1
|
Chen ZF, Tian YS, Ma WH, Zhai JM. Gene expression changes in response to low temperatures in embryos of the kelp grouper, Epinephelus moara. Cryobiology 2020; 97:159-167. [PMID: 32628925 DOI: 10.1016/j.cryobiol.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023]
Abstract
The kelp grouper Epinephelus moara has high economic value and is popular in fisheries and aquaculture in China. In the previous study, we treated the embryos at 16-22 somite stage at 4 °C, -25.7 °C, -140 °C and -196 °C, and successfully obtained surviving embryos in each group. To better understand the molecular changes affected by the low temperatures, we conducted a comparative transcriptome analysis among embryos exposed at 4 °C for 30 min, embryos exposed at -25.7 °C for 30 min and the control group. qPCR assays were conducted for the validation. Signal transduction pathways were highly enriched for the differentially expressed genes. c-Fos, c-Jun, JunD, GADD45, involved in MAPK signaling pathway, were upregulated when embryos were treated at low temperatures. As immediate early genes, Egr-1a and b, and IER2, that respond quickly to the environment stress, their expression increased as well. Hsp70 showed similar expression pattern as immediate early genes. Meanwhile, transcription factors Sox, HES, TFIID, muscle movement and protein synthesis-related genes were downregulated. Taken together, our findings suggest that cooling disrupts gene expression patterns in E. moara embryos. The differentially expressed genes may be involved in cellular resistance against low temperatures, possibly through neural activation, apoptosis, proliferation, differentiation, cellular recovery and heat shock regulation. This study also provides transcriptome dataset of E. moara embryos exposed to cold temperatures for future studies focusing on the molecular effects of cryopreservation.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Yong-Sheng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Wen-Hui Ma
- Ming Bo Aquatic Co. Ltd., Laizhou, 261400, China
| | | |
Collapse
|
2
|
Cairns JT, Habgood A, Edwards-Pritchard RC, Joseph C, John AE, Wilkinson C, Stewart ID, Leslie J, Blaxall BC, Susztak K, Alberti S, Nordheim A, Oakley F, Jenkins G, Tatler AL. Loss of ELK1 has differential effects on age-dependent organ fibrosis. Int J Biochem Cell Biol 2019; 120:105668. [PMID: 31877385 DOI: 10.1016/j.biocel.2019.105668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023]
Abstract
ETS domain-containing protein-1 (ELK1) is a transcription factor important in regulating αvβ6 integrin expression. αvβ6 integrins activate the profibrotic cytokine Transforming Growth Factor β1 (TGFβ1) and are increased in the alveolar epithelium in idiopathic pulmonary fibrosis (IPF). IPF is a disease associated with aging and therefore we hypothesised that aged animals lacking Elk1 globally would develop spontaneous fibrosis in organs where αvβ6 mediated TGFβ activation has been implicated. Here we identify that Elk1-knockout (Elk1-/0) mice aged to one year developed spontaneous fibrosis in the absence of injury in both the lung and the liver but not in the heart or kidneys. The lungs of Elk1-/0 aged mice demonstrated increased collagen deposition, in particular collagen 3α1, located in small fibrotic foci and thickened alveolar walls. Despite the liver having relatively low global levels of ELK1 expression, Elk1-/0 animals developed hepatosteatosis and fibrosis. The loss of Elk1 also had differential effects on Itgb1, Itgb5 and Itgb6 expression in the four organs potentially explaining the phenotypic differences in these organs. To understand the potential causes of reduced ELK1 in human disease we exposed human lung epithelial cells and murine lung slices to cigarette smoke extract, which lead to reduced ELK1 expression andmay explain the loss of ELK1 in human disease. These data support a fundamental role for ELK1 in protecting against the development of progressive fibrosis via transcriptional regulation of beta integrin subunit genes, and demonstrate that loss of ELK1 can be caused by cigarette smoke.
Collapse
Affiliation(s)
- Jennifer T Cairns
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Anthony Habgood
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Rochelle C Edwards-Pritchard
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Chitra Joseph
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Alison E John
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Chloe Wilkinson
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Iain D Stewart
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Burns C Blaxall
- Department of Personalized Medicine and Pharmacogenetics, The Christ Hospital Health Network, Cincinnati, OH, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Siegfried Alberti
- Interfaculty Institute of Cell Biology, Tuebingen University, Tuebingen, Germany
| | - Alfred Nordheim
- Interfaculty Institute of Cell Biology, Tuebingen University, Tuebingen, Germany; Leibniz Institute on Ageing (FLI), Jena, Germany
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gisli Jenkins
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK
| | - Amanda L Tatler
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, City Campus, Nottingham, NG5 1PB, UK.
| |
Collapse
|
3
|
Sonoda J, Chen MZ, Baruch A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm Mol Biol Clin Investig 2017; 30:/j/hmbci.ahead-of-print/hmbci-2017-0002/hmbci-2017-0002.xml. [PMID: 28525362 DOI: 10.1515/hmbci-2017-0002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) analogs and FGF21 receptor agonists (FGF21RAs) that mimic FGF21 ligand activity constitute the new "FGF21-class" of anti-obesity and anti-diabetic molecules that improve insulin sensitivity, ameliorate hepatosteatosis and promote weight loss. The metabolic actions of FGF21-class proteins in obese mice are attributed to stimulation of brown fat thermogenesis and increased secretion of adiponectin. The therapeutic utility of this class of molecules is being actively investigated in clinical trials for the treatment of type 2 diabetes and non-alcoholic steatohepatitis (NASH). This review is focused on various FGF21-class molecules, their molecular designs and the preclinical and clinical activities. These molecules include modified FGF21 as well as agonistic antibodies against the receptor for FGF21, namely the complex of FGF receptor 1 (FGFR1) and the obligatory coreceptor βKlotho (KLB). In addition, a novel approach to increase endogenous FGF21 activity by inhibiting the FGF21-degrading protease fibroblast activation protein (FAP) is discussed.
Collapse
|
4
|
Moriya S, Chourasia D, Ng KW, Khel NB, Parhar IS. Cloning and localization of immediate early response 2 (ier2) gene in the brain of medaka. J Chem Neuroanat 2016; 77:24-29. [PMID: 27134039 DOI: 10.1016/j.jchemneu.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 12/31/2022]
Abstract
Immediate early response (IER) 2 gene, a member of the IER family, is a gene of unknown function which is affected by external stimuli in the brain. In the present study, the full length sequence and localization of medaka (Oryzias latipes) ier2 was investigated in the brain to understand the functions of Ier2 in the future studies. The full length sequence of medaka ier2 was identified using a 3'-, 5'- rapid amplification of cDNA ends method, and distribution in the brain was identified using in situ hybridization. The identified full length ier2 mRNA consisted of 939 nucleotides spanning along 1 exon. The deduced amino acid sequence consisted of 171 amino acid residues which contains a highly conserved sequence, nuclear localization signal. ier2 mRNA was distributed in the telencephalon, midbrain and the hypothalamus. This highly conserved primary response gene Ier2 can be used to visualize and map functionally activated neuronal circuitry in the brain of medaka.
Collapse
Affiliation(s)
- Shogo Moriya
- Brain Research Institutes, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia.
| | - Dipti Chourasia
- Brain Research Institutes, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Kai We Ng
- Brain Research Institutes, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Nazmina Bahadur Khel
- Brain Research Institutes, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Ishwar S Parhar
- Brain Research Institutes, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
5
|
Franklin JL, Amsler MO, Messina JL. Prenylation differentially inhibits insulin-dependent immediate early gene mRNA expression. Biochem Biophys Res Commun 2016; 474:594-598. [PMID: 27086854 DOI: 10.1016/j.bbrc.2016.04.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
Increased activity of prenyl transferases is observed in pathological states of insulin resistance, diabetes, and obesity. Thus, functional inhibitors of farnesyl transferase (FTase) and geranylgeranyl transferase (GGTase) may be promising therapeutic treatments. We previously identified insulin responsive genes from a rat H4IIE hepatoma cell cDNA library, including β-actin, EGR1, Pip92, c-fos, and Hsp60. In the present study, we investigated whether acute treatment with FTase and GGTase inhibitors would alter insulin responsive gene initiation and/or elongation rates. We observed differential regulation of insulin responsive gene expression, suggesting a differential sensitivity of these genes to one or both of the specific protein prenylation inhibitors.
Collapse
Affiliation(s)
- J Lee Franklin
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, USA
| | - Maggie O Amsler
- University of Alabama at Birmingham, Department of Biology, Birmingham, AL 35294, USA
| | - Joseph L Messina
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, USA; Veterans Administration Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
6
|
Banning A, Ockenga W, Finger F, Siebrasse P, Tikkanen R. Transcriptional regulation of flotillins by the extracellularly regulated kinases and retinoid X receptor complexes. PLoS One 2012; 7:e45514. [PMID: 23029064 PMCID: PMC3445523 DOI: 10.1371/journal.pone.0045514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/21/2012] [Indexed: 11/25/2022] Open
Abstract
Flotillin-1 and flotillin-2 are important regulators of signal transduction pathways such as growth factor signaling. Flotillin expression is increased under pathological conditions such as neurodegenerative disorders and cancer. Despite their importance for signal transduction, very little is known about the transcriptional regulation of flotillins. Here, we analyzed the expression of flotillins at transcriptional level and identified flotillins as downstream targets of the mitogen activated kinases ERK1/2. The promoter activity of flotillins was increased upon growth factor stimulation in a MAPK dependent manner. Overexpression of serum response factor or early growth response gene 1 resulted in increased flotillin mRNA and protein expression. Furthermore, both promoter activity and expression of endogenous flotillins were increased upon treatment with retinoic acid or by overexpression of the retinoid X receptor and its binding partners RARα and PPARγ. Our data indicate that the expression of flotillins, which can be detected in all cultured cells, is fine-tuned in response to various external stimuli. This regulation may be critical for the outcome of signaling cascades in which flotillins are known to be involved.
