1
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Khan MS, Kim E, Le Hingrat Q, Kleinman A, Ferrari A, Sammartino JC, Percivalle E, Xu C, Huang S, Kenniston TW, Cassaniti I, Baldanti F, Pandrea I, Gambotto A, Apetrei C. Tetravalent SARS-CoV-2 S1 subunit protein vaccination elicits robust humoral and cellular immune responses in SIV-infected rhesus macaque controllers. mBio 2023; 14:e0207023. [PMID: 37830800 PMCID: PMC10653869 DOI: 10.1128/mbio.02070-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The study provides important insights into the immunogenicity and efficacy of a tetravalent protein subunit vaccine candidate against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The vaccine induced both humoral and cellular immune responses in nonhuman primates with controlled SIVagm infection and was able to generate Omicron variant-specific antibodies without specifically vaccinating with Omicron. These findings suggest that the tetravalent composition of the vaccine candidate could provide broad protection against multiple SARS-CoV-2 variants while minimizing the risk of immune escape and the emergence of new variants. Additionally, the use of rhesus macaques with controlled SIVsab infection may better represent vaccine immunogenicity in humans with chronic viral diseases, highlighting the importance of preclinical animal models in vaccine development. Overall, the study provides valuable information for the development and implementation of coronavirus disease 2019 vaccines, particularly for achieving global vaccine equity and addressing emerging variants.
Collapse
Affiliation(s)
- Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jose C. Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cuiling Xu
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Ivona Pandrea
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Apetrei C, Gaufin T, Brocca-Cofano E, Sivanandham R, Sette P, He T, Sivanandham S, Martinez Sosa N, Martin KJ, Raehtz KD, Kleinman AJ, Valentine A, Krampe N, Gautam R, Lackner AA, Landay AL, Ribeiro RM, Pandrea I. T cell activation is insufficient to drive SIV disease progression. JCI Insight 2023; 8:e161111. [PMID: 37485874 PMCID: PMC10443804 DOI: 10.1172/jci.insight.161111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Resolution of T cell activation and inflammation is a key determinant of the lack of SIV disease progression in African green monkeys (AGMs). Although frequently considered together, T cell activation occurs in response to viral stimulation of acquired immunity, while inflammation reflects innate immune responses to mucosal injury. We dissociated T cell activation from inflammation through regulatory T cell (Treg) depletion with Ontak (interleukin-2 coupled with diphtheria toxin) during early SIV infection of AGMs. This intervention abolished control of T cell immune activation beyond the transition from acute to chronic infection. Ontak had no effect on gut barrier integrity, microbial translocation, inflammation, and hypercoagulation, despite increasing T cell activation. Ontak administration increased macrophage counts yet decreased their activation. Persistent T cell activation influenced SIV pathogenesis, shifting the ramp-up in viral replication to earlier time points, prolonging the high levels of replication, and delaying CD4+ T cell restoration yet without any clinical or biological sign of disease progression in Treg-depleted AGMs. Thus, by inducing T cell activation without damaging mucosal barrier integrity, we showed that systemic T cell activation per se is not sufficient to drive disease progression, which suggests that control of systemic inflammation (likely through maintenance of gut integrity) is the key determinant of lack of disease progression in natural hosts of SIVs.
Collapse
Affiliation(s)
- Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, and
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paola Sette
- Division of Infectious Diseases, Department of Medicine, and
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sindhuja Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Kevin D. Raehtz
- Division of Infectious Diseases, Department of Medicine, and
| | | | - Audrey Valentine
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Noah Krampe
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rajeev Gautam
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Andrew A. Lackner
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Alan L. Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ruy M. Ribeiro
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ivona Pandrea
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Khan MS, Kim E, Hingrat QL, Kleinman A, Ferrari A, Sammartino JC, Percivalle E, Xu C, Huang S, Kenniston TW, Cassaniti I, Baldanti F, Pandrea I, Gambotto A, Apetrei C. Tetravalent SARS-CoV-2 S1 Subunit Protein Vaccination Elicits Robust Humoral and Cellular Immune Responses in SIV-Infected Rhesus Macaque Controllers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532808. [PMID: 36993692 PMCID: PMC10055053 DOI: 10.1101/2023.03.15.532808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The COVID-19 pandemic has highlighted the need for safe and effective vaccines to be rapidly developed and distributed worldwide, especially considering the emergence of new SARS-CoV-2 variants. Protein subunit vaccines have emerged as a promising approach due to their proven safety record and ability to elicit robust immune responses. In this study, we evaluated the immunogenicity and efficacy of an adjuvanted tetravalent S1 subunit protein COVID-19 vaccine candidate composed of the Wuhan, B.1.1.7 variant, B.1.351 variant, and P.1 variant spike proteins in a nonhuman primate model with controlled SIVsab infection. The vaccine candidate induced both humoral and cellular immune responses, with T- and B cell responses mainly peaking post-boost immunization. The vaccine also elicited neutralizing and cross-reactive antibodies, ACE2 blocking antibodies, and T-cell responses, including spike specific CD4+ T cells. Importantly, the vaccine candidate was able to generate Omicron variant spike binding and ACE2 blocking antibodies without specifically vaccinating with Omicron, suggesting potential broad protection against emerging variants. The tetravalent composition of the vaccine candidate has significant implications for COVID-19 vaccine development and implementation, providing broad antibody responses against numerous SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Jose C Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Cuiling Xu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Ivona Pandrea
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Le Hingrat Q, Sette P, Xu C, Rahmberg AR, Tarnus L, Annapureddy H, Kleinman A, Brocca-Cofano E, Sivanandham R, Sivanandham S, He T, Capreri DJ, Ma D, Estes JD, Brenchley JM, Apetrei C, Pandrea I. Prolonged experimental CD4 + T-cell depletion does not cause disease progression in SIV-infected African green monkeys. Nat Commun 2023; 14:979. [PMID: 36813761 PMCID: PMC9946951 DOI: 10.1038/s41467-023-36379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
CD4+ T-cell depletion is a hallmark of HIV infection, leading to impairment of cellular immunity and opportunistic infections, but its contribution to SIV/HIV-associated gut dysfunction is unknown. Chronically SIV-infected African Green Monkeys (AGMs) partially recover mucosal CD4+ T-cells, maintain gut integrity and do not progress to AIDS. Here we assess the impact of prolonged, antibody-mediated CD4 + T-cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T-cells and >90% of mucosal CD4+ T-cells are depleted. Plasma viral loads and cell-associated viral RNA in tissues are lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintain gut integrity, control immune activation and do not progress to AIDS. We thus conclude that CD4+ T-cell depletion is not a determinant of SIV-related gut dysfunction, when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T-cell restoration in SIVagm-infected AGMs.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Lab of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Lilas Tarnus
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haritha Annapureddy
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sindhuja Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Capreri
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongzhu Ma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Jasinska AJ, Apetrei C, Pandrea I. Walk on the wild side: SIV infection in African non-human primate hosts-from the field to the laboratory. Front Immunol 2023; 13:1060985. [PMID: 36713371 PMCID: PMC9878298 DOI: 10.3389/fimmu.2022.1060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4+ T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Kleinman AJ, Sivanandham S, Sette P, Sivanandham R, Policicchio BB, Xu C, Penn E, Brocca-Cofano E, Le Hingrat Q, Ma D, Pandrea I, Apetrei C. Changes to the Simian Immunodeficiency Virus (SIV) Reservoir and Enhanced SIV-Specific Responses in a Rhesus Macaque Model of Functional Cure after Serial Rounds of Romidepsin Administrations. J Virol 2022; 96:e0044522. [PMID: 35638831 PMCID: PMC9215247 DOI: 10.1128/jvi.00445-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
HIV persistence requires lifelong antiretroviral therapy (ART), calling for a cure. The histone deacetylase inhibitor, romidepsin, is used in the "shock and kill" approach with the goal of reactivating virus and subsequently clearing infected cells through cell-mediated immune responses. We tested serial and double infusions of romidepsin in a rhesus macaque (RM) model of SIV functional cure, which controls virus without ART. Off ART, romidepsin reactivated SIV in all RMs. Subsequent infusions resulted in diminished reactivation, and two RMs did not reactivate the virus after the second or third infusions. Therefore, those two RMs received CD8-depleting antibody to assess the replication competence of the residual reservoir. The remaining RMs received double infusions, i.e., two doses separated by 48-h. Double infusions were well tolerated, induced immune activation, and effectively reactivated SIV. Although reactivation was gradually diminished, cell-associated viral DNA was minimally changed, and viral outgrowth occurred in 4/5 RMs. In the RM which did not reactivate after CD8 depletion, viral outgrowth was not detected in peripheral blood mononuclear cells (PBMC)-derived CD4+ cells. The frequency of SIV-specific CD8+ T cells increased after romidepsin administration, and the increased SIV-specific immune responses were associated, although not statistically, with the diminished reactivation. Thus, our data showing sequential decreases in viral reactivation with repeated romidepsin administrations with all RMs and absence of viral reactivation after CD8+ T-cell depletion in one animal suggest that, in the context of healthy immune responses, romidepsin affected the inducible viral reservoir and gradually increased immune-mediated viral control. Given the disparities between the results of romidepsin administration to ART-suppressed SIVmac239-infected RMs and HIV-infected normal progressors compared to our immune-healthy model, our data suggest that improving immune function for greater SIV-specific responses should be the starting point of HIV cure strategies. IMPORTANCE HIV cure is sought after due to the prevalence of comorbidities that occur in persons with HIV. One of the most investigated HIV cure strategies is the "shock and kill" approach. Our study investigated the use of romidepsin, a histone deacetylase (HDAC) inhibitor, in our rhesus macaque model of functional cure, which allows for better resolution of viral reactivation due to the lack of antiretroviral therapy. We found that repeated rounds of romidepsin resulted in gradually diminished viral reactivation. One animal inevitably lacked replication-competent virus in the blood. With the accompanying enhancement of the SIV-specific immune response, our data suggest that there is a reduction of the viral reservoir in one animal by the cell-mediated immune response. With the differences observed between our model and persons living with HIV (PWH) treated with romidepsin, specifically in the context of a healthy immune system in our model, our data thereby indicate the importance of restoring the immune system for cure strategies.
