lymphoid tissue immunopathology is a characteristic feature of chronic HIV/SIV infection in AIDS-susceptible species, but is absent in SIV-infected natural hosts. To investigate factors contributing to this difference, we compared germinal center development and SIV RNA distribution in peripheral lymph nodes during primary SIV infection of the natural host sooty mangabey and the non-natural host pig-tailed macaque. Although SIV-infected cells were detected in the lymph node of both species at two weeks post infection, they were confined to the lymph node paracortex in immune-competent mangabeys but were seen in both the paracortex and the germinal center of SIV-infected macaques. By six weeks post infection, SIV-infected cells were no longer detected in the lymph node of sooty mangabeys. The difference in localization and rate of disappearance of SIV-infected cells between the two species was associated with trapping of cell-free virus on follicular dendritic cells and higher numbers of germinal center CD4+ T lymphocytes in macaques post SIV infection. Our data suggests that fundamental differences in the germinal center microenvironment prevent productive SIV infection within the lymph node germinal centers of natural hosts contributing to sustained immune competency.
Collapse
Affiliation(s)
- Amanda J Martinot
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques. J Virol 2013; 87:3760-73. [PMID: 23325697 DOI: 10.1128/jvi.02497-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialized subset of memory CD4(+) T cells that are found exclusively within the germinal centers of secondary lymphoid tissues and are important for adaptive antibody responses and B cell memory. Tfh cells do not express CCR5, the primary entry coreceptor for both human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), and therefore, we hypothesized that these cells would avoid infection. We studied lymph nodes and spleens from pigtail macaques infected with pathogenic strain SIVmac239 or SIVmac251, to investigate the susceptibility of Tfh cells to SIV infection. Pigtail macaque PD-1(high) CD127(low) memory CD4(+) T cells have a phenotype comparable to that of human Tfh cells, expressing high levels of CXCR5, interleukin-21 (IL-21), Bcl-6, and inducible T cell costimulator (ICOS). As judged by either proviral DNA or cell-associated viral RNA measurements, macaque Tfh cells were infected with SIV at levels comparable to those in other CD4(+) memory T cells. Infection of macaque Tfh cells was evident within weeks of inoculation, yet we confirmed that Tfh cells do not express CCR5 or either of the well-known alternative SIV coreceptors, CXCR6 and GPR15. Mutations in the SIV envelope gp120 region occurred in chronically infected macaques but were uniform across each T cell subset investigated, indicating that the viruses used the same coreceptors to enter different cell subsets. Early infection of Tfh cells represents an unexpected focus of viral infection. Infection of Tfh cells does not interrupt antibody production but may be a factor that limits the quality of antibody responses and has implications for assessing the size of the viral reservoir.
Collapse
|
11
|
Gag p27-specific B- and T-cell responses in Simian immunodeficiency virus SIVagm-infected African green monkeys. J Virol 2008; 83:2770-7. [PMID: 19109377 DOI: 10.1128/jvi.01841-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonpathogenic simian immunodeficiency virus SIVagm infection of African green monkeys (AGMs) is characterized by the absence of a robust antibody response against Gag p27. To determine if this is accompanied by a selective loss of T-cell responses to Gag p27, we studied CD4(+) and CD8(+) T-cell responses against Gag p27 and other SIVagm antigens in the peripheral blood and lymph nodes of acutely and chronically infected AGMs. Our data show that AGMs can mount a T-cell response against Gag p27, indicating that the absence of anti-p27 antibodies is not due to the absence of Gag p27-specific T cells.
Collapse
|
12
|
Abstract
PURPOSE To report the results of one 60 degrees conjunctival limbal autograft (CLAU) combined with amniotic membrane (AM) transplantation for an eye with total limbal stem cell deficiency (LSCD). METHODS One eye of a patient with chronic total LSCD and symblepharon caused by chemical burn was subjected to symblepharon lysis, removal of pannus from corneal surface, AM transplantation to cover the conjunctival and corneal surfaces as a permanent graft, one 60 degrees CLAU to the superior limbal area, and insertion of ProKera as a temporary AM patch to cover the CLAU. RESULTS After surgery, corneal epithelialization over the AM was evident adjacent to the CLAU on day 6, progressed to pass the horizontal midline by day 11, and was completed by day 18. During a follow-up of 1 year, the corneal surface remained stable and smooth, and the stroma considerably regained clarity with regression of midstromal vascularization. The best-corrected visual acuity improved from 20/400 to 20/50. The conjunctival inflammation completely resolved, and the fornices were deep. CONCLUSIONS One 60 degrees CLAU combined with AM transplantation as both a permanent graft and a temporary patch can restore the entire corneal surface in an eye with total LSCD caused by chemical burn.
Collapse
|
13
|
Monceaux V, Viollet L, Petit F, Cumont MC, Kaufmann GR, Aubertin AM, Hurtrel B, Silvestri G, Estaquier J. CD4+ CCR5+ T-cell dynamics during simian immunodeficiency virus infection of Chinese rhesus macaques. J Virol 2007; 81:13865-75. [PMID: 17898067 PMCID: PMC2168866 DOI: 10.1128/jvi.00452-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) provides a reliable model to study the relationship between lentivirus replication, cellular immune responses, and CD4+ T-cell dynamics. Here we investigated, using SIVmac251-infected RMs of a Chinese genetic background (which experience a slower disease progression than Indian RMs), the dynamics of CD4+ CCR5+ T cells, as this subset of memory/activated CD4+ T cells is both a preferential target of virus replication and a marker of immune activation. As expected, we observed that the number of circulating CD4+ CCR5+ T cells decreases transiently at the time of peak viremia. However, at 60 days postinfection, i.e., when set-point viremia is established, the level of CD4+ CCR5+ T cells was increased compared to the baseline level. Interestingly, this increase correlated with faster disease progression, higher plasma viremia, and early loss of CD4+ T-cell function, as measured by CD4+ T-cell count, the fraction of memory CD4+ T cells, and the recall response to purified protein derivative. Taken together, these data show a key difference between the dynamics of the CD4+ CCR5+ T-cell pool (and its relationship with disease progression) in Chinese RMs and those described in previous reports for Indian SIVmac251-infected RMs. As the SIV-associated changes in the CD4+ CCR5+ T-cell pool reflect the opposing forces of SIV replication (which reduces this cellular pool) and immune activation (which increases it), our data suggest that in SIV-infected Chinese RMs the impact of immune activation is more prominent than that of virus replication in determining the size of the pool of CD4+ CCR5+ T cells in the periphery. As progression of HIV infection in humans also is associated with a relative expansion of the level of CD4+ CCR5+ T cells, we propose that SIV infection of Chinese RMs is a very valuable and important animal model for understanding the pathogenesis of human immunodeficiency virus infection.
Collapse
Affiliation(s)
- V Monceaux
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Milush JM, Stefano-Cole K, Schmidt K, Durudas A, Pandrea I, Sodora DL. Mucosal innate immune response associated with a timely humoral immune response and slower disease progression after oral transmission of simian immunodeficiency virus to rhesus macaques. J Virol 2007; 81:6175-86. [PMID: 17428863 PMCID: PMC1900075 DOI: 10.1128/jvi.00042-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mucosal transmission is the predominant mode of human immunodeficiency virus (HIV) infection worldwide, and the mucosal innate interferon response represents an important component of the earliest host response to the infection. Our goal here was to assess the changes in mRNA expression of innate mucosal genes after oral simian immunodeficiency virus (SIV) inoculation of rhesus macaques (Macaca mulatta) that were followed throughout their course of disease progression. The SIV plasma viral load was highest in the macaque that progressed rapidly to simian AIDS (99 days) and lowest in the macaque that progressed more slowly (>700 days). The mRNA levels of six innate/effector genes in the oral mucosa indicated that slower disease progression was associated with increased expression of these genes. This distinction was most evident when comparing the slowest-progressing macaque to the intermediate and rapid progressors. Expression levels of alpha and gamma interferons, the antiviral interferon-stimulated gene product 2'-5' oligoadenylate synthetase (OAS), and the chemokines CXCL9 and CXCL10 in the slow progressor were elevated at each of the three oral mucosal biopsy time points examined (day 2 to 4, 14 to 21, and day 70 postinfection). In contrast, the more rapidly progressing macaques demonstrated elevated levels of these cytokine/chemokine mRNA at lymph nodes, coincident with decreased levels at the mucosal sites, and a decreased ability to elicit an effective anti-SIV antibody response. These data provide evidence that a robust mucosal innate/effector immune response is beneficial following lentiviral exposure; however, it is likely that the anatomical location and timing of the response need to be coordinated to permit an effective immune response able to delay progression to simian AIDS.
