1
|
Yuan C, Mao J, Sun H, Wang Y, Guo M, Wang X, Tian Y, Hao Z, Ding J, Chang Y. Genome-wide DNA methylation profile changes associated with shell colouration in the Yesso scallop (Patinopecten yessoensis) as measured by whole-genome bisulfite sequencing. BMC Genomics 2021; 22:740. [PMID: 34649514 PMCID: PMC8515700 DOI: 10.1186/s12864-021-08055-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mollusca, a phylum of highly rich species, possess vivid shell colours, but the underlying molecular mechanism remains to be elucidated. DNA methylation, one of the most common epigenetic modifications in eukaryotes, is believed to play a vital role in various biological processes. However, analysis of the effects of DNA methylation on shell colouration has rarely been performed in molluscs, limiting the current knowledge of the molecular mechanism of shell colour formation. RESULTS In the present study, to reveal the role of epigenetic regulation in shell colouration, WGBS, the "gold standard" of DNA methylation analysis, was first performed on the mantle tissues of Yesso scallops (Patinopecten yessoensis) with different shell colours (brown and white), and DNA methylomes at single-base resolution were generated. About 3% of cytosines were methylated in the genome of the Yesso scallop. A slight increase in mCG percentage and methylation level was found in brown scallops. Sequence preference of nearby methylated cytosines differed between high and low methylation level sites and between the brown- and white-shelled scallops. DNA methylation levels varied among the different genomic regions; all the detected regions in the brown group exhibited higher methylation levels than the white group. A total of 41,175 DMRs (differentially methylated regions) were detected between brown and white scallops. GO functions and pathways associated with the biosynthesis of melanin and porphyrins were significantly enriched for DMRs, among which several key shell colour-related genes were identified. Further, different correlations between mRNA expression levels and DNA methylation status were found in these genes, suggesting that DNA methylation regulates shell colouration in the Yesso scallop. CONCLUSIONS This study provides genome-wide DNA methylation landscapes of Yesso scallops with different shell colours, offering new insights into the epigenetic regulatory mechanism underlying shell colour.
Collapse
Affiliation(s)
- Changzi Yuan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Hongyan Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yiying Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ming Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
2
|
Burenkova OV, Naumova OY, Grigorenko EL. Stress in the onset and aggravation of learning disabilities. DEVELOPMENTAL REVIEW 2021; 61. [PMID: 34219858 DOI: 10.1016/j.dr.2021.100968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite substantial grounds for such research, the role of chronic exposure to stressors in the onset and aggravation of learning disabilities (LDs) is largely unexplored. In this review, we first consider the hormonal, (epi)genetic, and neurobiological mechanisms that might underlie the impact of adverse childhood experiences, a form of chronic stressors, on the onset of LDs. We then found that stress factors combined with feelings of inferiority, low self-esteem, and peer victimization could potentially further aggravate academic failures in children with LDs. Since effective evidence-based interventions for reducing chronic stress in children with LDs could improve their academic performance, consideration of the role of exposure to stressors in children with LDs has both theoretical and practical importance, especially when delivered in combination with academic interventions.
Collapse
Affiliation(s)
- Olga V Burenkova
- Department of Psychology, University of Houston, Houston, Texas, United States of America.,Department of Psychology, Saint-Petersburg State University, Saint Petersburg, Russian Federation
| | - Oksana Yu Naumova
- Department of Psychology, University of Houston, Houston, Texas, United States of America.,Department of Psychology, Saint-Petersburg State University, Saint Petersburg, Russian Federation.,Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow, Russian Federation
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, United States of America.,Department of Psychology, Saint-Petersburg State University, Saint Petersburg, Russian Federation.,Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
3
|
Zhao Z, Zhang Z, Li J, Dong Q, Xiong J, Li Y, Lan M, Li G, Zhu B. Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. eLife 2020; 9:61965. [PMID: 33155547 PMCID: PMC7704108 DOI: 10.7554/elife.61965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transcriptional memory allows certain genes to respond to previously experienced signals more robustly. However, whether and how the key proinflammatory cytokine TNF-α mediates transcriptional memory are poorly understood. Using HEK293F cells as a model system, we report that sustained TNF-α stimulation induces transcriptional memory dependent on TET enzymes. The hypomethylated status of transcriptional regulatory regions can be inherited, facilitating NF-κB binding and more robust subsequent activation. A high initial methylation level and CpG density around κB sites are correlated with the functional potential of transcriptional memory modules. Interestingly, the CALCB gene, encoding the proven migraine therapeutic target CGRP, exhibits the best transcriptional memory. A neighboring primate-specific endogenous retrovirus stimulates more rapid, more strong, and at least 100-fold more sensitive CALCB induction in subsequent TNF-α stimulation. Our study reveals that TNF-α-mediated transcriptional memory is governed by active DNA demethylation and greatly sensitizes memory genes to much lower doses of inflammatory cues. Genes are the instruction manuals of life and contain the information needed to build the building blocks that keep cells alive. To read these instructions, cells use specific signals that activate genes. The process, known as gene expression, is tightly controlled and for the most part, fairly stable. But gene expression can be modified in various ways. Epigenetics is a broad term for describing reversible changes made to genes to switch them on and off. Sometimes, certain genes even develop a kind of ‘transcriptional memory’ where over time, their expression is enhanced and speeds up with repeated activation signals. But this may also have harmful effects. For example, the signalling molecule called tumour necrosis factor α (TNF-α) is an essential part of the immune system. But it is also implicated in chronic inflammatory diseases, such as rheumatoid arthritis. In these conditions, cell signalling pathways triggering inflammation are overactive. One possibility is that TNF-α could be inducing the transcriptional memory of certain genes, amplifying their expression. But little is known about which fraction of genes exhibits transcriptional memory, and what differentiates memory genes from genes with stable expression. Here, Zhao et al. treated cells grown in the laboratory with TNF-α to investigate its role in transcriptional memory and find out what epigenetic features might govern the process. The experiments showed that mimicking a sustained inflammation by stimulating TNF-α, triggered a transcriptional memory in some genes, and enabled them to respond to much lower levels of TNF-α on subsequent exposure. Zhao et al. also discovered that genes tagged with methyl groups are more likely to show transcriptional memory when stimulated by TNF-α. However, they also found that these groups must be removed to consolidate any transcriptional memory. This work shows how TNF-α influences can alter the expression of certain genes. It also suggests that transcriptional memory, stimulated by TNF-α, may be a possible mechanism underlying chronic inflammatory conditions. This could help future research in identifying more genes with transcriptional memory.
Collapse
Affiliation(s)
- Zuodong Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mengying Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Abstract
DNA methylation at CpG sites is an essential epigenetic mark that regulates gene expression during mammalian development and diseases. Methylome refers to the entire set of methylation modifications present in the whole genome. Over the last several years, an increasing number of reports on brain DNA methylome reported the association between aberrant methylation and the abnormalities in the expression of critical genes known to have critical roles during aging and neurodegenerative diseases. Consequently, the role of methylation in understanding neurodegenerative diseases has been under focus. This review outlines the current knowledge of the human brain DNA methylomes during aging and neurodegenerative diseases. We describe the differentially methylated genes from fetal stage to old age and their biological functions. Additionally, we summarize the key aspects and methylated genes identified from brain methylome studies on neurodegenerative diseases. The brain methylome studies could provide a basis for studying the functional aspects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Renuka Prasad
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
5
|
Ficarelli M, Antzin-Anduetza I, Hugh-White R, Firth AE, Sertkaya H, Wilson H, Neil SJD, Schulz R, Swanson CM. CpG Dinucleotides Inhibit HIV-1 Replication through Zinc Finger Antiviral Protein (ZAP)-Dependent and -Independent Mechanisms. J Virol 2020; 94:e01337-19. [PMID: 31748389 PMCID: PMC7158733 DOI: 10.1128/jvi.01337-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
CpG dinucleotides are suppressed in the genomes of many vertebrate RNA viruses, including HIV-1. The cellular antiviral protein ZAP (zinc finger antiviral protein) binds CpGs and inhibits HIV-1 replication when CpGs are introduced into the viral genome. However, it is not known if ZAP-mediated restriction is the only mechanism driving CpG suppression. To determine how CpG dinucleotides affect HIV-1 replication, we increased their abundance in multiple regions of the viral genome and analyzed the effect on RNA expression, protein abundance, and infectious-virus production. We found that the antiviral effect of CpGs was not correlated with their abundance. Interestingly, CpGs inserted into some regions of the genome sensitize the virus to ZAP antiviral activity more efficiently than insertions into other regions, and this sensitivity can be modulated by interferon treatment or ZAP overexpression. Furthermore, the sensitivity of the virus to endogenous ZAP was correlated with its sensitivity to the ZAP cofactor KHNYN. Finally, we show that CpGs in some contexts can also inhibit HIV-1 replication by ZAP-independent mechanisms, and one of these is the activation of a cryptic splice site at the expense of a canonical splice site. Overall, we show that the location and sequence context of the CpG in the viral genome determines its antiviral activity.IMPORTANCE Some RNA virus genomes are suppressed in the nucleotide combination of a cytosine followed by a guanosine (CpG), indicating that they are detrimental to the virus. The antiviral protein ZAP binds viral RNA containing CpGs and prevents the virus from multiplying. However, it remains unknown how the number and position of CpGs in viral genomes affect restriction by ZAP and whether CpGs have other antiviral mechanisms. Importantly, manipulating the CpG content in viral genomes could help create new vaccines. HIV-1 shows marked CpG suppression, and by introducing CpGs into its genome, we show that ZAP efficiently targets a specific region of the viral genome, that the number of CpGs does not predict the magnitude of antiviral activity, and that CpGs can inhibit HIV-1 gene expression through a ZAP-independent mechanism. Overall, the position of CpGs in the HIV-1 genome determines the magnitude and mechanism through which they inhibit the virus.
Collapse
Affiliation(s)
- Mattia Ficarelli
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | | | - Rupert Hugh-White
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Andrew E Firth
- Division of Virology, University of Cambridge, Cambridge, United Kingdom
| | - Helin Sertkaya
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Harry Wilson
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Robakis TK, Lee S, Werner E, Liu G, Miller M, Wylie D, Champagne FA, Salas M, Do C, Tycko B, Monk C. DNA methylation patterns in T lymphocytes are generally stable in human pregnancies but CD3 methylation is associated with perinatal psychiatric symptoms. Brain Behav Immun Health 2020; 3:100044. [PMID: 34589835 PMCID: PMC8474679 DOI: 10.1016/j.bbih.2020.100044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Objectives To determine whether DNA methylation patterns in genes coding for selected T-lymphocyte proteins are associated with perinatal psychiatric distress or with complications of pregnancy. Methods T lymphocyte DNA was obtained from pregnant women across three time points in pregnancy and the postpartum period and epigenetic patterns were assessed using Illumina 450 K Methylation Beadchips. Seven selected genes critical for T cell function were analyzed for methylation changes during pregnancy and for associations of methylation patterns with psychiatric distress or with pregnancy complications, with particular attention paid to spatial aggregations of methyl groups, termed ‘hotspots,’ within the selected genes. Results In the candidate gene approach, DNA methylation density within a single cluster of 9 contiguous CpG loci within the CD3 gene was found to be strongly associated with anxiety and depression in mid- and late pregnancy, and weakly associated with the presence of complications of pregnancy. Average DNA methylation density across each of the seven genes examined, and assay-wide, was found to be relatively stable across pregnancy and postpartum, but methylation within the CD3 hotspot was more malleable and changes over time were coordinated across the nine cytosines in the hotspot. CD3 CpGs did not pass array-wide tests for significance, but CpG clusters in two other genes, DTNBP1 and OXSR1, showed array-wide significant associations with anxiety. Conclusions Despite the need for tolerating the fetal hemi-allograft, overall DNA methylation patterns in T lymphocytes are generally stable over the mid to late course of human pregnancies and postpartum. However, site-specific changes in DNA methylation density in CD3 appear linked to both symptoms of depression and anxiety in pregnancy and, less strongly, to adverse pregnancy outcomes. Associations exist between DNA methylation density in T cells and measures of stress and mental health in pregnant women. Global DNA methylation density is generally stable over the course of pregnancy. A subregion within the CD3 gene has unusually variable DNA methylation density and is associated with anxiety and depression. Spatial and gene specificity may be important elements of epigenetic regulation of immune function in pregnancy.
