1
|
Li SC, Wang B, Zhang M, Yin Q, Yang ZY, Li XT, Liang G. Induction of cytochrome P450 via upregulation of CAR and PXR: a potential mechanism for altered florfenicol metabolism by macranthoidin B in vivo. Front Pharmacol 2024; 15:1460948. [PMID: 39444610 PMCID: PMC11496122 DOI: 10.3389/fphar.2024.1460948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Macranthoidin B (MB) is a primary active component of Flos Lonicerae. In Chinese veterinary clinics, Flos Lonicerae is frequently used in combination with florfenicol to prevent and treat infections in livestock and poultry. However, potential interactions between Flos Lonicerae and florfenicol remain unclear. To systematically study these interactions, it is crucial to investigate the individual phytochemicals within Flos Lonicerae. Therefore, MB was selected for this study to assess its effect on the pharmacokinetics of florfenicol in vivo and to explore the underlying mechanisms involved. Methods Male Sprague-Dawley rats were administered MB (60 mg/kg BW) or sterile water orally for 7 consecutive days. On the 8th day, a single oral dose of florfenicol (25 mg/kg BW) was given. Florfenicol pharmacokinetics were analyzed using ultra-high performance liquid chromatography. The hepatic expression levels of cytochrome P450 (CYP1A2, CYP2C11, CYP3A1), UDP-glucuronosyltransferase (UGT1A1), P-glycoprotein (P-gp), and nuclear receptors, including constitutive androstane receptor (CAR), pregnane X receptor (PXR), and retinoid X receptor alpha (RXRα), were quantified via reverse transcription-quantitative polymerase chain reaction and Western blotting (WB). Hepatic CYP1A2 and CYP2C11 activities were measured using a cocktail method. Additionally, the subcellular expression and localization of CAR, PXR, and RXRαin hepatocytes was assessed using WB and immunofluorescence staining. Results MB significantly reduces the AUC(0-∞) and MRT(0-∞) of florfenicol. MB also markedly upregulates the mRNA and protein expression of hepatic CYP1A2 and CYP2C11, along with their catalytic activities. Substantial upregulation of CAR and PXR proteins occurs in the hepatocyte nucleus, along with significant nuclear colocalization of the transcriptionally active CAR/RXRα and PXR/RXRαheterodimers, indicating MB-induced nuclear translocation of both CAR and PXR. Discussion These findings suggest that MB-induced alterations in florfenicol pharmacokinetics, particularly its accelerated elimination, may be due to increased expression and activities of CYP1A2 and CYP2C11, with CAR and PXR potentially involved in these regulatory effects. Further investigation is yet needed to fully elucidate the clinical implications of these interactions concerning the efficacy of florfenicol in veterinary medicine.
Collapse
Affiliation(s)
- Si-cong Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Bin Wang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Min Zhang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Qin Yin
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zi-yi Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Xu-ting Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Ge Liang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| |
Collapse
|
2
|
Yadav J, Maldonato BJ, Roesner JM, Vergara AG, Paragas EM, Aliwarga T, Humphreys S. Enzyme-mediated drug-drug interactions: a review of in vivo and in vitro methodologies, regulatory guidance, and translation to the clinic. Drug Metab Rev 2024:1-33. [PMID: 39057923 DOI: 10.1080/03602532.2024.2381021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Enzyme-mediated pharmacokinetic drug-drug interactions can be caused by altered activity of drug metabolizing enzymes in the presence of a perpetrator drug, mostly via inhibition or induction. We identified a gap in the literature for a state-of-the art detailed overview assessing this type of DDI risk in the context of drug development. This manuscript discusses in vitro and in vivo methodologies employed during the drug discovery and development process to predict clinical enzyme-mediated DDIs, including the determination of clearance pathways, metabolic enzyme contribution, and the mechanisms and kinetics of enzyme inhibition and induction. We discuss regulatory guidance and highlight the utility of in silico physiologically-based pharmacokinetic modeling, an approach that continues to gain application and traction in support of regulatory filings. Looking to the future, we consider DDI risk assessment for targeted protein degraders, an emerging small molecule modality, which does not have recommended guidelines for DDI evaluation. Our goal in writing this report was to provide early-career researchers with a comprehensive view of the enzyme-mediated pharmacokinetic DDI landscape to aid their drug development efforts.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Joseph M Roesner
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Rahway, NJ, USA
| | - Erickson M Paragas
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Theresa Aliwarga
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Sara Humphreys
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
3
|
Huillet M, Lasserre F, Gratacap MP, Engelmann B, Bruse J, Polizzi A, Fougeray T, Martin CMP, Rives C, Fougerat A, Naylies C, Lippi Y, Garcia G, Rousseau-Bacquie E, Canlet C, Debrauwer L, Rolle-Kampczyk U, von Bergen M, Payrastre B, Boutet-Robinet E, Gamet-Payrastre L, Guillou H, Loiseau N, Ellero-Simatos S. Pharmacological activation of constitutive androstane receptor induces female-specific modulation of hepatic metabolism. JHEP Rep 2024; 6:100930. [PMID: 38149074 PMCID: PMC10749885 DOI: 10.1016/j.jhepr.2023.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 12/28/2023] Open
Abstract
Background & Aims The constitutive androstane receptor (CAR) is a nuclear receptor that binds diverse xenobiotics and whose activation leads to the modulation of the expression of target genes involved in xenobiotic detoxification and energy metabolism. Although CAR hepatic activity is considered to be higher in women than in men, its sex-dependent response to an acute pharmacological activation has seldom been investigated. Methods The hepatic transcriptome, plasma markers, and hepatic metabolome, were analysed in Car+/+ and Car-/- male and female mice treated either with the CAR-specific agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or with vehicle. Results Although 90% of TCPOBOP-sensitive genes were modulated in a sex-independent manner, the remaining 10% showed almost exclusive female liver specificity. These female-specific CAR-sensitive genes were mainly involved in xenobiotic metabolism, inflammation, and extracellular matrix organisation. CAR activation also induced higher hepatic oxidative stress and hepatocyte cytolysis in females than in males. Hepatic expression of flavin monooxygenase 3 (Fmo3) was almost abolished and was associated with a decrease in hepatic trimethylamine-N-oxide (TMAO) concentration in TCPOBOP-treated females. In line with a potential role in the control of TMAO homeostasis, CAR activation decreased platelet hyper-responsiveness in female mice supplemented with dietary choline. Conclusions More than 10% of CAR-sensitive genes are sex-specific and influence hepatic and systemic responses such as platelet aggregation. CAR activation may be an important mechanism of sexually-dimorphic drug-induced liver injury. Impact and implications CAR is activated by many drugs and pollutants. Its pharmacological activation had a stronger impact on hepatic gene expression and metabolism in females than in males, and had a specific impact on liver toxicity and trimethylamine metabolism. Sexual dimorphism should be considered when testing and/or prescribing xenobiotics known to activate CAR.
Collapse
Affiliation(s)
- Marine Huillet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Frédéric Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Marie-Pierre Gratacap
- INSERM, UMR-1297 and Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), CHU-Rangueil, Toulouse, France
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Justine Bruse
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Tiffany Fougeray
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Céline Marie Pauline Martin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Clémence Rives
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Géraldine Garcia
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Elodie Rousseau-Bacquie
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Bernard Payrastre
- INSERM, UMR-1297 and Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), CHU-Rangueil, Toulouse, France
- Laboratoire d’Hématologie, CHU de Toulouse, Toulouse, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
4
|
Brožová ZR, Dušek J, Palša N, Maixnerová J, Kamaraj R, Smutná L, Matouš P, Braeuning A, Pávek P, Kuneš J, Gathergood N, Špulák M, Pour M, Carazo A. 2-Substituted quinazolines: Partial agonistic and antagonistic ligands of the constitutive androstane receptor (CAR). Eur J Med Chem 2023; 259:115631. [PMID: 37473690 DOI: 10.1016/j.ejmech.2023.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Following the discovery of 2-(3-methoxyphenyl)-3,4-dihydroquinazoline-4-one and 2-(3-methoxyphenyl)quinazoline-4-thione as potent, but non-specific activators of the human Constitutive Androstane Receptor (CAR, NR1I3), a series of quinazolinones substituted at the C2 phenyl ring was prepared to examine their ability to selectively modulate human CAR activity. Employing cellular and in vitro TR-FRET assays with wild-type CAR or its variant 3 (CAR3) ligand binding domains (LBD), several novel partial human CAR agonists and antagonists were identified. 2-(3-Methylphenyl) quinazolinone derivatives 7d and 8d acted as partial agonists with the recombinant CAR LBD, the former in nanomolar units (EC50 = 0.055 μM and 10.6 μM, respectively). Moreover, 7d did not activate PXR, and did not show any signs of cytotoxicity. On the other hand, 2-(4-bromophenyl)quinazoline-4-thione 7l possessed significant CAR antagonistic activity, although the compound displayed no agonistic or inverse agonistic activities. A compound possessing purely antagonistic effect was thus identified for the first time. These and related compounds may serve as a remedy in xenobiotic intoxication or, conversely, in suppression of undesirable hepatic CAR activation.
Collapse
Affiliation(s)
- Zuzana Rania Brožová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jan Dušek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Norbert Palša
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jana Maixnerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Smutná
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Matouš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Nicholas Gathergood
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, LN6 7DL, United Kingdom
| | - Marcel Špulák
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
5
|
Sekiguchi M, Fujinami Y, Takado K, Kimoto Y, Higashimura Y. Activity difference of three labdane diterpenoids on human constitutive androstane receptor. Biosci Biotechnol Biochem 2023; 87:1310-1315. [PMID: 37580155 DOI: 10.1093/bbb/zbad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The constitutive androstane receptor (CAR) regulates enzyme transcription related to drug metabolism; therefore, natural compound clarification in food that interacts with CAR is significant for drug development. We revealed that 13-epimanool, which is a compound found in the common sage, is bound to hCAR based on differential scanning fluorometry (DSF) measurements using recombinant hCAR protein. Similar labdane diterpenoids were examined, which revealed that manool and sclareol, which were both natural compounds contained in herbs, are bound to hCAR. They exhibited different effects for CAR activity in the luciferase assay despite the structural similarity. Manool was a partial agonist, 13-epimanool was a weak partial agonist, and sclareol was an antagonist. The activity of hCAR may be regulated by slight differences in the bound compound.