Collapse
Affiliation(s)
- Jeffrey M Milush
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA
| | | | | | | | | | | |
Collapse
|
15
|
Brown CR, Czapiga M, Kabat J, Dang Q, Ourmanov I, Nishimura Y, Martin MA, Hirsch VM. Unique pathology in simian immunodeficiency virus-infected rapid progressor macaques is consistent with a pathogenesis distinct from that of classical AIDS. J Virol 2007; 81:5594-606. [PMID: 17376901 PMCID: PMC1900277 DOI: 10.1128/jvi.00202-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of macaques and human immunodeficiency virus type 1 (HIV-1) infection of humans result in variable but generally fatal disease outcomes. Most SIV-infected macaques progress to AIDS over a period of 1 to 3 years, in the face of robust SIV-specific immune responses (conventional progressors [CP]). A small number of SIV-inoculated macaques mount transient immune responses and progress rapidly to AIDS (rapid progressors [RP]). We speculated that the underlying pathogenic mechanisms may differ between RP and CP macaques. We compared the pathological lesions, virus loads, and distribution of virus and target cells in SIVsmE660- or SIVsmE543-infected RP and CP rhesus macaques at terminal disease. RP macaques developed a wasting syndrome characterized by severe SIV enteropathy in the absence of opportunistic infections. In contrast, opportunistic infections were commonly observed in CP macaques. RP and CP macaques showed distinct patterns of CD4(+) T-cell depletion, with a selective loss of memory cells in RP macaques and a generalized (naive and memory) CD4 depletion in CP macaques. In situ hybridization demonstrated higher levels of virus expression in lymphoid tissues (P < 0.001) of RP macaques and a broader distribution to include many nonlymphoid tissues. Finally, SIV was preferentially expressed in macrophages in RP macaques whereas the primary target cells in CP macaques were T lymphocytes at end stage disease. These data suggest distinct pathogenic mechanisms leading to the deaths of these two groups of animals, with CP macaques being more representative of HIV-induced AIDS in humans.
Collapse
Affiliation(s)
- Charles R Brown
- Laboratory of Molecular Microbiology, NIAID, NIH, 4 Center Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Viollet L, Monceaux V, Petit F, Ho Tsong Fang R, Cumont MC, Hurtrel B, Estaquier J. Death of CD4+ T cells from lymph nodes during primary SIVmac251 infection predicts the rate of AIDS progression. THE JOURNAL OF IMMUNOLOGY 2007; 177:6685-94. [PMID: 17082581 DOI: 10.4049/jimmunol.177.10.6685] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunological and virological events that occur during the earliest stages of SIV infection are now considered to have a major impact on subsequent disease progression. In the present study, we demonstrate a clear correlation between progression to AIDS and the rate of in vitro CD4+ (but not CD8+) T cell death in lymph nodes. The dying CD4+ T cells were effector memory T cells, which are critical for the immune response to pathogens. However, there was no correlation between the rate of the viral replication within lymph nodes and the extent of Fas ligand-mediated death, despite the increased sensitivity of CD4+ T cells to death in response to recombinant human Fas ligand. CD4+ T cell death was caspase and apoptosis-inducing factor independent but was clearly associated with mitochondrion damage. Interestingly, higher expression levels of the active form of Bak, a proapoptotic molecule involved in mitochondrial membrane permeabilization, were observed in SIV-infected macaques progressing more rapidly to AIDS. Finally, we demonstrated that the strain of SIV we used requires CCR5 and BOB/GRP15 molecules as coreceptors and caused death of unstimulated noncycling primary CD4+ T cells. Altogether, these results demonstrate that CD4+ T cell death occurring early after SIV infection is a crucial determinant of progression to AIDS and that it is mediated by the intrinsic death pathway.
Collapse
Affiliation(s)
- Laurence Viollet
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Hurtrel B, Petit F, Arnoult D, Müller-Trutwin M, Silvestri G, Estaquier J. Apoptosis in SIV infection. Cell Death Differ 2006; 12 Suppl 1:979-90. [PMID: 15818408 DOI: 10.1038/sj.cdd.4401600] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pathogenic human immunodeficiency virus (HIV)/Simian immunodeficiency virus (SIV) infection is associated with increased T-cell apoptosis. In marked contrast to HIV infection in humans and SIV infection in macaques, the SIV infection of natural host species is typically nonpathogenic despite high levels of viral replication. In these nonpathogenic primate models, no observation of T-cell apoptosis was observed, suggesting that either SIV is less capable of directly inducing apoptosis in natural hosts (likely as a result of coevolution/coadaptation with the host) or, alternatively, that the indirect T-cell apoptosis plays the key role in determining the HIV-associated T-cell depletion and progression to acquired immune deficiency syndrome (AIDS). Understanding the molecular and cellular mechanisms responsible for the disease-free equilibrium in natural hosts for SIV infection, including those determining the absence of high levels of T-cell apoptosis, is likely to provide important clues regarding the mechanisms of AIDS pathogenesis in humans.
Collapse
Affiliation(s)
- B Hurtrel
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, cedex 15, France
| | | | | | | | | | | |
Collapse
|
18
|
Suh YS, Park KS, Sauermann U, Franz M, Norley S, Wilfingseder D, Stoiber H, Fagrouch Z, Heeney J, Hunsmann G, Stahl-Hennig C, Sung YC. Reduction of viral loads by multigenic DNA priming and adenovirus boosting in the SIVmac-macaque model. Vaccine 2005; 24:1811-20. [PMID: 16274888 DOI: 10.1016/j.vaccine.2005.10.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 09/27/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
In this study, we investigated the ability of a multigenic SIV DNA prime/replication-defective adenovirus serotype 5 (rAd/SIV) boost regimen to induce SIV-specific immune responses and protection against intrarectal challenge with SIVmac251 in rhesus macaques. Four rhesus macaques were immunized intramuscularly three times at 8-week intervals with SIV DNA vaccine and boosted once with rAd/SIV vaccine Four control macaques received the same amount of mock plasmid DNA and mock adenovirus vector. While the SIV DNA vaccine included plasmids expressing a mutated human IL-12 gene (IL-12N222L) as well as SIVmac239 structural and regulatory genes, the rAd/SIV vaccine contained rAd vectors expressing SIVmac239 genes only. Immunization with SIV DNA vaccine alone induced SIV-specific IFN-gamma ELISPOT responses in only two of four vaccinated macaques, whereas all animals developed SIV-specific T-cell responses and Env- and Tat-specific antibody responses following the rAd/SIV vaccine boost. Upon intrarectal challenge with pathogenic SIVmac251, strong anamnestic Env-specific binding and neutralizing antibody responses were detected in the vaccinated macaques. Overall, the immunized macaques had lower peak and set-point viral loads than control macaques, suggesting that the induced immune responses play a role in the control of viremia. In addition, the loss of CD4+ T cells was delayed in the vaccinated macaques after challenge. These results indicate that the multigenic DNA prime-adenovirus boost immunization may be a promising approach in developing an effective AIDS vaccine.
Collapse
Affiliation(s)
- You S Suh
- Department of Virology and Immunology, German Primate Center, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Monceaux V, Viollet L, Petit F, Ho Tsong Fang R, Cumont MC, Zaunders J, Hurtrel B, Estaquier J. CD8+ T cell dynamics during primary simian immunodeficiency virus infection in macaques: relationship of effector cell differentiation with the extent of viral replication. THE JOURNAL OF IMMUNOLOGY 2005; 174:6898-908. [PMID: 15905532 DOI: 10.4049/jimmunol.174.11.6898] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunological and virological events that occur during the earliest stages of HIV-1 infection are now considered to have a major impact on subsequent disease progression. We observed changes in the frequencies of CD8(bright) T cells expressing different chemokine receptors in the peripheral blood and lymph nodes of rhesus macaques during the acute phase of the pathogenic SIVmac251 infection; the frequency of CD8(bright) T cells expressing CXCR4 decreased, while the frequency of those expressing CCR5 increased. These reciprocal changes in chemokine receptor expression were associated with changes in the proportion of cycling (Ki67(+)) CD8(bright) T cells, and with the pattern of CD8(bright) T cell differentiation as defined by expression of CCR7 and CD45RA. In contrast, during the primary phase of the attenuated SIVmac251Deltanef infection, no major change was observed. Whereas during the acute phase of the infection with pathogenic SIV (2 wk postinfection) no correlate of disease protection was identified, once the viral load set points were established (2 mo postinfection), we found that the levels of cycling and of CCR5- and CXCR4-positive CD8(bright) T cells were correlated with the extent of viral replication and therefore with SIV-infection outcome. Our data reveal that, during primary SIV infection, despite intense CD8 T cell activation and an increase in CCR5 expression, which are considered as essential for optimal effector function of CD8(+) T cells, these changes are associated with a poor prognosis for disease progression to AIDS.