Collapse
Affiliation(s)
- Thalia K Robakis
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Seonjoo Lee
- Columbia University Department of Psychiatry, New York, NY, 10032, USA
| | - Elizabeth Werner
- Columbia University Department of Psychiatry, New York, NY, 10032, USA
| | - Grace Liu
- Columbia University Department of Psychiatry, New York, NY, 10032, USA
| | - Melissa Miller
- University of Texas at Austin Department of Psychology, Austin, TX, 78712, USA
| | - Dennis Wylie
- University of Texas at Austin Department of Psychology, Austin, TX, 78712, USA
| | - Frances A Champagne
- University of Texas at Austin Department of Psychology, Austin, TX, 78712, USA
| | - Martha Salas
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | - Catherine Do
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | - Benjamin Tycko
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | - Catherine Monk
- Columbia University Department of Psychiatry, New York, NY, 10032, USA
| |
Collapse
|
7
|
Robakis TK, Zhang S, Rasgon NL, Li T, Wang T, Roth MC, Humphreys KL, Gotlib IH, Ho M, Khechaduri A, Watson K, Roat-Shumway S, Budhan VV, Davis KN, Crowe SD, Ellie Williams K, Urban AE. Epigenetic signatures of attachment insecurity and childhood adversity provide evidence for role transition in the pathogenesis of perinatal depression. Transl Psychiatry 2020; 10:48. [PMID: 32066670 PMCID: PMC7026105 DOI: 10.1038/s41398-020-0703-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/05/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022] Open
Abstract
Early life adversity and insecure attachment style are known risk factors for perinatal depression. The biological pathways linking these experiences, however, have not yet been elucidated. We hypothesized that overlap in patterns of DNA methylation in association with each of these phenomena could identify genes and pathways of importance. Specifically, we wished to distinguish between allostatic-load and role-transition hypotheses of perinatal depression. We conducted a large-scale analysis of methylation patterns across 5 × 106 individual CG dinucleotides in 54 women participating in a longitudinal prospective study of perinatal depression, using clustering-based criteria for significance to control for multiple comparisons. We identified 1580 regions in which methylation density was associated with childhood adversity, 3 in which methylation density was associated with insecure attachment style, and 6 in which methylation density was associated with perinatal depression. Shorter telomeres were observed in association with childhood trauma but not with perinatal depression or attachment insecurity. A detailed analysis of methylation density in the oxytocin receptor gene revealed similar patterns of DNA methylation in association with perinatal depression and with insecure attachment style, while childhood trauma was associated with a distinct methylation pattern in this gene. Clinically, attachment style was strongly associated with depression only in pregnancy and the early postpartum, whereas the association of childhood adversity with depression was time-invariant. We concluded that the broad DNA methylation signature and reduced telomere length associated with childhood adversity could indicate increased allostatic load across multiple body systems, whereas perinatal depression and attachment insecurity may be narrower phenotypes with more limited DNA methylation signatures outside the CNS, and no apparent association with telomere length or, by extension, allostatic load. In contrast, the finding of matching DNA methylation patterns within the oxytocin receptor gene for perinatal depression and attachment insecurity is consistent with the theory that the perinatal period is a time of activation of existing attachment schemas for the purpose of structuring the mother-child relationship, and that such activation may occur in part through specific patterns of methylation of the oxytocin receptor gene.
Collapse
Affiliation(s)
- Thalia K Robakis
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA.
| | - Siming Zhang
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
- Stanford University Department of Genetics, Stanford, CA, USA
| | - Natalie L Rasgon
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | | | - Tao Wang
- AccuraScience, LLC, Johnston, IN, USA
| | - Marissa C Roth
- Vanderbilt University Department of Psychology, Nashville, TN, USA
| | | | - Ian H Gotlib
- Stanford University Department of Psychology, Stanford, CA, USA
| | - Marcus Ho
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | | | - Katherine Watson
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | - Siena Roat-Shumway
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | - Vena V Budhan
- Palo Alto University Graduate School of Psychology, Palo Alto, CA, USA
| | - Kasey N Davis
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| | - Susan D Crowe
- Stanford University Department of Obstetrics & Gynecology, Stanford, CA, USA
| | | | - Alexander E Urban
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA.
- Stanford University Department of Genetics, Stanford, CA, USA.
| |
Collapse
|
8
|
Ma X, Jia C, Chu M, Fu D, Lei Q, Ding X, Wu X, Guo X, Pei J, Bao P, Yan P, Liang C. Transcriptome and DNA Methylation Analyses of the Molecular Mechanisms Underlying with Longissimus dorsi Muscles at Different Stages of Development in the Polled Yak. Genes (Basel) 2019; 10:genes10120970. [PMID: 31779203 PMCID: PMC6947547 DOI: 10.3390/genes10120970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 02/04/2023] Open
Abstract
DNA methylation modifications are implicated in many biological processes. As the most common epigenetic mechanism DNA methylation also affects muscle growth and development. The majority of previous studies have focused on different varieties of yak, but little is known about the epigenetic regulation mechanisms in different age groups of animals. The development of muscles in the different stages of yak growth remains unclear. In this study, we selected the longissimus dorsi muscle tissue at three different growth stages of the yak, namely, 90-day-old fetuses (group E), six months old (group M), and three years old (group A). Using RNA-Seq transcriptome sequencing and methyl-RAD whole-genome methylation sequencing technology, changes in gene expression levels and DNA methylation status throughout the genome were investigated during the stages of yak development. Each group was represented by three biological replicates. The intersections of expression patterns of 7694 differentially expressed genes (DEGs) were identified (padj < 0.01, |log2FC| > 1.2) at each of the three developmental periods. Time-series expression profile clustering analysis indicated that the DEGs were significantly arranged into eight clusters which could be divided into two classes (padj < 0.05), class I profiles that were downregulated and class II profiles that were upregulated. Based on this cluster analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DEGs from class I profiles were significantly (padj < 0.05) enriched in 21 pathways, the most enriched pathway being the Axon guidance signaling pathway. DEGs from the class II profile were significantly enriched in 58 pathways, the pathway most strongly enriched being Metabolic pathway. After establishing the methylation profiles of the whole genomes, and using two groups of comparisons, the three combinations of groups (M-vs.-E, M-vs.-A, A-vs.-E) were found to have 1344, 822, and 420 genes, respectively, that were differentially methylated at CCGG sites and 2282, 3056, and 537 genes, respectively, at CCWGG sites. The two sets of data were integrated and the negative correlations between DEGs and differentially methylated promoters (DMPs) analyzed, which confirmed that TMEM8C, IGF2, CACNA1S and MUSTN1 were methylated in the promoter region and that expression of the modified genes was negatively correlated. Interestingly, these four genes, from what was mentioned above, perform vital roles in yak muscle growth and represent a reference for future genomic and epigenomic studies in muscle development, in addition to enabling marker-assisted selection of growth traits.
Collapse
Affiliation(s)
- Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Congjun Jia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Donghai Fu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Qinhui Lei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuezhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Correspondence: (P.Y.); (C.L.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (C.L.)
| | - Chunnian Liang
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (C.L.)
| |
Collapse
|
9
|
Different Methylation of CpG-SNPs in Behcet's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3489305. [PMID: 31223615 PMCID: PMC6541967 DOI: 10.1155/2019/3489305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/08/2023]
Abstract
Purpose We recently performed an Epigenome-Wide Association Studies (EWAS) study in Behcet's disease (BD) and identified various cytosine–phosphate–guanine (CpG) loci that were aberrantly methylated. In the current study, we wanted to investigate whether these sites contained genetic polymorphisms and whether the frequency of these polymorphisms was altered in BD. Methods A two-stage study was performed. The first stage involved 358 BD patients and 704 healthy controls to investigate genetic variants of 10 CpG-SNPs (rs10454134, rs176249, rs3808620, rs10176517, rs11247118, rs78016579, rs9461624, rs10492166, rs34929465, and rs6507921) using an iPLEX Gold genotyping assay and a Sequenom MassARRAY. In the second stage, an additional 172 independent BD patients and 330 healthy individuals are to confirm trends found in the first stage. Results A higher frequency of both the rs10454134 AG genotypes (p = 0.008, OR = 1.413, 95% CI = 1.094-1.826) and a lower GG genotype frequency (p = 0.003, OR = 0.630, 95% CI = 0.465-0.854) were found in BD patients compared to the controls in the first stage. However, after correcting for multiple comparisons, all associations identified in the first stage lost statistical significance. The frequencies of the other CpG-SNPs investigated were not different between BD patients and controls. The second stage was designed using an additional cohort to confirm the association with CpG-SNP, rs10454134. The data failed to confirm the association between this CpG-SNP and BD. Conclusions This study did not show an association between BD and CpG-SNPs in gene sites that were earlier shown to be aberrantly methylated.
Collapse
|
10
|
Kim SJ, Chun M, Wan J, Lee C, Yen K, Cohen P. GRSF1 is an age-related regulator of senescence. Sci Rep 2019; 9:5546. [PMID: 30944385 PMCID: PMC6447602 DOI: 10.1038/s41598-019-42064-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Senescent cells that accumulate in multiple tissues with age are thought to increase pathological phenotypes. The removal of senescent cells can improve lifespan and/or healthspan in mouse models. Global hypomethylation and local hypermethylation in DNA are hallmarks of aging but it is unclear if such age-dependent methylation changes affect specific genes that regulate cellular senescence. Because mitochondria play important roles in aging and senescence, we tested if age-associated methylation changes in nuclear-encoded mitochondrial proteins were involved in regulating cellular senescence. Here, we examined the role of hypermethylation of the G-rich sequence factor 1 (GRSF1) promoter region, a mitochondrial RNA binding protein, in replication- and doxorubicin-induced cellular senescence. GRSF1 expression was lower in senescent fibroblasts, and GRSF1 knockdown induced senescence in human primary fibroblasts. These results suggest that the age-dependent hypermethylation of GRSF1 reduces its expression, which can potentially contribute to cellular senescence during aging.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Maria Chun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
11
|
Flores EM, Woeller CF, Falsetta ML, Susiarjo M, Phipps RP. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis. FASEB J 2019; 33:3353-3363. [PMID: 30376360 PMCID: PMC6404567 DOI: 10.1096/fj.201801481r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
The obesity epidemic is developing into the most costly health problem facing the world. Obesity, characterized by excessive adipogenesis and enlarged adipocytes, promotes morbidities, such as diabetes, cardiovascular disease, and cancer. Regulation of adipogenesis is critical to our understanding of how fat cell formation causes obesity and associated health problems. Thy1 (also called CD90), a widely used stem cell marker, blocks adipogenesis and reduces lipid accumulation. Thy1-knockout mice are prone to diet-induced obesity. Although the importance of Thy1 in adipogenesis and obesity is now evident, how its expression is regulated is not. We hypothesized that DNA methylation has a role in promoting adipogenesis and affects Thy1 expression. Using the methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), we investigated whether DNA methylation alters Thy1 expression during adipogenesis in both mouse 3T3-L1 preadipocytes and mouse mesenchymal stem cells. Thy1 protein and mRNA levels were decreased dramatically during adipogenesis. However, 5-aza-dC treatment prevented that phenomenon. Methylation-sensitive pyrosequencing analysis showed that CpG sites at the Thy1 locus have increased methylation during adipogenesis, as well as increased methylation in adipose tissue from diet-induced obese mice. These new findings highlight the potential role of Thy1 and DNA methylation in adipogenesis and obesity.-Flores, E. M., Woeller, C. F., Falsetta, M. L., Susiarjo, M., Phipps, R. P. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis.