Collapse
Affiliation(s)
- Mitsuhiro Sekiguchi
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yui Fujinami
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Keiyu Takado
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yuu Kimoto
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Yasuki Higashimura
- Department of Food Science, Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
6
|
Hori T, Yokobori K, Moore R, Negishi M, Sueyoshi T. CAR requires Gadd45β to promote phenobarbital-induced mouse liver tumors in early stage. Front Oncol 2023; 13:1217847. [PMID: 37746289 PMCID: PMC10516603 DOI: 10.3389/fonc.2023.1217847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Phenobarbital (PB) is an archetypal substance used as a mouse hepatocellular carcinoma (HCC) promotor in established experimental protocols. Our previous results showed CAR is the essential factor for PB induced HCC promotion. Subsequent studies suggested Gadd45β, which is induced by PB through CAR activation, is collaborating with CAR to repress TNF-α induced cell death. Here, we used Gadd45β null mice (Gadd45β KO) treated with N-diethylnitrosamine (DEN) at 5 weeks of age and kept the mice with PB supplemented drinking water from 7 to 57 weeks old. Compared with wild type mice, Gadd45β KO mice developed no HCC in the PB treated group. Increases in liver weight were more prominent in wild type mice than KO mice. Microarray analysis of mRNA derived from mouse livers found multiple genes specifically up or down regulated in wild type mice but not null mice in DEN + PB groups. Further qPCR analysis confirmed two genes, Tgfbr2 and irisin/Fndc5, were up-regulated in PB treated wild type mice but no significant increase was observed in Gadd45β KO mice. We focused on these two genes because previous reports showed that hepatic Irisin/Fndc5 expression was significantly higher in HCC patients and that irisin binds to TGF-β receptor complex that includes TGFBR2 subunit. Our results revealed irisin peptide in cell culture media increased the growth rate of mouse hepatocyte-derived AML12 cells. Microarray analysis revealed that irisin-regulated genes in AML12 cells showed a significant association with the genes in the TGF-β pathway. Expression of irisin/Fndc5 and Tgfbr2 induced growth of human HCC cell line HepG2. Thus, Gadd45β plays an indispensable role in mouse HCC development regulating the irisin/Fndc5 and Tgfbr2 genes.
Collapse
Affiliation(s)
- Takeshi Hori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kosuke Yokobori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| |
Collapse
|
7
|
McDevitt E, Henein L, Crawford A, Kondakala S, Young D, Meek E, Howell GE. Alterations of Systemic and Hepatic Metabolic Function Following Exposure to Trans-nonachlor in Low and High Fat Diet Fed Male Sprague Dawley Rats. Int J Toxicol 2023; 42:407-419. [PMID: 37126671 PMCID: PMC10530595 DOI: 10.1177/10915818231170527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The overall prevalence of metabolic diseases such as type 2 diabetes (T2D) and associated co-morbidities have increased at an alarming rate in the United States and worldwide. There is a growing body of epidemiological evidence implicating exposure to persistent organic pollutants (POPs), including legacy organochlorine (OC) pesticides and their bioaccumulative metabolites, in the pathogenesis of metabolic diseases. Therefore, the goal of the present study was to determine if exposure to trans-nonachlor, a bioaccumulative OC pesticide contaminant, in concert with high fat diet intake induced metabolic dysfunction. Briefly, male Sprague Dawley rats were exposed to trans-nonachlor (.5 or 5 ppm) in either a low fat (LFD) or high fat diet (HFD) for 16 weeks. At 8 weeks of intake, trans-nonachlor decreased serum triglyceride levels in LFD and HFD fed animals and at 16 weeks compared to LFD fed animals. Interestingly, serum glucose levels were decreased by trans-nonachlor (5 ppm) in LFD fed animals at 16 weeks. Serum free fatty acids were increased by trans-nonachlor exposure (5 ppm) in LFD fed animals at 16 weeks. HFD fed animals displayed signs of hepatic steatosis including elevated liver triglycerides, liver enzymes, and liver lipid peroxidation which were not significantly altered by trans-nonachlor exposure. However, there was a trans-nonachlor mediated increase in expression of fatty acid synthase in livers of LFD fed animals and not HFD fed animals. Thus, the present data indicate exposure to trans-nonachlor in conjunction with LFD or HFD intake produces both diet and exposure dependent effects on lipid and glucose metabolism.
Collapse
Affiliation(s)
- Erin McDevitt
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
- University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Lucie Henein
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Anna Crawford
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Sandeep Kondakala
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Darian Young
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Edward Meek
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - George E. Howell
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| |
Collapse
|
8
|
Shindo S, Kakizaki S, Sakaki T, Kawasaki Y, Sakuma T, Negishi M, Shizu R. Phosphorylation of nuclear receptors: Novelty and therapeutic implications. Pharmacol Ther 2023:108477. [PMID: 37330113 DOI: 10.1016/j.pharmthera.2023.108477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Nuclear receptors (NR) collectively regulate several biological functions in various organs. While NRs can be characterized by activation of the transcription of their signature genes, they also have other diverse roles. Although most NRs are directly activated by ligand binding, which induces cascades of events leading to gene transcription, some NRs are also phosphorylated. Despite extensive investigations, primarily focusing on unique phosphorylation of amino acid residues in different NRs, the role of phosphorylation in the biological activity of NRs in vivo has not been firmly established. Recent studies on the phosphorylation of conserved phosphorylation motifs within the DNA- and ligand-binding domains confirmed has indicated the physiologically relevance of NR phosphorylation. This review focuses on estrogen and androgen receptors, and highlights the concept of phosphorylation as a drug target.
Collapse
Affiliation(s)
- Sawako Shindo
- Department of Environmental Toxicology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Satoru Kakizaki
- Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, 36 Takamatsu-cho, Takasaki, Gunma 370-0829, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yuki Kawasaki
- Laboratory of Public Health, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaourui-machi, Takasaki, Gunma 370-0033, Japan
| | - Tsutomu Sakuma
- School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima 963-8611, Japan
| | - Masahiko Negishi
- Reproductive and Developmental Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
9
|
Men S, Wang H. Phenobarbital in Nuclear Receptor Activation: An Update. Drug Metab Dispos 2023; 51:210-218. [PMID: 36351837 PMCID: PMC9900862 DOI: 10.1124/dmd.122.000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
Phenobarbital (PB) is a commonly prescribed anti-epileptic drug that can also benefit newborns from hyperbilirubinemia. Being the first drug demonstrating hepatic induction of cytochrome P450 (CYP), PB has since been broadly used as a model compound to study xenobiotic-induced drug metabolism and clearance. Mechanistically, PB-mediated CYP induction is linked to a number of nuclear receptors, such as the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and estrogen receptor α, with CAR being the predominant regulator. Unlike prototypical agonistic ligands, PB-mediated activation of CAR does not involve direct binding with the receptor. Instead, dephosphorylation of threonine 38 in the DNA-binding domain of CAR was delineated as a key signaling event underlying PB-mediated indirect activation of CAR. Further studies revealed that such phosphorylation sites appear to be highly conserved among most human nuclear receptors. Interestingly, while PB is a pan-CAR activator in both animals and humans, PB activates human but not mouse PXR. The species-specific role of PB in gene regulation is a key determinant of its implication in xenobiotic metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In this review, we summarize the recent progress in our understanding of PB-provoked transactivation of nuclear receptors with a focus on CAR and PXR. SIGNIFICANCE STATEMENT: Extensive studies using PB as a research tool have significantly advanced our understanding of the molecular basis underlying nuclear receptor-mediated drug metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In particular, CAR has been established as a cell signaling-regulated nuclear receptor in addition to ligand-dependent functionality. This mini-review highlights the mechanisms by which PB transactivates CAR and PXR.
Collapse
Affiliation(s)
- Shuaiqian Men
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| |
Collapse
|
10
|
Poudel S, Huber AD, Chen T. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab Dispos 2023; 51:228-236. [PMID: 36116789 PMCID: PMC9900866 DOI: 10.1124/dmd.122.000858] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023] Open
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are ligand-activated transcription factors that regulate the expression of drug metabolizing enzymes and drug transporters. Since their discoveries, they have been studied as important factors for regulating processes related to drug efficacy, drug toxicity, and drug-drug interactions. However, their vast ligand-binding profiles extend into additional spaces, such as endogenously produced chemicals, microbiome metabolites, dietary compounds, and environmental pollutants. Therefore, PXR and CAR can respond to an enormous abundance of stimuli, resulting in significant shifts in metabolic programs and physiologic homeostasis. Naturally, PXR and CAR have been implicated in various diseases related to homeostatic perturbations, such as inflammatory bowel disorders, diabetes, and certain cancers. Recent findings have injected the field with new signaling mechanisms and tools to dissect the complex PXR and CAR biology and have strengthened the potential for future PXR and CAR modulators in the clinic. Here, we describe the historical and ongoing importance of PXR and CAR in drug metabolism pathways and how this history has evolved into new mechanisms that regulate and are regulated by these xenobiotic receptors, with a specific focus on small molecule ligands. To effectively convey the impact of newly emerging research, we have arranged five diverse and representative key recent advances, four specific challenges, and four perspectives on future directions. SIGNIFICANCE STATEMENT: PXR and CAR are key transcription factors that regulate homeostatic detoxification of the liver and intestines. Diverse chemicals bind to these nuclear receptors, triggering their transcriptional tuning of the cellular metabolic response. This minireview revisits the importance of PXR and CAR in pharmaceutical drug responses and highlights recent results with implications beyond drug metabolism.
Collapse
Affiliation(s)
- Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
11
|
Xie W. Xenobiotic Receptors, a Journey of Rewards. Drug Metab Dispos 2023; 51:207-209. [PMID: 36351836 PMCID: PMC9900861 DOI: 10.1124/dmd.122.000857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
The xenobiotic nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) were discovered or characterized in 1998. PXR and CAR have since been defined as master regulators of xenobiotic responses through their transcriptional regulation of drug-metabolizing enzymes and transporters. This article aims to provide an overview on the discovery of PXR and CAR as xenobiotic receptors.