Collapse
Affiliation(s)
- Valérie Monceaux
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pandrea I, Kornfeld C, Ploquin MJY, Apetrei C, Faye A, Rouquet P, Roques P, Simon F, Barré-Sinoussi F, Müller-Trutwin MC, Diop OM. Impact of viral factors on very early in vivo replication profiles in simian immunodeficiency virus SIVagm-infected African green monkeys. J Virol 2005; 79:6249-59. [PMID: 15858009 PMCID: PMC1091729 DOI: 10.1128/jvi.79.10.6249-6259.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand which factors govern the levels of viral loads in early lentiviral infections of primates, we developed a model that allows distinguishing between the influences of host and viral factors on viremia. Herein we report that two species of African green monkeys (Chlorocebus sabaeus and C. pygerythrus) infected with their respective wild-type simian immunodeficiency virus SIVagm viruses (SIVagm.sab92018 and SIVagm.ver644) consistently showed reproducible differences in viremia during primary infection but not at later stages of infection. Cross-infections of SIVagm.sab92018 and SIVagm.ver644 into, respectively, C. pygerythrus and C. sabaeus revealed that the dynamics of viral replication during primary infection were dependent on the viral strain used for the infection but not on the host. Hence, the kinetics of SIVagm.sab92018 and SIVagm.ver644 were similar in both sabaeus and vervet animals, indicating that the difference in viremia levels between the two groups during the early phase of infection was not associated with the host. Coreceptor usage for these two strains showed a larger coreceptor repertoire for SIVagm.sab92018, which is able to efficiently use CXCR4 in addition to CCR5, than for SIVagm.ver644, which showed a classical CCR5 coreceptor usage pattern. These differences could not be explained by different charges of the V3 loop for SIVagm.sab92018 and for SIVagm.ver644. In conclusion, our study showed that the extent of virus replication during the primary infection is primarily dependent on viral determinants.
Collapse
Affiliation(s)
- Ivona Pandrea
- Division of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kimata JT, Wilson JM, Patel PG. The increased replicative capacity of a late-stage simian immunodeficiency virus mne variant is evident in macrophage- or dendritic cell-T-cell cocultures. Virology 2004; 327:307-17. [PMID: 15351218 DOI: 10.1016/j.virol.2004.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 06/10/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
Human and simian immunodeficiency virus (HIV and SIV) may co-opt antigen capture and presentation functions of antigen presenting cells (APCs) to facilitate infection of CD4+ T-cells. To address whether the replicative capacity of SIV in the host may be associated with the extent of viral replication in response to APC-T-cell interactions, we compared the replicative phenotypes of cloned early and late-stage SIVmne variants of known pathogenicity. Here, we show that the highly pathogenic late variant SIVmne027 replicates more efficiently in both macrophage- and dendritic cell (DC)-T-cell cocultures than the minimally pathogenic early virus SIVmneCl8. Contact between either macrophages or DC and T-cells increases replication of SIVmne027. Our analysis also demonstrates that mutations in pol and nef contribute to the greater replicative capacity of SIVmne027 in DC- or macrophage-T-cell cocultures. Together, these data suggest that variant viruses that evolve to replicate vigorously in response to APC-T-cell interactions may have increased replicative capacity in vivo.
Collapse
Affiliation(s)
- Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
22
|
Monceaux V, Estaquier J, Février M, Cumont MC, Rivière Y, Aubertin AM, Ameisen JC, Hurtrel B. Extensive apoptosis in lymphoid organs during primary SIV infection predicts rapid progression towards AIDS. AIDS 2003; 17:1585-96. [PMID: 12853740 DOI: 10.1097/00002030-200307250-00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The acute phase of HIV and SIV infections leads to a host/virus equilibrium, and accumulating evidence suggests that this early phase dictates further progression towards AIDS. To gain insight into the early events that determine rapid disease progression, we performed a longitudinal study in the SIV rhesus macaque model, allowing an in-depth analysis of the primary stage of infection. METHODS We assessed viral replication (quantification of replicating and infected cells in lymph nodes, plasma viral load), immune response (cytotoxic T lymphocyte, antibody, proliferative responses), apoptosis and cycling cells (Ki-67 labelling) on lymph nodes and blood in nine rhesus macaques infected with the pathogenic SIVmac251 isolate. RESULTS Six primates remained asymptomatic during the one year follow-up period of the study, whereas three developed AIDS within 5-6 months. During the first 2 weeks of infection, peak numbers of apoptotic cells in the lymph node T-cell areas were significantly higher in the three future rapid progressors than in the six future slow progressors, and were correlated with subsequent viraemia levels measured 6 months after infection. The numbers of infected or cycling cells in the same lymph node T-cell areas, however, only became significantly different in future rapid and slow progressors 8 weeks after infection, at the end of the primary phase. CONCLUSION Our findings identified extensive apoptosis induction in peripheral lymphoid organs as an early and predictive event that may play a crucial role in impairing the capacity of the immune system to control viral replication and progression towards disease.
Collapse
Affiliation(s)
- Valérie Monceaux
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, CNRS URA 1930, 28 rue du Docteur Roux, 75724 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
LaBonte JA, Madani N, Sodroski J. Cytolysis by CCR5-using human immunodeficiency virus type 1 envelope glycoproteins is dependent on membrane fusion and can be inhibited by high levels of CD4 expression. J Virol 2003; 77:6645-59. [PMID: 12767984 PMCID: PMC156190 DOI: 10.1128/jvi.77.12.6645-6659.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-tropic (X4) and dualtropic (R5X4) human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins kill primary and immortalized CD4(+) CXCR4(+) T cells by mechanisms involving membrane fusion. However, because much of HIV-1 infection in vivo is mediated by M-tropic (R5) viruses whose envelope glycoproteins use CCR5 as a coreceptor, we tested a panel of R5 and R5X4 envelope glycoproteins for their ability to lyse CCR5(+) target cells. As is the case for CXCR4(+) target cells, HIV-1 envelope glycoproteins expressed by single-round HIV-1 vectors killed transduced CD4(+) CCR5(+) cells in a membrane fusion-dependent manner. Furthermore, a CD4-independent R5 HIV-1 envelope glycoprotein was able to kill CD4-negative target cells expressing CCR5, demonstrating that CD4 is not intrinsically required for the induction of death. Interestingly, high levels of CD4 expression protected cells from lysis and syncytium formation mediated by the HIV-1 envelope glycoproteins. Immunoprecipitation experiments showed that high levels of CD4 coexpression inhibited proteolytic processing of the HIV-1 envelope glycoprotein precursor gp160. This inhibition could be overcome by decreasing the CD4 binding ability of gp120. Studies were also undertaken to investigate the ability of virion-bound HIV-1 envelope glycoproteins to kill primary CD4(+) T cells. However, neither X4 nor R5X4 envelope glycoproteins on noninfectious virions caused death in primary CD4(+) T cells. These results demonstrate that the interaction of CCR5 with R5 HIV-1 envelope glycoproteins capable of inducing membrane fusion leads to cell lysis; overexpression of CD4 can inhibit cell killing by limiting envelope glycoprotein processing.
Collapse
Affiliation(s)
- Jason A LaBonte
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Snider TG, Coats KS, Storts RW, Graves KF, Cooper CR, Hoyt PG, Luther DG, Jenny BF. Natural bovine lentivirus type 1 infection in Holstein dairy cattle. II. Lymphoid tissue lesions. Comp Immunol Microbiol Infect Dis 2003; 26:1-15. [PMID: 12602682 DOI: 10.1016/s0147-9571(02)00022-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bovine immunodeficiency virus (BIV) in Holstein cows was associated with morphologic evidence of lymphoid organ deficiency. Cows were subjected to normal management practices including parturition and lactation without adverse environmental stresses. During the clinical disease process there was marked weight loss and wasting with frequent and severe concurrent infections. Lymphoid follicular hyperplasia and dysplasia in lymph nodes, and hypertrophy and hyperplasia in hemal lymph nodes were characteristics of the lymphoid tissues. Atrophy of lymphoid cell compartments with depletion of lymphocytes and a lymphocytic lymphoid folliculitis were components of the lymphoid system pathology. The nodal tissue lesions resembled those observed in feline, simian, and human lentiviral disease. A functional correlation with immune system deficiency was the development of multiple bacterial infections which failed to resolve after appropriate therapy. The BIV-associated disease syndrome in dairy cows may be useful as a model system for investigation of the pathogenesis of the lymphoid organ changes that occur in humans and animals with lentiviral infection.