Collapse
Affiliation(s)
- Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Wymke Ockenga
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Fabian Finger
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Philipp Siebrasse
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
7
|
The immediate early gene Ier2 promotes tumor cell motility and metastasis, and predicts poor survival of colorectal cancer patients. Oncogene 2011; 31:3796-806. [DOI: 10.1038/onc.2011.535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Transcriptional repression of Cdc25B by IER5 inhibits the proliferation of leukemic progenitor cells through NF-YB and p300 in acute myeloid leukemia. PLoS One 2011; 6:e28011. [PMID: 22132193 PMCID: PMC3223216 DOI: 10.1371/journal.pone.0028011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/29/2011] [Indexed: 11/23/2022] Open
Abstract
The immediately-early response gene 5 (IER5) has been reported to be induced by γ-ray irradiation and to play a role in the induction of cell death caused by radiation. We previously identified IER5 as one of the 2,3,4-tribromo-3-methyl-1-phenylphospholane 1-oxide (TMPP)-induced transcriptional responses in AML cells, using microarrays that encompassed the entire human genome. However, the biochemical pathway and mechanisms of IER5 function in regulation of the cell cycle remain unclear. In this study, we investigated the involvement of IER5 in the cell cycle and in cell proliferation of acute myeloid leukemia (AML) cells. We found that the over-expression of IER5 in AML cell lines and in AML-derived ALDHhi (High Aldehyde Dehydrogenase activity)/CD34+ cells inhibited their proliferation compared to control cells, through induction of G2/M cell cycle arrest and a decrease in Cdc25B expression. Moreover, the over-expression of IER5 reduced colony formation of AML-derived ALDHhi/CD34+ cells due to a decrease in Cdc25B expression. In addition, over-expression of Cdc25B restored TMPP inhibitory effects on colony formation in IER5-suppressed AML-derived ALDHhi/CD34+ cells. Furthermore, the IER5 reduced Cdc25B mRNA expression through direct binding to Cdc25B promoter and mediated its transcriptional attenuation through NF-YB and p300 transcriptinal factors. In summary, we found that transcriptional repression mediated by IER5 regulates Cdc25B expression levels via the release of NF-YB and p300 in AML-derived ALDHhi/CD34+ cells, resulting in inhibition of AML progenitor cell proliferation through modulation of cell cycle. Thus, the induction of IER5 expression represents an attractive target for AML therapy.
Collapse
|
9
|
Wu AL, Coulter S, Liddle C, Wong A, Eastham-Anderson J, French DM, Peterson AS, Sonoda J. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One 2011; 6:e17868. [PMID: 21437243 PMCID: PMC3060878 DOI: 10.1371/journal.pone.0017868] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/11/2011] [Indexed: 12/22/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) is a hormone-like protein that regulates carbohydrate, lipid and bile acid metabolism. At supra-physiological doses, FGF19 also increases hepatocyte proliferation and induces hepatocellular carcinogenesis in mice. Much of FGF19 activity is attributed to the activation of the liver enriched FGF Receptor 4 (FGFR4), although FGF19 can activate other FGFRs in vitro in the presence of the coreceptor βKlotho (KLB). In this report, we investigate the role of FGFR4 in mediating FGF19 activity by using Fgfr4 deficient mice as well as a variant of FGF19 protein (FGF19v) which is specifically impaired in activating FGFR4. Our results demonstrate that FGFR4 activation mediates the induction of hepatocyte proliferation and the suppression of bile acid biosynthesis by FGF19, but is not essential for FGF19 to improve glucose and lipid metabolism in high fat diet fed mice as well as in leptin-deficient ob/ob mice. Thus, FGF19 acts through multiple receptor pathways to elicit pleiotropic effects in regulating nutrient metabolism and cell proliferation.
Collapse
Affiliation(s)
- Ai-Luen Wu
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, United States of America
| | - Sally Coulter
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Anne Wong
- Department of Assay and Automation Technology, Genentech, Inc., South San Francisco, California, United States of America
| | - Jeffrey Eastham-Anderson
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Dorothy M. French
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Andrew S. Peterson
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, United States of America
| | - Junichiro Sonoda
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Oh DY, Cho JH, Park SY, Kim YS, Yoon YJ, Yoon SH, Chung KC, Lee KS, Han JS. A novel role of hippocalcin in bFGF-induced neurite outgrowth of H19-7 cells. J Neurosci Res 2008; 86:1557-65. [PMID: 18183620 DOI: 10.1002/jnr.21602] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hippocalcin is a Ca2+-binding protein that is expressed mainly in pyramidal nerve cells of the hippocampus. However, its functions and mechanism in the brain remain unclear. To elucidate the role of hippocalcin, we used a conditionally immortalized hippocampal cell line (H19-7) and showed that bFGF treatment increased the expression of hippocalcin during bFGF-induced neurite outgrowth of H19-7 cells. Overexpression of hippocalcin dramatically elongated neurites and increased the expression of basic helix-loop-helix transcription factor, that is, NeuroD without bFGF stimulation. Treatment of the cells with hippocalcin siRNA completely blocked bFGF-induced neurite outgrowth and NeuroD expression. bFGF stimulation resulted in activation of phospholipase C-gamma (PLC-gamma) and an increased level of intracellular Ca2+. Hippocalcin expression by bFGF stimulation was fully blocked by both the PLC-gamma inhibitor U73122 and BAPTA-AM, a chelator of intracellular Ca2+, suggesting that hippocalcin expression by bFGF is dependent on PLC-gamma and Ca2+. Moreover, both U73122 and BAPTA-AM completely blocked bFGF-induced neurite outgrowth and NeuroD expression. Taken together, these results suggest for the first time that bFGF induces hippocalcin expression in H19-7 cells through PLC-gamma activation, which leads to neurite outgrowth.
Collapse
Affiliation(s)
- Doo-Yi Oh
- Institute of Biomedical Science and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
CXCL5 promotes prostate cancer progression. Neoplasia 2008; 10:244-54. [PMID: 18320069 DOI: 10.1593/neo.07976] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 12/20/2007] [Accepted: 12/28/2007] [Indexed: 11/18/2022] Open
Abstract
CXCL5 is a proangiogenic CXC-type chemokine that is an inflammatory mediator and a powerful attractant for granulocytic immune cells. Unlike many other chemokines, CXCL5 is secreted by both immune (neutrophil, monocyte, and macrophage) and nonimmune (epithelial, endothelial, and fibroblastic) cell types. The current study was intended to determine which of these cell types express CXCL5 in normal and malignant human prostatic tissues, whether expression levels correlated with malignancy and whether CXCL5 stimulated biologic effects consistent with a benign or malignant prostate epithelial phenotype. The results of these studies show that CXCL5 protein expression levels are concordant with prostate tumor progression, are highly associated with inflammatory infiltrate, and are frequently detected in the lumens of both benign and malignant prostate glands. Exogenous administration of CXCL5 stimulates cellular proliferation and gene transcription in both nontransformed and transformed prostate epithelial cells and induces highly aggressive prostate cancer cells to invade through synthetic basement membrane in vitro. These findings suggest that the inflammatory mediator, CXCL5, may play multiple roles in the etiology of both benign and malignant proliferative diseases in the prostate.
Collapse
|
12
|
Wildtype Elk-1, but not a SUMOylation mutant, represses egr-1 expression in SH-SY5Y neuroblastomas. Neurosci Lett 2008; 437:20-4. [DOI: 10.1016/j.neulet.2008.03.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 03/03/2008] [Accepted: 03/17/2008] [Indexed: 11/24/2022]
|
13
|
Kobayashi MS, Asai S, Ishikawa K, Nishida Y, Nagata T, Takahashi Y. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain. ACTA ACUST UNITED AC 2008; 58:171-91. [PMID: 18440647 DOI: 10.1016/j.brainresrev.2008.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 02/08/2008] [Accepted: 03/08/2008] [Indexed: 12/20/2022]
Abstract
Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.