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sindhuja Sivanandham
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjit Sivanandham
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin B. Policicchio
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ellen Penn
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Quentin Le Hingrat
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dongzhu Ma
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Abstract
Nonhuman primates are critically important animal models in which to study complex human diseases, understand biological functions, and address the safety of new diagnostics and therapies proposed for human use. They have genetic, physiologic, immunologic, and developmental similarities when compared to humans and therefore provide important preclinical models of human health and disease. This review highlights select research areas that demonstrate the importance of nonhuman primates in translational research. These include pregnancy and developmental disorders, infectious diseases, gene therapy, somatic cell genome editing, and applications of in vivo imaging. The power of the immune system and our increasing understanding of the role it plays in acute and chronic illnesses are being leveraged to produce new treatments for a range of medical conditions. Given the importance of the human immune system in health and disease, detailed study of the immune system of nonhuman primates is essential to advance preclinical translational research. The need for nonhuman primates continues to remain a high priority, which has been acutely evident during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic. Nonhuman primates will continue to address key questions and provide predictive models to identify the safety and efficiency of new diagnostics and therapies for human use across the lifespan.
Collapse
Affiliation(s)
- Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, California, USA;
- California National Primate Research Center, University of California, Davis, California, USA
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California, USA;
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, California, USA
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
9
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
10
|
Kleinman AJ, Sivanandham R, Sette P, Brocca-Cofano E, McAndrews C, Keele BF, Pandrea I, Apetrei C. Lack of Specific Regulatory T Cell Depletion and Cytoreduction Associated with Extensive Toxicity After Administration of Low and High Doses of Cyclophosphamide. AIDS Res Hum Retroviruses 2022; 38:45-49. [PMID: 33957772 PMCID: PMC8785720 DOI: 10.1089/aid.2021.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Up to 93% of the human immunodeficiency virus (HIV) latent reservoir comprised defective proviruses, suggesting that a functional cure is possible through the elimination of a small population of cells containing intact virus, instead of the entire reservoir. Cyclophosphamide (Cy) is an established chemotherapeutic agent for immune cell cancers. In high doses, Cy is a nonselective cytoreductor, used in allogeneic stem-cell transplantation, while in a low dose, metronomic schedule, Cy selectively depletes regulatory T cells (Tregs). We administered low and high doses to simian immunodeficiency virus (SIV)-infected rhesus macaques (RM) to assess their effects on the SIV reservoirs. As a Treg-depleting agent, Cy unselectively depleted Treg and total lymphocytes, resulting in minimal immune activation and no viral reactivation. As a cytoreductive agent, Cy induced massive viral reactivation in elite controller RMs without ART. However, when administered with antiretroviral therapy (ART), Cy had substantial adverse effects, including mortality. Our study thus dissuades further investigation of Cy as an HIV cure agent.
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjit Sivanandham
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paola Sette
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Colin McAndrews
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Address correspondence to: Cristian Apetrei, Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, S634 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Zhang L, Chen S, Zhang W, Yang H, Jin Y, Duan G. An Update on Animal Models for Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Countermeasure Development. Front Microbiol 2021; 12:770935. [PMID: 34819926 PMCID: PMC8606789 DOI: 10.3389/fmicb.2021.770935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic since March 2020 and led to significant challenges to over 200 countries and regions all over the world. The establishment of highly pathogenic coronavirus animal model is beneficial for the study of vaccines and pathogenic mechanism of the virus. Laboratory mice, Syrian hamsters, Non-human primates and Ferrets have been used to establish animal models of emerging coronavirus infection. Different animal models can reproduce clinical infection symptoms at different levels. Appropriate animal models are of great significance for the pathogenesis of COVID-19 and the research progress related to vaccines. This review aims to introduce the current progress about experimental animal models for SARS-CoV-2, and collectively generalize critical aspects of disease manifestation in humans and increase their usefulness in research into COVID-19 pathogenesis and developing new preventions and treatments.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Epigenetic clock and methylation studies in vervet monkeys. GeroScience 2021; 44:699-717. [PMID: 34591235 PMCID: PMC9135907 DOI: 10.1007/s11357-021-00466-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets.
Collapse
|
13
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Nonhuman Primate Testing of the Impact of Different Regulatory T Cell Depletion Strategies on Reactivation and Clearance of Latent Simian Immunodeficiency Virus. J Virol 2020; 94:JVI.00533-20. [PMID: 32669326 DOI: 10.1128/jvi.00533-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) may be key contributors to the HIV/SIV latent reservoir, since they harbor high levels of HIV/SIV; reverse CD4+ T cell immune activation status, increasing the pool of resting CD4+ T cells; and impair CD8+ T cell function, favoring HIV persistence. We tested the hypothesis that Treg depletion is a valid intervention toward an HIV cure by depleted Tregs in 14 rhesus macaque (RM) controllers infected with SIVsab, the virus that naturally infects sabaeus monkeys, through different strategies: administration of an anti-CCR4 immunotoxin, two doses of an anti-CD25 immunotoxin (interleukin-2 with diphtheria toxin [IL-2-DT]), or two combinations of both. All of these treatments resulted in significant depletion of the circulating Tregs (>70%) and their partial depletion in the gut (25%) and lymph nodes (>50%). The fractions of CD4+ T cells expressing Ki -67 increased up to 80% in experiments containing IL-2-DT and only 30% in anti-CCR4-treated RMs, paralleled by increases in the inflammatory cytokines. In the absence of ART, plasma virus rebounded to 103 vRNA copies/ml by day 10 after IL-2-DT administration. A large but transient boost of the SIV-specific CD8+ T cell responses occurred in IL-2-DT-treated RMs. Such increases were minimal in the RMs receiving anti-CCR4-based regimens. Five RMs received IL-2-DT on ART, but treatment was discontinued because of high toxicity and lymphopenia. As such, while all treatments depleted a significant proportion of Tregs, the side effects in the presence of ART prevent their clinical use and call for different Treg depletion approaches. Thus, based on our data, Treg targeting as a strategy for HIV cure cannot be discarded.IMPORTANCE Regulatory T cells (Tregs) can decisively contribute to the establishment and persistence of the HIV reservoir, since they harbor high levels of HIV/SIV, increase the pool of resting CD4+ T cells by reversing their immune activation status, and impair CD8+ T cell function, favoring HIV persistence. We tested multiple Treg depletion strategies and showed that all of them are at least partially successful in depleting Tregs. As such, Treg depletion appears to be a valid intervention toward an HIV cure, reducing the size of the reservoir, reactivating the virus, and boosting cell-mediated immune responses. Yet, when Treg depletion was attempted in ART-suppressed animals, the treatment had to be discontinued due to high toxicity and lymphopenia. Therefore, while Treg targeting as a strategy for HIV cure cannot be discarded, the methodology for Treg depletion has to be revisited.
Collapse
|
15
|
Hartman AL, Nambulli S, McMillen CM, White AG, Tilston-Lunel NL, Albe JR, Cottle E, Dunn MD, Frye LJ, Gilliland TH, Olsen EL, O’Malley KJ, Schwarz MM, Tomko JA, Walker RC, Xia M, Hartman MS, Klein E, Scanga CA, Flynn JL, Klimstra WB, McElroy AK, Reed DS, Duprex WP. SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathog 2020; 16:e1008903. [PMID: 32946524 PMCID: PMC7535860 DOI: 10.1371/journal.ppat.1008903] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/05/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023] Open
Abstract
Vaccines are urgently needed to combat the global coronavirus disease 2019 (COVID-19) pandemic, and testing of candidate vaccines in an appropriate non-human primate (NHP) model is a critical step in the process. Infection of African green monkeys (AGM) with a low passage human isolate of SARS-CoV-2 by aerosol or mucosal exposure resulted in mild clinical infection with a transient decrease in lung tidal volume. Imaging with human clinical-grade 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) co-registered with computed tomography (CT) revealed pulmonary lesions at 4 days post-infection (dpi) that resolved over time. Infectious virus was shed from both respiratory and gastrointestinal (GI) tracts in all animals in a biphasic manner, first between 2-7 dpi followed by a recrudescence at 14-21 dpi. Viral RNA (vRNA) was found throughout both respiratory and gastrointestinal systems at necropsy with higher levels of vRNA found within the GI tract tissues. All animals seroconverted simultaneously for IgM and IgG, which has also been documented in human COVID-19 cases. Young AGM represent an species to study mild/subclinical COVID-19 disease and with possible insights into live virus shedding. Future vaccine evaluation can be performed in AGM with correlates of efficacy being lung lesions by PET/CT, virus shedding, and tissue viral load.
Collapse
Affiliation(s)
- Amy L. Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sham Nambulli
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Natasha Louise Tilston-Lunel
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph R. Albe
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily Cottle
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - L. James Frye
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Theron H. Gilliland
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily L. Olsen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine J. O’Malley
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Madeline M. Schwarz
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jaime A. Tomko
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Reagan C. Walker
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mengying Xia
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew S. Hartman
- Department of Radiology, Allegheny Health Network, Pittsburgh, Pennsylvania, United States of America
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Charles A. Scanga
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - JoAnne L. Flynn
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita K. McElroy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - W. Paul Duprex
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
16
|
Raehtz KD, Barrenäs F, Xu C, Busman-Sahay K, Valentine A, Law L, Ma D, Policicchio BB, Wijewardana V, Brocca-Cofano E, Trichel A, Gale M, Keele BF, Estes JD, Apetrei C, Pandrea I. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog 2020; 16:e1008333. [PMID: 32119719 PMCID: PMC7077871 DOI: 10.1371/journal.ppat.1008333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/17/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Unlike HIV infection, SIV infection is generally nonpathogenic in natural hosts, such as African green monkeys (AGMs), despite life-long high viral replication. Lack of disease progression was reportedly based on the ability of SIV-infected AGMs to prevent gut dysfunction, avoiding microbial translocation and the associated systemic immune activation and chronic inflammation. Yet, the maintenance of gut integrity has never been documented, and the mechanism(s) by which gut integrity is preserved are unknown. We sought to investigate the early events of SIV infection in AGMs, specifically examining the impact of SIVsab infection on the gut mucosa. Twenty-nine adult male AGMs were intrarectally infected with SIVsab92018 and serially sacrificed at well-defined stages of SIV infection, preramp-up (1-3 days post-infection (dpi)), ramp-up (4-6 dpi), peak viremia (9-12 dpi), and early chronic SIV infection (46-55 dpi), to assess the levels of immune activation, apoptosis, epithelial damage and microbial translocation in the GI tract and peripheral lymph nodes. Tissue viral loads, plasma cytokines and plasma markers of gut dysfunction were also measured throughout the course of early infection. While a strong, but transient, interferon-based inflammatory response was observed, the levels of plasma markers linked to enteropathy did not increase. Accordingly, no significant increases in apoptosis of either mucosal enterocytes or lymphocytes, and no damage to the mucosal epithelium were documented during early SIVsab infection of AGMs. These findings were supported by RNAseq of the gut tissue, which found no significant alterations in gene expression that would indicate microbial translocation. Thus, for the first time, we confirmed that gut epithelial integrity is preserved, with no evidence of microbial translocation, in AGMs throughout early SIVsab infection. This might protect AGMs from developing intestinal dysfunction and the subsequent chronic inflammation that drives both HIV disease progression and HIV-associated comorbidities.