Collapse
Affiliation(s)
- T G Snider
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University and A & M College, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dormont D. [Anti-HIV therapeutic approaches in animal models]. Rev Med Interne 2002; 23 Suppl 5:532s-534s. [PMID: 12701243 DOI: 10.1016/s0248-8663(02)80393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- D Dormont
- Service de neurovirologie, Commissariat à l'énergie atomique, Fontenay-aux-Roses, France
| |
Collapse
|
26
|
Zhang ZQ, Fu TM, Casimiro DR, Davies ME, Liang X, Schleif WA, Handt L, Tussey L, Chen M, Tang A, Wilson KA, Trigona WL, Freed DC, Tan CY, Horton M, Emini EA, Shiver JW. Mamu-A*01 allele-mediated attenuation of disease progression in simian-human immunodeficiency virus infection. J Virol 2002; 76:12845-54. [PMID: 12438610 PMCID: PMC136722 DOI: 10.1128/jvi.76.24.12845-12854.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of several major histocompatibility complex (MHC) class I alleles is associated with a protective effect against disease progression in both human immunodeficiency virus type 1 and simian immunodeficiency virus infection. To understand the mechanism underlying this effect, we investigated the expression of the MHC class I allele Mamu-A*01 in simian-human immunodeficiency virus (SHIV) infection, one of the major models for evaluation of AIDS vaccine candidates. We found that disease progression was significantly delayed in Mamu-A*01-positive rhesus monkeys infected with the highly pathogenic SHIV 89.6P. The delay corresponded not only to a noted Mamu-A*01-restricted dominant cytotoxic T-lymphocyte (CTL) response but also to a lower viral load in lymph nodes (LN) and, importantly, to minimal destruction of LN structure during early infection. In contrast, Mamu-A*01-negative monkeys exhibited massive destruction of LN structure with accompanying rapid disease progression. These data indicate that MHC class I allele-restricted CTL responses may play an important role in preservation of lymphoid tissue structure, thereby resulting in attenuation of disease progression in immunodeficiency virus infection.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Department of Viral Vaccine Research, Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, WP16-225, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kourtis AP, Ibegbu CC, Scinicariello F, Oh CY, McClure HM. SHIV-KB9 infection of rhesus monkeys does not always cause disease-contribution of host immune factors and thymic output. Virology 2002; 303:47-57. [PMID: 12482657 DOI: 10.1006/viro.2002.1600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Simian-human immunodeficiency virus (SHIV) infection in the macaque is a model of HIV pathogenesis. KB9, a molecular clone of SHIV 89.6P, induced rapid and profound CD4(+) T cell loss in rhesus monkeys, followed by partial recovery in some. We describe another clinical outcome after intravenous SHIV-KB9 inoculation in two of six infected rhesus macaques: lack of signs of immunodeficiency with sustained CD4(+) T cell counts, despite virus load levels similar to those of the animals with CD4(+) lymphocyte decline. To dissect the role of host factors in determining pathogenicity of this viral clone, humoral and cellular immune responses were studied. Differences in CD8(+) T cell effector responses and activation profiles and in thymic output, but not in specific antibody production, were observed in animals with different disease outcomes during acute infection. Thymic involvement may thus be a critical factor in determining disease progression.
Collapse
Affiliation(s)
- Athena P Kourtis
- Division of Infectious Diseases, Epidemiology, and Immunology, Department of Pediatrics, Emory University School of Medicine, Decatur, Georgia 30033, USA.
| | | | | | | | | |
Collapse
|
28
|
Cantó-Nogués C, Jones S, Sangster R, Silvera P, Hull R, Cook R, Hall G, Walker B, Stott EJ, Hockley D, Almond N. In situ hybridization and immunolabelling study of the early replication of simian immunodeficiency virus (SIVmacJ5) in vivo. J Gen Virol 2001; 82:2225-2234. [PMID: 11514733 DOI: 10.1099/0022-1317-82-9-2225] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distribution of virus-infected cells in cynomolgus macaques was determined at 4, 7, 14 and 28 days following intravenous challenge with 1000 TCID(50) of the wild-type simian immunodeficiency virus SIVmacJ5 (stock J5C). At each time-point, pairs of macaques were killed humanely and the presence of SIV was determined and quantified in blood, spleen, peripheral and mesenteric lymph nodes, thymus, lung and ileum by virus co-cultivation with C8166 cells, by quantitative DNA PCR or by in situ hybridization (ISH). At day 4 post-infection (p.i.), detection of the virus was sporadic. By day 7 p.i., however, significant SIV loads were detected in the blood and lymphoid tissues by DNA PCR and virus co-cultivation. Large numbers of cells expressing SIV RNA were detected in mesenteric lymph nodes by ISH and significantly fewer (P<0.05) in the spleen. Significant numbers of ISH-positive cells were also observed in sections of ileum. By day 14 p.i., the distribution of SIV was more even in all lymphoid tissues analysed. By day 28, most of the tissues were negative by ISH, but all remained positive by virus isolation and DNA PCR. Immunolabelling of sections of mesenteric lymph node with monoclonal antibodies specific for SIV envelope and Nef largely confirmed the observations from ISH. These results indicate that, even following intravenous challenge, a major site of the initial replication of SIV is gut-associated lymphoid tissue. Vaccines that induce protection at this site may therefore be superior, even against parenteral challenge.
Collapse
Affiliation(s)
- Carmen Cantó-Nogués
- Cell Biology and Imaging1 and Divisions of Retrovirology2, Virology3 and Immunobiology4, National Institute for Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Sue Jones
- Cell Biology and Imaging1 and Divisions of Retrovirology2, Virology3 and Immunobiology4, National Institute for Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Rebecca Sangster
- Cell Biology and Imaging1 and Divisions of Retrovirology2, Virology3 and Immunobiology4, National Institute for Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Peter Silvera
- Cell Biology and Imaging1 and Divisions of Retrovirology2, Virology3 and Immunobiology4, National Institute for Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Robin Hull
- Cell Biology and Imaging1 and Divisions of Retrovirology2, Virology3 and Immunobiology4, National Institute for Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Roger Cook
- CAMR, Porton Down, Salisbury, Wilts SP4 0JG, UK5
| | - Graham Hall
- CAMR, Porton Down, Salisbury, Wilts SP4 0JG, UK5
| | - Barry Walker
- Cell Biology and Imaging1 and Divisions of Retrovirology2, Virology3 and Immunobiology4, National Institute for Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - E Jim Stott
- Cell Biology and Imaging1 and Divisions of Retrovirology2, Virology3 and Immunobiology4, National Institute for Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - David Hockley
- Cell Biology and Imaging1 and Divisions of Retrovirology2, Virology3 and Immunobiology4, National Institute for Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Neil Almond
- Cell Biology and Imaging1 and Divisions of Retrovirology2, Virology3 and Immunobiology4, National Institute for Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK
| |
Collapse
|
29
|
Etemad-Moghadam B, Rhone D, Steenbeke T, Sun Y, Manola J, Gelman R, Fanton JW, Racz P, Tenner-Racz K, Axthelm MK, Letvin NL, Sodroski J. Membrane-fusing capacity of the human immunodeficiency virus envelope proteins determines the efficiency of CD+ T-cell depletion in macaques infected by a simian-human immunodeficiency virus. J Virol 2001; 75:5646-55. [PMID: 11356972 PMCID: PMC114277 DOI: 10.1128/jvi.75.12.5646-5655.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of the progressive loss of CD4+ T lymphocytes, which underlies the development of AIDS in human immunodeficiency virus (HIV-1)-infected individuals, is unknown. Animal models, such as the infection of Old World monkeys by simian-human immunodeficiency virus (SHIV) chimerae, can assist studies of HIV-1 pathogenesis. Serial in vivo passage of the nonpathogenic SHIV-89.6 generated a virus, SHIV-89.6P, that causes rapid depletion of CD4+ T lymphocytes and AIDS-like illness in monkeys. SHIV-KB9, a molecularly cloned virus derived from SHIV-89.6P, also caused CD4+ T-cell decline and AIDS in inoculated monkeys. It has been demonstrated that changes in the envelope glycoproteins of SHIV-89.6 and SHIV-KB9 determine the degree of CD4+ T-cell loss that accompanies a given level of virus replication in the host animals (G. B. Karlsson et. al., J. Exp. Med. 188:1159-1171, 1998). The envelope glycoproteins of the pathogenic SHIV mediated membrane fusion more efficiently than those of the parental, nonpathogenic virus. Here we show that the minimal envelope glycoprotein region that specifies this increase in membrane-fusing capacity is sufficient to convert SHIV-89.6 into a virus that causes profound CD4+ T-lymphocyte depletion in monkeys. We also studied two single amino acid changes that decrease the membrane-fusing ability of the SHIV-KB9 envelope glycoproteins by different mechanisms. Each of these changes attenuated the CD4+ T-cell destruction that accompanied a given level of virus replication in SHIV-infected monkeys. Thus, the ability of the HIV-1 envelope glycoproteins to fuse membranes, which has been implicated in the induction of viral cytopathic effects in vitro, contributes to the capacity of the pathogenic SHIV to deplete CD4+ T lymphocytes in vivo.