Collapse
Affiliation(s)
- E’Lissa M. Flores
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Collynn F. Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Megan L. Falsetta
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Richard P. Phipps
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
12
|
Novel Lines of Evidence for the Asymmetric Strand Displacement Model of Mitochondrial DNA Replication. Mol Cell Biol 2019; 39:MCB.00406-18. [PMID: 30397074 DOI: 10.1128/mcb.00406-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/20/2018] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial genome, which consists of 16,569 bp of DNA with a cytosine-rich light (L) strand and a heavy (H) strand, exists as a multicopy closed circular genome within the mitochondrial matrix. The machinery for replication of the mammalian mitochondrial genome is distinct from that for replication of the nuclear genome. Three models have been proposed for mitochondrial DNA (mtDNA) replication, and one of the key differences among them is whether extensive single-stranded regions exist on the H strand. Here, three different methods that can detect single-stranded DNA (ssDNA) are utilized to identify the presence, location, and abundance of ssDNA on mtDNA. Importantly, none of these newly described methods involve the complication of prior mtDNA fractionation. The H strand was found to have extensive single-stranded regions with a profile consistent with the strand displacement model of mtDNA replication, whereas single strandedness was predominantly absent on the L strand. These findings are consistent with the in vivo occupancy of mitochondrial single-stranded DNA binding protein reported previously and provide strong new qualitative and quantitative evidence for the asymmetric strand displacement model of mtDNA replication.
Collapse
|
13
|
Jia Y, Guo X, Lu J, Wang X, Qiu L, Wang T. CRISPR/Cas9-mediated gene knockout for DNA methyltransferase Dnmt3a in CHO cells displays enhanced transgenic expression and long-term stability. J Cell Mol Med 2018; 22:4106-4116. [PMID: 29851281 PMCID: PMC6111867 DOI: 10.1111/jcmm.13687] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a-deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a-deficent CHO cell line based on Dnmt3a KO displayed an enhanced long-term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a-deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a-deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Yan‐Long Jia
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao Guo
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Jiang‐Tao Lu
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao‐Yin Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Le‐Le Qiu
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Tian‐Yun Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| |
Collapse
|
14
|
Fellous A, Labed‐Veydert T, Locrel M, Voisin A, Earley RL, Silvestre F. DNA methylation in adults and during development of the self-fertilizing mangrove rivulus, Kryptolebias marmoratus. Ecol Evol 2018; 8:6016-6033. [PMID: 29988456 PMCID: PMC6024129 DOI: 10.1002/ece3.4141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to genetic variation, epigenetic mechanisms such as DNA methylation might make important contributions to heritable phenotypic diversity in populations. However, it is often difficult to disentangle the contributions of genetic and epigenetic variation to phenotypic diversity. Here, we investigated global DNA methylation and mRNA expression of the methylation-associated enzymes during embryonic development and in adult tissues of one natural isogenic lineage of mangrove rivulus fish, Kryptolebias marmoratus. Being the best-known self-fertilizing hermaphroditic vertebrate affords the opportunity to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. Using the LUminometric Methylation Assay (LUMA), we described variable global DNA methylation at CpG sites in adult tissues, which differed significantly between hermaphrodite ovotestes and male testes (79.6% and 87.2%, respectively). After fertilization, an immediate decrease in DNA methylation occurred to 15.8% in gastrula followed by re-establishment to 70.0% by stage 26 (liver formation). Compared to zebrafish, at the same embryonic stages, this reprogramming event seems later, deeper, and longer. Furthermore, genes putatively encoding DNA methyltransferases (DNMTs), Ten-Eleven Translocation (TET), and MeCP2 proteins showed specific regulation in adult gonad and brain, and also during early embryogenesis. Their conserved domains and expression profiles suggest that these proteins play important roles during reproduction and development. This study raises questions about mangrove rivulus' peculiar reprogramming period in terms of epigenetic transmission and physiological adaptation of individuals to highly variable environments. In accordance with the general-purpose genotype model, epigenetic mechanisms might allow for the expression of diverse phenotypes among genetically identical individuals. Such phenotypes might help to overcome environmental challenges, making the mangrove rivulus a valuable vertebrate model for ecological epigenetic studies. The mangrove rivulus, Kryptolebias marmoratus, is the best-known self-fertilizing hermaphroditic vertebrate that allows to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. The reprogramming event is later, more dramatic and longer than in other described vertebrates. High evolutionary conservation and expression patterns of DNMT, TET, and MeCP2 proteins in K. marmoratus suggest biological roles for each member in gametogenesis and development.
Collapse
Affiliation(s)
- Alexandre Fellous
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Tiphaine Labed‐Veydert
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Mélodie Locrel
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Anne‐Sophie Voisin
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Ryan L. Earley
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Frederic Silvestre
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| |
Collapse
|
15
|
Xie W, Kagiampakis I, Pan L, Zhang YW, Murphy L, Tao Y, Kong X, Kang B, Xia L, Carvalho FLF, Sen S, Chiu Yen RW, Zahnow CA, Ahuja N, Baylin SB, Easwaran H. DNA Methylation Patterns Separate Senescence from Transformation Potential and Indicate Cancer Risk. Cancer Cell 2018; 33:309-321.e5. [PMID: 29438699 PMCID: PMC5813821 DOI: 10.1016/j.ccell.2018.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/24/2017] [Accepted: 01/17/2018] [Indexed: 01/08/2023]
Abstract
Overall shared DNA methylation patterns between senescence (Sen) and cancers have led to the model that tumor-promoting epigenetic patterns arise through senescence. We show that transformation-associated methylation changes arise stochastically and independently of programmatic changes during senescence. Promoter hypermethylation events in transformation involve primarily pro-survival and developmental genes, similarly modified in primary tumors. Senescence-associated hypermethylation mainly involves metabolic regulators and appears early in proliferating "near-senescent" cells, which can be immortalized but are refractory to transformation. Importantly, a subset of transformation-associated hypermethylated developmental genes exhibits highest methylation gains at all age-associated cancer risk states across tissue types. These epigenetic changes favoring cell self-renewal and survival, arising during tissue aging, are fundamentally important for stratifying cancer risk and concepts for cancer prevention.
Collapse
Affiliation(s)
- Wenbing Xie
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ioannis Kagiampakis
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lixia Pan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang W Zhang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lauren Murphy
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yong Tao
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiangqian Kong
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Byunghak Kang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Limin Xia
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Filipe L F Carvalho
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Subhojit Sen
- UM-DAE Center for Excellence in Basic Sciences (CBS), Mumbai University, Mumbai 400098, India
| | - Ray-Whay Chiu Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cynthia A Zahnow
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nita Ahuja
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
16
|
Antzin-Anduetza I, Mahiet C, Granger LA, Odendall C, Swanson CM. Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication. Retrovirology 2017; 14:49. [PMID: 29121951 PMCID: PMC5679385 DOI: 10.1186/s12977-017-0374-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) structural protein Gag is necessary and sufficient to form viral particles. In addition to encoding the amino acid sequence for Gag, the underlying RNA sequence could encode cis-acting elements or nucleotide biases that are necessary for viral replication. Furthermore, RNA sequences that inhibit viral replication could be suppressed in gag. However, the functional relevance of RNA elements and nucleotide biases that promote or repress HIV-1 replication remain poorly understood. RESULTS To characterize if the RNA sequence in gag controls HIV-1 replication, the matrix (MA) region was codon modified, allowing the RNA sequence to be altered without affecting the protein sequence. Codon modification of nucleotides (nt) 22-261 or 22-378 in gag inhibited viral replication by decreasing genomic RNA (gRNA) abundance, gRNA stability, Gag expression, virion production and infectivity. Comparing the effect of these point mutations to deletions of the same region revealed that the mutations inhibited infectious virus production while the deletions did not. This demonstrated that codon modification introduced inhibitory sequences. There is a much lower than expected frequency of CpG dinucleotides in HIV-1 and codon modification introduced a substantial increase in CpG abundance. To determine if they are necessary for inhibition of HIV-1 replication, codons introducing CpG dinucleotides were mutated back to the wild type codon, which restored efficient Gag expression and infectious virion production. To determine if they are sufficient to inhibit viral replication, CpG dinucleotides were inserted into gag in the absence of other changes. The increased CpG dinucleotide content decreased HIV-1 infectivity and viral replication. CONCLUSIONS The HIV-1 RNA sequence contains low abundance of CpG dinucleotides. Increasing the abundance of CpG dinucleotides inhibits multiple steps of the viral life cycle, providing a functional explanation for why CpG dinucleotides are suppressed in HIV-1.
Collapse
Affiliation(s)
- Irati Antzin-Anduetza
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Mahiet
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Luke A Granger
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Odendall
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
17
|
Boehm D, Ott M. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Res Hum Retroviruses 2017; 33:S8-S22. [PMID: 29140109 DOI: 10.1089/aid.2017.0180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
18
|
Schlosberg CE, VanderKraats ND, Edwards JR. Modeling complex patterns of differential DNA methylation that associate with gene expression changes. Nucleic Acids Res 2017; 45:5100-5111. [PMID: 28168293 PMCID: PMC5435975 DOI: 10.1093/nar/gkx078] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
Numerous genomic studies are underway to determine which genes are abnormally regulated by DNA methylation in disease. However, we have a poor understanding of how disease-specific methylation changes affect expression. We thus developed an integrative analysis tool, Methylation-based Gene Expression Classification (ME-Class), to explain specific variation in methylation that associates with expression change. This model captures the complexity of methylation changes around a gene promoter. Using 17 whole-genome bisulfite sequencing and RNA-seq datasets from different tissues from the Roadmap Epigenomics Project, ME-Class significantly outperforms standard methods using methylation to predict differential gene expression change. To demonstrate its utility, we used ME-Class to analyze 32 datasets from different hematopoietic cell types from the Blueprint Epigenome project. Expression-associated methylation changes were predominantly found when comparing cells from distantly related lineages, implying that changes in the cell's transcriptional program precede associated methylation changes. Training ME-Class on normal-tumor pairs from The Cancer Genome Atlas indicated that cancer-specific expression-associated methylation changes differ from tissue-specific changes. We further show that ME-Class can detect functionally relevant cancer-specific, expression-associated methylation changes that are reversed upon the removal of methylation. ME-Class is thus a powerful tool to identify genes that are dysregulated by DNA methylation in disease.