Collapse
Affiliation(s)
- Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Constitutive androstane receptor-responsive elements for mouse Cyp1a2 transcriptional activation induced by constitutive androstane receptor ligands. Drug Metab Pharmacokinet 2023; 48:100485. [PMID: 36740553 DOI: 10.1016/j.dmpk.2022.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The mouse cytochrome P450 1A2 (Cyp1a2) gene is one of the constitutive androstane receptor (CAR, NR1I3) activator-inducible genes, and the regions involved in induction were examined herein. A reporter gene assay indicated the involvement of the -0.2-kb region in the induction of transcriptional activation by the mouse CAR agonist ligand 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP). Some putative nuclear receptor-binding elements were identified in this region, and mutations in the elements located at -160/-155 or -153/-148 abolished this induction. An electrophoretic mobility shift assay demonstrated that a fragment comprised of three elements was capable of binding to the CAR/retinoid X receptor alpha (RXRα) heterodimer. The three elements comprise the two elements indicated above and one located at -146/-141. A chromatin immunoprecipitation assay confirmed CAR binding to the region including these elements in chromatin after treatment with TCPOBOP. These results indicate that mouse Cyp1a2 is the direct target of CAR, and binding of the CAR/RXRα heterodimer to the newly identified region in the promoter may be involved in transcriptional activation. Binding motifs were estimated as ER1 (everted repeat with a spacing of 1 nucleotide, -160/-155 and -153/-148) and ER8 (everted repeat with a spacing of 8 nucleotides, formed with -160/-155 and -146/-141).
Collapse
|
13
|
Fritsche K, Ziková-Kloas A, Marx-Stoelting P, Braeuning A. Metabolism-Disrupting Chemicals Affecting the Liver: Screening, Testing, and Molecular Pathway Identification. Int J Mol Sci 2023; 24:ijms24032686. [PMID: 36769005 PMCID: PMC9916672 DOI: 10.3390/ijms24032686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The liver is the central metabolic organ of the body. The plethora of anabolic and catabolic pathways in the liver is tightly regulated by physiological signaling but may become imbalanced as a consequence of malnutrition or exposure to certain chemicals, so-called metabolic endocrine disrupters, or metabolism-disrupting chemicals (MDCs). Among different metabolism-related diseases, obesity and non-alcoholic fatty liver disease (NAFLD) constitute a growing health problem, which has been associated with a western lifestyle combining excessive caloric intake and reduced physical activity. In the past years, awareness of chemical exposure as an underlying cause of metabolic endocrine effects has continuously increased. Within this review, we have collected and summarized evidence that certain environmental MDCs are capable of contributing to metabolic diseases such as liver steatosis and cholestasis by different molecular mechanisms, thereby contributing to the metabolic syndrome. Despite the high relevance of metabolism-related diseases, standardized mechanistic assays for the identification and characterization of MDCs are missing. Therefore, the current state of candidate test systems to identify MDCs is presented, and their possible implementation into a testing strategy for MDCs is discussed.
Collapse
Affiliation(s)
- Kristin Fritsche
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Andrea Ziková-Kloas
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-18412-25100
| |
Collapse
|
14
|
Pan S, Guo Y, Yu W, Hong F, Qiao X, Zhang J, Xu P, Zhai Y. Environmental chemical TCPOBOP disrupts milk lipid homeostasis during pregnancy and lactation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114463. [PMID: 38321682 DOI: 10.1016/j.ecoenv.2022.114463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2024]
Abstract
Humans are exposed to different kinds of environmental contaminants or drugs throughout their lifetimes. The widespread presence of these compounds has raised concerns about the consequent adverse effects on lactating women. The constitutive androstane receptor (CAR, Nr1i3) is known as a xenobiotic sensor for environmental pollution or drugs. In this study, the model environmental chemical 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene, TCPOBOP (TC), which is a highly specific agonist of CAR, was used to investigate the effects of exogenous exposure on lactation function and offspring health in mice. The results revealed that TC exposure decreased the proliferation of mammary epithelial cells during pregnancy. This deficiency further compromised lobular-alveolar structures, resulting in alveolar cell apoptosis, as well as premature stoppage of the lactation cycle and aberrant lactation. Furthermore, TC exposure significantly altered the size and number of milk lipid droplets, suggesting that TC exposure inhibits milk lipid synthesis. Additionally, TC exposure interfered with the milk lipid metabolism network, resulting in the inability of TC-exposed mice to efficiently secrete nutrients and feed their offspring. These findings demonstrated that restricted synthesis and secretion of milk lipids would indirectly block mammary gland form and function, which explained the possible reasons for lactation failure and retarded offspring growth.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
15
|
Lu ZN, He HW, Zhang N. Advances in understanding the regulatory mechanism of organic solute transporter α-β. Life Sci 2022; 310:121109. [DOI: 10.1016/j.lfs.2022.121109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
|
16
|
Sato T, Shizu R, Miura Y, Hosaka T, Kanno Y, Sasaki T, Yoshinari K. Development of a strategy to identify and evaluate direct and indirect activators of constitutive androstane receptor in rats. Food Chem Toxicol 2022; 170:113510. [DOI: 10.1016/j.fct.2022.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
17
|
Shi Z, Li X, Zhang YM, Zhou YY, Gan XF, Fan QY, He CQ, Shi T, Zhang SY. Constitutive androstane receptor (CAR) mediates pyrene-induced mice liver inflammatory response with increased serum amyloid A proteins and Th17 cells. Br J Pharmacol 2022; 179:5209-5221. [PMID: 35906855 DOI: 10.1111/bph.15934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The constitutive androstane receptor (CAR), a known xenobiotic sensor, plays an important role in drug metabolism by regulating numerous genes. We previously reported that pyrene, an environmental pollutant, is a CAR activator and induces mouse hepatotoxicity via CAR. Here, we investigate the molecular mechanism of inflammatory response in pyrene-caused mice liver injury. EXPERIMENTAL APPROACH Effects of pyrene on the liver were investigated in wild-type and CAR knockout (KO) mice. Levels of pyrene and its metabolite were analyzed by high performance liquid chromatography (HPLC). KEY RESULTS Serum amyloid A proteins (SAAs) were dramatically induced in the liver and serum of pyrene-exposed wild-type mice. Interleukin 17 (IL-17)-producing helper T cells (Th17 cells) and IL-17 levels were significantly increased in the liver of pyrene-exposed wild-type mice. Hepatic mRNA levels of inflammatory cytokines including IL-1β, IL-6 and TNFα, and serum IL-6 levels were significantly elevated in pyrene-treated wild-type mice. However, the above induction was not observed in CAR KO mice. CONCLUSION AND IMPLICATIONS We demonstrate that CAR plays a crucial role in pyrene-caused mice liver inflammatory response with increased SAAs and Th17 cells. Our results suggest that serum SAAs may be a convenient biomarker for early diagnosis of liver inflammatory response caused by polycyclic aromatic hydrocarbons (PAHs) including pyrene. CAR and Th17 cells may be potential targets for novel therapeutic strategy for xenobiotic-induced liver inflammatory response.
Collapse
Affiliation(s)
- Zhe Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xue Li
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yu-Man Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yi-Yao Zhou
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiu-Feng Gan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Qiao-Ying Fan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chen-Qing He
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Tong Shi
- School of Medicine, Tongji University, Shanghai, China
| | - Shu-Yun Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,School of Medicine, Taizhou University, Taizhou, China
| |
Collapse
|
18
|
Stern S, Kurian R, Wang H. Clinical Relevance of the Constitutive Androstane Receptor. Drug Metab Dispos 2022; 50:1010-1018. [PMID: 35236665 PMCID: PMC11022901 DOI: 10.1124/dmd.121.000483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Constitutive androstane receptor (CAR) (NR1I3), a xenobiotic receptor, has long been considered a master mediator of drug disposition and detoxification. Accumulating evidence indicates that CAR also participates in various physiologic and pathophysiological pathways regulating the homeostasis of glucose, lipid, and bile acids, and contributing to cell proliferation, tissue regeneration and repair, as well as cancer development. The expression and activity of CAR can be regulated by various factors, including small molecular modulators, CAR interaction with other transcription factors, and naturally occurring genetic variants. Given that the influence of CAR has extended beyond the realm of drug metabolism and disposition and has expanded into a potential modulator of human diseases, growing efforts have centered on understanding its clinical relevance and impact on human pathophysiology. This review highlights the current information available regarding the contribution of CAR to various metabolic disorders and cancers and ponders the possible challenges that might arise from pursuing CAR as a potential therapeutic target for these diseases. SIGNIFICANCE STATEMENT: The growing importance of the constitutive androstane receptor (CAR) in glucose and lipid metabolism as well as its potential implication in cell proliferation emphasizes a need to keenly understand the biological function and clinical impact of CAR. This minireview captures the clinical relevance of CAR by highlighting its role in metabolic disorders and cancer development.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Ritika Kurian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
19
|
Li Z, Kwon SM, Li D, Li L, Peng X, Zhang J, Sueyoshi T, Raufman JP, Negishi M, Wang XW, Wang H. Human constitutive androstane receptor represses liver cancer development and hepatoma cell proliferation by inhibiting erythropoietin signaling. J Biol Chem 2022; 298:101885. [PMID: 35367211 PMCID: PMC9052153 DOI: 10.1016/j.jbc.2022.101885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
The constitutive androstane receptor (CAR) is a nuclear receptor that plays a crucial role in regulating xenobiotic metabolism and detoxification, energy homeostasis, and cell proliferation by modulating the transcription of numerous target genes. CAR activation has been established as the mode of action by which phenobarbital-like nongenotoxic carcinogens promote liver tumor formation in rodents. This paradigm, however, appears to be unrelated to the function of human CAR (hCAR) in hepatocellular carcinoma (HCC), which remains poorly understood. Here, we show that hCAR expression is significantly lower in HCC than that in adjacent nontumor tissues and, importantly, reduced hCAR expression is associated with a worse HCC prognosis. We also show overexpression of hCAR in human hepatoma cells (HepG2 and Hep3B) profoundly suppressed cell proliferation, cell cycle progression, soft-agar colony formation, and the growth of xenografts in nude mice. RNA-Seq analysis revealed that the expression of erythropoietin (EPO), a pleiotropic growth factor, was markedly repressed by hCAR in hepatoma cells. Addition of recombinant EPO in HepG2 cells partially rescued hCAR-suppressed cell viability. Mechanistically, we showed that overexpressing hCAR repressed mitogenic EPO-EPO receptor signaling through dephosphorylation of signal transducer and activator of transcription 3, AKT, and extracellular signal-regulated kinase 1/2. Furthermore, we found that hCAR downregulates EPO expression by repressing the expression and activity of hepatocyte nuclear factor 4 alpha, a key transcription factor regulating EPO expression. Collectively, our results suggest that hCAR plays a tumor suppressive role in HCC development, which differs from that of rodent CAR and offers insight into the hCAR-hepatocyte nuclear factor 4 alpha-EPO axis in human liver tumorigenesis.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - So Mee Kwon
- Laboratory of Human Carcinogenesis, and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daochuan Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Xiwei Peng
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio, USA
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Office of Research and Development, Biomedical Laboratory Research and Development, VA Maryland Healthcare System, Baltimore, Maryland, USA
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA.