Collapse
Affiliation(s)
- B Etemad-Moghadam
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Diop OM, Gueye A, Dias-Tavares M, Kornfeld C, Faye A, Ave P, Huerre M, Corbet S, Barre-Sinoussi F, Müller-Trutwin MC. High levels of viral replication during primary simian immunodeficiency virus SIVagm infection are rapidly and strongly controlled in African green monkeys. J Virol 2000; 74:7538-47. [PMID: 10906207 PMCID: PMC112274 DOI: 10.1128/jvi.74.16.7538-7547.2000] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to pathogenic human immunodeficiency virus and simian immunodeficiency virus (SIV) infections, chronic SIVagm infections in African green monkeys (AGMs) are characterized by persistently low peripheral and tissue viral loads that correlate with the lack of disease observed in these animals. We report here data on the dynamics of acute SIVagm infection in AGMs that exhibit remarkable similarities with viral replication patterns observed in peripheral blood during the first 2 weeks of pathogenic SIVmac infections. Plasma viremia was evident at day 3 postinfection (p.i.) in AGMs, and rapid viral replication led by days 7 to 10 to peak viremias characterized by high levels of antigenemia (1.2 to 5 ng of p27/ml of plasma), peripheral DNA viral load (10(4) to 10(5) DNA copies/10(6) peripheral blood mononuclear cells [PBMC]), and plasma RNA viral load (2 x 10(6) to 2 x 10(8) RNA copies/ml). The lymph node (LN) RNA and DNA viral load patterns were similar to those in blood, with peaks observed between day 7 and day 14. These values in LNs (ranging from 3 x 10(5) to 3 x 10(6) RNA copies/10(6) LN cell [LNC] and 10(3) to 10(4) DNA copies/10(6) LNC) were at no time point higher than those observed in the blood. Both in LNs and in blood, rapid and significant decreases were observed in all infected animals after this peak of viral replication. Within 3 to 4 weeks p. i., antigenemia was no longer detectable and peripheral viral loads decreased to values similar to those characteristic of the chronic phase of infection (10(2) to 10(3) DNA copies/10(6) PBMC and 2 x 10(3) to 2 x 10(5) RNA copies/ml of plasma). In LNs, viral loads declined to 5 x 10(1) to 10(3) DNA copies and 10(4) to 3 x 10(5) RNA copies per 10(6) LNC at day 28 p.i. and continued to decrease until day 84 p.i. (<10 to 3 x 10(4) RNA copies/10(6) LNC). Despite extensive viremia during primary infection, neither follicular hyperplasia nor CD8(+) cell infiltration into LN germinal centers was detected. Altogether, these results indicate that the nonpathogenic outcome of SIVagm infection in its natural host is associated with a rapidly induced control of viral replication in response to SIVagm infection, rather than with a poorly replicating virus or a constitutive host genetic resistance to virus replication.
Collapse
Affiliation(s)
- O M Diop
- Laboratoire de Rétrovirologie, Institut Pasteur, Dakar, Senegal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Inverse Correlation of Telomerase Activity/Proliferation of CD4+ T Lymphocytes and Disease Progression in Simian Immunodeficiency Virus–Infected Nonhuman Primates. J Acquir Immune Defic Syndr 2000. [DOI: 10.1097/00042560-200006010-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Bostik P, Brice GT, Greenberg KP, Mayne AE, Villinger F, Lewis MG, Ansari AA. Inverse correlation of telomerase activity/proliferation of CD4+ T lymphocytes and disease progression in simian immunodeficiency virus-infected nonhuman primates. J Acquir Immune Defic Syndr 2000; 24:89-99. [PMID: 10935683 DOI: 10.1097/00126334-200006010-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Both increased lymphocyte renewal with subsequent exhaustion of the immune system and impaired T-cell renewal have been put forth to account for CD4+ T-cell depletion and development of AIDS in HIV-1-infected humans and SIV-infected nonhuman primates. In the present study, telomeric terminal restriction fragment length and telomerase activity were used as measures of proliferative activity of T lymphocytes from three nonhuman primate species before and after being infected with SIV. In peripheral blood T cells, our data show both species and T-cell-subset-specific differences in proliferative activity accompanied by different patterns of disease progression. A significant postinfection increase in telomerase/proliferative activity in CD4+ T cells from seropositive sooty mangabeys and from normal progressor rhesus macaques was associated with asymptomatic infection or delayed disease progression, respectively, whereas a decrease in telomerase/proliferative activity detected in CD4+ T cells postinfection from SIVsmmPBj14-infected pigtailed macaques was associated with rapid CD4+ T-cell depletion and disease progression. The levels of telomerase activity observed in CD4+ T cells from peripheral blood closely parallelled those seen in CD4+ T cells in lymph node samples from selected animals. Our data suggest that an increase in proliferative activity of T lymphocytes in vivo may be associated with a favorable course of SIV infection in nonhuman primates.
Collapse
Affiliation(s)
- P Bostik
- Department of Pathology and Laboratory Medicine, Winship Cancer Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Couëdel-Courteille A, Butor C, Juillard V, Guillet JG, Venet A. Dissemination of SIV after rectal infection preferentially involves paracolic germinal centers. Virology 1999; 260:277-94. [PMID: 10417263 DOI: 10.1006/viro.1999.9809] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homosexual transmission remains a major mode of contamination in developed countries. Early virological and immunological events in lymphoid tissues are known to be important for the outcome of HIV infections. Little data are available, however, on viral dissemination during primary rectal infection. We therefore studied this aspect of rectal infection in rhesus macaques inoculated with the biological isolate SIVmac251. We show that infection is established initially in lymph nodes draining the rectum. Infected cells and virions are localized mainly in germinal centers at that stage. With increasing viral burden, infected cells are found throughout the lymph node parenchyma. In addition the difference in viral load between lymph nodes draining the rectum and other lymph nodes is attenuated or abolished. We discuss this pattern of viral dissemination with respect to the physiology of the mucosal immune system. The pattern and kinetics of viral dissemination after rectal infection have important implications for the development of efficient mucosal vaccines.
Collapse
Affiliation(s)
- A Couëdel-Courteille
- Laboratoire d'Immunologie des Pathologies Infectieuses et Tumorales, Institut National de la Santé et de la Recherche Médicale U445, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, Paris, 75014, France.
| | | | | | | | | |
Collapse
|
34
|
Haase AT. Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu Rev Immunol 1999; 17:625-56. [PMID: 10358770 DOI: 10.1146/annurev.immunol.17.1.625] [Citation(s) in RCA: 380] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) is usually transmitted through sexual contact and in the very early stages of infection establishes a persistent infection in lymphatic tissues (LT). Virus is produced and stored at this site in a dynamic process that slowly depletes the immune system of CD4+ T cells, setting the stage for AIDS. In this review, I describe the changes in viral and CD4+ T cell populations in LT over the course of infection and after treatment. I present recent evidence that productively infected CD4+ T cells play an important role in establishing persistent infection from the onset, and that the LT are the major reservoir where virus is produced and stored on follicular dendritic cells (FDCs). I discuss the methods used to define the size of viral and CD4+ T cell populations in LT and the nature of virus-host cell interactions in vivo. These experimental approaches have identified populations of latently and chronically infected cells in which virus can elude host defenses, perpetuate infection, and escape eradication by highly active antiretroviral treatment (HAART). I discuss the dramatic impact of HAART on suppressing virus production, reducing the pool of stored virus, and restoring CD4+ T cell populations. I discuss the contributions of thymopoiesis and other renewal mechanisms, lymphatic homeostasis and trafficking to these changes in CD4+ T cell populations in LT, and conclude with a model of immune depletion and repopulation based on the limited regenerative capacity of the adult and the uncompensated losses of productively infected cells that treatment stems. The prediction of this model is that immune regeneration will be slow, variable, and partial. It is nonetheless encouraging to know that even in late stages of infection, control of active replication of HIV-1 provides an opportunity for the immune system to recover from the injuries inflicted by infection.
Collapse
Affiliation(s)
- A T Haase
- Department of Microbiology, University of Minnesota, Minneapolis 55455, USA.
| |
Collapse
|
35
|
Iida T, Ichimura H, Ui M, Shimada T, Akahata W, Igarashi T, Kuwata T, Ido E, Yonehara S, Imanishi J, Hayami M. Sequential analysis of apoptosis induction in peripheral blood mononuclear cells and lymph nodes in the early phase of pathogenic and nonpathogenic SIVmac infection. AIDS Res Hum Retroviruses 1999; 15:721-9. [PMID: 10357468 DOI: 10.1089/088922299310818] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the role of apoptosis in the early phase of HIV infection, we used macaques infected with simian immunodeficiency virus strain mac (SIVmac) as a primate model and examined sequentially the characteristics of apoptosis of lymphocytes in peripheral blood mononuclear cells (PBMCs) and lymph nodes in the early phase of SIVmac infection. Five macaques infected with a pathogenic strain of SIV, SIVmac239, were analyzed during the first 4 weeks after infection. Peripheral CD4+ and CD8+ cells transiently decreased at 1 week postinfection. The percentage of apoptotic cells in cultured PBMCs increased from about 2 weeks postinfection. The number of apoptotic cells in lymph node sections was higher on days 13 and 28 postinfection than before infection and on day 5 postinfection. Fas antigen expression on peripheral lymphocytes was upregulated from day 8 postinfection. These results indicate that apoptosis is induced about 2 weeks after SIVmac239 infection, following the upregulation of Fas antigen expression on lymphocytes. Since apoptosis was induced about 1 week after the decrease in peripheral CD4+ and CD8+ cell counts, it appears that the apoptosis induction does not play an important role in the transient lymphopenia in the early phase of SIVmac infection. In macaques infected with a nonpathogenic derivative of SIVmac239, SIVmac delta nef, apoptosis of lymphocytes was induced as it was in SIVmac239-infected macaques, but to a lesser degree, suggesting a correlation between the extent of apoptosis induction in lymphocytes in the early phase of SIVmac infection and the pathogenicity of SIVmac.