Collapse
Affiliation(s)
- Christopher E Schlosberg
- Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nathan D VanderKraats
- Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - John R Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Miranda-Morales E, Meier K, Sandoval-Carrillo A, Salas-Pacheco J, Vázquez-Cárdenas P, Arias-Carrión O. Implications of DNA Methylation in Parkinson's Disease. Front Mol Neurosci 2017; 10:225. [PMID: 28769760 PMCID: PMC5513956 DOI: 10.3389/fnmol.2017.00225] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
It has been 200 years since Parkinson’s disease (PD) was first described, yet many aspects of its etiopathogenesis remain unclear. PD is a progressive and complex neurodegenerative disorder caused by genetic and environmental factors including aging, nutrition, pesticides and exposure to heavy metals. DNA methylation may be altered in response to some of these factors; therefore, it is proposed that epigenetic mechanisms, particularly DNA methylation, can have a fundamental role in gene–environment interactions that are related with PD. Epigenetic changes in PD-associated genes are now widely studied in different populations, to discover the mechanisms that contribute to disease development and identify novel biomarkers for early diagnosis and future pharmacological treatment. While initial studies sought to find associations between promoter DNA methylation and the regulation of associated genes in PD brain tissue, more recent studies have described concordant DNA methylation patterns between blood and brain tissue DNA. These data justify the use of peripheral blood samples instead of brain tissue for epigenetic studies. Here, we summarize the current data about DNA methylation changes in PD and discuss the potential of DNA methylation as a potential biomarker for PD. Additionally, we discuss environmental and nutritional factors that have been implicated in DNA methylation. Although the search for significant DNA methylation changes and gene expression analyses of PD-associated genes have yielded inconsistent and contradictory results, epigenetic modifications remain under investigation for their potential to reveal the link between environmental risk factors and the development of PD.
Collapse
Affiliation(s)
- Ernesto Miranda-Morales
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea GonzálezMexico City, Mexico.,Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - Karin Meier
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Ada Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea GonzálezMexico City, Mexico
| |
Collapse
|
20
|
Chen Z, Tang N, Wang X, Chen Y. The activity of the carbamoyl phosphate synthase 1 promoter in human liver-derived cells is dependent on hepatocyte nuclear factor 3-beta. J Cell Mol Med 2017; 21:2036-2045. [PMID: 28272778 PMCID: PMC5571533 DOI: 10.1111/jcmm.13123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/13/2017] [Indexed: 01/15/2023] Open
Abstract
Carbamoyl phosphate synthase 1 (CPS1) is the rate‐limiting enzyme in the first step of the urea cycle and an indispensable enzyme in the metabolism of human liver. However, CPS1 epigenetic regulation involves promoter analysis and the role of liver‐enriched transcription factors (LETFs), which is not fully elucidated. In this work, the promoter region of hCPS1 gene was cloned, and its activity was investigated. An LETF, hepatocyte nuclear factor 3‐beta (HNF3β), was found to promote the transcriptional expression of CPS1 in liver‐derived cell lines. In addition, dual‐luciferase reporter assay shows that the essential binding sites of the HNF3β may exist in the oligonucleotide −70 nt to +73 nt. Two putative binding sites are available for HNF3β. Mutation analysis results show that the binding site 2 of HNF3β was effective, and the transcriptional activity of CPS1 promoter significantly decreased after mutation. Electrophoretic mobile shift assay (EMSA) and ChIP assay confirmed that HNF3β can interact with the binding site in the CPS1 promoter region of −70 nt to +73 nt promoter region in vivo and in vitro to regulate the transcription of CPS1. Moreover, HNF3β overexpression enhanced the transcription of CPS1 and consequently improved the mRNA and protein levels of CPS1, whereas the knockdown of HNF3β showed the opposite effects. Finally, urea production in cells was measured, and ammonia detoxification improved significantly in cells after transfection with HNF3β. HNF3β plays a vital role in regulation of CPS1 gene and could promote the metabolism of ammonia by regulating CPS1 expression.
Collapse
Affiliation(s)
- Zhanfei Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China
| | - Xiaoqian Wang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanling Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Defining, distinguishing and detecting the contribution of heterogeneous methylation to cancer heterogeneity. Semin Cell Dev Biol 2016; 64:5-17. [PMID: 27582426 DOI: 10.1016/j.semcdb.2016.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023]
Abstract
DNA methylation is a fundamental means of epigenetic gene regulation that occurs in virtually all cell types. In many higher organisms, including humans, it plays vital roles in cell differentiation and homeostatic maintenance of cell phenotype. The control of DNA methylation has traditionally been attributed to a highly coordinated, linear process, whose dysregulation has been associated with numerous pathologies including cancer, where it occurs early in, and even prior to, the development of neoplastic tissues. Recent experimental evidence has demonstrated that, contrary to prevailing paradigms, methylation patterns are actually maintained through inexact, dynamic processes. These processes normally result in minor stochastic differences between cells that accumulate with age. However, various factors, including cancer itself, can lead to substantial differences in intercellular methylation patterns, viz. methylation heterogeneity. Advancements in molecular biology techniques are just now beginning to allow insight into how this heterogeneity contributes to clonal evolution and overall cancer heterogeneity. In the current review, we begin by presenting a didactic overview of how the basal bimodal methylome is established and maintained. We then provide a synopsis of some of the factors that lead to the accrual of heterogeneous methylation and how this heterogeneity may lead to gene silencing and impact the development of cancerous phenotypes. Lastly, we highlight currently available methylation assessment techniques and discuss their suitability to the study of heterogeneous methylation.
Collapse
|
22
|
van den Oord EJCG, Clark SL, Xie LY, Shabalin AA, Dozmorov MG, Kumar G, Vladimirov VI, Magnusson PKE, Aberg KA. A Whole Methylome CpG-SNP Association Study of Psychosis in Blood and Brain Tissue. Schizophr Bull 2016; 42:1018-26. [PMID: 26656881 PMCID: PMC4903046 DOI: 10.1093/schbul/sbv182] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mutated CpG sites (CpG-SNPs) are potential hotspots for human diseases because in addition to the sequence variation they may show individual differences in DNA methylation. We performed methylome-wide association studies (MWAS) to test whether methylation differences at those sites were associated with schizophrenia. We assayed all common CpG-SNPs with methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) using DNA extracted from 1408 blood samples and 66 postmortem brain samples (BA10) of schizophrenia cases and controls. Seven CpG-SNPs passed our FDR threshold of 0.1 in the blood MWAS. Of the CpG-SNPs methylated in brain, 94% were also methylated in blood. This significantly exceeded the 46.2% overlap expected by chance (P-value < 1.0×10(-8)) and justified replicating findings from blood in brain tissue. CpG-SNP rs3796293 in IL1RAP replicated (P-value = .003) with the same direction of effects. This site was further validated through targeted bisulfite pyrosequencing in 736 independent case-control blood samples (P-value < 9.5×10(-4)). Our top result in the brain MWAS (P-value = 8.8×10(-7)) was CpG-SNP rs16872141 located in the potential promoter of ENC1. Overall, our results suggested that CpG-SNP methylation may reflect effects of environmental insults and can provide biomarkers in blood that could potentially improve disease management.
Collapse
Affiliation(s)
- Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA;
| | - Shaunna L Clark
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Lin Ying Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Andrey A Shabalin
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA
| | - Gaurav Kumar
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| | - Vladimir I Vladimirov
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA; Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA; Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
23
|
Dewi FN, Wood CE, Willson CJ, Register TC, Lees CJ, Howard TD, Huang Z, Murphy SK, Tooze JA, Chou JW, Miller LD, Cline JM. Effects of Pubertal Exposure to Dietary Soy on Estrogen Receptor Activity in the Breast of Cynomolgus Macaques. Cancer Prev Res (Phila) 2016; 9:385-95. [PMID: 27006379 PMCID: PMC4932899 DOI: 10.1158/1940-6207.capr-15-0165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
Abstract
Endogenous estrogens influence mammary gland development during puberty and breast cancer risk during adulthood. Early-life exposure to dietary or environmental estrogens may alter estrogen-mediated processes. Soy foods contain phytoestrogenic isoflavones (IF), which have mixed estrogen agonist/antagonist properties. Here, we evaluated mammary gland responses over time in pubertal female cynomolgus macaques fed diets containing either casein/lactalbumin (n = 12) or soy protein containing a human-equivalent dose of 120 mg IF/day (n = 17) for approximately 4.5 years spanning menarche. We assessed estrogen receptor (ER) expression and activity, promoter methylation of ERs and their downstream targets, and markers of estrogen metabolism. Expression of ERα and classical ERα response genes (TFF1, PGR, and GREB1) decreased with maturity, independent of diet. A significant inverse correlation was observed between TFF1 mRNA and methylation of CpG sites within the TFF1 promoter. Soy effects included lower ERβ expression before menarche and lower mRNA for ERα and GREB1 after menarche. Expression of GATA-3, an epithelial differentiation marker that regulates ERα-mediated transcription, was elevated before menarche and decreased after menarche in soy-fed animals. Soy did not significantly alter expression of other ER activity markers, estrogen-metabolizing enzymes, or promoter methylation for ERs or ER-regulated genes. Our results demonstrate greater ER expression and activity during the pubertal transition, supporting the idea that this life stage is a critical window for phenotypic modulation by estrogenic compounds. Pubertal soy exposure decreases mammary ERα expression after menarche and exerts subtle effects on receptor activity and mammary gland differentiation. Cancer Prev Res; 9(5); 385-95. ©2016 AACR.
Collapse
Affiliation(s)
- Fitriya N Dewi
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina. Primate Research Center, Bogor Agricultural University, Bogor, Indonesia.
| | - Charles E Wood
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cynthia J Willson
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cynthia J Lees
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Timothy D Howard
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Janet A Tooze
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeff W Chou
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
24
|
Boström AE, Mwinyi J, Voisin S, Wu W, Schultes B, Zhang K, Schiöth HB. Longitudinal genome-wide methylation study of Roux-en-Y gastric bypass patients reveals novel CpG sites associated with essential hypertension. BMC Med Genomics 2016; 9:20. [PMID: 27105587 PMCID: PMC4841955 DOI: 10.1186/s12920-016-0180-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/01/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Essential hypertension is a significant risk factor for cardiovascular diseases. Emerging research suggests a role of DNA methylation in blood pressure physiology. We aimed to investigate epigenetic associations of promoter related CpG sites to essential hypertension in a genome-wide methylation approach. METHODS The genome-wide methylation pattern in whole blood was measured in 11 obese patients before and six months after Roux-en-Y gastric bypass surgery using the Illumina 450 k beadchip. CpG sites located within 1500 bp of the transcriptional start site of adjacent genes were included in our study, resulting in 124 199 probes investigated in the subsequent analysis. Percent changes in methylation states and SBP measured before and six months after surgery were calculated. These parameters were correlated to each other using the Spearman's rank correlation method (Edgeworth series approximation). To further investigate the detected relationship between candidate CpG sites and systolic blood pressure levels, binary logistic regression analyses were performed in a larger and independent cohort of 539 individuals aged 19-101 years to elucidate a relationship between EH and the methylation state in candidate CpG sites. RESULTS We identified 24 promoter associated CpG sites that correlated with change in SBP after RYGB surgery (p < 10(-16)). Two of these CpG loci (cg00875989, cg09134341) were significantly hypomethylated in dependency of EH (p < 10(-03)). These results were independent of age, BMI, ethnicity and sex. CONCLUSIONS The identification of these novel CpG sites may contribute to a further understanding of the epigenetic regulatory mechanisms underlying the development of essential hypertension.