Collapse
Affiliation(s)
- Kevin D. Raehtz
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fredrik Barrenäs
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Cuiling Xu
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Audrey Valentine
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Diseases, University of Washington, Washington, United States of America
| | - Dongzhu Ma
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Benjamin B. Policicchio
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Viskam Wijewardana
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Egidio Brocca-Cofano
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita Trichel
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Diseases, University of Washington, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory of Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivona Pandrea
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
17
|
Yin Y, Yang T, Liu H, Huang Z, Zhang Y, Song Y, Wang W, Guang X, Sahu SK, Kristiansen K. The draft genome of mandrill (Mandrillus sphinx): An Old World monkey. Sci Rep 2020; 10:2431. [PMID: 32051450 PMCID: PMC7016171 DOI: 10.1038/s41598-020-59110-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/02/2019] [Indexed: 11/15/2022] Open
Abstract
Mandrill (Mandrillus sphinx) is a primate species, which belongs to the Old World monkey (Cercopithecidae) family. It is closely related to human, serving as a model for human health related research. However, the genetic studies on and genomic resources of mandrill are limited, especially in comparison to other primate species. Here we produced 284 Gb data, providing 96-fold coverage (considering the estimated genome size of 2.9 Gb), to construct a reference genome for the mandrill. The assembled draft genome was 2.79 Gb with contig N50 of 20.48 Kb and scaffold N50 of 3.56 Mb. We annotated the mandrill genome to find 43.83% repeat elements, as well as 21,906 protein-coding genes. The draft genome was of good quality with 98% gene annotation coverage by Benchmarking Universal Single-Copy Orthologs (BUSCO). Based on comparative genomic analyses of the Major Histocompatibility Complex (MHC) of the immune system in mandrill and human, we found that 17 genes in the mandrill that have been associated with disease phenotypes in human such as Lung cancer, cranial volume and asthma, barbored amino acids changing mutations. Gene family analyses revealed expansion of several genes, and several genes associated with stress environmental adaptation and innate immunity responses exhibited signatures of positive selection. In summary, we established the first draft genome of the mandrill of value for studies on evolution and human health.
Collapse
Affiliation(s)
- Ye Yin
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Ting Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Huan Liu
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
- BGI-Shenzhen, Shenzhen, 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ziheng Huang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yaolei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yue Song
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Wenliang Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | | | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
18
|
He T, Xu C, Krampe N, Dillon SM, Sette P, Falwell E, Haret-Richter GS, Butterfield T, Dunsmore TL, McFadden WM, Martin KJ, Policicchio BB, Raehtz KD, Penn EP, Tracy RP, Ribeiro RM, Frank DN, Wilson CC, Landay AL, Apetrei C, Pandrea I. High-fat diet exacerbates SIV pathogenesis and accelerates disease progression. J Clin Invest 2019; 129:5474-5488. [PMID: 31710311 PMCID: PMC6877342 DOI: 10.1172/jci121208] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Consuming a high-fat diet (HFD) is a risk factor for obesity and diabetes; both of these diseases are also associated with systemic inflammation, similar to HIV infection. A HFD induces intestinal dysbiosis and impairs liver function and coagulation, with a potential negative impact on HIV/SIV pathogenesis. We administered a HFD rich in saturated fats and cholesterol to nonpathogenic (African green monkeys) and pathogenic (pigtailed macaques) SIV hosts. The HFD had a negative impact on SIV disease progression in both species. Thus, increased cell-associated SIV DNA and RNA occurred in the HFD-receiving nonhuman primates, indicating a potential reservoir expansion. The HFD induced prominent immune cell infiltration in the adipose tissue, an important SIV reservoir, and heightened systemic immune activation and inflammation, altering the intestinal immune environment and triggering gut damage and microbial translocation. Furthermore, HFD altered lipid metabolism and HDL oxidation and also induced liver steatosis and fibrosis. These metabolic disturbances triggered incipient atherosclerosis and heightened cardiovascular risk in the SIV-infected HFD-receiving nonhuman primates. Our study demonstrates that dietary intake has a discernable impact on the natural history of HIV/SIV infections and suggests that dietary changes can be used as adjuvant approaches for HIV-infected subjects, to reduce inflammation and the risk of non-AIDS comorbidities and possibly other infectious diseases.
Collapse
Affiliation(s)
- Tianyu He
- Center for Vaccine Research
- Department of Pathology, and
| | - Cuiling Xu
- Center for Vaccine Research
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Stephanie M. Dillon
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paola Sette
- Center for Vaccine Research
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth Falwell
- Center for Vaccine Research
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Tiffany Butterfield
- Department of Microbial Pathogens and Immunity, Rush University, Chicago, Illinois, USA
| | | | | | | | - Benjamin B. Policicchio
- Center for Vaccine Research
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin D. Raehtz
- Center for Vaccine Research
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Ruy M. Ribeiro
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Daniel N. Frank
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alan L. Landay
- Department of Microbial Pathogens and Immunity, Rush University, Chicago, Illinois, USA
| | - Cristian Apetrei
- Center for Vaccine Research
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Center for Vaccine Research
- Department of Pathology, and
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Barrenas F, Raehtz K, Xu C, Law L, Green RR, Silvestri G, Bosinger SE, Nishida A, Li Q, Lu W, Zhang J, Thomas MJ, Chang J, Smith E, Weiss JM, Dawoud RA, Richter GH, Trichel A, Ma D, Peng X, Komorowski J, Apetrei C, Pandrea I, Gale M. Macrophage-associated wound healing contributes to African green monkey SIV pathogenesis control. Nat Commun 2019; 10:5101. [PMID: 31704931 PMCID: PMC6841668 DOI: 10.1038/s41467-019-12987-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/08/2019] [Indexed: 01/13/2023] Open
Abstract
Natural hosts of simian immunodeficiency virus (SIV) avoid AIDS despite lifelong infection. Here, we examined how this outcome is achieved by comparing a natural SIV host, African green monkey (AGM) to an AIDS susceptible species, rhesus macaque (RM). To asses gene expression profiles from acutely SIV infected AGMs and RMs, we developed a systems biology approach termed Conserved Gene Signature Analysis (CGSA), which compared RNA sequencing data from rectal AGM and RM tissues to various other species. We found that AGMs rapidly activate, and then maintain, evolutionarily conserved regenerative wound healing mechanisms in mucosal tissue. The wound healing protein fibronectin shows distinct tissue distribution and abundance kinetics in AGMs. Furthermore, AGM monocytes exhibit an embryonic development and repair/regeneration signature featuring TGF-β and concomitant reduced expression of inflammatory genes compared to RMs. This regenerative wound healing process likely preserves mucosal integrity and prevents inflammatory insults that underlie immune exhaustion in RMs.
Collapse
Affiliation(s)
- Fredrik Barrenas
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kevin Raehtz
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA
| | - Richard R Green
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA
| | - Guido Silvestri
- Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Steven E Bosinger
- Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Andrew Nishida
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Wuxun Lu
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jianshui Zhang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Matthew J Thomas
- Department of Immunology, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Jean Chang
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA
| | - Elise Smith
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA
| | - Jeffrey M Weiss
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Reem A Dawoud
- Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - George H Richter
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anita Trichel
- Divison of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongzhu Ma
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jan Komorowski
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Institute of Computer Science, PAN, Warsaw, Poland
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivona Pandrea
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA, USA.
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Multivariate profiling of African green monkey and rhesus macaque T lymphocytes. Sci Rep 2019; 9:4834. [PMID: 30886198 PMCID: PMC6423277 DOI: 10.1038/s41598-019-41209-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/27/2019] [Indexed: 12/22/2022] Open
Abstract
The complexity of immune responses limits the usefulness of univariate methods in answering complex immunology questions. To demonstrate the utility of a multivariate approach, we employ such approach to compare T cells of African green monkeys (AGMs) and rhesus macaques (RMs). Among the most prominent distinguishing features we found were lower CD3 and higher CD28 surface expression in AGMs compared to RMs. After in vitro stimulation, a larger proportion of AGM T cells secreted cytokines, especially those producing more than one cytokine (i.e. multifunctional cells). To find out whether multifunctional responses associate with protection in other species, we compared T cells of cynomolgus macaques (CMs) infected with wild-type Simian Immunodeficiency Virus (SIV) to those of CMs infected (vaccinated) with a replication-defective virus. Wild-type SIV infection in macaques leads to simian Acquired Immunodeficiency Syndrome (AIDS), which does not happen in animals previously vaccinated with a replication-defective virus. Interestingly, after in vitro stimulation, multifunctional cells were more abundant among T cells of vaccinated CMs. Our results propose T-cell multifunctionality as a potentially useful marker of immunity, although additional verification is needed. Finally, we hope our multivariate model and its associated validation methods will inform future studies in the field of immunology.
Collapse
|
21
|
Policicchio BB, Sette P, Xu C, Haret-Richter G, Dunsmore T, Pandrea I, Ribeiro RM, Apetrei C. Emergence of resistance mutations in simian immunodeficiency virus (SIV)-infected rhesus macaques receiving non-suppressive antiretroviral therapy (ART). PLoS One 2018; 13:e0190908. [PMID: 29466356 PMCID: PMC5821307 DOI: 10.1371/journal.pone.0190908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/21/2017] [Indexed: 01/31/2023] Open
Abstract
Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegravir intensification. Viral rebound occurred during treatment and sequencing of reverse transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman primates receiving nonsuppressive ART. As ART administration to nonhuman primates is currently dramatically expanding, fueled by both cure research and the study of HIV-related comorbidities, viral resistance should be factored in the study design and data interpretation.