Collapse
Affiliation(s)
- T Iida
- Department of Microbiology, Kyoto Prefectural University of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Reimann KA, Watson A, Dailey PJ, Lin W, Lord CI, Steenbeke TD, Parker RA, Axthelm MK, Karlsson GB. Viral burden and disease progression in rhesus monkeys infected with chimeric simian-human immunodeficiency viruses. Virology 1999; 256:15-21. [PMID: 10087222 DOI: 10.1006/viro.1999.9632] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the role of viral burden in simian-human immunodeficiency virus (SHIV)-induced disease, cellular provirus and plasma viral RNA levels were measured after inoculation of rhesus monkeys with four different SHIVs. These SHIVs included SHIV-HXBc2 and SHIV-89.6, constructed with env, tat, rev, and vpu derived from either cell line-passaged or primary patient isolates of human immunodeficiency virus type 1; the viral quasispecies SHIV-89.6P derived after in vivo passage of SHIV-89.6; and a molecular clone, SHIV-KB9, derived from SHIV-89.6P. SHIV-HXBc2 and SHIV-89.6 are nonpathogenic in rhesus monkeys; SHIV-89.6P and SHIV-KB9 cause rapid CD4(+) T cell depletion and an immunodeficiency syndrome. Relative SHIV provirus levels were highest during primary infection in monkeys infected with SHIV-89.6P, the virus that caused the most rapid and dramatic CD4(+) T cell depletion. However, by 10 weeks postinoculation, provirus levels were similar in monkeys infected with the pathogenic and nonpathogenic chimeric viruses. The virus infections that resulted in the highest peak and chronic viral RNA levels were the pathogenic viruses SHIV-89.6P and SHIV-KB9. SHIV-89. 6P uniformly caused rapid and profound CD4(+) T cell depletion and immunodeficiency. Infection with the SHIV-KB9 resulted in very low CD4(+) T cell counts without seroconversion in some monkeys and a substantial but less profound CD4(+) T cell depletion and rapid seroconversion in others. Surprisingly, the level of plasma viremia did not differ between SHIV-KB9-infected animals exhibiting these contrasting outcomes, suggesting that host factors may play an important role in AIDS virus pathogenesis.
Collapse
Affiliation(s)
- K A Reimann
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Matheux F, Le Grand R, Rousseau V, De Maeyer E, Dormont D, Lauret E. Macaque lymphocytes transduced by a constitutively expressed interferon beta gene display an enhanced resistance to SIVmac251 infection. Hum Gene Ther 1999; 10:429-40. [PMID: 10048395 DOI: 10.1089/10430349950018878] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We are developing a method of gene therapy of HIV infection based on the low constitutive expression of an interferon beta (IFN-beta) gene in HIV target cells. Herein we report the first step in the development of a relevant animal model, provided by the macaque (Macaca fascicularis) infected with a pathogenic SIVmac251 isolate. To avoid the possibility of in vivo rejection of macaque lymphocytes expressing Hu IFN-beta, we have PCR-amplified and sequenced the Ma IFN-beta-coding sequence, and placed it under the control of a PstI-NruI 0.6-kb fragment of the murine H-2Kb gene promoter in the MFG-K(b)MaIFNbeta retroviral vector. Lymphocytic CEMX174 cells, transduced by coculture on packaging cells with this construct, harbored a mean of 0.07 to 1.2 copies of the IFN-beta transgene per cell, and were characterized by an IFN production ranging from 75 to 750 units per 5 x 10(5) cells per 3 days. The IFN-beta-transduced populations displayed an enhanced resistance against the pathogenic SIVmac251 isolate. Control experiments showed that the enhanced resistance could not be ascribed to the Ma IFN-beta released during the 3 days of coculture by the packaging cells, or to the mere transduction with a retroviral vector. Macaque lymphocytes transduced by the MFG-K(b)MaIFNbeta retroviral vector by coculture on packaging cells, acquired a mean number of IFN-beta transgene copies per cell ranging from 0.03 to 0.1. Such transduction led to the release of IFN-beta into the culture medium, ranging from 10 to 20 units per 5 x 10(5) cells per 3 days. This increased the anti-SIV resistance of the lymphocytes, as demonstrated by a decreased p27 antigen release into the culture medium, without affecting lymphocyte proliferation.
Collapse
Affiliation(s)
- F Matheux
- CEA, Service de Neurovirologie (DSV/DRM), CRSSA, Institut Paris Sud sur les Cytokines, Fontenay aux Roses, France
| | | | | | | | | | | |
Collapse
|
38
|
Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, Lifton MA, Racz P, Tenner-Racz K, Dalesandro M, Scallon BJ, Ghrayeb J, Forman MA, Montefiori DC, Rieber EP, Letvin NL, Reimann KA. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999; 283:857-60. [PMID: 9933172 DOI: 10.1126/science.283.5403.857] [Citation(s) in RCA: 1741] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Clinical evidence suggests that cellular immunity is involved in controlling human immunodeficiency virus-1 (HIV-1) replication. An animal model of acquired immune deficiency syndrome (AIDS), the simian immunodeficiency virus (SIV)-infected rhesus monkey, was used to show that virus replication is not controlled in monkeys depleted of CD8+ lymphocytes during primary SIV infection. Eliminating CD8+ lymphocytes from monkeys during chronic SIV infection resulted in a rapid and marked increase in viremia that was again suppressed coincident with the reappearance of SIV-specific CD8+ T cells. These results confirm the importance of cell-mediated immunity in controlling HIV-1 infection and support the exploration of vaccination approaches for preventing infection that will elicit these immune responses.
Collapse
Affiliation(s)
- J E Schmitz
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schmitz JE, Lifton MA, Reimann KA, Montefiori DC, Shen L, Racz P, Tenner-Racz K, Ollert MW, Forman MA, Gelman RS, Vogel CW, Letvin NL. Effect of complement consumption by cobra venom factor on the course of primary infection with simian immunodeficiency virus in rhesus monkeys. AIDS Res Hum Retroviruses 1999; 15:195-202. [PMID: 10029251 DOI: 10.1089/088922299311619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cobra venom factor (CVF)-induced consumption of complement proteins was used to investigate the role of complement in vivo in the immunopathogenesis of simian immunodeficiency virus of macaques (SIVmac) infection in rhesus monkeys. Repeated administration of CVF was shown to deplete complement to <5% of baseline hemolytic activity of serum complement for 10 days in a normal monkey. Three groups of SIVmac-infected animals were then evaluated: monkeys treated with CVF resulting in complement depletion from days -1 to 10 postinfection, monkeys treated with CVF resulting in complement depletion from days 10 to 21 postinfection, and control monkeys that received no CVF. CD8+ SIVmac-specific cytotoxic T lymphocyte (CTL) generation and CD4+ T lymphocyte depletion during primary infection were not affected by CVF treatment. Viral load, assessed by measurements of plasma p27gag antigen and viral RNA, was transiently higher during the first 4 weeks following infection in the CVF-treated monkeys and the subsequent clinical course in these treated animals was accelerated. These results suggest that complement proteins may participate in immune defense mechanisms that decrease virus replication following the initial burst of intense viremia during primary SIVmac infection. However, we cannot rule out that the observed increased virus replication was induced by immune activation resulting from the administration of a foreign antigen to these monkeys.
Collapse
Affiliation(s)
- J E Schmitz
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Because of strong clinical, pathological, virological and immunological analogies with HIV infection of humans, infection of macaques with SIV provides a valuable model for exploring crucial issues related to both the pathogenesis and prevention of HIV infection. The model has offered a unique setting for the preclinical evaluation of drugs, vaccines and gene-therapies against HIV, and has helped to identify many virus and host determinants of lentiviral disease. For instance, the importance of an intact nef gene for efficient lentivirus replication and disease induction, and the protective ability of live attenuated, nef-deleted viruses have been first demonstrated in macaques using molecular clones of SIV. More recently, the development of chimeric HIV-SIV vectors able to establish infection and induce disease in macaques has provided new opportunities for the evaluation of vaccination strategies based upon HIV antigens. The aim of this review is to describe the natural course of SIV infection in macaques and to outline how this model has contributed to our understanding of the complex interaction between lentiviruses and host immune system.