Collapse
Affiliation(s)
- Megumi Sugahara Kobayashi
- Division of Genomic Epidemiology and Clinical Trials, Advanced Medical Research Center, Nihon University School of Medicine, Oyaguchi-Kami Machi, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Begley LA, MacDonald JW, Day ML, Macoska JA. CXCL12 Activates a Robust Transcriptional Response in Human Prostate Epithelial Cells. J Biol Chem 2007; 282:26767-26774. [PMID: 17631494 DOI: 10.1074/jbc.m700440200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CXCL12 is a CXC-type chemokine that plays important roles in hematopoiesis, development, and organization of the immune system and supports the survival or growth of a variety of normal or malignant cell types. Our laboratory recently showed that CXCL12 is secreted by aging stromal fibroblast cells and is a major paracrine factor that specifically stimulates the proliferation of prostate epithelial cells. The current study shows that this CXCL12-mediated proliferative response may be either ERK-dependent or ERK-independent. Moreover, CXCL12 initiates a previously undefined and complex global transcriptional response in prostate epithelial cells. This CXCL12-mediated transcriptional response directly stimulates the expression of genes encoding proteins that are involved in the promotion of cellular proliferation and progression through the cell cycle, tumor metastasis, and cellular motility, and directly represses the transcription of genes encoding proteins involved in cell-cell adhesion and resistance to apoptosis. Thus, CXCL12 may play a major role in the etiology of benign proliferative disease in the context of an aging tissue microenvironment.
Collapse
Affiliation(s)
- Lesa A Begley
- Department of Urology and the Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109
| | - James W MacDonald
- Department of Urology and the Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Mark L Day
- Department of Urology and the Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Jill A Macoska
- Department of Urology and the Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
15
|
Oh DY, Park SY, Cho JH, Lee KS, Min DS, Han JS. Phospholipase D1 activation through Src and Ras is involved in basic fibroblast growth factor-induced neurite outgrowth of H19-7 cells. J Cell Biochem 2007; 101:221-34. [PMID: 17146759 DOI: 10.1002/jcb.21166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phospholipase D (PLD) is implicated in a variety of physiological processes that reveal it to be a member of the signal transducing phospholipases. We found that PLD1 is activated when basic fibroblast growth factor (bFGF) stimulates neurite outgrowth of an immortalized hippocampal cell line (H19-7). Overexpression of PLD1 in H19-7 cells dramatically elongated bFGF-induced neurite outgrowth and increased PLD activity. Transfection of DN-rPLD1 blocked bFGF-induced PLD activation and completely inhibited neurite outgrowth induced by bFGF, suggesting that PLD1 activation is important in bFGF-induced neurite outgrowth of H19-7 cells. PLD activation and neurite outgrowth induced by bFGF was dependent on phospholipase C gamma (PLC-gamma) and Ca2+, but not protein kinase C (PKC). Furthermore, inhibition of Src and Ras partially blocked bFGF-induced PLD activation and neurite outgrowth, respectively. Coinhibition of Src and Ras completely blocked bFGF-induced PLD activation, suggesting that Src and Ras independently regulate PLD1 activation. Interestingly, bFGF-induced PLD activation and neurite outgrowth did not require ERK1/2 activated by Ras. Taken together, this study demonstrates that bFGF activates PLD1 through PLC-gamma activation, which leads to neurite outgrowth in H19-7 cells. Furthermore, our results show that PLD1 activation by bFGF is regulated by Src and Ras independently.
Collapse
Affiliation(s)
- Doo-Yi Oh
- Institute of Biomedical Science and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-Dong, Sungdong-Ku, Seoul 133-791, Korea
| | | | | | | | | | | |
Collapse
|
16
|
Park JB, Kim EJ, Yang EJ, Seo SR, Chung KC. JNK- and Rac1-dependent induction of immediate early gene pip92 suppresses neuronal differentiation. J Neurochem 2006; 100:555-66. [PMID: 17156131 DOI: 10.1111/j.1471-4159.2006.04263.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immediate early gene pip92 is rapidly and transiently induced by serum, basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and phobol ester, as well as various toxic stimuli. Rho GTPases, such as RhoA, Rac1 and Cdc42, have been implicated in both cytoskeletal rearrangement and cell cycle control. Rac1 and Cdc42 induce neurite outgrowth in many types of neuronal cells. A downstream effector of both Rac1 and Cdc42, p21-activated kinase (Pak1), is highly enriched in neurons. In the present study, we examined the signal transduction pathways involved in pip92 induction, focusing on the involvement of Rho family guanosine 5'-triphosphate (GTP)ases. We also examined the functional role of pip92 expression during FGF-induced neuronal differentiation in embryonic hippocampal cells. Significant and robust activation of c-Jun N-terminal Kinase (JNK), Rac1 and extracellular signal-regulated kinase (ERK) appeared to be important for pip92 induction in response to bFGF. Transient transfection of kinase-inactive MEKK7 or chemical inhibitors of JNK significantly decreased the activation of Rac1 by FGF. However, blockade of Rac1 did not affect JNK activity. Moreover, a MEK-ERK blockade did not affect Rac1 activity. Activation of JNK and Rac1 induced Pak1 activity, which could then phosphorylate and activate transcription factor Elk1. Stimulation of Pak1-dependent Elk1 was required for the bFGF-induced activation of pip92. Suppression of endogenous pip92 expression by siRNA significantly enhanced bFGF-induced neurite outgrowth, while the ectopic expression of pip92 suppressed the neurite extension. Taken together, these data suggest that neurogenic growth factor-induced expression of pip92 is critical for the regulation of neuronal differentiation, occurring through the subsequent activation of Rac1, JNK, Pak1 and Elk1.
Collapse
Affiliation(s)
- Jung Bum Park
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
17
|
Mattos GE, Lotfi CFP. Differences between the growth regulatory pathways in primary rat adrenal cells and mouse tumor cell line. Mol Cell Endocrinol 2005; 245:31-42. [PMID: 16289304 DOI: 10.1016/j.mce.2005.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 09/20/2005] [Accepted: 10/06/2005] [Indexed: 11/16/2022]
Abstract
In this study, DNA synthesis, phosphorylation of ERK1/2 and CREB proteins, as well as induction of c-Fos protein, were examined in rat adrenocortical, glomerulosa and fasciculata/reticularis cells, as well as in the Y1 cell line. We found that FGF2 was mitogenic only in glomerulosa cells and although ACTH did not activate ERK1/2, it did activate CREB protein, indicating efficient transduction of signals initiated in the ACTH receptors of rat adrenocortical cells. The FGF2 activated ERK1/2 in rat adrenal cells by a mechanism that might be modulated by upstream PKA pathway phosphorylation of MEK and despite the nonmitogenic effect of ACTH on rat adrenal cells it effectively induces c-Fos protein. The results presented herein describe distinct differences between the ACTH and FGF2 signal transduction mechanisms seen in adrenocortical cells and those observed in the Y1 cell line, indicating that, in vitro, ACTH blockage of the mitogenic effect occurs in normal adrenal cells after induction of c-Fos protein.
Collapse
Affiliation(s)
- Gabriele E Mattos
- Department of Anatomy, Institute of Biomedical Sciences, Universidade of São Paulo, São Paulo 05508-900, SP, Brazil
| | | |
Collapse
|
18
|
Abstract
Thyroid hormones (TH) are essential for normal growth and development in vertebrates, and are important for the maintenance of normal metabolic activity in most tissues of the body. Because the actions of TH result from the binding of 3,3',5'-triiodothyronine (T(3)) to specific nuclear receptors in the target cell, the extent of TH action in a given cell is dependent in part on the intracellular concentration of T(3). The type 3 deiodinase (D3) is a selenoenzyme that inactivates TH by catalyzing their conversion to biologically inactive metabolites. The findings that D3 activity is very high in the pregnant uterus and fetoplacental unit, and that D3-deficient mice exhibit deficits in growth, viability, and fertility strongly suggest that D3 plays an important role in development. The D3 gene (Dio3) is preferentially expressed from the paternally inherited allele and is associated with an overlapping gene transcribed from the opposite DNA strand (Dio3os). D3 mRNA expression and D3 activity are regulated by a number of hormones and growth factors as well as by genomic imprinting. Although some genomic structures appear to mediate some of these effects, many details concerning the function of the Dio3 gene are unresolved. These include the full characterization of the Dio3 and Dio3os genes, the elucidation of the mechanisms responsible for the developmental and tissue-specific patterns observed in Dio3 allelic expression, and the response of the genes to hormones and growth factors. Knowledge of these details will be important for understanding the physiologic function of an enzyme that appears to be critical for normal mammalian development.
Collapse
Affiliation(s)
- Arturo Hernandez
- Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| |
Collapse
|
19
|
Kang JE, Choi SA, Park JB, Chung KC. Regulation of the proapoptotic activity of huntingtin interacting protein 1 by Dyrk1 and caspase-3 in hippocampal neuroprogenitor cells. J Neurosci Res 2005; 81:62-72. [PMID: 15906374 DOI: 10.1002/jnr.20534] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dual specific protein kinase Dyrks are thought to play a key role in the regulation of cell growth in a variety of cellular systems. Interestingly, human Dyrk1 is mapped to the Down's syndrome (DS) critical region on chromosome 21, and thought to be a candidate gene responsible for the mental retardation of DS patients. Huntingtin-interacting protein 1 (Hip-1), a proapoptotic mediator, is implicated as a molecular accomplice in the pathogenesis of Huntington's disease. In the present study we found that Dyrk1 selectively binds to and phosphorylates Hip-1 during the neuronal differentiation of embryonic hippocampal neuroprogenitor (H19-7) cells. The Dyrk1-mediated phosphorylation of Hip-1, in response to bFGF, resulted in the blockade of Hip-1-mediated neuronal cell death as well as the enhancement of neurite outgrowth. Furthermore, the addition of etoposide to proliferating H19-7 cells caused the diminished binding of Hip-1 to Dyrk1 and the levels of phosphorylated Hip-1 remarkably decreased. Simultaneously, the dissociated Hip-1 from Dyrk1 bound to caspase-3 in response to etoposide, which led to its activation and consequently cell death in H19-7 cells. These data suggest that the phosphorylation of Hip-1 by Dyrk1 has a dual role in regulating neuronal differentiation and cell death. The interaction between Dyrk1 and Hip-1 appeared to be differentially modulated by different kinds of stimuli, such as bFGF and etoposide in H19-7 cells.