Collapse
Affiliation(s)
- Benjamin Bruno Policicchio
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
| | - Paola Sette
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cuiling Xu
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - George Haret-Richter
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tammy Dunsmore
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Laboratorio de Biomatemática, Faculdade de Medicina, Universidade de Lisbo, Lisboa, Portugal
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Pathogenic Correlates of Simian Immunodeficiency Virus-Associated B Cell Dysfunction. J Virol 2017; 91:JVI.01051-17. [PMID: 28931679 DOI: 10.1128/jvi.01051-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023] Open
Abstract
We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted," virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression.IMPORTANCE We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression.
Collapse
|
23
|
Schechter ME, Andrade BB, He T, Richter GH, Tosh KW, Policicchio BB, Singh A, Raehtz KD, Sheikh V, Ma D, Brocca-Cofano E, Apetrei C, Tracy R, Ribeiro RM, Sher A, Francischetti IMB, Pandrea I, Sereti I. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy. Sci Transl Med 2017; 9:eaam5441. [PMID: 28855397 PMCID: PMC5755598 DOI: 10.1126/scitranslmed.aam5441] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/11/2017] [Indexed: 01/05/2023]
Abstract
In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. A better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidence of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)-related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Melissa E Schechter
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Instituto Brasileiro para a Investigação da Tuberculose, Fundação José Silveira, Salvador 40210-320, Brazil
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tianyu He
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - George Haret Richter
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin W Tosh
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin B Policicchio
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amrit Singh
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin D Raehtz
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Virginia Sheikh
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dongying Ma
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Egidio Brocca-Cofano
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Russel Tracy
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine University of Vermont, Burlington, VT 05405, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
- Laboratório de Biomatemática, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivona Pandrea
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Moukambi F, Rodrigues V, Fortier Y, Rabezanahary H, Borde C, Krust B, Andreani G, Silvestre R, Petrovas C, Laforge M, Estaquier J. CD4 T Follicular Helper Cells and HIV Infection: Friends or Enemies? Front Immunol 2017; 8:135. [PMID: 28265271 PMCID: PMC5316554 DOI: 10.3389/fimmu.2017.00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
Follicular T helper (Tfh) cells, a subset of CD4 T lymphocytes, are essential for memory B cell activation, survival, and differentiation and assist B cells in the production of antigen-specific antibodies. Work performed in recent years pointed out the importance of Tfh cells in the context of HIV and SIV infections. The importance of tissue distribution of Tfh is also an important point since their frequency differs between peripheral blood and lymph nodes compared to the spleen, the primary organ for B cell activation, and differentiation. Our recent observations indicated an early and profound loss of splenic Tfh cells. The role of transcriptional activator and repressor factors that control Tfh differentiation is also discussed in the context of HIV/SIV infection. Because Tfh cells are important for B cell differentiation and antibody production, accelerating the Tfh responses early during HIV/SIV infection could be promising as novel immunotherapeutic approach or alternative vaccine strategies. However, because Tfh cells are infected during the HIV/SIV infection and represent a reservoir, this may interfere with HIV vaccine strategy. Thus, Tfh represent the good and bad guys during HIV infection.
Collapse
Affiliation(s)
- Félicien Moukambi
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Vasco Rodrigues
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Yasmina Fortier
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Chloé Borde
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Bernard Krust
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Guadalupe Andreani
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Ricardo Silvestre
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mireille Laforge
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| |
Collapse
|
25
|
CXCR6-Mediated Simian Immunodeficiency Virus SIVagmSab Entry into Sabaeus African Green Monkey Lymphocytes Implicates Widespread Use of Non-CCR5 Pathways in Natural Host Infections. J Virol 2017; 91:JVI.01626-16. [PMID: 27903799 DOI: 10.1128/jvi.01626-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
African green monkeys (AGM) and sooty mangabeys (SM) are well-studied natural hosts of simian immunodeficiency virus (SIV) that do not progress to AIDS when infected with their species-specific viruses. Natural hosts of SIV express very low levels of the canonical entry coreceptor CCR5, and recent studies have shown that CCR5 is dispensable for SIV infection of SM in vivo and that blocking of CCR5 does not prevent ex vivo infection of peripheral blood mononuclear cells (PBMC) from SM or vervet AGM. In both hosts, CXCR6 is an efficient entry pathway in vitro Here we investigated the use of species-matched CXCR6 and other alternative coreceptors by SIVagmSab, which infects sabaeus AGM. We cloned sabaeus CD4 and 10 candidate coreceptors. Species-matched CXCR6, CCR5, and GPR15 mediated robust entry into transfected cells by pseudotypes carrying SIVagmSab92018ivTF Env, with lower-level entry through GPR1 and APJ. We cloned genetically divergent env genes from the plasma of two wild-infected sabaeus AGM and found similar patterns of coreceptor use. Titration experiments showed that CXCR6 and CCR5 were more efficient than other coreceptors when tested at limiting CD4/coreceptor levels. Finally, blocking of CXCR6 with its ligand CXCL16 significantly inhibited SIVagmSab replication in sabaeus PBMC and had a greater impact than did the CCR5 blocker maraviroc, confirming the use of CXCR6 in primary lymphocyte infection. These data suggest a new paradigm for SIV infection of natural host species, whereby a shared outcome of virus-host coevolution is the use of CXCR6 or other alternative coreceptors for entry, which may direct SIV toward CD4+ T cell subsets and anatomical sites that support viral replication without disrupting immune homeostasis and function. IMPORTANCE Natural hosts of SIV do not progress to AIDS, in stark contrast to pathogenic human immunodeficiency virus type 1 (HIV-1)-human and SIVmac-macaque infections. Identifying how natural hosts avoid immunodeficiency can elucidate key mechanisms of pathogenesis. It is known that despite high viral loads, natural hosts have a low frequency of CD4+ cells expressing the SIV coreceptor CCR5. In this study, we demonstrate the efficient use of the coreceptor CXCR6 by SIVagmSab to infect sabaeus African green monkey lymphocytes. In conjunction with studies of SIVsmm, which infects sooty mangabeys, and SIVagmVer, which infects vervet monkeys, our data suggest a unifying model whereby in natural hosts, in which the CCR5 expression level is low, the use of CXCR6 or other coreceptors to mediate infection may target SIV toward distinct cell populations that are able to support high-level viral replication without causing a loss of CD4+ T cell homeostasis and lymphoid tissue damage that lead to AIDS in HIV-1 and SIVmac infections.
Collapse
|
26
|
Multi-dose Romidepsin Reactivates Replication Competent SIV in Post-antiretroviral Rhesus Macaque Controllers. PLoS Pathog 2016; 12:e1005879. [PMID: 27632364 PMCID: PMC5025140 DOI: 10.1371/journal.ppat.1005879] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the “shock and kill” strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35–50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml) peaking at 5–12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml) that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8+ cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus. Antiretroviral therapy (ART) does not eradicate HIV-1 in infected individuals due to virus persistence in latently infected reservoir cells, despite apparently effective ART. The persistent virus and can rekindle infection when ART is interrupted. The goal of the “shock and kill” viral clearance strategy is to induce expression of latent proviruses and eliminate the infected cells through viral cytolysis or immune clearance mechanisms. Latency reversing agents (LRAs) tested to date have been reported to have variable effects, both on virus reactivation and on immune functions. We performed in vivo reactivation experiments in SIV-infected RMs that controlled viral replication after a period of ART to evaluate the ability of the histone deacetylase inhibitor romidepsin (RMD) to reactivate SIV and its impact on SIV-specific immune responses. Our results suggest that RMD treatment can increase virus expression in this setting, and that it does not markedly or durably impair the ability of SIV-specific T cells to control viral replication.
Collapse
|
27
|
The well-tempered SIV infection: Pathogenesis of SIV infection in natural hosts in the wild, with emphasis on virus transmission and early events post-infection that may contribute to protection from disease progression. INFECTION GENETICS AND EVOLUTION 2016; 46:308-323. [PMID: 27394696 DOI: 10.1016/j.meegid.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV.
Collapse
|
28
|
Pandrea I, Xu C, Stock JL, Frank DN, Ma D, Policicchio BB, He T, Kristoff J, Cornell E, Haret-Richter GS, Trichel A, Ribeiro RM, Tracy R, Wilson C, Landay AL, Apetrei C. Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques. PLoS Pathog 2016; 12:e1005384. [PMID: 26764484 PMCID: PMC4713071 DOI: 10.1371/journal.ppat.1005384] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab–infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection. We report that administration of the intraluminal antibiotic Rifaximin and the gut-focused anti-inflammatory drug Sulfasalazine to acutely SIV-infected pigtailed macaques is associated with a transient disruption of the vicious circle of inflammation-microbial translocation-immune activation which is pathognomonic to pathogenic HIV/SIV infection and drives HIV disease progression and non-AIDS comorbidities in HIV-infected patients. This therapeutic approach resulted in transient lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and lower levels of hypercoagulation biomarkers throughout acute SIV infection. Our results thus support the use of therapeutic approaches to reduce microbial translocation, improve the clinical outcome of HIV-infected patients receiving antiretroviral therapy and prevent non-AIDS comorbidities. Our results also reinforce the importance of early therapeutic management of HIV infection.