Collapse
Affiliation(s)
- A M Geretti
- Department of Virology, Royal Free and University College Medical School of UCL London (Royal Free Campus), UK
| |
Collapse
|
41
|
Affiliation(s)
- R S Campbell
- Australian Institute of Tropical Veterinary and Animal Sciences, James Cook University, Townsville, Queensland, Australia
| | | |
Collapse
|
42
|
Gigout L, Vaslin B, Matheux F, Caufour P, Neildez O, Chéret A, Lebel-Binay S, Théodoro F, Dilda P, Benveniste O, Clayette P, Le Grand R, Dormont D. Consequences of ddI-induced reduction of acute SIVmac251 virus load on cytokine profiles in cynomolgus macaques. RESEARCH IN VIROLOGY 1998; 149:341-54. [PMID: 9923010 DOI: 10.1016/s0923-2516(99)80002-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study evaluates the consequences of antiretroviral treatment of the acute simian immunodeficiency virus (SIV) primary infection on virus load and cytokine responses. Four cynomolgus macaques were inoculated intravenously with a pathogenic primary isolate (SIVmac251). Animals were pretreated with 10.8 mg/kg/day of dideoxyinosine (ddI) from 4 days before inoculation, and treatment was continued for 28 days. Proinflammatory (IL6, IL1 beta and TNF alpha) and antiinflammatory (IL10) cytokine and lymphokine (IL2, IL4 and IFN gamma) polymerase chain reaction (PCR) ratios were monitored in unmanipulated peripheral blood mononuclear cells (PBMCs) during acute infection by using a semiquantitative reverse transcription (RT)-PCR method. PBMC-associated virus loads were dramatically reduced compared to those of placebo-treated macaques. Nevertheless, a transient rise in IL6, IL1 beta, TNF alpha and IL10 mRNA expression was observed in PBMCs. IL2, IL4 and IFN gamma mRNAs were either undetectable or weakly detectable throughout the study, with no major changes. Despite a dramatic reduction in the acute viral loads in ddI-treated monkeys, early cytokine mRNA profiles were comparable to those of untreated SIVmac251-infected monkeys. Contrary to what was previously evidenced during primary infection with an attenuated SIV clone, no increase in IL2 and IL4 mRNA was detected in PBMCs of the ddI-treated monkeys, although these monkeys exhibited virus loads similar to those evidenced in macaques infected by attenuated SIV. These data indicate that differential lymphokine expression patterns found in pathogenic and Nef-truncated SIV-infected monkeys may not be strictly dependent on virus load levels.
Collapse
Affiliation(s)
- L Gigout
- CEA, Service de Neurovirologie, DSV/DRM, CRSSA, Fontenay aux Roses, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Karlsson GB, Halloran M, Schenten D, Lee J, Racz P, Tenner-Racz K, Manola J, Gelman R, Etemad-Moghadam B, Desjardins E, Wyatt R, Gerard NP, Marcon L, Margolin D, Fanton J, Axthelm MK, Letvin NL, Sodroski J. The envelope glycoprotein ectodomains determine the efficiency of CD4+ T lymphocyte depletion in simian-human immunodeficiency virus-infected macaques. J Exp Med 1998; 188:1159-71. [PMID: 9743534 PMCID: PMC2212530 DOI: 10.1084/jem.188.6.1159] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Revised: 07/02/1998] [Indexed: 11/04/2022] Open
Abstract
CD4+ T lymphocyte depletion in human immunodeficiency virus type 1 (HIV-1)-infected humans underlies the development of acquired immune deficiency syndrome. Using a model in which rhesus macaques were infected with chimeric simian-human immunodeficiency viruses (SHIVs), we show that both the level of viremia and the structure of the HIV-1 envelope glycoprotein ectodomains individually contributed to the efficiency with which CD4(+) T lymphocytes were depleted. The envelope glycoproteins of recombinant SHIVs that efficiently caused loss of CD4(+) T lymphocytes exhibited increased chemokine receptor binding and membrane-fusing capacity compared with those of less pathogenic viruses. These studies identify the HIV-1 envelope glycoprotein ectodomains as determinants of CD4(+) T lymphocyte loss in vivo and provide a foundation for studying pathogenic mechanisms.
Collapse
Affiliation(s)
- G B Karlsson
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mikovits JA, Young HA, Vertino P, Issa JP, Pitha PM, Turcoski-Corrales S, Taub DD, Petrow CL, Baylin SB, Ruscetti FW. Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production. Mol Cell Biol 1998; 18:5166-77. [PMID: 9710601 PMCID: PMC109102 DOI: 10.1128/mcb.18.9.5166] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/1998] [Accepted: 06/23/1998] [Indexed: 11/20/2022] Open
Abstract
The immune response to pathogens is regulated by a delicate balance of cytokines. The dysregulation of cytokine gene expression, including interleukin-12, tumor necrosis factor alpha, and gamma interferon (IFN-gamma), following human retrovirus infection is well documented. One process by which such gene expression may be modulated is altered DNA methylation. In subsets of T-helper cells, the expression of IFN-gamma, a cytokine important to the immune response to viral infection, is regulated in part by DNA methylation such that mRNA expression inversely correlates with the methylation status of the promoter. Of the many possible genes whose methylation status could be affected by viral infection, we examined the IFN-gamma gene as a candidate. We show here that acute infection of cells with human immunodeficiency virus type 1 (HIV-1) results in (i) increased DNA methyltransferase expression and activity, (ii) an overall increase in methylation of DNA in infected cells, and (iii) the de novo methylation of a CpG dinucleotide in the IFN-gamma gene promoter, resulting in the subsequent downregulation of expression of this cytokine. The introduction of an antisense methyltransferase construct into lymphoid cells resulted in markedly decreased methyltransferase expression, hypomethylation throughout the IFN-gamma gene, and increased IFN-gamma production, demonstrating a direct link between methyltransferase and IFN-gamma gene expression. The ability of increased DNA methyltransferase activity to downregulate the expression of genes like the IFN-gamma gene may be one of the mechanisms for dysfunction of T cells in HIV-1-infected individuals.
Collapse
Affiliation(s)
- J A Mikovits
- Intramural Research Support Program, SAIC Frederick, Division of Basic Sciences, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick Maryland 21702-1201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rey-Cuillé MA, Berthier JL, Bomsel-Demontoy MC, Chaduc Y, Montagnier L, Hovanessian AG, Chakrabarti LA. Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J Virol 1998; 72:3872-86. [PMID: 9557672 PMCID: PMC109612 DOI: 10.1128/jvi.72.5.3872-3886.1998] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A serologic survey of primates living in a French zoo allowed identification of three cases of infection with simian immunodeficiency virus in sooty mangabeys (Cercocebus atys) (SIVsm). Viral isolates, which were designated SIVsmFr66, SIVsmFr74, and SIVsmFr85, were obtained after short-term culture of mangabey lymphoid cells. Phylogenetic analysis of gag and env sequences amplified directly from mangabey tissues showed that the three SIVsmFr were genetically close and that they constituted a new subtype within the diverse SIVsm-SIVmac-human immunodeficiency virus type 2 (HIV-2) group. We could reconstruct the transmission events that likely occurred in 1986 between the three animals and evaluate the divergence of SIVsmFr sequences since transmission. The estimated rate of mutation fixation was 6 x 10(-3) substitutions per site per year, which was as high as the rate found for SIVmac infection in macaques. These data indicated that SIVsmFr replicated at a high rate in mangabeys, despite the nonpathogenic character of infection in this host. The viral load evaluated by competitive PCR reached 20,000 viral DNA copies per 10(6) lymph node cells. In addition, productively infected cells were readily detected in mangabey lymphoid tissues by in situ hybridization. The amounts of viral RNA in plasma ranged from 10(5) to 10(7) copies per ml. The cell-associated and plasma viral loads were as high as those seen in susceptible hosts (humans or macaques) during the asymptomatic stage of HIV or SIVmac infections. Thus, the lack of pathogenicity of SIVsm for its natural host cannot be explained by limited viral replication or by tight containment of viral production.