Collapse
Affiliation(s)
- Adrian E Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden.
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Sarah Voisin
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Wenting Wu
- Institute for Genomic Medicine, University of California, San Diego, CA, 92093, USA
| | - Bernd Schultes
- eSwiss Medical and Surgical Center, St Gallen, Switzerland
| | - Kang Zhang
- Institute for Genomic Medicine, University of California, San Diego, CA, 92093, USA
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| |
Collapse
|
25
|
Lam P, Cheung F, Tan HY, Wang N, Yuen MF, Feng Y. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities. Int J Mol Sci 2016; 17:465. [PMID: 27043533 PMCID: PMC4848921 DOI: 10.3390/ijms17040465] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC) axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Puiyan Lam
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Ehrensberger AH, Franchini DM, East P, George R, Matthews N, Maslen SL, Svejstrup JQ. Retention of the Native Epigenome in Purified Mammalian Chromatin. PLoS One 2015; 10:e0133246. [PMID: 26248330 PMCID: PMC4527833 DOI: 10.1371/journal.pone.0133246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/24/2015] [Indexed: 01/13/2023] Open
Abstract
A protocol is presented for the isolation of native mammalian chromatin as fibers of 25-250 nucleosomes under conditions that preserve the natural epigenetic signature. The material is composed almost exclusively of histones and DNA and conforms to the structure expected by electron microscopy. All sequences probed for were retained, indicating that the material is representative of the majority of the genome. DNA methylation marks and histone marks resembled the patterns observed in vivo. Importantly, nucleosome positions also remained largely unchanged, except on CpG islands, where nucleosomes were found to be unstable. The technical challenges of reconstituting biochemical reactions with native mammalian chromatin are discussed.
Collapse
Affiliation(s)
- Andreas H. Ehrensberger
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, The Francis Crick Insitute, London Research Institute, South Mimms, United Kingdom
| | - Don-Marc Franchini
- DNA Editing Lab, Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms, United Kingdom
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Philip East
- Bioinformatics and Biostatistics Group, The Francis Crick Insitute, London Research Institute, London, United Kingdom
| | - Roger George
- Protein Purification Facility, The Francis Crick Insitute, London Research Institute, London, United Kingdom
| | - Nik Matthews
- Advanced Sequencing Facility, The Francis Crick Insitute, London Research Institute, London, United Kingdom
| | - Sarah L. Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, The Francis Crick Insitute, London Research Institute, South Mimms, United Kingdom
| |
Collapse
|
27
|
Aberg KA, Xie L, Chan RF, Zhao M, Pandey AK, Kumar G, Clark SL, van den Oord EJCG. Evaluation of Methyl-Binding Domain Based Enrichment Approaches Revisited. PLoS One 2015; 10:e0132205. [PMID: 26177298 PMCID: PMC4503759 DOI: 10.1371/journal.pone.0132205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/13/2015] [Indexed: 11/28/2022] Open
Abstract
Methyl-binding domain (MBD) enrichment followed by deep sequencing (MBD-seq), is a robust and cost efficient approach for methylome-wide association studies (MWAS). MBD-seq has been demonstrated to be capable of identifying differentially methylated regions, detecting previously reported robust associations and producing findings that replicate with other technologies such as targeted pyrosequencing of bisulfite converted DNA. There are several kits commercially available that can be used for MBD enrichment. Our previous work has involved MethylMiner (Life Technologies, Foster City, CA, USA) that we chose after careful investigation of its properties. However, in a recent evaluation of five commercially available MBD-enrichment kits the performance of the MethylMiner was deemed poor. Given our positive experience with MethylMiner, we were surprised by this report. In an attempt to reproduce these findings we here have performed a direct comparison of MethylMiner with MethylCap (Diagenode Inc, Denville, NJ, USA), the best performing kit in that study. We find that both MethylMiner and MethylCap are two well performing MBD-enrichment kits. However, MethylMiner shows somewhat better enrichment efficiency and lower levels of background “noise”. In addition, for the purpose of MWAS where we want to investigate the majority of CpGs, we find MethylMiner to be superior as it allows tailoring the enrichment to the regions where most CpGs are located. Using targeted bisulfite sequencing we confirmed that sites where methylation was detected by either MethylMiner or by MethylCap indeed were methylated.
Collapse
Affiliation(s)
- Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Linying Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Robin F Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Ashutosh K Pandey
- Center for Integrative and Translational Genomics and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Gaurav Kumar
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shaunna L Clark
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
28
|
Lu Z, Lieber MR, Tsai AG, Pardo CE, Müschen M, Kladde MP, Hsieh CL. Human lymphoid translocation fragile zones are hypomethylated and have accessible chromatin. Mol Cell Biol 2015; 35:1209-22. [PMID: 25624348 PMCID: PMC4355534 DOI: 10.1128/mcb.01085-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/26/2014] [Accepted: 01/16/2015] [Indexed: 12/19/2022] Open
Abstract
Chromosomal translocations are a hallmark of hematopoietic malignancies. CG motifs within translocation fragile zones (typically 20 to 600 bp in size) are prone to chromosomal translocation in lymphomas. Here we demonstrate that the CG motifs in human translocation fragile zones are hypomethylated relative to the adjacent DNA. Using a methyltransferase footprinting assay on isolated nuclei (in vitro), we find that the chromatin at these fragile zones is accessible. We also examined in vivo accessibility using cellular expression of a prokaryotic methylase. Based on this assay, which measures accessibility over a much longer time interval than is possible with in vitro methods, these fragile zones were found to be more accessible than the adjacent DNA. Because DNA within the fragile zones can be methylated by both cellular and exogenous methyltransferases, the fragile zones are predominantly in a duplex DNA conformation. These observations permit more-refined models for why these zones are 100- to 1,000-fold more prone to undergo chromosomal translocation than the adjacent regions.
Collapse
Affiliation(s)
- Zhengfei Lu
- USC Norris Comprehensive Cancer Ctr., Los Angeles, California, USA
| | - Michael R Lieber
- USC Norris Comprehensive Cancer Ctr., Los Angeles, California, USA
| | - Albert G Tsai
- USC Norris Comprehensive Cancer Ctr., Los Angeles, California, USA
| | - Carolina E Pardo
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Markus Müschen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Michael P Kladde
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Chih-Lin Hsieh
- USC Norris Comprehensive Cancer Ctr., Los Angeles, California, USA
| |
Collapse
|
29
|
Carrió E, Suelves M. DNA methylation dynamics in muscle development and disease. Front Aging Neurosci 2015; 7:19. [PMID: 25798107 PMCID: PMC4350440 DOI: 10.3389/fnagi.2015.00019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/15/2015] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis.
Collapse
Affiliation(s)
- Elvira Carrió
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) and Health Sciences Research Institute Germans Trias I Pujol (IGTP) Badalona, Spain
| | - Mònica Suelves
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) and Health Sciences Research Institute Germans Trias I Pujol (IGTP) Badalona, Spain
| |
Collapse
|
30
|
Nilsson EK, Ernst B, Voisin S, Almén MS, Benedict C, Mwinyi J, Fredriksson R, Schultes B, Schiöth HB. Roux-en Y gastric bypass surgery induces genome-wide promoter-specific changes in DNA methylation in whole blood of obese patients. PLoS One 2015; 10:e0115186. [PMID: 25710379 PMCID: PMC4340013 DOI: 10.1371/journal.pone.0115186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CONTEXT DNA methylation has been proposed to play a critical role in many cellular and biological processes. OBJECTIVE To examine the influence of Roux-en-Y gastric bypass (RYGB) surgery on genome-wide promoter-specific DNA methylation in obese patients. Promoters are involved in the initiation and regulation of gene transcription. METHODS Promoter-specific DNA methylation in whole blood was measured in 11 obese patients (presurgery BMI >35 kg/m(2), 4 females), both before and 6 months after RYGB surgery, as well as once only in a control group of 16 normal-weight men. In addition, body weight and fasting plasma glucose were measured after an overnight fast. RESULTS The mean genome-wide distance between promoter-specific DNA methylation of obese patients at six months after RYGB surgery and controls was shorter, as compared to that at baseline (p<0.001). Moreover, postsurgically, the DNA methylation of 51 promoters was significantly different from corresponding values that had been measured at baseline (28 upregulated and 23 downregulated, P<0.05 for all promoters, Bonferroni corrected). Among these promoters, an enrichment for genes involved in metabolic processes was found (n = 36, P<0.05). In addition, the mean DNA methylation of these 51 promoters was more similar after surgery to that of controls, than it had been at baseline (P<0.0001). When controlling for the RYGB surgery-induced drop in weight (-24% of respective baseline value) and fasting plasma glucose concentration (-16% of respective baseline value), the DNA methylation of only one out of 51 promoters (~2%) remained significantly different between the pre-and postsurgery time points. CONCLUSIONS Epigenetic modifications are proposed to play an important role in the development of and predisposition to metabolic diseases, including type II diabetes and obesity. Thus, our findings may form the basis for further investigations to unravel the molecular effects of gastric bypass surgery. CLINICAL TRIAL ClinicalTrials.gov NCT01730742.
Collapse
Affiliation(s)
- Emil K. Nilsson
- Department of Neuroscience, BMC, box 593, 75124 Uppsala, Sweden
- * E-mail:
| | - Barbara Ernst
- Interdisciplinary Obesity Center, eSwiss Medical & Surgical Center, St. Gallen, Switzerland
| | - Sarah Voisin
- Department of Neuroscience, BMC, box 593, 75124 Uppsala, Sweden
| | | | | | - Jessica Mwinyi
- Department of Neuroscience, BMC, box 593, 75124 Uppsala, Sweden
| | - Robert Fredriksson
- Interdisciplinary Obesity Center, eSwiss Medical & Surgical Center, St. Gallen, Switzerland
| | - Bernd Schultes
- Interdisciplinary Obesity Center, eSwiss Medical & Surgical Center, St. Gallen, Switzerland
| | | |
Collapse
|
31
|
Spruijt CG, Vermeulen M. DNA methylation: old dog, new tricks? Nat Struct Mol Biol 2015; 21:949-54. [PMID: 25372310 DOI: 10.1038/nsmb.2910] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
Abstract
DNA methylation is an epigenetic modification that is generally associated with repression of transcription initiation at CpG-island promoters. Here we argue that, on the basis of recent high-throughput genomic and proteomic screenings, DNA methylation can also have different outcomes, including activation of transcription. This is evidenced by the fact that transcription factors can interact with methylated DNA sequences. Furthermore, in certain cellular contexts, genes containing methylated promoters are highly transcribed. Interestingly, this uncoupling between methylated DNA and repression of transcription seems to be particularly evident in germ cells and pluripotent cells. Thus, contrary to previous assumptions, DNA methylation is not exclusively associated with repression of transcription initiation.