| |
Collapse
|
20
|
Murphy L, LeBaron MJ, Johnson K, Rasoulpour RJ, Wang X, LaRocca J. Bridging Sex-Specific Differences in the CAR-Mediated Hepatocarcinogenesis of Nitrapyrin Using Molecular and Apical Endpoints. FRONTIERS IN TOXICOLOGY 2022; 3:766196. [PMID: 35295143 PMCID: PMC8915892 DOI: 10.3389/ftox.2021.766196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrapyrin, a nitrification inhibitor, produces liver tumors in B6C3F1 mice. In a 2-year oncogenicity study, increased incidence of mice with hepatocellular tumors was observed following exposure to 125 (females only) or 250 mg/kg/day (males and females) nitrapyrin in the diet. Previous data was generated in male mice to support a mode-of-action (MoA) characterized by constitutive androstane receptor (CAR) nuclear receptor (NR) activation, increased hepatocellular proliferation, and subsequent hepatocellular foci and tumor formation. Uncertainty as to the relevance of this MoA for females remained given the increased sensitivity to tumor formation in female mice. A targeted MoA study was conducted to evaluate CAR activation and hepatic responses in female mice treated with the female carcinogenic dose of nitrapyrin for 4 days. Nitrapyrin induced a treatment-related increase in hepatocellular hypertrophy and hepatocellular proliferation. Nitrapyrin also induced a dose-related increase in the Cyp2b10/CAR-associated transcript and liver weights. Nitrapyrin-induced liver weights and Cyp2b10 gene expression for both males and females were compared to data generated from three other established CAR activators; methyl isobutyl ketone, phenobarbital, and sulfoxaflor. The response observed in female mice following exposure to nitrapyrin was within range of the degree of change observed in mice following exposure to tumorigenic doses of other CAR activators. Consistent with the liver MoA in male mice, these data support a CAR-mediated mode of action for nitrapyrin-induced liver tumors in female mice, with the understanding that a focused approach minimizing animal use can bridge male and female datasets when sex-specific carcinogenic differences are observed.
Collapse
Affiliation(s)
- Lynea Murphy
- Corteva Agriscience, Indianapolis, IN, United States
| | - Matthew J LeBaron
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, MI, United States
| | - Kamin Johnson
- Corteva Agriscience, Indianapolis, IN, United States
| | | | - Xiujuan Wang
- Corteva Agriscience, Indianapolis, IN, United States
| | | |
Collapse
|
21
|
Bwayi MN, Garcia-Maldonado E, Chai SC, Xie B, Chodankar S, Huber AD, Wu J, Annu K, Wright WC, Lee HM, Seetharaman J, Wang J, Buchman CD, Peng J, Chen T. Molecular basis of crosstalk in nuclear receptors: heterodimerization between PXR and CAR and the implication in gene regulation. Nucleic Acids Res 2022; 50:3254-3275. [PMID: 35212371 PMCID: PMC8989523 DOI: 10.1093/nar/gkac133] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/20/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
The 48 human nuclear receptors (NRs) form a superfamily of transcription factors that regulate major physiological and pathological processes. Emerging evidence suggests that NR crosstalk can fundamentally change our understanding of NR biology, but detailed molecular mechanisms of crosstalk are lacking. Here, we report the molecular basis of crosstalk between the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), where they form a novel heterodimer, resulting in their mutual inhibition. PXR and CAR regulate drug metabolism and energy metabolism. Although they have been broadly perceived as functionally redundant, a growing number of reports suggests a mutual inhibitory relation, but their precise mode of coordinated action remains unknown. Using methods including RNA sequencing, small-angle X-ray scattering and crosslinking mass spectrometry we demonstrate that the mutual inhibition altered gene expression globally and is attributed to the novel PXR–CAR heterodimerization via the same interface used by each receptor to heterodimerize with its functional partner, retinoid X receptor (RXR). These findings establish an unexpected functional relation between PXR, CAR and RXR, change the perceived functional relation between PXR and CAR, open new perspectives on elucidating their role and designing approaches to regulate them, and highlight the importance to comprehensively investigate nuclear receptor crosstalk.
Collapse
Affiliation(s)
- Monicah N Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Efren Garcia-Maldonado
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Shirish Chodankar
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Kavya Annu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Hyeong-Min Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Cameron D Buchman
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
22
|
Honkakoski P. Searching for CAR modulators. Drug Metab Dispos 2022; 50:1002-1009. [DOI: 10.1124/dmd.121.000482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
|
23
|
Yoshinari K, Shizu R. Distinct roles of the sister nuclear receptors PXR and CAR in liver cancer development. Drug Metab Dispos 2022; 50:1019-1026. [DOI: 10.1124/dmd.121.000481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
|
24
|
Transcriptional Regulation of Hepatic Autophagy by Nuclear Receptors. Cells 2022; 11:cells11040620. [PMID: 35203271 PMCID: PMC8869834 DOI: 10.3390/cells11040620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is an adaptive self-eating process involved in degradation of various cellular components such as carbohydrates, lipids, proteins, and organelles. Its activity plays an essential role in tissue homeostasis and systemic metabolism in response to diverse challenges, including nutrient depletion, pathogen invasion, and accumulations of toxic materials. Therefore, autophagy dysfunctions are intimately associated with many human diseases such as cancer, neurodegeneration, obesity, diabetes, infection, and aging. Although its acute post-translational regulation is well described, recent studies have also shown that autophagy can be controlled at the transcriptional and post-transcriptional levels. Nuclear receptors (NRs) are in general ligand-dependent transcription factors consisting of 48 members in humans. These receptors extensively control transcription of a variety of genes involved in development, metabolism, and inflammation. In this review, we discuss the roles and mechanisms of NRs in an aspect of transcriptional regulation of hepatic autophagy, and how the NR-driven autophagy pathway can be harnessed to treat various liver diseases.
Collapse
|
25
|
Lynch C, Zhao J, Wang H, Xia M. Identifying CAR Modulators Utilizing a Reporter Gene Assay. Methods Mol Biol 2022; 2474:29-38. [PMID: 35294753 PMCID: PMC9434986 DOI: 10.1007/978-1-0716-2213-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The constitutive androstane receptor (CAR, NR1I3) controls the transcription of numerous hepatic drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both mechanisms require the translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active and spontaneously localized in the nucleus of most immortalized cell lines. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify human CAR modulators through the employment of a double stable cell line. Using this line, we can identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Skoda J, Dohnalova K, Chalupsky K, Stahl A, Templin M, Maixnerova J, Micuda S, Grøntved L, Braeuning A, Pavek P. Off-target lipid metabolism disruption by the mouse constitutive androstane receptor ligand TCPOBOP in humanized mice. Biochem Pharmacol 2021; 197:114905. [PMID: 34971590 DOI: 10.1016/j.bcp.2021.114905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022]
Abstract
The constitutive androstane receptor (CAR) controls xenobiotic clearance, regulates liver glucose, lipid metabolism, and energy homeostasis. These functions have been mainly discovered using the prototypical mouse-specific CAR ligand TCPOBOP in wild-type or CAR null mice. However, TCPOBOP is reported to result in some off-target metabolic effects in CAR null mice. In this study, we compared the metabolic effects of TCPOBOP using lipidomic, transcriptomic, and proteomic analyses in wild-type and humanized CAR-PXR-CYP3A4/3A7 mice. In the model, human CAR retains its constitutive activity in metabolism regulation; however, it is not activated by TCPOBOB. Notably, we observed that TCPOBOP affected lipid homeostasis by elevating serum and liver triglyceride levels and promoted hepatocyte hypertrophy in humanized CAR mice. Hepatic lipidomic analysis revealed a significant accumulation of triglycerides and decrease of its metabolites in humanized CAR mice. RNA-seq analysis has shown divergent gene expression levels in wild-type and humanized CAR mice. Gene expression regulation in humanized mice is mainly involved in lipid metabolic processes and in the PPAR, leptin, thyroid, and circadian clock pathways. In contrast, CAR activation by TCPOBOP in wild-type mice reduced liver and plasma triglyceride levels and induced a typical transcriptomic proliferative response in the liver. In summary, we identified TCPOBOP as a disruptor of lipid metabolism in humanized CAR mice. The divergent effects of TCPOBOP in humanized mice in comparison with the prototypical CAR-mediated response in WT mice warrant the use of appropriate model ligands and humanized animal models during the testing of endocrine disruption and the characterization of adverse outcome pathways.