Collapse
Affiliation(s)
- Jae Eun Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
20
|
Keeton AB, Bortoff KD, Franklin JL, Messina JL. Blockade of rapid versus prolonged extracellularly regulated kinase 1/2 activation has differential effects on insulin-induced gene expression. Endocrinology 2005; 146:2716-25. [PMID: 15731359 DOI: 10.1210/en.2004-1662] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present work, insulin's regulation of expression of activating transcription factor 3 (ATF-3), the putative transcription factor proline-rich induced protein (Pip)92, and insulin-inducible gene-1 (Insig-1) (an ER resident protein involved in regulation of sterol-responsive element-binding protein 1 activation) have been examined in a liver-derived cell line (rat H4IIE hepatoma cells). We report that: 1) insulin-induced transcription of ATF-3, Pip92, and Insig-1 required MEK-ERK activation; 2) insulin-induced transcription of ATF-3 and Pip92 reached maximum levels within 15 min and was blocked by wortmannin but not LY294002; 3) in contrast, the maximum level of insulin-induced transcription of Insig-1 was delayed and was not blocked by either wortmannin or LY294002; 4) insulin activated ERK1/2 in two distinct phases, a rapid peak and a later plateau; 5) the delayed plateau phase of insulin-induced ERK1/2 activation was partially phosphatidylinositol 3-OH-kinase dependent; and 6) however, the rapid, insulin-induced peak of ERK1/2 activation was blocked by wortmannin but not LY294002.
Collapse
Affiliation(s)
- Adam B Keeton
- Department of Pathology, Division of Molecular and Cellular Pathology, Volker Hall, G019, 1670 University Boulevard, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | |
Collapse
|
21
|
Moyer JA, Wood A, Zaleska MM, Ay I, Finklestein SP, Protter AA. Basic fibroblast growth factor: a potential therapeutic agent for the treatment of acute neurodegenerative disorders and vascular insufficiency. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.8.11.1425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Kim SM, Park JH, Chung SK, Kim JY, Hwang HY, Chung KC, Jo I, Park SI, Nam JH. Coxsackievirus B3 infection induces cyr61 activation via JNK to mediate cell death. J Virol 2004; 78:13479-88. [PMID: 15564459 PMCID: PMC533934 DOI: 10.1128/jvi.78.24.13479-13488.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coxsackievirus B3 (CVB3), an enterovirus in the Picornavirus family, is the most common human pathogen associated with myocarditis and idiopathic dilated cardiomyopathy. We found upregulation of the cysteine-rich protein gene (cyr61) after CVB3 infection in HeLa cells with a cDNA microarray approach, which is confirmed by Northern blot analysis. It is also revealed that the extracellular amount of Cyr61 protein was increased after CVB3 infection in HeLa cells. cyr61 is an early-transcribed gene, and the Cyr61 protein is secreted into the extracellular matrix. Its function is related to cell adhesion, migration, and neuronal cell death. Here, we show that activation of the cyr61 promoter by CVB3 infection is dependent on JNK activation induced by CVB3 replication and viral protein expression in infected cells. To explore the role of Cyr61 protein in infected HeLa cells, we transiently overexpressed cyr61 and infected HeLa cells with CVB3. This increased CVB3 growth in the cells and promoted host cell death by viral infection, whereas down-expression of cyr61 with short interfering RNA reduced CVB3 growth and showed resistance to cell death by CVB3 infection. In conclusion, we have demonstrated a new role for cyr61 in HeLa cells infected with CVB3, which is associated with the cell death induced by virus infection. These data thus expand our understanding of the physiological functions of cyr61 in virus-induced cell death and provide new insights into the cellular factors involved.
Collapse
Affiliation(s)
- Sun-Mi Kim
- Department of Biomedical Sciences, National Institute of Health, Seoul, 5 Nokbun-dong, Eunpyung-gu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Arao Y, Kikuchi A, Kishida M, Yonekura M, Inoue A, Yasuda S, Wada S, Ikeda K, Kayama F. Stability of A+U-Rich Element Binding Factor 1 (AUF1)-Binding Messenger Ribonucleic Acid Correlates with the Subcellular Relocalization of AUF1 in the Rat Uterus upon Estrogen Treatment. Mol Endocrinol 2004; 18:2255-67. [PMID: 15192077 DOI: 10.1210/me.2004-0103] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The nucleocytoplasmic shuttling protein, A+U-rich element binding factor 1 (AUF1), is one of the RNA-binding proteins that specifically bind adenylate-uridylate rich elements (AREs) in mRNA 3'-untranslated regions (UTRs), and acts as a regulator of ARE-mediated mRNA degradation in the cytoplasm. We previously reported that in the female rat uterus, the levels of specific AUF1 isoform mRNAs (p40/p45) were increased by 17 beta-estradiol (E2) treatment. Therefore, we examined the role of AUF1 in the regulation of E2-mediated mRNA turnover in the rat uterus. We identified ABIN2 and Ier2/pip92 mRNAs as candidate targets of AUF1 in the rat uterus. We found that AUF1-binding elements were present in the 3'-UTR of both mRNAs and that the 3'-UTRs functioned as mRNA turnover regulatory elements. In the ovariectomized rat uterus, the nucleocytoplasmic localization of AUF1p40/p37 isoform proteins was regulated by E2. We also found that cytoplasmic AUF1-bound mRNA levels changed coincidentally with the cytoplasmic levels of AUF1p40/p37. Finally, we confirmed that the subcellular localization of AUF1p40 controlled the stability of target mRNAs in vitro, such that cytoplasmically localized AUF1p40 led to marked mRNA stabilization, whereas nuclear-localized AUF1p40 stabilized target mRNA only slightly. These results suggested that E2-inducible ARE-containing gene transcripts are regulated, at least in part, via mRNA stabilization through the nucleocytoplasmic relocalization of AUF1.
Collapse
Affiliation(s)
- Yukitomo Arao
- Department of Environmental Medicine, Center for Community Medicine, Jichi Medical School, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The three ternary complex factors (TCFs) Elk-1, Net and Sap-1 form a subfamily of the E twenty-six (Ets) domain transcription factors. Their characteristic property is the ability to form a ternary nucleoprotein complex with the serum response factor (SRF) over the serum response element (SRE) of the c-fos promoter. The molecular mechanisms that underlie the function and regulation of these factors have been extensively studied and the TCFs are a paradigm for the study of transcriptional regulation in response to extracellular signalling through the mitogen-activated protein (MAP) kinase pathway. As final effectors of multiple signalling pathways and components of protein complexes on immediate early promoters, they represent key elements in the complex and dynamic regulation of gene expression. This review summarises the molecular, structural and biochemical studies that have led to the understanding of the functional domains of the TCFs, ternary complex formation, transcriptional regulation, protein partners and target genes in cell lines. Finally, the emerging studies of the biological roles of the TCFs in vivo will be discussed.
Collapse
Affiliation(s)
- Gilles Buchwalter
- Institut de Génétique et Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, BP 101142, CNRS, INSERM, ULP, 67404 Illkirch Cedex, France
| | | | | |
Collapse
|
25
|
Yang EJ, Yoon JH, Min DS, Chung KC. LIM Kinase 1 Activates cAMP-responsive Element-binding Protein during the Neuronal Differentiation of Immortalized Hippocampal Progenitor Cells. J Biol Chem 2004; 279:8903-10. [PMID: 14684741 DOI: 10.1074/jbc.m311913200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
LIM kinase 1 (LIMK1), a novel member of a subclass of the protein-serine/threonine kinases, is known to play a role in the development and maintenance of neuronal circuits that mediate cognitive function. Genetic studies have implicated a mutation of LIMK1 as a causative factor in the impairment of visuospatial cognition in a neurodevelopmental disorder, Williams syndrome. A transcriptional factor, cAMP-responsive element-binding protein (CREB), is thought to be involved in the formation of many types of synaptic plasticity involving learning and memory. In the present study we show that the LIMK1 activity is markedly induced during the differentiation of immortalized hippocampal progenitor (H19-7) cells. We found that the addition of neurogenic growth factor to H19-7 cells induces specific binding between LIMK1 and active CREB, that LIMK1 directly phosphorylates CREB, and that this leads to the stimulation of subsequent cAMP-responsive element-mediated gene transcription during H19-7 cell neuronal differentiation. In addition, we also found that LIMK1 activation occurs through Rac/Cdc42- and p21-activated kinase-mediated signaling pathways. Moreover, when the plasmid encoding kinase-inactive LIMK1 was transfected to block the activation of endogenous LIMK1, the neuronal differentiation of H19-7 cells was significantly suppressed. These findings suggest that LIMK1 activation and subsequent CREB phosphorylation are important in the neuronal differentiation of central nervous system hippocampal progenitor cells.