Collapse
Affiliation(s)
- Cornelia G Spruijt
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michiel Vermeulen
- 1] Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands. [2] Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands. [3] Cancer Genomics Netherlands, the Netherlands
| |
Collapse
|
32
|
Miyata K, Miyata T, Nakabayashi K, Okamura K, Naito M, Kawai T, Takada S, Kato K, Miyamoto S, Hata K, Asahara H. DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation. Hum Mol Genet 2014; 24:410-23. [PMID: 25190712 DOI: 10.1093/hmg/ddu457] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although DNA methylation is considered to play an important role during myogenic differentiation, chronological alterations in DNA methylation and gene expression patterns in this process have been poorly understood. Using the Infinium HumanMethylation450 BeadChip array, we obtained a chronological profile of the genome-wide DNA methylation status in a human myoblast differentiation model, where myoblasts were cultured in low-serum medium to stimulate myogenic differentiation. As the differentiation of the myoblasts proceeded, their global DNA methylation level increased and their methylation patterns became more distinct from those of mesenchymal stem cells. Gene ontology analysis revealed that genes whose promoter region was hypermethylated upon myoblast differentiation were highly significantly enriched with muscle-related terms such as 'muscle contraction' and 'muscle system process'. Sequence motif analysis identified 8-bp motifs somewhat similar to the binding motifs of ID4 and ZNF238 to be most significantly enriched in hypermethylated promoter regions. ID4 and ZNF238 have been shown to be critical transcriptional regulators of muscle-related genes during myogenic differentiation. An integrated analysis of DNA methylation and gene expression profiles revealed that de novo DNA methylation of non-CpG island (CGI) promoters was more often associated with transcriptional down-regulation than that of CGI promoters. These results strongly suggest the existence of an epigenetic mechanism in which DNA methylation modulates the functions of key transcriptional factors to coordinately regulate muscle-related genes during myogenic differentiation.
Collapse
Affiliation(s)
- Kohei Miyata
- Department of Systems BioMedicine and Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Tomoko Miyata
- Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhiko Nakabayashi
- Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | | | - Masashi Naito
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan and
| | - Tomoko Kawai
- Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | | | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shingo Miyamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kenichiro Hata
- Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine and Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan and Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
33
|
Characterization of putative cis-regulatory elements in genes preferentially expressed in Arabidopsis male meiocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:708364. [PMID: 25250331 PMCID: PMC4163388 DOI: 10.1155/2014/708364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/19/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022]
Abstract
Meiosis is essential for plant reproduction because it is the process during which homologous chromosome pairing, synapsis, and meiotic recombination occur. The meiotic transcriptome is difficult to investigate because of the size of meiocytes and the confines of anther lobes. The recent development of isolation techniques has enabled the characterization of transcriptional profiles in male meiocytes of Arabidopsis. Gene expression in male meiocytes shows unique features. The direct interaction of transcription factors (TFs) with DNA regulatory sequences forms the basis for the specificity of transcriptional regulation. Here, we identified putative cis-regulatory elements (CREs) associated with male meiocyte-expressed genes using in silico tools. The upstream regions (1 kb) of the top 50 genes preferentially expressed in Arabidopsis meiocytes possessed conserved motifs. These motifs are putative binding sites of TFs, some of which share common functions, such as roles in cell division. In combination with cell-type-specific analysis, our findings could be a substantial aid for the identification and experimental verification of the protein-DNA interactions for the specific TFs that drive gene expression in meiocytes.
Collapse
|
34
|
Rivière G. Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates. Front Physiol 2014; 5:129. [PMID: 24778620 PMCID: PMC3985014 DOI: 10.3389/fphys.2014.00129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/14/2014] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is evolutionarily conserved. Vertebrates exhibit high, widespread DNA methylation whereas invertebrate genomes are less methylated, predominantly within gene bodies. DNA methylation in invertebrates is associated with transcription level, alternative splicing, and genome evolution, but functional outcomes of DNA methylation remain poorly described in lophotrochozoans. Recent genome-wide approaches improve understanding in distant taxa such as molluscs, where the phylogenetic position, and life traits of Crassostrea gigas make this bivalve an ideal model to study the physiological and evolutionary implications of DNA methylation. We review the literature about DNA methylation in invertebrates and focus on DNA methylation features in the oyster. Indeed, though our MeDIP-seq results confirm predominant intragenic methylation, the profiles depend on the oyster's developmental and reproductive stage. We discuss the perspective that oyster DNA methylation could be biased toward the 5'-end of some genes, depending on physiological status, suggesting important functional outcomes of putative promoter methylation from cell differentiation during early development to sustained adaptation of the species to the environment.
Collapse
Affiliation(s)
- Guillaume Rivière
- Institute for Fundamental and Applied Biology, Normandy UniversityCaen, France
- UMR BOREA ‘Biologie des Organismes et Ecosystèmes Aquatiques’ Université de Caen Basse-Normandie, MNHN, UPMC, CNRS-7208, IRD-207Caen, France
| |
Collapse
|
35
|
Medvedeva YA, Khamis AM, Kulakovskiy IV, Ba-Alawi W, Bhuyan MSI, Kawaji H, Lassmann T, Harbers M, Forrest ARR, Bajic VB. Effects of cytosine methylation on transcription factor binding sites. BMC Genomics 2014; 15:119. [PMID: 24669864 PMCID: PMC3986887 DOI: 10.1186/1471-2164-15-119] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/16/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important. RESULTS We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines "traffic lights". We observed a strong selection against CpG "traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions. CONCLUSIONS Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Vladimir B Bajic
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
36
|
Kalashikam RR, Inagadapa PJN, Thomas AE, Jeyapal S, Giridharan NV, Raghunath M. Leptin gene promoter DNA methylation in WNIN obese mutant rats. Lipids Health Dis 2014; 13:25. [PMID: 24495350 PMCID: PMC3922147 DOI: 10.1186/1476-511x-13-25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity has become an epidemic in worldwide population. Leptin gene defect could be one of the causes for obesity. Two mutant obese rats WNIN/Ob and WNIN/GROb, isolated at National Centre for Laboratory Animal Sciences (NCLAS), Hyderabad, India, were found to be leptin resistant. The present study aims to understand the regulatory mechanisms underlying the resistance by promoter DNA methylation of leptin gene in these mutant obese rats. METHODS Male obese mutant homozygous, carrier and heterozygous rats of WNIN/Ob and WNIN/GROb strain of 6 months old were studied to check the leptin gene expression (RT-PCR) and promoter DNA methylation (MassARRAY Compact system, SEQUENOM) of leptin gene by invivo and insilico approach. RESULTS Homozygous WNIN/Ob and WNIN/GROb showed significantly higher leptin gene expression compared to carrier and lean counterparts. Leptin gene promoter DNA sequence region was analyzed ranging from transcription start site (TSS) to-550 bp length and found four CpGs in this sequence among them only three CpG loci (-309, -481, -502) were methylated in these WNIN mutant rat phenotypes. CONCLUSION The increased percentage of methylation in WNIN mutant lean and carrier phenotypes is positively correlated with transcription levels. Thus genetic variation may have effect on methylation percentages and subsequently on the regulation of leptin gene expression which may lead to obesity in these obese mutant rat strains.
Collapse
Affiliation(s)
- Rajender Rao Kalashikam
- Molecular Genetics, National Center for Laboratory Animal Sciences, National Institute of Nutrition, Jamai Osmania P O, Hyderabad 500 007, India.
| | | | | | | | | | | |
Collapse
|
37
|
Gavery MR, Roberts SB. Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. PeerJ 2013; 1:e215. [PMID: 24282674 PMCID: PMC3840415 DOI: 10.7717/peerj.215] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/01/2013] [Indexed: 12/18/2022] Open
Abstract
Characterization of DNA methylation patterns in the Pacific oyster, Crassostrea gigas, indicates that this epigenetic mechanism plays an important functional role in gene regulation and may be involved in the regulation of developmental processes and environmental responses. However, previous studies have been limited to in silico analyses or characterization of DNA methylation at the single gene level. Here, we have employed a genome-wide approach to gain insight into how DNA methylation supports the regulation of the genome in C. gigas. Using a combination of methylation enrichment and high-throughput bisulfite sequencing, we have been able to map methylation at over 2.5 million individual CpG loci. This is the first high-resolution methylome generated for a molluscan species. Results indicate that methylation varies spatially across the genome with a majority of the methylated sites mapping to intra genic regions. The bisulfite sequencing data was combined with RNA-seq data to examine genome-wide relationships between gene body methylation and gene expression, where it was shown that methylated genes are associated with high transcript abundance and low variation in expression between tissue types. The combined data suggest DNA methylation plays a complex role in regulating genome activity in bivalves.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- School of Aquatic and Fishery Sciences, University of Washington , Seattle, WA , USA
| | | |
Collapse
|
38
|
Expression and DNA methylation levels of prolyl hydroxylases PHD1, PHD2, PHD3 and asparaginyl hydroxylase FIH in colorectal cancer. BMC Cancer 2013; 13:526. [PMID: 24195777 PMCID: PMC3828400 DOI: 10.1186/1471-2407-13-526] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common and comprehensively studied malignancies. Hypoxic conditions during formation of CRC may support the development of more aggressive cancers. Hypoxia inducible factor (HIF), a major player in cancerous tissue adaptation to hypoxia, is negatively regulated by the family of prolyl hydroxylase enzymes (PHD1, PHD2, PHD3) and asparaginyl hydroxylase, called factor inhibiting HIF (FIH). Methods PHD1, PHD2, PHD3 and FIH gene expression was evaluated using quantitative RT-PCR and western blotting in primary colonic adenocarcinoma and adjacent histopathologically unchanged colonic mucosa from patients who underwent radical surgical resection of the colon (n = 90), and the same methods were used for assessment of PHD3 gene expression in HCT116 and DLD-1 CRC cell lines. DNA methylation levels of the CpG island in the promoter regulatory region of PHD1, PHD2, PHD3 and FIH were assessed using bisulfite DNA sequencing and high resolution melting analysis (HRM) for patients and HRM analysis for CRC cell lines. Results We found significantly lower levels of PHD1, PHD2 and PHD3 transcripts (p = 0.00026; p < 0.00001; p < 0.00001) and proteins (p = 0.004164; p = 0.0071; p < 0.00001) in primary cancerous than in histopathologically unchanged tissues. Despite this, we did not observe statistically significant differences in FIH transcript levels between cancerous and histopathologically unchanged colorectal tissue, but we found a significantly increased level of FIH protein in CRC (p = 0.0169). The reduced PHD3 expression was correlated with significantly increased DNA methylation in the CpG island of the PHD3 promoter regulatory region (p < 0.0001). We did not observe DNA methylation in the CpG island of the PHD1, PHD2 or FIH promoter in cancerous and histopathologically unchanged colorectal tissue. We also showed that 5-Aza-2’-deoxycytidine induced DNA demethylation leading to increased PHD3 transcript and protein level in HCT116 cells. Conclusion We demonstrated that reduced PHD3 expression in cancerous tissue was accompanied by methylation of the CpG rich region located within the first exon and intron of the PHD3 gene. The diminished expression of PHD1 and PHD2 and elevated level of FIH protein in cancerous tissue compared to histopathologically unchanged colonic mucosa was not associated with DNA methylation within the CpG islands of the PHD1, PHD2 and FIH genes.
Collapse
|
39
|
TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 2013; 14:341-56. [PMID: 23698584 DOI: 10.1038/nrm3589] [Citation(s) in RCA: 659] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In many organisms, the methylation of cytosine in DNA has a key role in silencing 'parasitic' DNA elements, regulating transcription and establishing cellular identity. The recent discovery that ten-eleven translocation (TET) proteins are 5-methylcytosine oxidases has provided several chemically plausible pathways for the reversal of DNA methylation, thus triggering a paradigm shift in our understanding of how changes in DNA methylation are coupled to cell differentiation, embryonic development and cancer.