Collapse
Affiliation(s)
- Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Penssylvania, United States of America
- * E-mail:
| | - Cuiling Xu
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer L. Stock
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daniel N. Frank
- Department of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Dongzhu Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Penssylvania, United States of America
| | - Benjamin B. Policicchio
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tianyu He
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jan Kristoff
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elaine Cornell
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - George S. Haret-Richter
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita Trichel
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Russell Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Cara Wilson
- Department of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Alan L. Landay
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Penssylvania, United States of America
| |
Collapse
|
29
|
Moukambi F, Rabezanahary H, Rodrigues V, Racine G, Robitaille L, Krust B, Andreani G, Soundaramourty C, Silvestre R, Laforge M, Estaquier J. Early Loss of Splenic Tfh Cells in SIV-Infected Rhesus Macaques. PLoS Pathog 2015; 11:e1005287. [PMID: 26640894 PMCID: PMC4671657 DOI: 10.1371/journal.ppat.1005287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/28/2015] [Indexed: 11/28/2022] Open
Abstract
Follicular T helper cells (Tfh), a subset of CD4 T lymphocytes, provide crucial help to B cells in the production of antigen-specific antibodies. Although several studies have analyzed the dynamics of Tfh cells in peripheral blood and lymph nodes (LNs) during Aids, none has yet addressed the impact of SIV infection on the dynamics of Tfh cells in the spleen, the primary organ of B cell activation. We show here a significant decrease in splenic Tfh cells in SIVmac251-infected rhesus macaques (RMs) during the acute phase of infection, which persists thereafter. This profound loss is associated with lack of sustained expression of the Tfh-defining transcription factors, Bcl-6 and c-Maf but with higher expression of the repressors KLF2 and Foxo1. In this context of Tfh abortive differentiation and loss, we found decreased percentages of memory B cell subsets and lower titers of SIV-specific IgG. We further demonstrate a drastic remodeling of the lymphoid architecture of the spleen and LNs, which disrupts the crucial cell-cell interactions necessary to maintain memory B cells and Tfh cells. Finally, our data demonstrated the early infection of Tfh cells. Paradoxically, the frequencies of SIV DNA were higher in splenic Tfh cells of RMs progressing more slowly suggesting sanctuaries for SIV in the spleen. Our findings provide important information regarding the impact of HIV/SIV infection on Tfh cells, and provide new clues for future vaccine strategies.
Collapse
Affiliation(s)
- Félicien Moukambi
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
| | - Vasco Rodrigues
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
| | - Lynda Robitaille
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
| | - Bernard Krust
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Guadalupe Andreani
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
| | | | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Mireille Laforge
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medecine, Laval University, Québec, Québec, Canada
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| |
Collapse
|
30
|
Greenwood EJD, Schmidt F, Kondova I, Niphuis H, Hodara VL, Clissold L, McLay K, Guerra B, Redrobe S, Giavedoni LD, Lanford RE, Murthy KK, Rouet F, Heeney JL. Simian Immunodeficiency Virus Infection of Chimpanzees (Pan troglodytes) Shares Features of Both Pathogenic and Non-pathogenic Lentiviral Infections. PLoS Pathog 2015; 11:e1005146. [PMID: 26360709 PMCID: PMC4567047 DOI: 10.1371/journal.ppat.1005146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/12/2015] [Indexed: 01/08/2023] Open
Abstract
The virus-host relationship in simian immunodeficiency virus (SIV) infected chimpanzees is thought to be different from that found in other SIV infected African primates. However, studies of captive SIVcpz infected chimpanzees are limited. Previously, the natural SIVcpz infection of one chimpanzee, and the experimental infection of six chimpanzees was reported, with limited follow-up. Here, we present a long-term study of these seven animals, with a retrospective re-examination of the early stages of infection. The only clinical signs consistent with AIDS or AIDS associated disease was thrombocytopenia in two cases, associated with the development of anti-platelet antibodies. However, compared to uninfected and HIV-1 infected animals, SIVcpz infected animals had significantly lower levels of peripheral blood CD4+ T-cells. Despite this, levels of T-cell activation in chronic infection were not significantly elevated. In addition, while plasma levels of β2 microglobulin, neopterin and soluble TNF-related apoptosis inducing ligand (sTRAIL) were elevated in acute infection, these markers returned to near-normal levels in chronic infection, reminiscent of immune activation patterns in ‘natural host’ species. Furthermore, plasma soluble CD14 was not elevated in chronic infection. However, examination of the secondary lymphoid environment revealed persistent changes to the lymphoid structure, including follicular hyperplasia in SIVcpz infected animals. In addition, both SIV and HIV-1 infected chimpanzees showed increased levels of deposition of collagen and increased levels of Mx1 expression in the T-cell zones of the lymph node. The outcome of SIVcpz infection of captive chimpanzees therefore shares features of both non-pathogenic and pathogenic lentivirus infections. The HIV-1/AIDS pandemic is the result of cross-species transmission of simian immunodeficiency virus (SIVcpz) from chimpanzees to humans. Many African primates are infected with SIV, but those studied in captivity generally do not develop disease. However, wild chimpanzees infected with SIVcpz are at increased risk of death and may develop an AIDS-like disease. It has therefore been suggested that the viral features which SIVcpz and HIV-1 share, that differentiate them from other species’ SIV, may be critical in the development of disease in both humans and chimpanzees. Here, we present a long-term follow-up of 7 SIVcpz infected chimpanzees, housed in primate centres in the US and Europe, under similar conditions to other studied models. These animals did not develop an AIDS-like disease, after up to 25 years of infection, and showed features similar to other species where disease rarely develops, such as limited immune activation in the blood. However, they also had significantly reduced CD4+ T-cells and disruption to the secondary lymphoid tissues, normally associated with pathogenic primate lentiviral infections. Thus, while SIVcpz infection of chimpanzees shares features of both pathogenic and non-pathogenic infections, disease has not developed in captivity.
Collapse
Affiliation(s)
| | - Fabian Schmidt
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ivanela Kondova
- Division of Pathology and Microbiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Henk Niphuis
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Vida L. Hodara
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Leah Clissold
- The Genome Analysis Centre (TGAC), Norwich, United Kingdom
| | - Kirsten McLay
- The Genome Analysis Centre (TGAC), Norwich, United Kingdom
| | - Bernadette Guerra
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Sharon Redrobe
- Twycross Zoo - East Midland Zoological Society, Atherstone, United Kingdom
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Robert E. Lanford
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Krishna K. Murthy
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - François Rouet
- Laboratoire de Rétrovirologie, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Hao XP, Lucero CM, Turkbey B, Bernardo ML, Morcock DR, Deleage C, Trubey CM, Smedley J, Klatt NR, Giavedoni LD, Kristoff J, Xu A, Del Prete GQ, Keele BF, Rao SS, Alvord WG, Choyke PL, Lifson JD, Brenchley JM, Apetrei C, Pandrea I, Estes JD. Experimental colitis in SIV-uninfected rhesus macaques recapitulates important features of pathogenic SIV infection. Nat Commun 2015; 6:8020. [PMID: 26282376 PMCID: PMC4544774 DOI: 10.1038/ncomms9020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/08/2015] [Indexed: 02/07/2023] Open
Abstract
Mucosal damage to the gastrointestinal (GI) tract with resulting microbial translocation is hypothesized to significantly contribute to the heightened and persistent chronic inflammation and immune activation characteristic to HIV infection. Here we employ a non-human primate model of chemically induced colitis in SIV-uninfected rhesus macaques that we developed using dextran sulfate sodium (DSS), to directly test this hypothesis. DSS treatment results in GI barrier damage with associated microbial translocation, inflammation and immune activation. The progression and severity of colitis are longitudinally monitored by a magnetic resonance imaging approach. DSS treatment of SIV-infected African green monkeys, a natural host species for SIV that does not manifest GI tract damage or chronic immune activation during infection, results in colitis with elevated levels of plasma SIV RNA, sCD14, LPS, CRP and mucosal CD4+ T-cell loss. Together these results support the hypothesis that GI tract damage leading to local and systemic microbial translocation, and associated immune activation, are important determinants of AIDS pathogenesis.
Collapse
Affiliation(s)
- Xing Pei Hao
- Pathology and Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, BG 539, Post Office Box B, Frederick, Maryland 21702, USA
| | - Carissa M. Lucero
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, BG 535, Post Office Box B, Frederick, Maryland 21702, USA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, Building 10, Room B3B69F, Bethesda, Maryland 20814, USA
| | - Marcelino L. Bernardo
- Molecular Imaging Program, National Cancer Institute, Building 10, Room B3B69F, Bethesda, Maryland 20814, USA
| | - David R. Morcock
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, BG 535, Post Office Box B, Frederick, Maryland 21702, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, BG 535, Post Office Box B, Frederick, Maryland 21702, USA
| | - Charles M. Trubey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, BG 535, Post Office Box B, Frederick, Maryland 21702, USA
| | - Jeremy Smedley
- Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, BG 14D RM 233, 14 Service RD West, Bethesda, Maryland 20814, USA
- Washington National Primate Research Center, University of Washington, 1705 NE Pacific Street, Box 357330, Seattle, Washington 98195, USA
| | - Nichole R. Klatt
- Department of Pharmaceutics, WaNPRC, University of Washington, 3018 Western Avenue, Box 357331, Seattle, Washington 98121, USA
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Southwest National Primate Research Center, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, Texas 78227, USA
| | - Jan Kristoff
- Center for Vaccine Research, University of Pittsburgh, 9044 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, USA
- School of Public Health, University of Pittsburgh, 9044 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, USA
| | - Amy Xu
- Center for Vaccine Research, University of Pittsburgh, 9044 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, 9044 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, USA
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, BG 535, Post Office Box B, Frederick, Maryland 21702, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, BG 535, Post Office Box B, Frederick, Maryland 21702, USA
| | - Srinivas S. Rao
- Laboratory Animal Medicine, Vaccine Research Center, NIAID, NIH, BG 40, 40 Convent Drive, Bethesda, Maryland 20814, USA
| | - W. Gregory Alvord
- Statistical Consulting, Data Management Services, Inc., National Cancer Institute at Frederick, Post Office Box B, Frederick, Maryland 21702, USA
| | - Peter L. Choyke
- Molecular Imaging Program, National Cancer Institute, Building 10, Room B3B69F, Bethesda, Maryland 20814, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, BG 535, Post Office Box B, Frederick, Maryland 21702, USA
| | - Jason M. Brenchley
- Immunopathogenesis Section, Lab of Molecular Microbiology, NIAID, NIH, BG 4 RM 201, 4 Memorial Drive, Bethesda, Maryland 20814, USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, 9044 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, 9044 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, USA
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, 9044 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, USA
- Department of Pathology and School of Medicine, University of Pittsburgh, 9017 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, BG 535, Post Office Box B, Frederick, Maryland 21702, USA
| |
Collapse
|
32
|
Policicchio BB, Pandrea I, Apetrei C. Population Bottlenecks and Pathogen Extinction: "Make This Everyone's Mission to Mars, Including Yours". J Virol 2015; 89:8104-6. [PMID: 26018162 PMCID: PMC4524259 DOI: 10.1128/jvi.00920-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kapusinszky et al. (J Virol 89:8152-8161, 2015, http://dx.doi.org/10.1128/JVI.00671-15) report that host population bottlenecks may result in pathogen extinction, which provides a compelling argument for an alternative approach to vaccination for the control of virus spread. By comparing the prevalence levels of three viral pathogens in two populations of African green monkeys (AGMs) (Chlorocebus sabaeus) from Africa and two Caribbean Islands, they convincingly show that a major host bottleneck resulted in the eradication of select pathogens from a given host.