Collapse
Affiliation(s)
- M A Rey-Cuillé
- Virologie et Immunologie Cellulaire, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Connor RI, Korber BT, Graham BS, Hahn BH, Ho DD, Walker BD, Neumann AU, Vermund SH, Mestecky J, Jackson S, Fenamore E, Cao Y, Gao F, Kalams S, Kunstman KJ, McDonald D, McWilliams N, Trkola A, Moore JP, Wolinsky SM. Immunological and virological analyses of persons infected by human immunodeficiency virus type 1 while participating in trials of recombinant gp120 subunit vaccines. J Virol 1998; 72:1552-76. [PMID: 9445059 PMCID: PMC124637 DOI: 10.1128/jvi.72.2.1552-1576.1998] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1997] [Accepted: 11/04/1997] [Indexed: 02/05/2023] Open
Abstract
We have studied 18 participants in phase I/II clinical trials of recombinant gp120 (rgp120) subunit vaccines (MN and SF-2) who became infected with human immunodeficiency virus type 1 (HIV-1) during the course of the trials. Of the 18 individuals, 2 had received a placebo vaccine, 9 had been immunized with MN rgp120, and seven had been immunized with SF-2 rgp120. Thirteen of the 18 infected vaccinees had received three or four immunizations prior to becoming infected. Of these, two were placebo recipients, six had received MN rgp120, and five had received SF-2 rgp120. Only 1 of the 11 rgp120 recipients who had multiple immunizations failed to develop a strong immunoglobulin G antibody response to the immunogen. However, the antibody response to rgp120 was transient, typically having a half-life of 40 to 60 days. No significant neutralizing activity against the infecting strain was detected in any of the infected individuals at any time prior to infection. Antibody titers in subjects infected despite vaccination and in noninfected subjects were not significantly different. Envelope-specific cytotoxic T-lymphocyte responses measured after infection were infrequent and weak in the nine vaccinees who were tested. HIV-1 was isolated successfully from all 18 individuals. Sixteen of these strains had a non-syncytium-inducing (NSI) phenotype, while two had a syncytium-inducing (SI) phenotype. NSI strains used the CCR5 coreceptor to enter CD4+ cells, while an SI strain from one of the vaccinees also used CXCR4. Viruses isolated from the blood of rgp120 vaccinees were indistinguishable from viruses isolated from control individuals in terms of their inherent sensitivity to neutralization by specific monoclonal antibodies and their replication rates in vitro. Furthermore, genetic sequencing of the env genes of strains infecting the vaccinees did not reveal any features that clearly distinguished these viruses from contemporary clade B viruses circulating in the United States. Thus, despite rigorous genetic analyses, using various breakdowns of the data sets, we could find no evidence that rgp120 vaccination exerted selection pressure on the infecting HIV-1 strains. The viral burdens in the infected rgp120 vaccine recipients were also determined, and they were found to be not significantly different from those in cohorts of placebo-vaccinated and nonvaccinated individuals. In summary, we conclude that vaccination with rgp120 has had,to date, no obvious beneficial or adverse effects on the individuals we have studied.
Collapse
Affiliation(s)
- R I Connor
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kimata JT, Mozaffarian A, Overbaugh J. A lymph node-derived cytopathic simian immunodeficiency virus Mne variant replicates in nonstimulated peripheral blood mononuclear cells. J Virol 1998; 72:245-56. [PMID: 9420221 PMCID: PMC109370 DOI: 10.1128/jvi.72.1.245-256.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1996] [Accepted: 10/06/1997] [Indexed: 02/05/2023] Open
Abstract
Lymph nodes (LNs) are sites of active human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) replication and disease at both early and late stages of infection. Consequently, variant viruses that replicate efficiently and subsequently cause immune dysfunction may be harbored in this tissue. To determine whether LN-associated SIVs have an increased capacity to replicate and induce cytopathology, a molecular clone of SIV was isolated directly from DNA extracted from unpassaged LN tissue of a pig-tailed macaque (Macaca nemestrina) infected with SIVMne. The animal had declining CD4+ T-lymphocyte counts at the time of the LN biopsy. In human CD4+ T-cell lines, the LN-derived virus, SIVMne027, replicated with relatively slow kinetics and was minimally cytopathic and non-syncytium inducing compared to other SIVMne clones. However, in phytohemagglutinin-stimulated pig-tailed macaque peripheral blood mononuclear cells (PBMCs), SIVMne027 replicated efficiently and was highly cytopathic for the CD4+ T-cell population. Interestingly, unlike other SIVMne clones, SIVMne027 also replicated to a high level in nonstimulated macaque PBMCs. High-level replication depended on the presence of both the T-cell and monocyte/macrophage populations and could be enhanced by interleukin-2 (IL-2). Finally, the primary determinant governing the ability of SIVMne027 to replicate in nonstimulated and IL-2-stimulated PBMCs mapped to gag-pol-vif. Together, these data demonstrate that LNs may harbor non-syncytium-inducing, cytopathic viruses that replicate efficiently and are highly responsive to the effects of cytokines such as IL-2.
Collapse
Affiliation(s)
- J T Kimata
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
48
|
Lifson JD, Nowak MA, Goldstein S, Rossio JL, Kinter A, Vasquez G, Wiltrout TA, Brown C, Schneider D, Wahl L, Lloyd AL, Williams J, Elkins WR, Fauci AS, Hirsch VM. The extent of early viral replication is a critical determinant of the natural history of simian immunodeficiency virus infection. J Virol 1997; 71:9508-14. [PMID: 9371613 PMCID: PMC230257 DOI: 10.1128/jvi.71.12.9508-9514.1997] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Different patterns of viral replication correlate with the natural history of disease progression in humans and macaques infected with human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV), respectively. However, the viral and host factors influencing these patterns of viral replication in vivo are poorly understood. We intensively studied viral replication in macaques receiving identical inocula of SIV. Marked differences in viral replication patterns were apparent within the first week following inoculation, a time prior to the development of measurable specific immune effector responses to viral antigens. Plasma viral RNA levels measured on day 7 postinoculation correlated with levels measured in the postacute phase of infection. Differences in the susceptibility of host cells from different animals to in vitro SIV infection correlated with the permissiveness of the animals for early in vivo viral replication and hence with the postacute set point level of plasma viremia. These results suggest that host factors that exert their effects prior to full development of specific immune responses are critical in establishing the in vivo viral replication pattern and associated clinical course in subjects infected with SIV and, by extension, with HIV-1.
Collapse
Affiliation(s)
- J D Lifson
- AIDS Vaccine Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zou W, Lackner AA, Simon M, Durand-Gasselin I, Galanaud P, Desrosiers RC, Emilie D. Early cytokine and chemokine gene expression in lymph nodes of macaques infected with simian immunodeficiency virus is predictive of disease outcome and vaccine efficacy. J Virol 1997; 71:1227-36. [PMID: 8995646 PMCID: PMC191177 DOI: 10.1128/jvi.71.2.1227-1236.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Competitive PCR was used to evaluate the expression of cytokine, granzyme B, and chemokine genes in lymph nodes of macaques recently infected with the simian immunodeficiency virus (SIV) pathogenic molecular clone SIVmac239 (n = 16), the nonpathogenic vaccine strain SIVmac239 delta nef (n = 8), and the nonpathogenic molecular clone SIVmac1A11 (n = 8). For both SIVmac239 and its nef-deleted derivative, strong expression was observed as early as 7 days postinfection for interleukin 1beta (IL-1beta), IL-6, tumor necrosis factor alpha, gamma interferon, and IL-13. The levels of gene induction were equally intense for both viruses despite a lower viral load for SIVmac239 deltanef compared with that for SIVmac239. However, the nature of the cytokine network activation varied with the viral inocula. Primary infection with SIVmac239 was characterized by a higher level of IL-4, IL-10, MIP-1alpha, MIP-1beta, MCP-1, and RANTES gene expression and a lower level of IL-12 and granzyme B gene expression compared with infection with SIVmac239 delta nef. Thus, infection with nef-deleted SIV was associated with a preferential Th1 versus Th2 pattern of cytokine production. Infection with SIVmac1A11 was characterized by a delayed immune response for all markers tested. The unique patterns of cytokine and chemokine gene expression in lymph nodes correlated nicely with the pathogenic potential of the SIV strains used as well as with differences in their ability to serve as protective vaccines.
Collapse
Affiliation(s)
- W Zou
- Institut Paris-Sud sur les Cytokines, INSERM U131, Clamart, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Reinhart TA, Rogan MJ, Viglianti GA, Rausch DM, Eiden LE, Haase AT. A new approach to investigating the relationship between productive infection and cytopathicity in vivo. Nat Med 1997; 3:218-21. [PMID: 9018242 DOI: 10.1038/nm0297-218] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe a novel experimental approach to analyzing virus-host relationships and potential mechanisms of cytopathicity in vivo in simian immunodeficiency virus (SIV) infections. Progressive destruction of lymphoid tissue in the course of infection by SIV or human immunodeficiency virus (HIV) accompanies the loss of CD4+ T lymphocytes and sets the stage for AIDS. Because one of the important early events in this pathological process is lysis of follicular dendritic cells (FDCs), we investigated the controversial role of productive SIV infection in the destruction of FDCs. To differentiate productive infections from the known association of virus with FDCs as immune complexes trapped on cell surfaces, we used detection of spliced viral mRNAs in cells as evidence of productive infection. We found that spliced and unspliced viral RNAs could be detected by in situ hybridization (ISH) with specific antisense oligonucleotide probes in lymphocytes and macrophages with sensitivities of fewer than ten copies of spliced viral RNA per cell. We detected only unspliced RNA in germinal centers where FDCs reside. Thus, no productive infection of these cells can be detected in vivo by this assay, and their destruction likely occurs by indirect mechanisms that have yet to be determined.
Collapse
Affiliation(s)
- T A Reinhart
- Department of Microbiology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|