Collapse
Affiliation(s)
- Eun Jin Yang
- Department of Biology, College of Sciences, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
26
|
Lin H, Bao J, Sung YJ, Walters ET, Ambron RT, Ying JS. Rapid electrical and delayed molecular signals regulate the serum response element after nerve injury: convergence of injury and learning signals. ACTA ACUST UNITED AC 2003; 57:204-20. [PMID: 14556286 DOI: 10.1002/neu.10275] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Axotomy elicits changes in gene expression, but little is known about how information from the site of injury is communicated to the cell nucleus. We crushed nerves in Aplysia californica and the sciatic nerve in the mouse and found short- and long-term activation of an Elk1-SRF transcription complex that binds to the serum response element (SRE). The enhanced short-term binding appeared rapidly and was attributed to the injury-induced activation of an Elk1 kinase that phosphorylates Elk1 at ser383. This kinase is the previously described Aplysia (ap) ERK2 homologue, apMAPK. Nerve crush evoked action potentials that propagated along the axon to the cell soma. Exposing axons to medium containing high K(+), which evoked a similar burst of spikes, or bathing the ganglia in 20 microM serotonin (5HT) for 20 min, activated the apMAPK and enhanced SRE binding. Since 5HT is released in response to electrical activity, our data indicate that the short-term process is initiated by an injury-induced electrical discharge that causes the release of 5HT which activates apMAPK. 5HT is also released in response to noxious stimuli for aversive learning. Hence, apMAPK is a point of convergence for injury signals and learning signals. The delay before the onset of the long-term SRE binding was reduced when the crush was closer to the ganglion and was attributed to an Elk1 kinase that is activated by injury in the axon and retrogradely transported to the cell body. Although this Elk1 kinase phosphorylates mammalian rElk1 at ser383, it is distinct from apMAPK.
Collapse
Affiliation(s)
- Hana Lin
- Department of Anatomy and Cell Biology, 1201 Black Building, Columbia University, West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
27
|
Yang EJ, Yoon JH, Chung KC. Bruton's tyrosine kinase phosphorylates cAMP-responsive element-binding protein at serine 133 during neuronal differentiation in immortalized hippocampal progenitor cells. J Biol Chem 2003; 279:1827-37. [PMID: 14597636 DOI: 10.1074/jbc.m308722200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is a member of the Tec family of kinases, which is a subgroup of the nonreceptor cytoplasmic protein tyrosine kinases. BTK has been shown to be important in the proliferation, differentiation, and signal transduction of B cells. Mutations in BTK result in B cell immune deficiency disorders, such as X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice. Although BTK plays multiple roles in the life of a B cell, its functional role in neuronal cells has not been elucidated. In the present study, we demonstrate that BTK activates transcription factor, cAMP response element (CRE)-binding protein (CREB), and subsequent CRE-mediated gene transcription during basic fibroblast growth factor (bFGF)-induced neuronal differentiation in immortalized hippocampal progenitor cells (H19-7). The kinase activity of BTK is also induced by bFGF, and BTK directly phosphorylates CREB at Ser-133 residue, indicating that BTK has a dual protein kinase activity. In addition, blockading BTK activation significantly inhibits CREB phosphorylation as well as the neurite outgrowth induced by bFGF in H19-7 cells. These results suggest that the activation of BTK and the subsequent phosphorylation of CREB at Ser-133 are important in the neuronal differentiation of hippocampal progenitor cells.
Collapse
Affiliation(s)
- Eun Jin Yang
- Department of Biology, Yonsei University College of Sciences, Shinchon-dong 134, Seodaemun-gu, Seoul 120-749, Korea
| | | | | |
Collapse
|
28
|
Shaw PE, Saxton J. Ternary complex factors: prime nuclear targets for mitogen-activated protein kinases. Int J Biochem Cell Biol 2003; 35:1210-26. [PMID: 12757758 DOI: 10.1016/s1357-2725(03)00031-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ternary complex factors (TCFs), a subgroup of the ETS protein family, were first described in the context of c-fos gene regulation. Subsequently, their early identification as nuclear targets for mitogen-activated protein kinases served to exemplify the fundamental links in eukaryotic cells between growth factor-mediated signalling pathways and gene control. This article provides an overview of recent work on ternary complex factors, addressing their expression and molecular structure, as well as how selective interactions with members of other protein families serve to up-1 regulate or restrict their activity. Although only one genetic study on ternary complex factors has been published to date, unravelling of the underlying molecular events provides a basis for tentative predictions about their biological roles in mammalian organisms.
Collapse
Affiliation(s)
- Peter E Shaw
- Queen's Medical Centre, School of Biomedical Sciences, University of Nottingham, UK.
| | | |
Collapse
|
29
|
Grant S, Fisher PB, Dent P. The role of signal transduction pathways in drug and radiation resistance. Cancer Treat Res 2003; 112:89-108. [PMID: 12481713 DOI: 10.1007/978-1-4615-1173-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Steven Grant
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | |
Collapse
|
30
|
Kim KH, Min YK, Baik JH, Lau LF, Chaqour B, Chung KC. Expression of angiogenic factor Cyr61 during neuronal cell death via the activation of c-Jun N-terminal kinase and serum response factor. J Biol Chem 2003; 278:13847-54. [PMID: 12576482 DOI: 10.1074/jbc.m210128200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The immediate early gene, cyr61, is transcriptionally activated within minutes by serum and serum growth factors. The encoded Cyr61 protein is secreted into the extracellular matrix and promotes cell adhesion and migration. In this study, we sought to examine the expression profile of cyr61 gene during neuronal cell death induced by various toxic stimuli and the mechanisms involved. Our data show that toxic stimuli, such as etoposide, significantly increased cyr61 mRNA levels in immortalized hippocampal progenitor (H19-7) cells. Cyr61 transcriptional activation was corroborated at the protein level as well. To identify the upstream signaling cascades involved in cyr61 gene induction, the blocking effect of either JNK or p38 kinase-signaling pathway on cyr61 induction in response to etoposide was tested. Transfection of the cells with a kinase-deficient mutant MEKK, an upstream activator of JNK, significantly decreased the cyr61 expression induced by etoposide. In contrast, cyr61 mRNA levels did not change after pretreatment with SB203580, the p38 kinase inhibitor. When the induction of cyr61 was tested by using several of its deleted promoters driving the expression of reporter gene, the promoter activation occurred primarily within the region containing an SRE-like CArG box. In addition, the SRF, which binds to the CArG site, was directly phosphorylated by active JNK. Furthermore, the blockade of cyr61 gene expression using an antisense encoding cyr61 sequence significantly inhibited the cell death induced by etoposide. Overall, these results suggest that the induction of the immediate early gene, cyr61, is important for neuronal cell death in the central nervous system hippocampal progenitor cells, and JNK activation, but not of p38, as well as the subsequent SRF phosphorylation are involved in cyr61 gene induction.
Collapse
Affiliation(s)
- Kyung Ha Kim
- Department of Biology, Yonsei University College of Sciences, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Min YK, Park JH, Chong SA, Kim YS, Ahn YS, Seo JT, Bae YS, Chung KC. Pyrrolidine dithiocarbamate-induced neuronal cell death is mediated by Akt, casein kinase 2, c-Jun N-terminal kinase, and IkappaB kinase in embryonic hippocampal progenitor cells. J Neurosci Res 2003; 71:689-700. [PMID: 12584727 DOI: 10.1002/jnr.10520] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pyrrolidine dithiocarbamate (PDTC) is known to induce cell death by the stimulation of intracellular zinc transport and subsequent modulation of nuclear factor-kappaB (NF-kappaB) activity. Zinc is a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes to severe neuronal cell death. In the present study, we explored how PDTC modulates intracellular signal transduction pathways, leading to neuronal cell death. The exposure of immortalized embryonic hippocampal cells (H19-7) to PDTC within the range of 1-100 microM caused cell death in a dose-dependent manner. During the cell death, NF-kappaB activity increased in response to PDTC, and this activity corresponded well with the increase of intracellular free zinc levels, implying that the activation of NF-kappaB transmits the cell death signals of PDTC. Furthermore, PDTC caused the activation of IkappaB kinase (IKK), casein kinase 2 (CK2), phosphatidylinositol 3-kinase (PI-3K), and Akt, as well as mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not p38 kinase. The blockade of PI-3K, JNK, and CK2 pathways resulted in a remarkable suppression of PDTC-induced cell death and also the activation of IKK, which subsequently led to a decrease of IkappaB phosphorylation. Although the overexpression of dominant-negative SEK in a transient manner did not inhibit the activation of Akt by PDTC, the transfection of kinase-inactive Akt mutants did cause a remarkable blockade of JNK activation, implying that Akt is present upstream of JNK in the PDTC-signaling pathways. Moreover, whereas selective CK2 inhibitors suppressed PDTC-induced JNK activation, the inhibition of JNK did not affect CK2 activity, suggesting that CK2 is directly related to the regulation of cell viability by PDTC and that the CK2-JNK pathway could be a downstream target of PDTC. Taken together, our results suggest that PDTC-mediated accumulation of intracellular zinc ions may affect cell viability by modulating several intracellular signaling pathways in neuronal hippocampal progenitor cells.