Collapse
|
40
|
Loke YJ, Galati JC, Morley R, Joo EJH, Novakovic B, Li X, Weinrich B, Carson N, Ollikainen M, Ng HK, Andronikos R, Aziz NKA, Saffery R, Craig JM. Association of maternal and nutrient supply line factors with DNA methylation at the imprinted IGF2/H19 locus in multiple tissues of newborn twins. Epigenetics 2013; 8:1069-79. [PMID: 23917818 DOI: 10.4161/epi.25908] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epigenetic events are crucial for early development, but can be influenced by environmental factors, potentially programming the genome for later adverse health outcomes. The insulin-like growth factor 2 (IGF2)/H19 locus is crucial for prenatal growth and the epigenetic state at this locus is environmentally labile. Recent studies have implicated maternal factors, including folate intake and smoking, in the regulation of DNA methylation at this locus, although data are often conflicting in the direction and magnitude of effect. Most studies have focused on single tissues and on one or two differentially-methylated regions (DMRs) regulating IGF2/H19 expression. In this study, we investigated the relationship between multiple shared and non-shared gestational/maternal factors and DNA methylation at four IGF2/H19 DMRs in five newborn cell types from 67 pairs of monozygotic and 49 pairs of dizygotic twins. Data on maternal and non-shared supply line factors were collected during the second and third trimesters of pregnancy and DNA methylation was measured via mass spectrometry using Sequenom MassArray EpiTyper analysis. Our exploratory approach showed that the site of umbilical cord insertion into the placenta in monochorionic twins has the strongest positive association with methylation in all IGF2/H19 DMRs (p<0.05). Further, evidence for tissue- and locus-specific effects were observed, emphasizing that responsiveness to environmental exposures in utero cannot be generalized across genes and tissues, potentially accounting for the lack of consistency in previous findings. Such complexity in responsiveness to environmental exposures in utero has implications for all epigenetic studies investigating the developmental origins of health and disease.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - John C Galati
- Clinical Epidemiology and Biostatistics Unit; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia; Department of Mathematics and Statistics; La Trobe University; Melbourne, VIC Australia
| | - Ruth Morley
- Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Eric Ji-Hoon Joo
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Cancer, Disease and Developmental Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Boris Novakovic
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Cancer, Disease and Developmental Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Xin Li
- Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Blaise Weinrich
- Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Nicole Carson
- Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Miina Ollikainen
- Hjelt Institute; Department of Public Health; University of Helsinki; Helsinki, Finland
| | - Hong-Kiat Ng
- Cancer, Disease and Developmental Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Roberta Andronikos
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Nur Khairunnisa Abdul Aziz
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Richard Saffery
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Cancer, Disease and Developmental Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| | - Jeffrey M Craig
- Department of Paediatrics; University of Melbourne; Parkville, VIC Australia; Early Life Epigenetics Group; Murdoch Childrens Research Institute (MCRI); Royal Children's Hospital; Parkville, VIC Australia
| |
Collapse
|
41
|
Bahar B, O’Doherty JV, O’Doherty AM, Sweeney T. Chito-oligosaccharide inhibits the de-methylation of a 'CpG' island within the leptin (LEP) promoter during adipogenesis of 3T3-L1 cells. PLoS One 2013; 8:e60011. [PMID: 23544120 PMCID: PMC3609775 DOI: 10.1371/journal.pone.0060011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/20/2013] [Indexed: 11/29/2022] Open
Abstract
Chito-oligosaccharide (COS) is a natural bioactive compound, which has been shown to suppress lipid metabolic genes and lipid accumulation in differentiating adipocytes. Leptin has been identified as a key regulator of energy homeostasis and is known to be under epigenetic regulation during adipogenesis. Hence, the first objective of this experiment was to compare leptin gene (LEP) expression and leptin secretion during the different stages of adipogenesis and to investigate the effect of COS on these processes. As COS inhibited LEP expression during adipogenesis, the second aim was to investigate the methylation dynamics of a ‘CpG’ island in the proximal region of the LEP promoter during adipogenesis and to determine the effect of COS on this process. Mouse 3T3-L1 cells were stimulated to differentiate in the absence or presence of COS and the levels of leptin mRNA and protein were evaluated on days 0, 2, 4 and 6 post-induction of differentiation (PID). The extent of de-methylation of six CpG sites was evaluated. LEP mRNA transcript and protein could not be detected on either day 0PID or 2PID. In contrast, both were detected on day 4PID (P<0.05) and 6PID (P<0.001) and both were inhibited by COS (P<0.001). Of the six CpG sites analyzed, CpG_52, CpG_62 and CpG_95 became 11.5, 5.0 and 5.0% de-methylated between day 2PID and 6PID, respectively. COS blocked this de-methylation event at CpG_52 (P<0.001), CpG_62 (P<0.01) and CpG_95 (P<0.01) on day 6PID. These data suggest that COS can have an epigenetic effect on differentiating adipocytes, a novel biological function of COS which has potential applications for the manipulation of leptin gene expression, adipogenesis, and conditions within the metabolic syndrome spectrum.
Collapse
Affiliation(s)
- Bojlul Bahar
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Alan M. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
42
|
Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, Robinson WP, Kobor MS. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin 2013; 6:4. [PMID: 23452981 PMCID: PMC3740789 DOI: 10.1186/1756-8935-6-4] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/13/2013] [Indexed: 02/06/2023] Open
Abstract
Background Measurement of genome-wide DNA methylation (DNAm) has become an important avenue for investigating potential physiologically-relevant epigenetic changes. Illumina Infinium (Illumina, San Diego, CA, USA) is a commercially available microarray suite used to measure DNAm at many sites throughout the genome. However, it has been suggested that a subset of array probes may give misleading results due to issues related to probe design. To facilitate biologically significant data interpretation, we set out to enhance probe annotation of the newest Infinium array, the HumanMethylation450 BeadChip (450 k), with >485,000 probes covering 99% of Reference Sequence (RefSeq) genes (National Center for Biotechnology Information (NCBI), Bethesda, MD, USA). Annotation that was added or expanded on includes: 1) documented SNPs in the probe target, 2) probe binding specificity, 3) CpG classification of target sites and 4) gene feature classification of target sites. Results Probes with documented SNPs at the target CpG (4.3% of probes) were associated with increased within-tissue variation in DNAm. An example of a probe with a SNP at the target CpG demonstrated how sample genotype can confound the measurement of DNAm. Additionally, 8.6% of probes mapped to multiple locations in silico. Measurements from these non-specific probes likely represent a combination of DNAm from multiple genomic sites. The expanded biological annotation demonstrated that based on DNAm, grouping probes by an alternative high-density and intermediate-density CpG island classification provided a distinctive pattern of DNAm. Finally, variable enrichment for differentially methylated probes was noted across CpG classes and gene feature groups, dependant on the tissues that were compared. Conclusion DNAm arrays offer a high-throughput approach for which careful consideration of probe content should be utilized to better understand the biological processes affected. Probes containing SNPs and non-specific probes may affect the assessment of DNAm using the 450 k array. Additionally, probe classification by CpG enrichment classes and to a lesser extent gene feature groups resulted in distinct patterns of DNAm. Thus, we recommend that compromised probes be removed from analyses and that the genomic context of DNAm is considered in studies deciphering the biological meaning of Illumina 450 k array data.
Collapse
Affiliation(s)
- Magda E Price
- The Child & Family Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Buchheit T, Van de Ven T, Shaw A. Epigenetics and the transition from acute to chronic pain. PAIN MEDICINE 2012; 13:1474-90. [PMID: 22978429 DOI: 10.1111/j.1526-4637.2012.01488.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The objective of this study was to review the epigenetic modifications involved in the transition from acute to chronic pain and to identify potential targets for the development of novel, individualized pain therapeutics. BACKGROUND Epigenetics is the study of heritable modifications in gene expression and phenotype that do not require a change in genetic sequence to manifest their effects. Environmental toxins, medications, diet, and psychological stresses can alter epigenetic processes such as DNA methylation, histone acetylation, and RNA interference. As epigenetic modifications potentially play an important role in inflammatory cytokine metabolism, steroid responsiveness, and opioid sensitivity, they are likely key factors in the development of chronic pain. Although our knowledge of the human genetic code and disease-associated polymorphisms has grown significantly in the past decade, we have not yet been able to elucidate the mechanisms that lead to the development of persistent pain after nerve injury or surgery. DESIGN This is a focused literature review of epigenetic science and its relationship to chronic pain. RESULTS Significant laboratory and clinical data support the notion that epigenetic modifications are affected by the environment and lead to differential gene expression. Similar to mechanisms involved in the development of cancer, neurodegenerative disease, and inflammatory disorders, the literature endorses an important potential role for epigenetics in chronic pain. CONCLUSIONS Epigenetic analysis may identify mechanisms critical to the development of chronic pain after injury, and may provide new pathways and target mechanisms for future drug development and individualized medicine.
Collapse
Affiliation(s)
- Thomas Buchheit
- Department of Anesthesiology, Duke University Medical Center, Durham VA Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
44
|
D'Addario C, Caputi FF, Ekström TJ, Di Benedetto M, Maccarrone M, Romualdi P, Candeletti S. Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex. J Mol Neurosci 2012; 49:312-9. [PMID: 22684622 DOI: 10.1007/s12031-012-9829-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/30/2012] [Indexed: 12/16/2022]
Abstract
Several studies demonstrated the role of the endogenous opioid system in the development of susceptibility to alcohol dependence. Recently, we reported that binge intragastric administration of ethanol induces selective alterations of pronociceptin and prodynorphin gene expression in the rat amygdala complex depending on the days of exposures and on the development of tolerance and dependence. The aim of the present study was to investigate the potential epigenetic mechanisms leading to these alcohol-induced changes in gene expression. Specific histone modifications and DNA methylation at opioid peptide precursor promoters were analyzed by chromatin immunoprecipitation and real-time methylation-specific PCR, respectively. We found a linkage between gene expression alterations and epigenetic modulation at pronociceptin and prodynorphin promoters following alcohol treatment. In animals treated for 1 day, we observed a reversed correlation, with a decrease of histone 3 lysine 27 trimethylation (repressive mark) and an increase of histone 3 lysine 9 acetylation (activating mark), associated with both gene expression up-regulation. In rats treated with alcohol for up to 5 days, we found an increase in histone 3 lysine 9 acetylation in the pronociceptin promoter providing further evidence of the already proposed possible role for histone deacetylases for addiction treatment. No significant alterations in DNA methylation and histone 3 lysine 4 trimethylation following different alcohol exposures were present, suggesting the selectivity of epigenetic effects induced by alcohol. These data demonstrate that ethanol induces selective epigenetic changes, thus better defining the role of opioid peptides in the ethanol-induced effects in the amygdala complex.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Kim SY, Romero R, Tarca AL, Bhatti G, Kim CJ, Lee J, Elsey A, Than NG, Chaiworapongsa T, Hassan SS, Kang GH, Kim JS. Methylome of fetal and maternal monocytes and macrophages at the feto-maternal interface. Am J Reprod Immunol 2012; 68:8-27. [PMID: 22385097 DOI: 10.1111/j.1600-0897.2012.01108.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/19/2012] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Decidual macrophages (dMφ) of the mother and placental macrophages (Hofbauer cells, HC) of the fetus are deployed at a critical location: the feto-maternal interface. This study was conducted to compare the DNA methylome of maternal and fetal monocytes, dMφ, and HC and thereby to determine the immunobiological importance of DNA methylation in pregnancy. METHOD OF STUDY Paired samples were obtained from normal pregnant women at term not in labor and their neonates. Maternal monocytes (MMo) and fetal monocytes (FMo) were isolated from the peripheral blood of mothers and fetal cord blood, respectively. dMφ and HC were obtained from the decidua of fetal membranes and placentas, respectively. DNA methylation profiling was performed using the Illumina Infinium Human Methylation27 BeadChip. Quantitative real-time PCR and Western Blot were performed for validation experiments. RESULTS (i) Significant differences in DNA methylation were found in each comparison (MMo versus FMo, 65 loci; dMφ versus HC, 266 loci; MMo versus dMφ, 199 loci; FMo versus HC, 1030 loci). (ii) Many of the immune response-related genes were hypermethylated in fetal cells (FMo and HC) compared to maternal cells (MMo and dMφ). (iii) Genes encoding markers of classical macrophage activation were hypermethylated, and genes encoding alternative macrophage activation were hypomethylated in dMφ and HC compared to MMo and FMo, respectively. (iv) mRNA expressions of DNMT1, DNMT3A, and DNMT3B were significantly lower in dMφ than in HC. (v) 5-azacytidine treatment increased expression of INCA1 in dMφ. CONCLUSIONS The findings herein indicate that DNA methylation patterns change during monocyte-macrophage differentiation at the feto-maternal interface. It is also suggested that DNA methylation is an important component of the biological machinery conferring an anti-inflammatory phenotype to macrophages at the feto-maternal interface.