Collapse
Affiliation(s)
- Benjamin B Policicchio
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Department of Infectious Diseases and Microbiology, Graduate School of Public Health, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Department of Infectious Diseases and Microbiology, Graduate School of Public Health, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Department of Infectious Diseases and Microbiology, Graduate School of Public Health, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Kapusinszky B, Mulvaney U, Jasinska AJ, Deng X, Freimer N, Delwart E. Local Virus Extinctions following a Host Population Bottleneck. J Virol 2015; 89:8152-61. [PMID: 26018153 PMCID: PMC4524239 DOI: 10.1128/jvi.00671-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A small number of African green monkeys (AGMs) were introduced into the Caribbean from West Africa in the 1600s. To determine the impact of this population bottleneck on the AGM virome, we used metagenomics to compare the viral nucleic acids in the plasma of 43 wild AGMs from West Africa (Gambia) to those in 44 AGMs from the Caribbean (St. Kitts and Nevis). Three viruses were detected in the blood of Gambian primates: simian immunodeficiency virus (SIVagm; in 42% of animals), a novel simian pegivirus (SPgVagm; in 7% of animals), and numerous novel simian anelloviruses (in 100% of animals). Only anelloviruses were detected in the Caribbean AGMs with a prevalence and levels of viral genetic diversity similar to those in the Gambian animals. A host population bottleneck therefore resulted in the exclusion of adult-acquired SIV and pegivirus from the Caribbean AGMs. The successful importation of AGM anelloviruses into the Caribbean may be the result of their early transmission to infants, very high prevalence in African AGMs, and frequent coinfections with as many as 11 distinct variants. IMPORTANCE The extent to which viruses can persist in small isolated populations depends on multiple host, viral, and environmental factors. The absence of prior infections may put an immunologically naive population at risk for disease outbreaks. Isolated populations originating from a small number of founder individuals are therefore considered at increased risk following contact with populations with a greater variety of viruses. Here, we compared the plasma virome of West African green monkeys to that in their descendants after importation of a small number of animals to the Caribbean. A lentivirus and a pegivirus were found in the West African population but not in the Caribbean population. Highly diverse anelloviruses were found in both populations. A small founder population, limited to infants and young juvenile monkeys, may have eliminated the sexually transmitted viruses from the Caribbean AGMs, while anelloviruses, acquired at an earlier age, persisted through the host population bottleneck.
Collapse
Affiliation(s)
- Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Usha Mulvaney
- Blood Systems Research Institute, San Francisco, California, USA University of San Francisco, Department of Biology, San Francisco, California, USA
| | - Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California, USA
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
34
|
Critical Role for the Adenosine Pathway in Controlling Simian Immunodeficiency Virus-Related Immune Activation and Inflammation in Gut Mucosal Tissues. J Virol 2015; 89:9616-30. [PMID: 26178986 DOI: 10.1128/jvi.01196-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/06/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED The role of the adenosine (ADO) pathway in human immunodeficiency virus type 1/simian immunodeficiency virus (HIV-1/SIV) infection remains unclear. We compared SIVsab-induced changes of markers related to ADO production (CD39 and CD73) and breakdown (CD26 and adenosine deaminase) on T cells from blood, lymph nodes, and intestine collected from pigtailed macaques (PTMs) and African green monkeys (AGMs) that experience different SIVsab infection outcomes. We also measured ADO and inosine (INO) levels in tissues by mass spectrometry. Finally, we assessed the suppressive effect of ADO on proinflammatory cytokine production after T cell receptor stimulation. The baseline level of both CD39 and CD73 coexpression on regulatory T cells and ADO levels were higher in AGMs than in PTMs. Conversely, high INO levels associated with dramatic increases in CD26 expression and adenosine deaminase activity were observed in PTMs during chronic SIV infection. Immune activation and inflammation markers in the gut and periphery inversely correlated with ADO and directly correlated with INO. Ex vivo administration of ADO significantly suppressed proinflammatory cytokine production by T cells in both species. In conclusion, the opposite dynamics of ADO pathway-related markers and contrasting ADO/INO levels in species with divergent proinflammatory responses to SIV infection support a key role of ADO in controlling immune activation/inflammation in nonprogressive SIV infections. Changes in ADO levels predominately occurred in the gut, suggesting that the ADO pathway may be involved in sparing natural hosts of SIVs from developing SIV-related gut dysfunction. Focusing studies of the ADO pathway on mucosal sites of viral replication is warranted. IMPORTANCE The mechanisms responsible for the severe gut dysfunction characteristic of progressive HIV and SIV infection in humans and macaques are not completely elucidated. We report that ADO may play a key role in controlling immune activation/inflammation in nonprogressive SIV infections by limiting SIV-related gut inflammation. Conversely, in progressive SIV infection, significant degradation of ADO occurs, possibly due to an early increase of ADO deaminase complexing protein 2 (CD26) and adenosine deaminase. Our study supports therapeutic interventions to offset alterations of this pathway during progressive HIV/SIV infections. These potential approaches to control chronic immune activation and inflammation during pathogenic SIV infection may prevent HIV disease progression.
Collapse
|
35
|
Rapid Development of gp120-Focused Neutralizing B Cell Responses during Acute Simian Immunodeficiency Virus Infection of African Green Monkeys. J Virol 2015; 89:9485-98. [PMID: 26157116 DOI: 10.1128/jvi.01564-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED The initial phases of acute human immunodeficiency virus type 1 (HIV-1) infection may be critical for development of effective envelope (Env)-specific antibodies capable of impeding the establishment of the latent pool of HIV-1-infected CD4(+) T cells, preventing virus-induced immune hyperactivation to limit disease progression and blocking vertical virus transmission. However, the initial systemic HIV-1 Env-specific antibody response targets gp41 epitopes and fails to control acute-phase viremia. African-origin, natural simian immunodeficiency virus (SIV) hosts do not typically progress to AIDS and rarely postnatally transmit virus to their infants, despite high milk viral loads. Conversely, SIV-infected rhesus macaques (RMs), Asian-origin nonnatural SIV hosts, sustain pathogenic SIV infections and exhibit higher rates of postnatal virus transmission. In this study, of acute SIV infection, we compared the initial systemic Env-specific B cell responses of AGMs and RMs in order to probe potential factors influencing the lack of disease progression observed in AGMs. AGMs developed higher-magnitude plasma gp120-specific IgA and IgG responses than RMs, whereas RMs developed more robust gp140-directed IgG responses. These gp120-focused antibody responses were accompanied by rapid autologous neutralizing responses during acute SIV infection in AGMs compared to RMs. Moreover, acute SIV infection elicited a higher number of circulating Env-specific memory B cells in peripheral blood of AGMs than in the blood of RMs. These findings indicate that AGMs have initial systemic Env-specific B cell responses to SIV infection distinct from those of a nonnatural SIV host, resulting in more functional SIV-specific humoral responses, which may be involved in impairing pathogenic disease progression and minimizing postnatal transmission. IMPORTANCE Due to the worldwide prevalence of HIV-1 infections, development of a vaccine to prevent infection or limit the viral reservoir remains an important goal. HIV-1-infected humans, as well as SIV-infected nonnatural SIV hosts, develop pathogenic infections and readily transmit the virus to their infants. Conversely, natural SIV hosts do not develop pathogenic infections and rarely transmit the virus to their infants. The immunologic factors contributing to these favorable outcomes in natural SIV hosts could prove invaluable for directing HIV-1 vaccine and therapy design. This study identified distinctions in the specificity and function of the initial systemic SIV envelope-specific B cell response that developed during acute SIV infection in natural and nonnatural SIV host species. Identification of distinct acute B cell responses in natural SIV hosts may inform vaccine strategies seeking to elicit similar responses prior to or during the initial phases of acute HIV-1 infection.
Collapse
|
36
|
Simian Immunodeficiency Virus SIVsab Infection of Rhesus Macaques as a Model of Complete Immunological Suppression with Persistent Reservoirs of Replication-Competent Virus: Implications for Cure Research. J Virol 2015; 89:6155-60. [PMID: 25833043 DOI: 10.1128/jvi.00256-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus SIVsab infection is completely controlled in rhesus macaques (RMs) through functional immune responses. We report that in SIVsab-infected RMs, (i) viral replication is controlled to <0 to 3 copies/ml, (ii) about one-third of the virus strains in reservoirs are replication incompetent, and (iii) rebounding virus after CD8(+) cell depletion is replication competent and genetically similar to the original virus stock, suggesting early reservoir seeding. This model permits assessment of strategies aimed at depleting the reservoir without multidrug antiretroviral therapy.
Collapse
|
37
|
Smith SD, Amos JD, Beck KN, Colvin LM, Franke KS, Liebl BE, Permar SR. Refinement of a protocol for the induction of lactation in nonpregnant nonhuman primates by using exogenous hormone treatment. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2014; 53:700-707. [PMID: 25650978 PMCID: PMC4253585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/03/2014] [Accepted: 04/07/2014] [Indexed: 06/04/2023]
Abstract
Obtaining sufficient quantities of milk from NHP is necessary for pharmacologic and immunologic studies required for the development and safety assessment of drugs and vaccines to be used in the maternal-infant setting. We previously induced lactation in nonpregnant female rhesus macaques (RM, Macaca mulatta) and African green monkeys (AGM, Chlorocebus sabaeus) for studies of immune responses in milk, but the volume collected was variable. To improve lactation induction protocols for nonbreeding nonhuman primates, we investigated serum hormone levels and collection protocols in AGM and RM. Here, we correlated milk volume with serum levels of endogenous and administered hormones: estradiol, prolactin, progesterone, and medroxyprogesterone in RM and AGM. We also investigated whether age, parity or the timing of milk collections were associated with the volume of milk collected from the AGM and RM in which lactation was induced by using exogenous hormones. We found an inverse correlation with serum estradiol and milk volume in the RM but no significant correlation between milk volumes and the remaining serum hormone levels in the induced RM or AGM. In addition, HIL AGM had higher peak estradiol levels than did naturally lactating AGM. A revised estradiol-sparing protocol increased milk volumes in the AGM. In addition, milk volume in RM was greater in the morning than the afternoon. In conclusion, we have refined a lactation induction protocol in nonpregnant primates, which is a needed alternative to using nursing primates for the assessment of drug levels and immune responses in milk.