Collapse
Affiliation(s)
- Young Kyu Min
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Keeton AB, Amsler MO, Venable DY, Messina JL. Insulin signal transduction pathways and insulin-induced gene expression. J Biol Chem 2002; 277:48565-73. [PMID: 12364332 DOI: 10.1074/jbc.m207837200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin regulates metabolic activity, gene transcription, and cell growth by modulating the activity of several intracellular signaling pathways. Insulin activation of one mitogen-activated protein kinase cascade, the MEK/ERK kinase cascade, is well described. However, the effect of insulin on the parallel p38 pathway is less well understood. The present work examines the effect of inhibiting the p38 signaling pathway by use of specific inhibitors, either alone or in combination with insulin, on the activation of ERK1/2 and on the regulation of gene transcription in rat hepatoma cells. Activation of ERK1/2 was induced by insulin and was dependent on the activation of MEK1, the kinase upstream of ERK in this pathway. Treatment of cells with p38 inhibitors also induced ERK1/2 activation/phosphorylation. The addition of p38 inhibitors followed by insulin addition resulted in a greater than additive activation of ERK1/2. The two genes studied, c-Fos and Pip92, are immediate-early genes that are dependent on the ERK1/2 pathway for insulin-regulated induction because the insulin effect was inhibited by pretreatment with a MEK1 inhibitor. The addition of p38 inhibitors induced transcription of both genes in a dose-dependent manner, and insulin stimulation of both genes was enhanced by prior treatment with p38 inhibitors. The ability of the p38 inhibitors to induce ERK1/2 and gene transcription, both alone and in combination with insulin, was abolished by prior inhibition of MEK1. These data suggest possible cross-talk between the p38 and ERK1/2 signaling pathways and a potential role of p38 in insulin signaling.
Collapse
Affiliation(s)
- Adam B Keeton
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham 35294, USA
| | | | | | | |
Collapse
|
33
|
Ahn YM, Kang UG, Oh SW, Juhnn YS, Joo YH, Park JB, Kim YS. Region-specific phosphorylation of ATF-2, Elk-1 and c-Jun in rat hippocampus and cerebellum after electroconvulsive shock. Neurosci Lett 2002; 329:9-12. [PMID: 12161250 DOI: 10.1016/s0304-3940(02)00568-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There have been reports of regional differences in the activation of mitogen activated protein kinases (MAPKs) and in the induction of immediate early genes after electroconvulsive shock (ECS) in the rat brain. This study was performed to determine whether ECS induce the region-specific phosphorylation of MAPK-downstream transcription factors, ATF-2, Elk-1, c-Jun, in rat hippocampus and cerebellum. Following ECS, the phosphorylation of ATF-2 was highly increased in the hippocampus but slightly in the cerebellum. The phosphorylation of Elk-1 was increased in the cerebellum but not in the hippocampus. In contrast, the phosphorylation of c-Jun was increased only in the hippocampus. These results indicate that ECS can induce the region-specific phosphorylation of MAPK-downstream transcription factors in rat hippocampus and cerebellum.
Collapse
Affiliation(s)
- Yong Min Ahn
- Department of Neuropsychiatry, Eulji University School of Medicine, Seoul 139-711, South Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Su AI, Guidotti LG, Pezacki JP, Chisari FV, Schultz PG. Gene expression during the priming phase of liver regeneration after partial hepatectomy in mice. Proc Natl Acad Sci U S A 2002; 99:11181-6. [PMID: 12177410 PMCID: PMC123230 DOI: 10.1073/pnas.122359899] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2002] [Indexed: 12/13/2022] Open
Abstract
Understanding the gene-expression patterns during liver regeneration may help to reveal how regenerative processes are initiated and controlled as well as shed new light onto processes that lead to liver disease. Using high-density oligonucleotide arrays, we have examined the gene-expression program in the livers of mice after partial hepatectomy. A time course was constructed for gene expression between 0 and 4 h after partial hepatectomy, corresponding to the priming phase of liver regeneration. The genomic program for liver regeneration involves transcription-factor generation, stress and inflammatory responses, cytoskeletal and extracellular matrix modification, and regulation of cell-cycle entry. The genome-wide changes that are observed provide a detailed and comprehensive map of the initial priming stage of liver regeneration.
Collapse
Affiliation(s)
- Andrew I Su
- Department of Chemistry and Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
35
|
Graham TE, Prossnitz ER, Dorin RI. Dexras1/AGS-1 inhibits signal transduction from the Gi-coupled formyl peptide receptor to Erk-1/2 MAP kinases. J Biol Chem 2002; 277:10876-82. [PMID: 11751935 DOI: 10.1074/jbc.m110397200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dexras1 is a novel GTP-binding protein (G protein) that was recently discovered on the basis of rapid mRNA up-regulation by glucocorticoids in murine AtT-20 corticotroph cells and in several primary tissues. The human homologue of Dexras1, termed activator of G protein signaling-1 (AGS-1), has been reported to stimulate signaling by G(i) heterotrimeric G proteins independently of receptor activation. The effects of Dexras1/AGS-1 on receptor-initiated signaling by G(i) have not been examined. Here we report that Dexras1 inhibits ligand-dependent signaling by the G(i)-coupled N-formyl peptide receptor (FPR). Dexras1 and FPR were transiently co-expressed in both COS-7 and HEK-293 cells. Activation of FPR by ligand (N-formyl-methionine-leucine-phenylalanine (f-MLF)) caused phosphorylation of endogenous Erk-1/2 that was reduced by co-expression of Dexras1. Direct effects of Dexras1 on the activity of co-expressed, epitope-tagged Erk-2 (hemagglutinin (HA)-Erk-2) were measured by immune complex in vitro kinase assay. Expression of Dexras1 alone resulted in a 1.9- to 4.9-fold increase in HA-Erk-2 activity; expression of the unliganded FPR alone resulted in a 6.2- to 8.1-fold increase in HA-Erk-2 activity. Stimulation of FPR by f-MLF produced a further 8- to 10-fold increase in HA-Erk-2 activity over the basal (non-ligand-stimulated) state, and this ligand-dependent activity was attenuated at the time points of maximal activity by co-expression of Dexras1 (reduced 31 +/- 6.8% in COS-7 at 10 min and 86 +/- 9.2% in HEK-293 at 5 min, p < 0.01 for each). Expression of Dexras1 did not influence protein expression of FPR or Erk, suggesting that the inhibitory effects of Dexras1 reflect a functional alteration in the signaling cascade from FPR to Erk. Expression of Dexras1 had no effect on expression of G(i)alpha species, but significantly impaired pertussis toxin-catalyzed ADP-ribosylation of membrane-associated G(i)alpha. Expression of Dexras1 also significantly decreased in vitro binding of GTPgammaS in f-MLF-stimulated membranes of cells co-transfected with FPR. These data suggest that Dexras1 inhibits signal transduction from FPR to Erk-1/2 through an effect that is very proximal to receptor-G(i) coupling. While Dexras1 weakly activates Erk in the resting state, more potent effects are evident in the modulation of ligand-stimulated receptor signal transduction, where Dexras1 functions as an inhibitor rather than activator of the Erk mitogen-activated protein kinase signaling cascade.
Collapse
Affiliation(s)
- Timothy E Graham
- New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico 87108, USA
| | | | | |
Collapse
|
36
|
Abstract
ETS-domain transcription-factor networks represent a model for how combinatorial gene expression is achieved. These transcription factors interact with a multitude of co-regulatory partners to elicit gene-specific responses and drive distinct biological processes. These proteins are controlled by a complex series of inter and intramolecular interactions, and signalling pathways impinge on these proteins to further regulate their action.
Collapse
Affiliation(s)
- A D Sharrocks
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
37
|
Yang EJ, Ahn YS, Chung KC. Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. J Biol Chem 2001; 276:39819-24. [PMID: 11518709 DOI: 10.1074/jbc.m104091200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dyrk is a dual specific protein kinase thought to be involved in normal embryo neurogenesis and brain development. Defects/imperfections in this kinase have been suggested to play an important role in the mental retardation of patients with Down's syndrome. The transcriptional factor cAMP response element-binding protein (CREB) has been implicated in the formation of many types of synaptic plasticity, such as learning and memory. In the present study we show that Dyrk1 activity is markedly induced during the differentiation of immortalized hippocampal progenitor (H19-7) cells. The addition of a neurogenic factor, basic fibroblast growth factor, to the H19-7 cells results in an increased specific binding of Dyrk1 to active CREB. In addition, Dyrk1 directly phosphorylates CREB, leading to the stimulation of subsequent CRE-mediated gene transcription during the neuronal differentiation in H19-7 cells. Blockade of Dyrk1 activation significantly inhibits the neurite outgrowth as well as CREB phosphorylation induced by basic fibroblast growth factor. These findings suggest that Dyrk1 activation and subsequent CREB phosphorylation is important in the neuronal differentiation of central nervous system hippocampal cells.