Collapse
Affiliation(s)
- Sun Young Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kumar D, Patro S, Ranjan R, Sahoo DK, Maiti IB, Dey N. Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One 2011; 6:e24627. [PMID: 21931783 PMCID: PMC3170401 DOI: 10.1371/journal.pone.0024627] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 08/16/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s). Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy. METHODOLOGY/PRINCIPAL FINDINGS We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS) of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27) and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, -271 to +31). Efficacies of recombinant promoters coupled to GUS and GFP reporter genes were tested in tobacco protoplasts. Among these, a 369-bp long hybrid sub-genomic transcript promoter (MSgt-FSgt) showed the highest activity in both transient and transgenic systems. In a transient system, MSgt-FSgt was 10.31, 2.86 and 2.18 times more active compared to the CaMV35S, MS8 and FS3 promoters, respectively. In transgenic tobacco (Nicotiana tabaccum, var. Samsun NN) and Arabidopsis plants, the MSgt-FSgt hybrid promoter showed 14.22 and 7.16 times stronger activity compared to CaMV35S promoter respectively. The correlation between GUS activity and uidA-mRNA levels in transgenic tobacco plants were identified by qRT-PCR. Both CaMV35S and MSgt-FSgt promoters caused gene silencing but the degree of silencing are less in the case of the MSgt-FSgt promoter compared to CaMV35S. Quantification of GUS activity in individual plant cells driven by the MSgt-FSgt and the CaMV35S promoter were estimated using confocal laser scanning microscopy and compared. CONCLUSION AND SIGNIFICANCE We propose strong recombinant promoter MSgt-FSgt, developed in this study, could be very useful for high-level constitutive expression of transgenes in a wide variety of plant cells.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Sunita Patro
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Rajiv Ranjan
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Dipak K. Sahoo
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
- Kentucky Tobacco Research and Development Center (KTRDC), College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Indu B. Maiti
- Kentucky Tobacco Research and Development Center (KTRDC), College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| |
Collapse
|
47
|
Léger A, Le Guiner C, Nickerson ML, McGee Im K, Ferry N, Moullier P, Snyder RO, Penaud-Budloo M. Adeno-associated viral vector-mediated transgene expression is independent of DNA methylation in primate liver and skeletal muscle. PLoS One 2011; 6:e20881. [PMID: 21687632 PMCID: PMC3110818 DOI: 10.1371/journal.pone.0020881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/10/2011] [Indexed: 11/18/2022] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors can support long-term transgene expression in quiescent tissues. Intramuscular (i.m.) administration of a single-stranded AAV vector (ssAAV) in the nonhuman primate (NHP) results in a peak protein level at 2-3 months, followed by a decrease over several months before reaching a steady-state. To investigate transgene expression and vector genome persistence, we previously demonstrated that rAAV vector genomes associate with histones and form a chromatin structure in NHP skeletal muscle more than one year after injection. In the mammalian nucleus, chromatin remodeling via epigenetic modifications plays key role in transcriptional regulation. Among those, CpG hyper-methylation of promoters is a known hallmark of gene silencing. To assess the involvement of DNA methylation on the transgene expression, we injected NHP via the i.m. or the intravenous (i.v.) route with a recombinant ssAAV2/1 vector. The expression cassette contains the transgene under the transcriptional control of the constitutive Rous Sarcoma Virus promoter (RSVp). Total DNA isolated from NHP muscle and liver biopsies from 1 to 37 months post-injection was treated with sodium bisulfite and subsequently analyzed by pyrosequencing. No significant CpG methylation of the RSVp was found in rAAV virions or in vector DNA isolated from NHP transduced tissues. Direct de novo DNA methylation appears not to be involved in repressing transgene expression in NHP after gene transfer mediated by ssAAV vectors. The study presented here examines host/vector interactions and the impact on transgene expression in a clinically relevant model.
Collapse
Affiliation(s)
| | | | - Michael L. Nickerson
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Kate McGee Im
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | | | - Philippe Moullier
- INSERM UMR649, Nantes, France
- Généthon, Evry, France
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Richard O. Snyder
- INSERM UMR649, Nantes, France
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Center of Excellence for Regenerative Health Biotechnology, University of Florida, Alachua, Florida, United States of America
| | | |
Collapse
|
48
|
Yue X, Yang F, Yang Y, Mu Y, Sun W, Li W, Xu D, Wu J, Zhu Y. Induction of cyclooxygenase-2 expression by hepatitis B virus depends on demethylation-associated recruitment of transcription factors to the promoter. Virol J 2011; 8:118. [PMID: 21401943 PMCID: PMC3066118 DOI: 10.1186/1743-422x-8-118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/14/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The hepatitis B virus (HBV) is a major etiological factor of inflammation and damage to the liver resulting in hepatocellular carcinoma. Transcription factors play important roles in the disordered gene expression and liver injury caused by HBV. However, the molecular mechanisms behind this observation have not been defined. RESULTS In this study, we observed that circulating prostaglandin (PGE) 2 synthesis was increased in patients with chronic hepatitis B infection, and detected elevated cyclooxygenase (COX)-2 expression in HBV- and HBx-expressing liver cells. Likewise, the association of HBx with C/EBPβ contributed to the induction of COX-2. The COX-2 promoter was hypomethylated in HBV-positive cells, and specific demethylation of CpG dinucleotides within each of the two NF-AT sites in the COX-2 promoter resulted in the increased binding affinity of NF-AT to the cognate sites in the promoter, followed by increased COX-2 expression and PGE2 accumulation. The DNA methylatransferase DNMT3B played a key role in the methylation of the COX-2 promoter, and its decreased binding to the promoter was responsible for the regional demethylation of CpG sites, and for the increased binding of transcription factors in HBV-positive cells. CONCLUSION Our results indicate that upregulation of COX-2 by HBV and HBx is mediated by both demethylation events and recruitment of multiple transcription factors binding to the promoter.
Collapse
Affiliation(s)
- Xin Yue
- State Key Laboratory of Virology and College of Life Sciences, Chinese-French Liver Disease Research Institute of Wuhan University (Zhongnan Hospital), Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 2011; 6:e14524. [PMID: 21267076 PMCID: PMC3022582 DOI: 10.1371/journal.pone.0014524] [Citation(s) in RCA: 443] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 12/11/2010] [Indexed: 11/19/2022] Open
Abstract
Tissue specific patterns of methylated cytosine residues vary with age, can be altered by environmental factors, and are often abnormal in human disease yet the cellular consequences of DNA methylation are incompletely understood. Although the bodies of highly expressed genes are often extensively methylated in plants, the relationship between intragenic methylation and expression is less clear in mammalian cells. We performed genome-wide analyses of DNA methylation and gene expression to determine how the pattern of intragenic methylation correlates with transcription and to assess the relationship between methylation of exonic and intronic portions of the gene body. We found that dense exonic methylation is far more common than previously recognized or expected statistically, yet first exons are relatively spared compared to more downstream exons and introns. Dense methylation surrounding the transcription start site (TSS) is uncoupled from methylation within more downstream regions suggesting that there are at least two classes of intragenic methylation. Whereas methylation surrounding the TSS is tightly linked to transcriptional silencing, methylation of more downstream regions is unassociated with the magnitude of gene expression. Notably, we found that DNA methylation downstream of the TSS, in the region of the first exon, is much more tightly linked to transcriptional silencing than is methylation in the upstream promoter region. These data provide direct evidence that DNA methylation is interpreted dissimilarly in different regions of the gene body and suggest that first exon methylation blocks transcript initiation, or vice versa. Our data also show that once initiated, downstream methylation is not a significant impediment to polymerase extension. Thus, the consequences of most intragenic DNA methylation must extend beyond the modulation of transcription magnitude. Sequencing data and gene expression microarray data have been submitted to the GEO online database (accession number SRA012081.1). Supporting information including expanded methods and ten additional figures in support of the manuscript is provided.
Collapse
Affiliation(s)
- Fabienne Brenet
- Laboratory of Molecular Hematopoiesis, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Michelle Moh
- Laboratory of Molecular Hematopoiesis, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Patricia Funk
- Laboratory of Molecular Hematopoiesis, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Erika Feierstein
- Genomics Core Laboratory, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Agnes J. Viale
- Genomics Core Laboratory, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nicholas D. Socci
- BioInformatics Core, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Joseph M. Scandura
- Laboratory of Molecular Hematopoiesis, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Leukemia Program, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Schwarz JM, Nugent BM, McCarthy MM. Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span. Endocrinology 2010; 151:4871-81. [PMID: 20702577 PMCID: PMC2946142 DOI: 10.1210/en.2010-0142] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sexual differentiation of the rodent brain occurs during a perinatal critical period when androgen production from the male testis is locally converted to estradiol in neurons, resulting in masculinization of adult sexual behavior. Adult brain responses to hormones are programmed developmentally by estradiol exposure, but the mechanism(s) by which these changes are permanently organized remains poorly understood. Activation of steroid receptors plays a major role in organization of the brain, and we hypothesized that estradiol-induced alteration of steroid-receptor gene methylation is a critical component to this process. Estrogen receptor (ER)-α and ER-β and progesterone receptor are expressed at high levels within the preoptic area (POA) and the mediobasal hypothalamus, two brain regions critical for the expression of male and female sexual behavior. The percent methylation on the ER-α promoter increased markedly across development. During the critical period of sexual differentiation, females had significantly increased methylation than males or females masculinized with estradiol at two CpG sites. By adulthood, the neonatal sex difference and hormonal modulation of methylation were replaced with a new pattern at a different CpG site on the ER-α promoter. In contrast, the percent methylation on the progesterone receptor and ER-β promoter did not change developmentally but was modulated by hormones and exhibited only late emerging transient sex differences. These data indicate that sex differences in the methylation pattern of genes important for sexual behavior are epigenetically modified during development, but the specific changes observed do not endure and are not necessarily temporally associated with neonatal hormone exposure.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Program in Neuroscience, Department of Physiology, University of Maryland, Baltimore, 655 West Baltimore Street, 5-015, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|