Collapse
Affiliation(s)
- Shannon D Smith
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Joshua D Amos
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Krista N Beck
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Lisa M Colvin
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Kelly S Franke
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Brooke E Liebl
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
38
|
Roussel M, Pontier D, Kazanji M, Ngoubangoye B, Mahieux R, Verrier D, Fouchet D. Quantifying transmission by stage of infection in the field: the example of SIV-1 and STLV-1 infecting mandrills. Am J Primatol 2014; 77:309-18. [PMID: 25296992 DOI: 10.1002/ajp.22346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/17/2014] [Accepted: 09/07/2014] [Indexed: 11/08/2022]
Abstract
The early stage of viral infection is often followed by an important increase of viral load and is generally considered to be the most at risk for pathogen transmission. Most methods quantifying the relative importance of the different stages of infection were developed for studies aimed at measuring HIV transmission in Humans. However, they cannot be transposed to animal populations in which less information is available. Here we propose a general method to quantify the importance of the early and late stages of the infection on micro-organism transmission from field studies. The method is based on a state space dynamical model parameterized using Bayesian inference. It is illustrated by a 28 years dataset in mandrills infected by Simian Immunodeficiency Virus type-1 (SIV-1) and the Simian T-Cell Lymphotropic Virus type-1 (STLV-1). For both viruses we show that transmission is predominant during the early stage of the infection (transmission ratio for SIV-1: 1.16 [0.0009; 18.15] and 9.92 [0.03; 83.8] for STLV-1). However, in terms of basic reproductive number (R0 ), which quantifies the weight of both stages in the spread of the virus, the results suggest that the epidemics of SIV-1 and STLV-1 are mainly driven by late transmissions in this population.
Collapse
Affiliation(s)
- Marion Roussel
- Université de Lyon, F-69000, Lyon ; Université Lyon 1 ; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622 Villeurbanne, France; LabEx ECOFECT - Ecoevolutionary Dynamics of Infectious Diseases, Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Palermo RE, Tisoncik-Go J, Korth MJ, Katze MG. Old world monkeys and new age science: the evolution of nonhuman primate systems virology. ILAR J 2014; 54:166-80. [PMID: 24174440 DOI: 10.1093/ilar/ilt039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonhuman primate (NHP) biomedical models are critical to our understanding of human health and disease, yet we are still in the early stages of developing sufficient tools to support primate genomic research that allow us to better understand the basis of phenotypic traits in NHP models of disease. A mere 7 years ago, the limited NHP transcriptome profiling that was being performed was done using complementary DNA arrays based on human genome sequences, and the lack of NHP genomic information and immunologic reagents precluded the use of NHPs in functional genomic studies. Since then, significant strides have been made in developing genomics capabilities for NHP research, from the rhesus macaque genome sequencing project to the construction of the first macaque-specific high-density oligonucleotide microarray, paving the way for further resource development and additional primate sequencing projects. Complete published draft genome sequences are now available for the chimpanzee ( Chimpanzee Sequencing Analysis Consortium 2005), bonobo ( Prufer et al. 2012), gorilla ( Scally et al. 2012), and baboon ( Ensembl.org 2013), along with the recently completed draft genomes for the cynomolgus macaque and Chinese rhesus macaque. Against this backdrop of both expanding sequence data and the early application of sequence-derived DNA microarrays tools, we will contextualize the development of these community resources and their application to infectious disease research through a literature review of NHP models of acquired immune deficiency syndrome and models of respiratory virus infection. In particular, we will review the use of -omics approaches in studies of simian immunodeficiency virus and respiratory virus pathogenesis and vaccine development, emphasizing the acute and innate responses and the relationship of these to the course of disease and to the evolution of adaptive immunity.
Collapse
|
40
|
Jasinska AJ, Schmitt CA, Service SK, Cantor RM, Dewar K, Jentsch JD, Kaplan JR, Turner TR, Warren WC, Weinstock GM, Woods RP, Freimer NB. Systems biology of the vervet monkey. ILAR J 2014; 54:122-43. [PMID: 24174437 DOI: 10.1093/ilar/ilt049] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations.
Collapse
|
41
|
Mandell DT, Kristoff J, Gaufin T, Gautam R, Ma D, Sandler N, Haret-Richter G, Xu C, Aamer H, Dufour J, Trichel A, Douek DC, Keele BF, Apetrei C, Pandrea I. Pathogenic features associated with increased virulence upon Simian immunodeficiency virus cross-species transmission from natural hosts. J Virol 2014; 88:6778-92. [PMID: 24696477 PMCID: PMC4054382 DOI: 10.1128/jvi.03785-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/27/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED While simian immunodeficiency viruses (SIVs) are generally nonpathogenic in their natural hosts, dramatic increases in pathogenicity may occur upon cross-species transmission to new hosts. Deciphering the drivers of these increases in virulence is of major interest for understanding the emergence of new human immunodeficiency viruses (HIVs). We transmitted SIVsab from the sabaeus species of African green monkeys (AGMs) to pigtailed macaques (PTMs). High acute viral replication occurred in all SIVsab-infected PTMs, yet the outcome of chronic infection was highly variable, ranging from rapid progression to controlled infection, which was independent of the dynamics of acute viral replication, CD4(+) T cell depletion, or preinfection levels of microbial translocation. Infection of seven PTMs with plasma collected at necropsy from a rapid-progressor PTM was consistently highly pathogenic, with high acute and chronic viral replication, massive depletion of memory CD4(+) T cells, and disease progression in all PTMs. The plasma inoculum used for the serial passage did not contain adventitious bacterial or viral contaminants. Single-genome amplification showed that this inoculum was significantly more homogenous than the inoculum directly derived from AGMs, pointing to a strain selection in PTMs. In spite of similar peak plasma viral loads between the monkeys in the two passages, immune activation/inflammation levels dramatically increased in PTMs infected with the passaged virus. These results suggest that strain selection and a massive cytokine storm are major factors behind increased pathogenicity of SIV upon serial passage and adaptation of SIVs to new hosts following cross-species transmission. IMPORTANCE We report here that upon cross-species transmission and serial passage of SIVsab from its natural host, the sabaeus African green monkey (AGM), to a new host, the pigtailed macaque (PTM), viral adaptation and increased pathogenicity involve strain selection and a massive cytokine storm. These results permit the design of strategies aimed at preventing cross-species transmission from natural hosts of SIVs to humans in areas of endemicity. Furthermore, our study describes a new animal model for SIV infection. As the outcomes of SIVsab infection in PTMs, African green monkeys, and rhesus macaques are different, the use of these systems enables comparative studies between pathogenic, nonpathogenic, and elite-controlled infections, to gain insight into the mechanisms of SIV immunodeficiency and comorbidities.
Collapse
Affiliation(s)
- Daniel T Mandell
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Jan Kristoff
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thaidra Gaufin
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Rajeev Gautam
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Dongzhu Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Netanya Sandler
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - George Haret-Richter
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cuiling Xu
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hadega Aamer
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Dufour
- Division of Veterinary Medicine, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Anita Trichel
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Cristian Apetrei
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Departments of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Division of Comparative Pathology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
Kristoff J, Haret-Richter G, Ma D, Ribeiro RM, Xu C, Cornell E, Stock JL, He T, Mobley AD, Ross S, Trichel A, Wilson C, Tracy R, Landay A, Apetrei C, Pandrea I. Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication. J Clin Invest 2014; 124:2802-6. [PMID: 24837437 DOI: 10.1172/jci75090] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022] Open
Abstract
Damage to the intestinal mucosa results in the translocation of microbes from the intestinal lumen into the circulation. Microbial translocation has been proposed to trigger immune activation, inflammation, and coagulopathy, all of which are key factors that drive HIV disease progression and non-HIV comorbidities; however, direct proof of a causal link is still lacking. Here, we have demonstrated that treatment of acutely SIV-infected pigtailed macaques with the drug sevelamer, which binds microbial lipopolysaccharide in the gut, dramatically reduces immune activation and inflammation and slightly reduces viral replication. Furthermore, sevelamer administration reduced coagulation biomarkers, confirming the contribution of microbial translocation in the development of cardiovascular comorbidities in SIV-infected nonhuman primates. Together, our data suggest that early control of microbial translocation may improve the outcome of HIV infection and limit noninfectious comorbidities associated with AIDS.
Collapse
|
43
|
Live attenuated tetravalent dengue virus host range vaccine is immunogenic in African green monkeys following a single vaccination. J Virol 2014; 88:6729-42. [PMID: 24696467 DOI: 10.1128/jvi.00541-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED The causative agent of dengue fever, dengue virus (DENV), is transmitted by mosquitoes, and as distribution of these insects has expanded, so has dengue-related disease. DENV is a member of the Flaviviridae family and has 4 distinct serotypes (DENV-1, -2, -3, and -4). No lasting cross protection is afforded to heterologous serotypes following infection by any one of the individual serotypes. The presence of nonneutralizing antibodies to one serotype can facilitate the occurrence of more-severe dengue hemorrhagic fever through immune enhancement upon infection with a second serotype. For this reason, the development of a safe, tetravalent vaccine to produce a balanced immune response to all four serotypes is critical. We have developed a novel approach to produce safe and effective live-attenuated vaccines for DENV and other insect-borne viruses. Host range (HR) mutants of each DENV serotype were created by truncating transmembrane domain 1 of the E protein and selecting for strains of DENV that replicated well in insect cells but not mammalian cells. These vaccine strains were tested for immunogenicity in African green monkeys (AGMs). No vaccine-related adverse events occurred. The vaccine strains were confirmed to be attenuated in vivo by infectious center assay (ICA). Analysis by 50% plaque reduction neutralization test (PRNT50) established that by day 62 postvaccination, 100% of animals seroconverted to DENV-1, -2, -3, and -4. Additionally, the DENV HR tetravalent vaccine (HR-Tet) showed a tetravalent anamnestic immune response in 100% (16/16) of AGMs after challenge with wild-type (WT) DENV strains. IMPORTANCE We have generated a live attenuated viral (LAV) vaccine capable of eliciting a strong immune response in African green monkeys (AGMs) in a single dose. This vaccine is delivered by injecting one of four attenuated serotypes into each limb of the animal. 100% of animals given the vaccine generated antibodies against all 4 serotypes, and this response was found to be balanced in nature. This is also one of the first studies of dengue in AGMs, and our study suggests that viremia and antibody response in AGMs may be similar to those seen in DENV infection in humans.