Collapse
Affiliation(s)
- E J Yang
- Department of Pharmacology, Brain Research Institute, Yonsei University College of Medicine, Shinchon-dong 134, Seodaemun-gu, Seoul 120-752, Korea
| | | | | |
Collapse
|
38
|
Sung JY, Lee SY, Min DS, Eom TY, Ahn YS, Choi MU, Kwon YK, Chung KC. Differential activation of phospholipases by mitogenic EGF and neurogenic PDGF in immortalized hippocampal stem cell lines. J Neurochem 2001; 78:1044-53. [PMID: 11553678 DOI: 10.1046/j.1471-4159.2001.00491.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In several neuronal systems, nerve growth factor (NGF) and platelet-derived growth factor (PDGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogenic agent. Hippocampal stem cell lines (HiB5) immortalized by the expression of a temperature-sensitive SV40 large T antigen also respond differentially to EGF and PDGF. While EGF treatment at the permissive temperature induces proliferation, the addition of PDGF induces differentiation at the non-permissive temperature. However, the mechanism responsible for these different cellular fates has not been clearly elucidated. In order to clarify possible critical signaling events leading to these distinct cellular outcomes, we examined whether either EGF or PDGF differentially induces the activation of phospholipases, such as phospholipase A(2) (PLA(2)), C (PLC), or D (PLD). Although EGF stimulation did not induce phospholipases, PDGF caused a rapid and transient activation of PLC and PLD, but not PLA(2). When the activation of PLC or PLD was blocked, the neurite outgrowth induced by PDGF was significantly inhibited. Although the activation of PLD occurred faster than PLC, blocking of PLD activity by transient expression of lipase-inactive mutants did not inhibit the induction of PLC activity by PDGF. These results suggest that the differential activation of phospholipases may play an important role in signal transduction by mitogenic EGF and neurotrophic PDGF in HiB5 neuronal hippocampal stem cells. In particular, the activation of phospholipase C and D may contribute to neuronal differentiation by neurogenic PDGF in the HiB5 cells.
Collapse
Affiliation(s)
- J Y Sung
- Department of Pharmacology, Brain Research Institute, and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Palejwala S, Stein DE, Weiss G, Monia BP, Tortoriello D, Goldsmith LT. Relaxin positively regulates matrix metalloproteinase expression in human lower uterine segment fibroblasts using a tyrosine kinase signaling pathway. Endocrinology 2001; 142:3405-13. [PMID: 11459784 DOI: 10.1210/endo.142.8.8295] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite the importance of relaxin to normal parturition in various species and its potential as an etiological agent in preterm delivery in women, knowledge regarding the mechanisms by which relaxin alters cervical connective tissue is extremely limited. An established in vitro model for human pregnancy cervix, human lower uterine segment fibroblasts, was used to determine the effects of relaxin as well as those of progesterone on the expression of matrix metalloproteinases and tissue inhibitor of metalloproteinase-1. The results demonstrate that relaxin is a positive regulator of matrix metalloproteinase expression, as it stimulates the expression of procollagenase protein and mRNA levels, stimulates prostromelysin-1 protein and mRNA levels, and inhibits tissue inhibitor of metalloproteinase-1 protein expression. Stimulation of procollagenase and prostromelysin-1 expression by relaxin does not involve phorbol-12-myristate-13-acetate- sensitive PKCs. Relaxin-stimulated tyrosine phosphorylation of the putative receptor and inhibition by a receptor tyrosine kinase inhibitor suggest that the relaxin receptor is probably a tyrosine kinase receptor. Inhibition of c-Raf protein expression using an antisense oligonucleotide inhibits relaxin regulation of matrix metalloproteinase and tissue inhibitor of metalloproteinase-1, suggesting that a signaling pathway involving c-Raf kinase mediates relaxin action.
Collapse
Affiliation(s)
- S Palejwala
- Department of Obstetrics, Gynecology, and Women's Health, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Basic fibroblast growth factor (FGF2) has many roles in neuronal development and maintenance including effects on mitogenesis, survival, fate determination, differentiation, and migration. Using a conditionally immortalized rat hippocampal cell line, H19-7, and primary hippocampal cultures, we now demonstrate that FGF2 treatment differentially regulates members of the tumor necrosis factor (TNF) superfamily of death domain receptors and their ligands. H19-7 cells transferred from serum to defined (N2) medium undergo apoptosis by a Fas-dependent mechanism similar to primary neurons. In contrast, H19-7 cells treated with FGF undergo apoptosis by a Fas-independent mechanism. FGF suppresses the Fas death pathway but also induces apoptosis by activation of a TNFalpha death pathway in both H19-7 and hippocampal progenitor cells. Expression of the TNF receptor 1 (TNFR1) or TNFR2 in H19-7 cells is sufficient to sensitize the cells to TNFalpha, similar to the effects of FGF. Because TNFalpha can be either proapoptotic or antiapoptotic, these results provide an explanation for the divergent trophic effects of FGF2 treatment and the observation that multiple trophic inputs are required for the survival of specific neurons.
Collapse
|
41
|
Eves EM, Skoczylas C, Yoshida K, Alnemri ES, Rosner MR. FGF induces a switch in death receptor pathways in neuronal cells. J Neurosci 2001; 21:4996-5006. [PMID: 11438575 PMCID: PMC6762848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Basic fibroblast growth factor (FGF2) has many roles in neuronal development and maintenance including effects on mitogenesis, survival, fate determination, differentiation, and migration. Using a conditionally immortalized rat hippocampal cell line, H19-7, and primary hippocampal cultures, we now demonstrate that FGF2 treatment differentially regulates members of the tumor necrosis factor (TNF) superfamily of death domain receptors and their ligands. H19-7 cells transferred from serum to defined (N2) medium undergo apoptosis by a Fas-dependent mechanism similar to primary neurons. In contrast, H19-7 cells treated with FGF undergo apoptosis by a Fas-independent mechanism. FGF suppresses the Fas death pathway but also induces apoptosis by activation of a TNFalpha death pathway in both H19-7 and hippocampal progenitor cells. Expression of the TNF receptor 1 (TNFR1) or TNFR2 in H19-7 cells is sufficient to sensitize the cells to TNFalpha, similar to the effects of FGF. Because TNFalpha can be either proapoptotic or antiapoptotic, these results provide an explanation for the divergent trophic effects of FGF2 treatment and the observation that multiple trophic inputs are required for the survival of specific neurons.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- CASP8 and FADD-Like Apoptosis Regulating Protein
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/pharmacology
- Caspase Inhibitors
- Caspases/metabolism
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Fas Ligand Protein
- Fibroblast Growth Factor 2/pharmacology
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Intracellular Signaling Peptides and Proteins
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Signal Transduction/drug effects
- Transfection
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- fas Receptor/metabolism
Collapse
Affiliation(s)
- E M Eves
- Ben May Institute for Cancer Research, Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
42
|
Sung JY, Shin SW, Ahn YS, Chung KC. Basic fibroblast growth factor-induced activation of novel CREB kinase during the differentiation of immortalized hippocampal cells. J Biol Chem 2001; 276:13858-66. [PMID: 11278709 DOI: 10.1074/jbc.m010610200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factors bind to their specific receptors on the responsive cell surface and thereby initiate dramatic changes in the proliferation, differentiation, and survival of their target cells. In the present study we have examined the mechanism by which growth factor-induced signals are propagated to the nucleus, leading to the activation of transcription factor, cis-acting cAMP response element (CRE)-binding protein (CREB), in immortalized hippocampal progenitor cells (H19-7). During the differentiation of H19-7 cells by basic fibroblast growth factor (bFGF) a critical regulatory Ser(133) residue of CREB was phosphorylated followed by an increase of CRE-mediated gene transcription. Expression of S133A CREB mutants blocked the differentiation of H19-7 cells by bFGF. Although the kinetics of CREB phosphorylation by EGF was transient, bFGF induced a prolonged pattern of CREB phosphorylation. Interestingly, bFGF-induced CREB phosphorylation and subsequent CRE-mediated gene transcription is not likely to be mediated by any of previously known signaling pathways that lead to phosphorylation of CREB, such as mitogen-activated protein kinases, protein kinase A, protein kinase C, phosphatidylinositol 3-kinase-p70(S6K), calcium/calmodulin dependent protein kinase, and casein kinase 2. By using in vitro in gel kinase assay the presence of a novel 120-kDa bFGF-inducible CREB kinase was identified. These findings identify a new growth factor-activated signaling pathway that regulates gene expression at the CRE.