Collapse
Affiliation(s)
- Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Klara Dohnalova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, Katerinska 32, 121 08 Prague, Czech Republic
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Aaron Stahl
- NMI - Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Markus Templin
- NMI - Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Medical Faculty in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Lars Grøntved
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense M 5230, Denmark
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
27
|
Kim SD, Morgan L, Hargreaves E, Zhang X, Jiang Z, Antenos M, Li B, Kirby GM. Regulation of Cytochrome P450 2a5 by Artemisia capillaris and 6,7-Dimethylesculetin in Mouse Hepatocytes. Front Pharmacol 2021; 12:730416. [PMID: 34880749 PMCID: PMC8645941 DOI: 10.3389/fphar.2021.730416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Jaundice is a potentially fatal condition resulting from elevated serum bilirubin levels. For centuries, herbal remedies containing Artemisia capillaris Thunb. including the compound 6,7-dimethylesculetin (DE) have been used in Asia to prevent and treat jaundice in neonates. DE activates an important regulator of bilirubin metabolism, the constitutive androstane receptor (CAR), and increases bilirubin clearance. In addition, murine cytochrome P450 2a5 (Cyp2a5) is known to be involved in the oxidative metabolism of bilirubin. Moreover, treatment of mice with phenobarbital, a known inducer of both CAR and Cyp2a5, increases expression of Cyp2a5 suggesting a potential relationship between CAR and Cyp2a5 expression. The aim of this study is to investigate the influence of Artemisia capillaris and DE on the expression and regulatory control of Cyp2a5 and the potential involvement of CAR. Treatment of mouse hepatocytes in primary culture with DE (50 μM) significant increased Cyp2a5 mRNA and protein levels. In mice, Artemisia capillaris and DE treatment also increased levels of hepatic Cyp2a5 protein. Luciferase reporter assays showed that CAR increases Cyp2a5 gene transcription through a CAR response element in the Cyp2a5 gene promoter. Moreover, DE caused nuclear translocation of CAR in primary mouse hepatocytes and increased Cyp2a5 transcription in the presence of CAR. These results identify a potential CAR-mediated mechanism by which DE regulates Cyp2a5 gene expression and suggests that DE may enhance bilirubin clearance by increasing Cyp2a5 levels. Understanding this process could provide an opportunity for the development of novel therapies for neonatal and other forms of jaundice.
Collapse
Affiliation(s)
- Sangsoo Daniel Kim
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Larry Morgan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Elyse Hargreaves
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Xiaoying Zhang
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Zhihui Jiang
- He'nan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Monica Antenos
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ben Li
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Gordon M Kirby
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
28
|
Li Z, Li L, Heyward S, Men S, Xu M, Sueyoshi T, Wang H. Phenobarbital Induces SLC13A5 Expression through Activation of PXR but Not CAR in Human Primary Hepatocytes. Cells 2021; 10:cells10123381. [PMID: 34943889 PMCID: PMC8699749 DOI: 10.3390/cells10123381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Phenobarbital (PB), a widely used antiepileptic drug, is known to upregulate the expression of numerous drug-metabolizing enzymes and transporters in the liver primarily via activation of the constitutive androstane receptor (CAR, NR1I3). The solute carrier family 13 member 5 (SLC13A5), a sodium-coupled citrate transporter, plays an important role in intracellular citrate homeostasis that is associated with a number of metabolic syndromes and neurological disorders. Here, we show that PB markedly elevates the expression of SLC13A5 through a pregnane X receptor (PXR)-dependent but CAR-independent signaling pathway. In human primary hepatocytes, the mRNA and protein expression of SLC13A5 was robustly induced by PB treatment, while genetic knockdown or pharmacological inhibition of PXR significantly attenuated this induction. Utilizing genetically modified HepaRG cells, we found that PB induces SLC13A5 expression in both wild type and CAR-knockout HepaRG cells, whereas such induction was fully abolished in the PXR-knockout HepaRG cells. Mechanistically, we identified and functionally characterized three enhancer modules located upstream from the transcription start site or introns of the SLC13A5 gene that are associated with the regulation of PXR-mediated SLC13A5 induction. Moreover, metformin, a deactivator of PXR, dramatically suppressed PB-mediated induction of hepatic SLC13A5 as well as its activation of the SLC13A5 luciferase reporter activity via PXR. Collectively, these data reveal PB as a potent inducer of SLC13A5 through the activation of PXR but not CAR in human primary hepatocytes.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
| | - Scott Heyward
- BioIVT, 1450 S Rolling Road, Halethorpe, MD 21227, USA;
| | - Shuaiqian Men
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
| | - Meishu Xu
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
- Correspondence: ; Tel.: +1-410-706-1280
| |
Collapse
|
29
|
Koga T, Peters JM. Targeting Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ) for the Treatment or Prevention of Alcoholic Liver Disease. Biol Pharm Bull 2021; 44:1598-1606. [PMID: 34719638 DOI: 10.1248/bpb.b21-00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive, chronic alcohol consumption can lead to alcoholic liver disease. The etiology of alcoholic liver disease is multifactorial and is influenced by alterations in gene expression and changes in fatty acid metabolism, oxidative stress, and insulin resistance. These events can lead to steatosis, fibrosis, and eventually to cirrhosis and liver cancer. Many of these functions are regulated by peroxisome proliferator-activated receptors (PPARs). Thus, it is not surprising that PPARs can modulate the mechanisms that cause alcoholic liver disease. While the roles of PPARα and PPARγ are clearer, the role of PPARβ/δ in alcoholic liver disease requires further clarification. This review summarizes the current understanding based on recent studies that indicate that PPARβ/δ can likely be targeted for the treatment and/or the prevention of alcoholic liver disease.
Collapse
Affiliation(s)
- Takayuki Koga
- Laboratory of Hygienic Chemistry, Department of Health Science and Hygiene, Daiichi University of Pharmacy
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University
| |
Collapse
|
30
|
Cai X, Young GM, Xie W. The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166101. [PMID: 33600998 DOI: 10.1016/j.bbadis.2021.166101] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022]
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two nuclear receptors that are well-known for their roles in xenobiotic detoxification by regulating the expression of drug-metabolizing enzymes and transporters. In addition to metabolizing drugs and other xenobiotics, the same enzymes and transporters are also responsible for the production and elimination of numerous endogenous chemicals, or endobiotics. Moreover, both PXR and CAR are highly expressed in the liver. As such, it is conceivable that PXR and CAR have major potentials to affect the pathophysiology of the liver by regulating the homeostasis of endobiotics. In recent years, the physiological functions of PXR and CAR in the liver have been extensively studied. Emerging evidence has suggested the roles of PXR and CAR in energy metabolism, bile acid homeostasis, cell proliferation, to name a few. This review summarizes the recent progress in our understanding of the roles of PXR and CAR in liver physiology.
Collapse
Affiliation(s)
- Xinran Cai
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gregory M Young
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
31
|
Cai X, Feng Y, Xu M, Yu C, Xie W. Gadd45b is required in part for the anti-obesity effect of constitutive androstane receptor (CAR). Acta Pharm Sin B 2021; 11:434-441. [PMID: 33643822 PMCID: PMC7893119 DOI: 10.1016/j.apsb.2020.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Crosstalk between xenobiotic metabolism and energy metabolism in the liver has provided a potential opportunity to target xenobiotic receptors to treat metabolic diseases. Activation of constitutive androstane receptor (CAR), a xenobiotic-sensing nuclear receptor, has been shown to inhibit obesity, suppress hepatic gluconeogenesis, and ameliorate hyperglycemia in rodent models of obesity and type 2 diabetes. However, the underlying molecular mechanism remains to be defined. The growth arrest and DNA damage-inducible gene 45b (Gadd45b), a well-known anti-apoptotic factor, has been shown to be an inducible coactivator of CAR in promoting rapid liver growth. It is unknown whether the effect of CAR on energy metabolism depends on GADD45B. In the present study and by using a high fat diet (HFD)-induced obesity model, we show that reduced body weight gain and improved insulin sensitivity by the CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) were markedly blunted in Gadd45b knockout mice. Mechanistically, the TCPOBOP-responsive inhibition of hepatic lipogenesis, gluconeogenesis, and adipose inflammation observed in wild type mice were largely abolished in Gadd45b knockout mice. We conclude that Gadd45b is required in part for the metabolic benefits of CAR activation.
Collapse
|
32
|
Bae SDW, Nguyen R, Qiao L, George J. Role of the constitutive androstane receptor (CAR) in human liver cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188516. [PMID: 33529650 DOI: 10.1016/j.bbcan.2021.188516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily (subfamily 1, group I, member 3, also known as NR1I3) that is almost exclusively expressed in the liver. CAR interacts with key signalling pathways such as those involved in drug, energy and bilirubin metabolism. In mouse models, activation of CAR leads to tumorigenesis by inducing pro-proliferative and anti-apoptotic signalling. However, many previous reports have shown species differences between CAR activity in animal models and humans. Recent studies have demonstrated that the mode of action of CAR in rodent liver tumorigenesis is not applicable to humans. Despite this, many studies still continue to study the role of CAR in animal models, hence, there is a need to further explore the role of CAR in human diseases particularly cancers. While there is limited evidence for a role of CAR in human cancers, some studies have proposed a tumour-suppressive role of CAR in liver cancer. In addition, recent studies exploring CAR in human livers demonstrated a hepato-protective role for CAR in and more specifically, its ability to drive differentiation and liver regeneration. This review will discuss the role of CAR in liver cancer, with a focus on species differences and its emerging, tumour-suppressive role in liver cancer and its role in the regulation of liver cancer stem cells.
Collapse
Affiliation(s)
- Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
33
|
Skoda J, Dusek J, Drastik M, Stefela A, Dohnalova K, Chalupsky K, Smutny T, Micuda S, Gerbal-Chaloin S, Pavek P. Diazepam Promotes Translocation of Human Constitutive Androstane Receptor (CAR) via Direct Interaction with the Ligand-Binding Domain. Cells 2020; 9:cells9122532. [PMID: 33255185 PMCID: PMC7761063 DOI: 10.3390/cells9122532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
The constitutive androstane receptor (CAR) is the essential regulator of genes involved both in xenobiotic and endobiotic metabolism. Diazepam has been shown as a potent stimulator of CAR nuclear translocation and is assumed as an indirect CAR activator not interacting with the CAR cavity. In this study, we sought to determine if diazepam is a ligand directly interacting with the CAR ligand binding domain (LBD) and if it regulates its target genes in a therapeutically relevant concentration. We used different CAR constructs in translocation and luciferase reporter assays, recombinant CAR-LBD in a TR-FRET assay, and target genes induction studied in primary human hepatocytes (PHHs), HepaRG cells, and in CAR humanized mice. We also used in silico docking and CAR-LBD mutants to characterize the interaction of diazepam and its metabolites with the CAR cavity. Diazepam and its metabolites such as nordazepam, temazepam, and oxazepam are activators of CAR+Ala in translocation and two-hybrid assays and fit the CAR cavity in docking experiments. In gene reporter assays with CAR3 and in the TR-FRET assay, only diazepam significantly interacts with CAR-LBD. Diazepam also promotes up-regulation of CYP2B6 in PHHs and in HepaRG cells. However, in humanized CAR mice, diazepam significantly induces neither CYP2B6 nor Cyp2b10 genes nor does it regulate critical genes involved in glucose and lipids metabolism and liver proliferation. Thus, we demonstrate that diazepam interacts with human CAR-LBD as a weak ligand, but it does not significantly affect expression of tested CAR target genes in CAR humanized mice.