Collapse
|
44
|
MHC polymorphism in Caribbean African green monkeys. Immunogenetics 2014; 66:353-60. [PMID: 24676686 DOI: 10.1007/s00251-014-0770-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
Abstract
African green monkeys (AGM) are among the most widely used nonhuman primate models used in various fields of medical research. One species of AGM that originated from West Africa, Chlorocebus sabaeus, was introduced three centuries ago in the Caribbean islands. We present here a systematic study of the major histocompatibility complex (MHC) polymorphism of Caribbean AGM which is currently frequently used as an animal model. We studied 54 animals originated from Barbados (N=25) or Saint Kitts (N=29). The MHC polymorphism was characterized by means of 17 MHC microsatellites spread across MHC and DRB genotyping by DGGE sequencing. We defined nine frequent MHC haplotypes of which two were found in the two insular populations suggesting either past exchanges between the two populations or a common origin of the founders of the two populations. By the analysis of a previously described EST library, we characterized 38 MHC cDNA sequences (17 class I and 21 class II). In conclusion, we characterized for the first time the MHC polymorphism of Barbados and Saint Kitts AGM. We found a restricted polymorphism due to a founding effect, which is responsible for a strong bottleneck. The poorness of MHC polymorphism observed in the Caribbean AGM populations is similar to that observed in the Mauritian cynomolgus macaque population.
Collapse
|
45
|
Factors associated with siman immunodeficiency virus transmission in a natural African nonhuman primate host in the wild. J Virol 2014; 88:5687-705. [PMID: 24623416 DOI: 10.1128/jvi.03606-13] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE We report an extensive analysis of the natural history of SIVagm infection in its sabaeus monkey host, the African green monkey species endemic to West Africa. Virtually no study has investigated the natural history of SIV infection in the wild. The novelty of our approach is that we report for the first time that SIV infection has no discernible impact on the major immune cell populations in natural hosts, thus confirming the nonpathogenic nature of SIV infection in the wild. We also focused on the correlates of SIV transmission, and we report, also for the first time, that SIV transmission in the wild is characterized by a major genetic bottleneck, similar to that described for HIV-1 transmission in humans. Finally, we report here that the restriction of target cell availability is a major correlate of the lack of SIV transmission to the offspring in natural hosts of SIVs.
Collapse
|
46
|
Abstract
Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | | | | |
Collapse
|
47
|
Wijewardana V, Kristoff J, Xu C, Ma D, Haret-Richter G, Stock JL, Policicchio BB, Mobley AD, Nusbaum R, Aamer H, Trichel A, Ribeiro RM, Apetrei C, Pandrea I. Kinetics of myeloid dendritic cell trafficking and activation: impact on progressive, nonprogressive and controlled SIV infections. PLoS Pathog 2013; 9:e1003600. [PMID: 24098110 PMCID: PMC3789723 DOI: 10.1371/journal.ppat.1003600] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 07/24/2013] [Indexed: 12/21/2022] Open
Abstract
We assessed the role of myeloid dendritic cells (mDCs) in the outcome of SIV infection by comparing and contrasting their frequency, mobilization, phenotype, cytokine production and apoptosis in pathogenic (pigtailed macaques, PTMs), nonpathogenic (African green monkeys, AGMs) and controlled (rhesus macaques, RMs) SIVagmSab infection. Through the identification of recently replicating cells, we demonstrated that mDC mobilization from the bone marrow occurred in all species postinfection, being most prominent in RMs. Circulating mDCs were depleted with disease progression in PTMs, recovered to baseline values after the viral peak in AGMs, and significantly increased at the time of virus control in RMs. Rapid disease progression in PTMs was associated with low baseline levels and incomplete recovery of circulating mDCs during chronic infection. mDC recruitment to the intestine occurred in all pathogenic scenarios, but loss of mucosal mDCs was associated only with progressive infection. Sustained mDC immune activation occurred throughout infection in PTMs and was associated with increased bystander apoptosis in blood and intestine. Conversely, mDC activation occurred only during acute infection in nonprogressive and controlled infections. Postinfection, circulating mDCs rapidly became unresponsive to TLR7/8 stimulation in all species. Yet, stimulation with LPS, a bacterial product translocated in circulation only in SIV-infected PTMs, induced mDC hyperactivation, apoptosis and excessive production of proinflammatory cytokines. After infection, spontaneous production of proinflammatory cytokines by mucosal mDCs increased only in progressor PTMs. We thus propose that mDCs promote tolerance to SIV in the biological systems that lack intestinal dysfunction. In progressive infections, mDC loss and excessive activation of residual mDCs by SIV and additional stimuli, such as translocated microbial products, enhance generalized immune activation and inflammation. Our results thus provide a mechanistic basis for the role of mDCs in the pathogenesis of AIDS and elucidate the causes of mDC loss during progressive HIV/SIV infections. Myeloid dendritic cells (mDCs) are potent antigen-presenting cells that regulate both innate and adaptive immune responses and act as “watch-dogs”, sensing and controlling aberrant immune activation; as such, they may significantly impact the outcome of HIV/SIV infection. By comparing and contrasting the frequency, function, migration to tissues and levels of activation and apoptosis in progressive, nonprogressive and elite-controlled SIV infections, we investigated the mechanisms responsible for mDC loss in HIV/SIV infection and their role in driving progression to AIDS. We report that progression to AIDS is associated with low mDC preinfection levels and depletion throughout infection, due to massive migration of these cells to mucosal sites and excessive cell death by apoptosis. We also show that residual mDCs from blood and intestine have a high capacity to produce proinflammatory cytokines, thus contributing to the increased immune activation and inflammation characteristic of progressive infections.
Collapse
Affiliation(s)
- Viskam Wijewardana
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jan Kristoff
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cuiling Xu
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dongzhu Ma
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - George Haret-Richter
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer L. Stock
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Benjamin B. Policicchio
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Adam D. Mobley
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Rebecca Nusbaum
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hadega Aamer
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita Trichel
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cristian Apetrei
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivona Pandrea
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
48
|
Transient compartmentalization of simian immunodeficiency virus variants in the breast milk of african green monkeys. J Virol 2013; 87:11292-9. [PMID: 23926337 DOI: 10.1128/jvi.01643-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Natural hosts of simian immunodeficiency virus (SIV), African green monkeys (AGMs), rarely transmit SIV via breast-feeding. In order to examine the genetic diversity of breast milk SIV variants in this limited-transmission setting, we performed phylogenetic analysis on envelope sequences of milk and plasma SIV variants of AGMs. Low-diversity milk virus populations were compartmentalized from that in plasma. However, this compartmentalization was transient, as the milk virus lineages did not persist longitudinally.
Collapse
|
49
|
Kader M, Smith AP, Guiducci C, Wonderlich ER, Normolle D, Watkins SC, Barrat FJ, Barratt-Boyes SM. Blocking TLR7- and TLR9-mediated IFN-α production by plasmacytoid dendritic cells does not diminish immune activation in early SIV infection. PLoS Pathog 2013; 9:e1003530. [PMID: 23935491 PMCID: PMC3723633 DOI: 10.1371/journal.ppat.1003530] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/16/2013] [Indexed: 11/23/2022] Open
Abstract
Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology. A persistent type I interferon (IFN) response is thought to be important in driving immune activation and progression to AIDS in human immunodeficiency virus (HIV)-infected individuals. Plasmacytoid dendritic cells (pDC) produce copious amounts of type I IFN upon virus exposure through engagement of Toll-like receptor (TLR) 7 and TLR9 and thus may be central players in the etiology of immune activation. We used a dual antagonist of TLR7 and TLR9 to selectively block the response of pDC but not other mononuclear phagocytes prior to and for 8 weeks following simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major, but not exclusive, producers of IFN-α that mediate a marked but transient IFN-α response in lymph nodes in the acute phase of infection. TLR7 and TLR9 antagonist prevented this IFN-α production without suppressing pDC recruitment. Nevertheless, TLR7 and TLR9 blockade did not impact expression of IFN-stimulated genes or decrease the activation of T cells, the hallmarks of immune activation. The findings indicate that TLR7 and TLR9-driven activation of pDC is unlikely to be a major contributor to immune activation in the early stages of immunodeficiency virus infections and suggest that therapeutic strategies aimed at targeting pDC and IFN-α production may not reduce HIV-associated immunopathology.
Collapse
Affiliation(s)
- Muhamuda Kader
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amanda P. Smith
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cristiana Guiducci
- Dynavax Technologies Corporation, Berkeley, California, United States of America
| | - Elizabeth R. Wonderlich
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daniel Normolle
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Franck J. Barrat
- Dynavax Technologies Corporation, Berkeley, California, United States of America
| | - Simon M. Barratt-Boyes
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Klatt NR, Silvestri G, Hirsch V. Nonpathogenic simian immunodeficiency virus infections. Cold Spring Harb Perspect Med 2013; 2:a007153. [PMID: 22315718 DOI: 10.1101/cshperspect.a007153] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The simian immunodeficiency viruses (SIVs) are a diverse group of viruses that naturally infect a wide range of African primates, including African green monkeys (AGMs) and sooty mangabey monkeys (SMs). Although natural infection is widespread in feral populations of AGMs and SMs, this infection generally does not result in immunodeficiency. However, experimental inoculation of Asian macaques results in an immunodeficiency syndrome remarkably similar to human AIDS. Thus, natural nonprogressive SIV infections appear to represent an evolutionary adaptation between these animals and their primate lentiviruses. Curiously, these animals maintain robust virus replication but have evolved strategies to avoid disease progression. Adaptations observed in these primates include phenotypic changes to CD4(+) T cells, limited chronic immune activation, and altered mucosal immunity. It is probable that these animals have achieved a unique balance between T-cell renewal and proliferation and loss through activation-induced apoptosis, and virus-induced cell death. A clearer understanding of the mechanisms underlying the lack of disease progression in natural hosts for SIV infection should therefore yield insights into the pathogenesis of AIDS and may inform vaccine design.
Collapse
Affiliation(s)
- Nichole R Klatt
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|