Collapse
Affiliation(s)
- Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Klara Dohnalova
- 1 Medical Faculty, Charles University, Katerinská 32, 121 08 Prague, Czech Republic;
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
| | - Stanislav Micuda
- Department of Pharmacology, Medical Faculty in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic;
| | | | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.S.); (J.D.); (A.S.); (T.S.)
- Correspondence: ; Tel.: +420-495-067-334
| |
Collapse
|
34
|
Szychowski KA, Skóra B, Kryshchyshyn-Dylevych A, Kaminskyy D, Rybczyńska-Tkaczyk K, Lesyk R, Gmiński J. Induction of Cyp450 enzymes by 4-thiazolidinone-based derivatives in 3T3-L1 cells in vitro. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:915-927. [PMID: 33219472 PMCID: PMC8102453 DOI: 10.1007/s00210-020-02025-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
4-Thiazolidinones and related derivatives are regarded as privileged structures in medicinal chemistry and a source of new drug-like compounds. To date it is known that thiazolidinones are able to induce CYP1A1 activity in 3T3-L1 cells. Therefore, to extend the knowledge of the mechanism of thiazolidinones in the cell, four chemically synthesized heterocycles were tested on 3T3-L1 cells. The 3T3-L1 cells were exposed to Les-2194, Les-3640, Les-5935, and Les-6166. Our study showed that 1 μM βNF, Les-2194, and Les-6166 decreased the expression of Ahr mRNA. In turn, βNF, Les-2194, and Les-3640 increased the Cyp1a1 mRNA expression at the same time interval. On the other hand, Les-5935 was found to decrease the Cyp1a1 mRNA expression. Interestingly, the expression of Cyp1a2 mRNA was activated only by βNF and Les-2194. The expression of Cyp1b1 mRNA in the 3T3 cell line increased after the βNF and Les-2194 treatment but declined after the exposure to Les-5935 and Les-6166. Moreover, the Les-2194 and Les-5935 compounds were shown to increase the activity of EROD, MROD, and PROD. Les-3640 increased the activity of EROD and decreased the activity of PROD. In turn, the treatment with Les-6166 resulted in an increase in the activity of EROD and a decrease in the activity of MROD and PROD in the 3T3-L1 cells.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences, Leszczyńskiego 7, 20-069, Lublin, Poland
| | - Roman Lesyk
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.,Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
35
|
CITCO as an Adjuvant Facilitates CHOP-Based Lymphoma Treatment in hCAR-Transgenic Mice. Cells 2020; 9:cells9112520. [PMID: 33233444 PMCID: PMC7700167 DOI: 10.3390/cells9112520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Non-Hodgkin's lymphoma (NHL) is a malignant cancer originating in the lymphatic system with a 25-30% mortality rate. CHOP, consisting of cyclophosphamide (CPA), doxorubicin, vincristine, and prednisone, is a first-generation chemotherapy extensively used to treat NHL. However, poor survival rates among patients in advanced stages of NHL shows a need to improve this standard of care treatment. CPA, an integral component of CHOP, is a prodrug that requires CYP2B6-mediated bioactivation to 4-hydroxy-CPA (4-OH-CPA). The expression of CYP2B6 is transcriptionally regulated by the constitutive androstane receptor (CAR, NRi13). We have previously demonstrated that the induction of hepatic CYP2B6 by CITCO, a selective human CAR (hCAR) agonist, results in CHOP's enhanced antineoplastic effects in vitro. Here, we investigate the in vivo potential of CITCO as an adjuvant of CPA-based NHL treatment in a hCAR-transgenic mouse line. Our results demonstrate that the addition of CITCO to the CHOP regimen leads to significant suppression of the growth of EL-4 xenografts in hCAR-transgenic mice accompanied by reduced expression of cyclin-D1, ki67, Pcna, and increased caspase 3 fragmentation in tumor tissues. CITCO robustly induced the expression of cyp2b10 (murine ortholog of CYP2B6) through hCAR activation and increased plasma concentrations of 4-OH-CPA. Comparing to intraperitoneal injection, oral gavage of CITCO results in optimal hepatic cyp2b10 induction. Our in vivo studies have collectively uncovered CITCO as an effective facilitator for CPA-based NHL treatment with a pharmacokinetic profile favoring oral administration, promoting CITCO as a promising adjuvant candidate for CPA-based regimens.
Collapse
|
36
|
Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab 2020; 50:101119. [PMID: 33220489 PMCID: PMC8324695 DOI: 10.1016/j.molmet.2020.101119] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a result of a sedentary lifestyle and excess food consumption in modern society, non-alcoholic fatty liver disease (NAFLD) characterized by fat accumulation in the liver is becoming a major disease burden. Non-alcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by inflammation and fibrosis that can lead to hepatocellular carcinoma and liver failure. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that closely control multiple aspects of metabolism. Their transcriptional activity is modulated by various ligands, including hormones and lipids. NRs serve as potential pharmacological targets for NAFLD/NASH and other metabolic diseases. SCOPE OF REVIEW In this review, we provide a comprehensive overview of NRs that have been studied in the context of NAFLD/NASH with a focus on their transcriptional regulation, function in preclinical models, and studies of their clinical utility. MAJOR CONCLUSIONS The transcriptional regulation of NRs is context-dependent. During the dynamic progression of NAFLD/NASH, NRs play diverse roles in multiple organs and different cell types in the liver, which highlights the necessity of targeting NRs in a stage-specific and cell-type-specific manner to enhance the efficacy and safety of treatment methods.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
38
|
Küblbeck J, Niskanen J, Honkakoski P. Metabolism-Disrupting Chemicals and the Constitutive Androstane Receptor CAR. Cells 2020; 9:E2306. [PMID: 33076503 PMCID: PMC7602645 DOI: 10.3390/cells9102306] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
During the last two decades, the constitutive androstane receptor (CAR; NR1I3) has emerged as a master activator of drug- and xenobiotic-metabolizing enzymes and transporters that govern the clearance of both exogenous and endogenous small molecules. Recent studies indicate that CAR participates, together with other nuclear receptors (NRs) and transcription factors, in regulation of hepatic glucose and lipid metabolism, hepatocyte communication, proliferation and toxicity, and liver tumor development in rodents. Endocrine-disrupting chemicals (EDCs) constitute a wide range of persistent organic compounds that have been associated with aberrations of hormone-dependent physiological processes. Their adverse health effects include metabolic alterations such as diabetes, obesity, and fatty liver disease in animal models and humans exposed to EDCs. As numerous xenobiotics can activate CAR, its role in EDC-elicited adverse metabolic effects has gained much interest. Here, we review the key features and mechanisms of CAR as a xenobiotic-sensing receptor, species differences and selectivity of CAR ligands, contribution of CAR to regulation hepatic metabolism, and evidence for CAR-dependent EDC action therein.
Collapse
Affiliation(s)
- Jenni Küblbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Jonna Niskanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7569, Chapel Hill, NC 27599-7569, USA
| |
Collapse
|
39
|
Noncanonical Constitutive Androstane Receptor Signaling in Gene Regulation. Int J Mol Sci 2020; 21:ijms21186735. [PMID: 32937916 PMCID: PMC7555422 DOI: 10.3390/ijms21186735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
The constitutive androstane receptor (CAR, NR1I3) is extremely important for the regulation of many physiological processes, especially xenobiotic (drug) metabolism and transporters. CAR differs from steroid hormone receptors in that it can be activated using structurally unrelated chemicals, both through direct ligand-binding and ligand-independent (indirect) mechanisms. By binding to specific responsive elements on DNA, CAR increases the expression of its target genes encoding drug-metabolizing enzymes and transporters. Therefore, CAR is mainly characterized as a ligand-dependent or ligand-independent transcription factor, and the induction of gene expression is considered the canonical mode of CAR action. Consistent with its central role in xenobiotic metabolism, CAR signaling includes a collection of mechanisms that are employed alongside the core transcriptional machinery of the receptor. These so-called noncanonical CAR pathways allow the receptor to coordinate the regulation of many aspects of cell biology. In this mini-review, we review noncanonical CAR signaling, paying special attention to the role of CAR in energy homeostasis and cell proliferation.
Collapse
|
40
|
Negishi M, Kobayashi K, Sakuma T, Sueyoshi T. Nuclear receptor phosphorylation in xenobiotic signal transduction. J Biol Chem 2020; 295:15210-15225. [PMID: 32788213 DOI: 10.1074/jbc.rev120.007933] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear pregnane X receptor (PXR, NR1I2) and constitutive active/androstane receptor (CAR, NR1I3) are nuclear receptors characterized in 1998 by their capability to respond to xenobiotics and activate cytochrome P450 (CYP) genes. An anti-epileptic drug, phenobarbital (PB), activates CAR and its target CYP2B genes, whereas PXR is activated by drugs such as rifampicin and statins for the CYP3A genes. Inevitably, both nuclear receptors have been investigated as ligand-activated nuclear receptors by identifying and characterizing xenobiotics and therapeutics that directly bind CAR and/or PXR to activate them. However, PB, which does not bind CAR directly, presented an alternative research avenue for an indirect ligand-mediated nuclear receptor activation mechanism: phosphorylation-mediated signal regulation. This review summarizes phosphorylation-based mechanisms utilized by xenobiotics to elicit cell signaling. First, the review presents how PB activates CAR (and other nuclear receptors) through a conserved phosphorylation motif located between two zinc fingers within its DNA-binding domain. PB-regulated phosphorylation at this motif enables nuclear receptors to form communication networks, integrating their functions. Next, the review discusses xenobiotic-induced PXR activation in the absence of the conserved DNA-binding domain phosphorylation motif. In this case, phosphorylation occurs at a motif located within the ligand-binding domain to transduce cell signaling that regulates hepatic energy metabolism. Finally, the review delves into the implications of xenobiotic-induced signaling through phosphorylation in disease development and progression.
Collapse
Affiliation(s)
- Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsutomu Sakuma
- School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima, Japan
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
41
|
Nudischer R, Renggli K, Bertinetti-Lapatki C, Hoflack JC, Flint N, Sewing S, Pedersen L, Schadt S, Higgins LG, Vardy A, Lenz B, Gand L, Boess F, Elcombe BM, Hierlemann A, Roth AB. Combining In Vivo and Organotypic In Vitro Approaches to Assess the Human Relevance of Basimglurant (RG7090), a Potential CAR Activator. Toxicol Sci 2020; 176:329-342. [PMID: 32458970 DOI: 10.1093/toxsci/kfaa076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Basimglurant (RG7090), a small molecule under development to treat certain forms of depression, demonstrated foci of altered hepatocytes in a long-term rodent-toxicity study. Additional evidence pointed toward the activation of the constitutive androstane receptor (CAR), an established promoter of nongenotoxic and rodent-specific hepatic tumors. This mode of action and the potential human relevance was explored in vivo using rodent and cynomolgus monkey models and in vitro using murine and human liver spheroids. Wild type (WT) and CAR/pregnane X receptor (PXR) knockout mice (CAR/PXR KO) were exposed to RG7090 for 8 consecutive days. Analysis of liver lysates revealed induction of Cyp2b mRNA and enzyme activity, a known activation marker of CAR, in WT but not in CAR/PXR KO animals. A series of proliferative genes were upregulated in WT mice only, and immunohistochemistry data showed increased cell proliferation exclusively in WT mice. In addition, primary mouse liver spheroids were challenged with RG7090 in the presence or absence of modified antisense oligonucleotides inhibiting CAR and/or PXR mRNA, showing a concentration-dependent Cyp2b mRNA induction only if CAR was not repressed. On the contrary, neither human liver spheroids nor cynomolgus monkeys exposed to RG7090 triggered CYP2B mRNA upregulation. Our data suggested RG7090 to be a rodent-specific CAR activator, and that CAR activation and its downstream processes were involved in the foci of altered hepatocytes formation detected in vivo. Furthermore, we demonstrated the potential of a new in vitro approach using liver spheroids and antisense oligonucleotides for CAR knockdown experiments, which could eventually replace in vivo investigations using CAR/PXR KO mice.
Collapse
Affiliation(s)
- Ramona Nudischer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kasper Renggli
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cristina Bertinetti-Lapatki
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Jean-Christophe Hoflack
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Nicholas Flint
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Sabine Sewing
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Lykke Pedersen
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Simone Schadt
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | | | - Audrey Vardy
- CXR Biosciences Ltd, Dundee DD1 5JJ, Scotland, UK
| | - Barbara Lenz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Laurent Gand
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Franziska Boess
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | | | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Adrian B Roth
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| |
Collapse
|
42
|
Zabulica M, Srinivasan RC, Vosough M, Hammarstedt C, Wu T, Gramignoli R, Ellis E, Kannisto K, Collin de l'Hortet A, Takeishi K, Soto-Gutierrez A, Strom SC. Guide to the Assessment of Mature Liver Gene Expression in Stem Cell-Derived Hepatocytes. Stem Cells Dev 2020; 28:907-919. [PMID: 31122128 PMCID: PMC6648222 DOI: 10.1089/scd.2019.0064] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Differentiation of stem cells to hepatocyte-like cells (HLCs) holds great promise for basic research, drug and toxicological investigations, and clinical applications. There are currently no protocols for the production of HLCs from stem cells, such as embryonic stem cells or induced pluripotent stem cells, that produce fully mature hepatocytes with a wide range of mature hepatic functions. This report describes a standard method to assess the maturation of stem cell-derived HLCs with a moderately high-throughput format, by analysing liver gene expression by quantitative RT-qPCR. This method also provides a robust data set of the expression of 62 genes expressed in normal liver, generated from 17 fetal and 25 mature human livers, so that investigators can quickly and easily compare the expression of these genes in their stem cell-derived HLCs with the values obtained in authentic fetal and mature human liver. The simple methods described in this study will provide a quick and accurate assessment of the efficacy of a differentiation protocol and will help guide the optimization of differentiation conditions.
Collapse
Affiliation(s)
- Mihaela Zabulica
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Raghuraman C Srinivasan
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Christina Hammarstedt
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Wu
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Ellis
- 3Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Kristina Kannisto
- 4Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institutet, Stockholm, Sweden
| | | | - Kazuki Takeishi
- 5Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Stephen C Strom
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Ashino T, Yamamoto M, Numazawa S. Nrf2 Antioxidative System is Involved in Cytochrome P450 Gene Expression and Activity: A Delay in Pentobarbital Metabolism in Nrf2-Deficient Mice. Drug Metab Dispos 2020; 48:673-680. [PMID: 32503880 DOI: 10.1124/dmd.120.000010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
NF-E2-related factor 2 (Nrf2) is a transcriptional regulator of biologic defense proteins, such as antioxidant proteins and phase II detoxification enzymes. Cytochrome P450 (P450) enzymes have been shown to regulate phase I metabolism of various drugs and are partially regulated by Nrf2; however, the influence of Nrf2 on drug pharmacokinetics is not known. Here, we showed that Nrf2 depletion prolonged the effect of pentobarbital, a sleep-promoting drug. Pretreatment with phenobarbital, a P450 inducer, shortens the sleeping time associated with pentobarbital-induced sedation in wild-type (WT) mice; however, this effect was not observed in Nrf2-/- mice. Furthermore, the blood pentobarbital concentration was higher in Nrf2-/- mice than in WT mice at 30-60 minutes, and the phenobarbital-induced enhancement of its clearance was attenuated in Nrf2-/- mice compared with WT mice. Total P450 content was decreased in Nrf2-/- mouse livers, and the phenobarbital-induced increase in P450 content was lower in Nrf2-/- mice than WT mice. Cyp1a2, Cyp2a5, Cyp2c29, and Cyp2e1 gene expression levels under physiologic conditions and Cyp1a2, Cyp2a5, and Cyp2b10 gene expression levels under phenobarbital-treated conditions were lower in Nrf2-/- mice compared with WT mice. Additionally, pentobarbital metabolism in liver microsomes was attenuated by Nrf2 depletion. Taken together, these findings suggested that Nrf2 influenced pentobarbital pharmacokinetics through the regulation of drug metabolism and P450 gene expression. Thus, Nrf2-mediated regulation of P450 may contribute to the biologic defense against increased reactive oxygen species production. SIGNIFICANCE STATEMENT: NF-E2-related factor 2 (Nrf2) plays a critical role in the cellular defense against oxidative stress. Nrf2-/- mice with reduced ability to eliminate reactive oxygen species (ROS) showed a significant delay in emergence from pentobarbital-induced sleep, which was associated with decreased P450 activities and gene expression. Our findings provide that Nrf2 dysfunction or ROS that exceed a threshold level of the eliminating ability of the Nrf2 system may reduce P450 activity.
Collapse
Affiliation(s)
- Takashi Ashino
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan (T.A., S.N.); Pharmacological Research Center, Showa University, Tokyo, Japan (T.A., S.N.); and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (M.Y.)
| | - Masayuki Yamamoto
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan (T.A., S.N.); Pharmacological Research Center, Showa University, Tokyo, Japan (T.A., S.N.); and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (M.Y.)
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan (T.A., S.N.); Pharmacological Research Center, Showa University, Tokyo, Japan (T.A., S.N.); and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (M.Y.)
| |
Collapse
|
44
|
He C, Liu S, Liang J, Zeng Y, Wang S, Wu Q, Xie W, Zhang Y. Genome-wide identification and analysis of nuclear receptors genes for lethal screening against Bemisia tabaci Q. PEST MANAGEMENT SCIENCE 2020; 76:2040-2048. [PMID: 31943718 DOI: 10.1002/ps.5738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/14/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nuclear receptors (NRs) play an essential role in diverse biological processes, such as insect metamorphosis. Here, transcriptome analysis and functional studies were used to determine whether NRs are involved in metamorphosis of whitefly Bemisia tabaci Q, a serious pest to crops, and to find some potential insecticide targets. RESULTS Twenty NRs were identified in the Bemisia tabaci Q genome and categorized into the NR0-NR6 subfamilies. The phylogenetic tree of NRs from Bemisia tabaci Q and other representative species was constructed, which provided evolutionary insight into their genetic distances. The results of spatiotemporal gene expression indicated that the majority of NR gene expression was higher in the head than the abdomen and higher in eggs than adults. Further functional analysis using RNA interference (RNAi) showed that NR genes play an important role in Bemisia tabaci Q pupation and eclosion. With respect to high mortality and effects on growth, this was reflected in the unable to become pupa when the third-stage nymph treated with double-stranded RNA (dsRNA) and the developmental time delay (4-7 days) when pupae were treated with dsRNA for the 12 NR genes during molting compared with the development time in the control. CONCLUSION This study provides insight into NR functions during the metamorphosis stages of Bemisia tabaci Q. Several candidate genes could be potential insecticide targets for whitefly pest control due to their important roles in insect development. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, P. R. China
| | - Jinjin Liang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
45
|
Hendriks DFG, Vorrink SU, Smutny T, Sim SC, Nordling Å, Ullah S, Kumondai M, Jones BC, Johansson I, Andersson TB, Lauschke VM, Ingelman-Sundberg M. Clinically Relevant Cytochrome P450 3A4 Induction Mechanisms and Drug Screening in Three-Dimensional Spheroid Cultures of Primary Human Hepatocytes. Clin Pharmacol Ther 2020; 108:844-855. [PMID: 32320483 DOI: 10.1002/cpt.1860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
Cytochrome P450 (CYP) 3A4 induction is an important cause of drug-drug interactions, making early identification of drug candidates with CYP3A4 induction liability in drug development a prerequisite. Here, we present three-dimensional (3D) spheroid cultures of primary human hepatocytes (PHHs) as a novel CYP3A4 induction screening model. Screening of 25 drugs (12 known CYP3A4 inducers in vivo and 13 negative controls) at physiologically relevant concentrations revealed a 100% sensitivity and 100% specificity of the system. Three of the in vivo CYP3A4 inducers displayed much higher CYP3A4 induction capacity in 3D spheroid cultures as compared with in two-dimensional (2D) monolayer cultures. Among those, we identified AZD1208, a proviral integration site for Moloney murine leukemia virus (PIM) kinase inhibitor terminated in phase I of development due to unexpected CYP3A4 autoinduction, as a CYP3A4 inducer only active in 3D spheroids but not in 2D monolayer cultures. Gene knockdown experiments revealed that AZD1208 requires pregnane X receptor (PXR) to induce CYP3A4. Rifampicin requires solely PXR to induce CYP3A4 and CYP2B6, while phenobarbital-mediated induction of these CYPs did not show absolute dependency on either PXR or constitutive androstane receptor (CAR), suggesting its ability to switch nuclear receptor activation. Mechanistic studies into AZD1208 uncovered an involvement of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in CYP3A4 induction that is sensitive to the culture format used, as revealed by its inhibition of ERK1/2 Tyrosine 204 phosphorylation and sensitivity to epidermal growth factor (EGF) pressure. In line, we also identified lapatinib, a dual epidermal growth factor receptor/human epidermal growth factor receptor 2 (EGFR/HER2) inhibitor, as another CYP3A4 inducer only active in 3D spheroid culture. Our findings offer insights into the pathways involved in CYP3A4 induction and suggest PHH spheroids for preclinical CYP3A4 induction screening.
Collapse
Affiliation(s)
- Delilah F G Hendriks
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden.,Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
| | - Sabine U Vorrink
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Smutny
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah C Sim
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Nordling
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Shahid Ullah
- Division of Clinical Pharmacology, Karolinska University Hospital Laboratory, Stockholm, Sweden
| | - Masaki Kumondai
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | - Inger Johansson
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Zhao M, Zhao H, Lin L, Wang Y, Chen M, Wu B. Nuclear receptor co-repressor RIP140 regulates diurnal expression of cytochrome P450 2b10 in mouse liver. Xenobiotica 2020; 50:1139-1148. [PMID: 32238093 DOI: 10.1080/00498254.2020.1751342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Elucidating the mechanisms for circadian expression of drug-metabolizing enzymes is essential for a better understanding of dosing time-dependent drug metabolism and pharmacokinetics. CYP2B6 (Cyp2b10 in mice) is an important enzyme responsible for metabolism and detoxification of approximately 10% of drugs. Here, we aimed to investigate a potential role of nuclear receptor co-repressor RIP140 in circadian regulation of Cyp2b10 in mice.We first uncovered diurnal rhythmicity in hepatic RIP140 mRNA and protein with peak values at ZT10 (ZT, zeitgeber time). RIP140 ablation up-regulated Cyp2b10 expression and blunted its rhythm in mice and in AML-12 cells. Consistent with a negative regulatory effect, overexpression of RIP140 inhibited Cyp2b10 promoter activity and reduced cellular Cyp2b10 expression.Furthermore, RIP140 suppressed Car- and Pxr-mediated transactivation of Cyp2b10, and the suppressive effects were attenuated when the RIP140 gene was silenced. Chromatin immunoprecipitation assays revealed that recruitment of RIP140 protein to the Cyp2b10 promoter was circadian time-dependent in wild-type mice. More extensive recruitment was observed at ZT10 than at ZT2 consistent with the rhythmic pattern of RIP140 protein. However, the time-dependency of RIP140 recruitment was lost in RIP140-/- mice.Additionally, we identified a D-box and a RORE cis-element in RIP140 promoter. D-box- and RORE-acting clock components such as Dbp, E4bp4, Rev-erbα/β and Rorα transcriptionally regulated RIP140, potentially accounting for its rhythmic expression.In conclusion, RIP140 regulates diurnal expression of Cyp2b10 in mouse liver through periodical repression of Car- and Pxr-mediated transactivation. This co-regulator-driven mechanism represents a novel source of diurnal rhythmicity in drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Huan Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Luomin Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Menglin Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
47
|
Shizu R, Yoshinari K. Nuclear receptor CAR-mediated liver cancer and its species differences. Expert Opin Drug Metab Toxicol 2020; 16:343-351. [PMID: 32202166 DOI: 10.1080/17425255.2020.1746268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The nuclear receptor CAR plays an important role in the regulation of hepatic responses to xenobiotic exposure, including the induction of hepatocyte proliferation and chemical carcinogenesis. Phenobarbital, a well-known liver cancer promoter, has been found to promote hepatocyte proliferation via CAR activation. However, the molecular mechanisms by which CAR induces liver carcinogenesis remain unknown. In addition, it is believed that CAR-mediated liver carcinogenesis shows a species difference; phenobarbital treatment induces hepatocyte proliferation and liver cancer in rodents but not in humans. However, the mechanisms are also unknown.Areas covered: Several reports indicate that the key oncogenic signaling pathways Wnt/β-catenin and Hippo/YAP are involved in CAR-mediated liver carcinogenesis. We introduce current data about the possible molecular mechanisms involved in CAR-mediated liver carcinogenesis and species differences by focusing on these two signaling pathways.Expert opinion: CAR may activate both the Wnt/β-catenin and Hippo/YAP signaling pathways. The synergistic activation of both signaling pathways seems to be important for CAR-mediated liver cancer development. Low homology between the ligand binding domains of human CAR and rodent CAR might cause species differences in the interactions with proteins that control the Wnt/β-catenin and Hippo/YAP pathways as well as liver cancer induction.
Collapse
Affiliation(s)
- Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
48
|
Yasuda M, Gan L, Chen B, Yu C, Zhang J, Gama-Sosa MA, Pollak DD, Berger S, Phillips JD, Edelmann W, Desnick RJ. Homozygous hydroxymethylbilane synthase knock-in mice provide pathogenic insights into the severe neurological impairments present in human homozygous dominant acute intermittent porphyria. Hum Mol Genet 2020; 28:1755-1767. [PMID: 30615115 DOI: 10.1093/hmg/ddz003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/07/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Acute intermittent porphyria (AIP) is an inborn error of heme biosynthesis due to the deficiency of hydroxymethylbilane synthase (HMBS) activity. Human AIP heterozygotes have episodic acute neurovisceral attacks that typically start after puberty, whereas patients with homozygous dominant AIP (HD-AIP) have early-onset chronic neurological impairment, including ataxia and psychomotor retardation. To investigate the dramatically different manifestations, knock-in mice with human HD-AIP missense mutations c.500G>A (p.Arg167Glu) or c.518_519GC>AG (p.Arg173Glu), designated R167Q or R173Q mice, respectively, were generated and compared with the previously established T1/T2 mice with ~30% residual HMBS activity and the heterozygous AIP phenotype. Homozygous R173Q mice were embryonic lethal, while R167Q homozygous mice (R167Q+/+) had ~5% of normal HMBS activity, constitutively elevated plasma and urinary 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), profound early-onset ataxia, delayed motor development and markedly impaired rotarod performance. Central nervous system (CNS) histology was grossly intact, but CNS myelination was delayed and overall myelin volume was decreased. Heme concentrations in liver and brain were similar to those of T1/T2 mice. Notably, ALA and PBG concentrations in the cerebral spinal fluid and CNS regions were markedly elevated in R167Q+/+ mice compared with T1/T2 mice. When the T1/T2 mice were administered phenobarbital, ALA and PBG markedly accumulated in their liver and plasma, but not in the CNS, indicating that ALA and PBG do not readily cross the blood-brain barrier. Taken together, these studies suggest that the severe HD-AIP neurological phenotype results from decreased myelination and the accumulation of locally produced neurotoxic porphyrin precursors within the CNS.
Collapse
Affiliation(s)
- Makiko Yasuda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lin Gan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brenden Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jinglan Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel A Gama-Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Daniela D Pollak
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefanie Berger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - John D Phillips
- Division of Hematology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
49
|
Kato H. Computational prediction of cytochrome P450 inhibition and induction. Drug Metab Pharmacokinet 2019; 35:30-44. [PMID: 31902468 DOI: 10.1016/j.dmpk.2019.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/27/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 (CYP) enzymes play an important role in the phase I metabolism of many xenobiotics. Most drug-drug interactions (DDIs) associated with CYP are caused by either CYP inhibition or induction. The early detection of potential DDIs is highly desirable in the pharmaceutical industry because DDIs can cause serious adverse events, which can lead to poor patient health and drug development failures. Recently, many computational studies predicting CYP inhibition and induction have been reported. The current computational modeling approaches for CYP metabolism are classified as ligand- and structure-based; various techniques, such as quantitative structure-activity relationships, machine learning, docking, and molecular dynamic simulation, are involved in both the approaches. Recently, combining these two approaches have resulted in improvements in the prediction accuracy of DDIs. In this review, we present important, recent developments in the computational prediction of the inhibition of four clinically crucial CYP isoforms (CYP1A2, 2C9, 2D6, and 3A4) and three nuclear receptors (aryl hydrocarbon receptor, constitutive androstane receptor, and pregnane X receptor) involved in the induction of CYP1A2, 2B6, and 3A4, respectively.
Collapse
Affiliation(s)
- Harutoshi Kato
- DMPK Research Laboratories, Mitsubishi Tanabe Pharma Corporation, Aoba-ku, Yokohama-shi, 227-0033, Japan.
| |
Collapse
|
50
|
Baldwin WS. Phase 0 of the Xenobiotic Response: Nuclear Receptors and Other Transcription Factors as a First Step in Protection from Xenobiotics. NUCLEAR RECEPTOR RESEARCH 2019; 6:101447. [PMID: 31815118 PMCID: PMC6897393 DOI: 10.32527/2019/101447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This mini-review examines the crucial importance of transcription factors as a first line of defense in the detoxication of xenobiotics. Key transcription factors that recognize xenobiotics or xenobiotic-induced stress such as reactive oxygen species (ROS), include AhR, PXR, CAR, MTF, Nrf2, NF-κB, and AP-1. These transcription factors constitute a significant portion of the pathways induced by toxicants as they regulate phase I-III detoxication enzymes and transporters as well as other protective proteins such as heat shock proteins, chaperones, and anti-oxidants. Because they are often the first line of defense and induce phase I-III metabolism, could these transcription factors be considered the phase 0 of xenobiotic response?
Collapse
Affiliation(s)
- William S Baldwin
- Clemson University, Biological Sciences/Environmental Toxicology, 132 Long Hall, Clemson, SC 29634
| |
Collapse
|