Collapse
Affiliation(s)
- J Y Sung
- Department of Pharmacology, Brain Research Institute, and Brain Korea 21 Projects for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | |
Collapse
|
43
|
Hans A, Syan S, Crosio C, Sassone-Corsi P, Brahic M, Gonzalez-Dunia D. Borna disease virus persistent infection activates mitogen-activated protein kinase and blocks neuronal differentiation of PC12 cells. J Biol Chem 2001; 276:7258-65. [PMID: 11073944 DOI: 10.1074/jbc.m005107200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Persistence of Borna disease virus (BDV) in the central nervous system causes damage to specific neuronal populations. BDV is noncytopathic, and the mechanisms underlying neuronal pathology are not well understood. One hypothesis is that infection affects the response of neurons to factors that are crucial for their proliferation, differentiation, or survival. To test this hypothesis, we analyzed the response of PC12 cells persistently infected with BDV to the neurotrophin nerve growth factor (NGF). PC12 is a neural crest-derived cell line that exhibits features of neuronal differentiation in response to NGF. We report that persistence of BDV led to a progressive change of phenotype of PC12 cells and blocked neurite outgrowth in response to NGF. Infection down-regulated the expression of synaptophysin and growth-associated protein-43, two molecules involved in neuronal plasticity, as well as the expression of the chromaffin-specific gene tyrosine hydroxylase. We showed that the block in response to NGF was due in part to the down-regulation of NGF receptors. Moreover, although BDV caused constitutive activation of the ERK1/2 pathway, activated ERKs were not translocated to the nucleus efficiently. These observations may account for the absence of neuronal differentiation of persistently infected PC12 cells treated with NGF.
Collapse
Affiliation(s)
- A Hans
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
44
|
Janulis M, Trakul N, Greene G, Schaefer EM, Lee JD, Rosner MR. A novel mitogen-activated protein kinase is responsive to Raf and mediates growth factor specificity. Mol Cell Biol 2001; 21:2235-47. [PMID: 11238956 PMCID: PMC86857 DOI: 10.1128/mcb.21.6.2235-2247.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proto-oncogene Raf is a major regulator of growth and differentiation. Previous studies from a number of laboratories indicate that Raf activates a signaling pathway that is independent of the classic MEK1,2-ERK1,2 cascade. However, no other signaling cascade downstream of Raf has been identified. We describe a new member of the mitogen-activated protein kinase family, p97, an ERK5-related kinase that is activated and Raf associated when cells are stimulated by Raf. Furthermore, p97 is selectively responsive to different growth factors, providing a mechanism for specificity in cellular signaling. Thus, p97 is activated by the neurogenic factor fibroblast growth factor (FGF) but not the mitogenic factor epidermal growth factor (EGF) in neuronal cells. Conversely, the related kinase ERK5 is activated by EGF but not FGF. p97 phosphorylates transcription factors such as Elk-1 and Ets-2 but not MEF2C at transactivating sites, whereas ERK5 phosphorylates MEF2C but not Elk-1 or Ets-2. Finally, p97 is expressed in a number of cell types including primary neural and NIH 3T3 cells. Taken together, these results identify a new signaling pathway that is distinct from the classic Raf-MEK1,2-ERK1,2 kinase cascade and can be selectively stimulated by growth factors that produce discrete biological outcomes.
Collapse
Affiliation(s)
- M Janulis
- Ben May Institute for Cancer Research, Pharmacology and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
45
|
Chung KC, Sung JY, Ahn W, Rhim H, Oh TH, Lee MG, Ahn YS. Intracellular calcium mobilization induces immediate early gene pip92 via Src and mitogen-activated protein kinase in immortalized hippocampal cells. J Biol Chem 2001; 276:2132-8. [PMID: 11053438 DOI: 10.1074/jbc.m007492200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of intracellular calcium levels plays a central role in cell survival, proliferation, and differentiation. A cell-permeable, tumor-promoting thapsigargin elevates the intracellular calcium levels by inhibiting endoplasmic reticulum Ca(2+)-ATPase. The Src-tyrosine kinase family is involved in a broad range of cellular responses ranging from cell growth and cytoskeletal rearrangement to differentiation. The immediate early gene pip92 is induced in neuronal cell death as well as cell growth and differentiation. To resolve the molecular mechanism of cell growth by intracellular calcium mobilization, we have examined the effect of thapsigargin and subsequent intracellular calcium influx on pip92 expression in immortalized rat hippocampal H19-7 cells. An increase of intracellular calcium ion levels induced by thapsigargin stimulated the expression of pip92 in H19-7 cells. Transient transfection of the cells with kinase-inactive mitogen-activated protein kinase kinase (MEK) and Src kinase or pretreatment with the chemical MEK inhibitor PD98059 significantly inhibited pip92 expression induced by thapsigargin. When constitutively active v-Src or MEK was overexpressed, the transcriptional activity of the pip92 gene was markedly increased. Dominant inhibitory Raf-1 blocked the transcriptional activity of pip92 induced by thapsigargin. The transcription factor Elk1 is activated during thapsigargin-induced pip92 expression. Taken together, these results suggest that an increase of intracellular calcium ion levels by thapsigargin stimulates the pip92 expression via Raf-MEK-extracellular signal-regulated protein kinase- as well as Src kinase-dependent signaling pathways.
Collapse
Affiliation(s)
- K C Chung
- Department of Pharmacology and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Cellular responses to environmental stimuli are controlled by a series of signaling cascades that transduce extracellular signals from ligand-activated cell surface receptors to the nucleus. Although most pathways were initially thought to be linear, it has become apparent that there is a dynamic interplay between signaling pathways that result in the complex pattern of cell-type specific responses required for proliferation, differentiation and survival. One group of nuclear effectors of these signaling pathways are the Ets family of transcription factors, directing cytoplasmic signals to the control of gene expression. This family is defined by a highly conserved DNA binding domain that binds the core consensus sequence GGAA/T. Signaling pathways such as the MAP kinases, Erk1 and 2, p38 and JNK, the PI3 kinases and Ca2+-specific signals activated by growth factors or cellular stresses, converge on the Ets family of factors, controlling their activity, protein partnerships and specification of downstream target genes. Interestingly, Ets family members can act as both upstream and downstream effectors of signaling pathways. As downstream effectors their activities are directly controlled by specific phosphorylations, resulting in their ability to activate or repress specific target genes. As upstream effectors they are responsible for the spacial and temporal expression or numerous growth factor receptors. This review provides a brief survey of what is known to date about how this family of transcription factors is regulated by cellular signaling with a special focus on Ras responsive elements (RREs), the MAP kinases (Erks, p38 and JNK) and Ca2+-specific pathways and includes a description of the multiple roles of Ets family members in the lymphoid system. Finally, we will discuss other potential mechanisms and pathways involved in the regulation of this important family of transcription factors.
Collapse
Affiliation(s)
- J S Yordy
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
47
|
Novel nuclear target for thrombin: activation of the Elk1 transcription factor leads to chemokine gene expression. Blood 2000. [DOI: 10.1182/blood.v96.12.3696] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThrombin is primarily known for its role in homeostasis and thrombosis. However, this enzyme also plays important roles in wound healing and pathologic situations such as inflammation and tumorigenesis. Among the molecules stimulated by thrombin in these latter processes are the stress response proteins, chemokines. Chemokines are also known for their roles in inflammatory responses and tumor development. These correlative observations strongly suggest that chemokines may be mediators of some of thrombin's functions in these processes. Elucidation of the molecular mechanisms of stimulation of chemokines by thrombin may help to unravel the ways in which their expression can be modulated. Up-regulation of the chemokine 9E3/cCAF by thrombin occurs via its proteolytically activated receptor with subsequent transactivation of the epidermal growth factor receptor tyrosine kinase. This study shows that stimulation by thrombin very rapidly activates this chemokine at the transcriptional level, that 2 Elk1 binding elements located between −534 and −483 bp of the promoter are major thrombin response elements, that activation occurs via the Elk1 transcription factor, and that the latter is directly activated by MEK1/ERK2. The common occurrence of Elk1 binding domains in the promoters of immediate early response genes suggests that it may be characteristically involved in gene activation by stress-inducing agents.
Collapse
|
48
|
Novel nuclear target for thrombin: activation of the Elk1 transcription factor leads to chemokine gene expression. Blood 2000. [DOI: 10.1182/blood.v96.12.3696.h8003696_3696_3706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombin is primarily known for its role in homeostasis and thrombosis. However, this enzyme also plays important roles in wound healing and pathologic situations such as inflammation and tumorigenesis. Among the molecules stimulated by thrombin in these latter processes are the stress response proteins, chemokines. Chemokines are also known for their roles in inflammatory responses and tumor development. These correlative observations strongly suggest that chemokines may be mediators of some of thrombin's functions in these processes. Elucidation of the molecular mechanisms of stimulation of chemokines by thrombin may help to unravel the ways in which their expression can be modulated. Up-regulation of the chemokine 9E3/cCAF by thrombin occurs via its proteolytically activated receptor with subsequent transactivation of the epidermal growth factor receptor tyrosine kinase. This study shows that stimulation by thrombin very rapidly activates this chemokine at the transcriptional level, that 2 Elk1 binding elements located between −534 and −483 bp of the promoter are major thrombin response elements, that activation occurs via the Elk1 transcription factor, and that the latter is directly activated by MEK1/ERK2. The common occurrence of Elk1 binding domains in the promoters of immediate early response genes suggests that it may be characteristically involved in gene activation by stress-inducing agents.
Collapse
|
49
|
Ellis PD, Hadfield KM, Pascall JC, Brown KD. Cyclic AMP inhibits agonist-induced heparin-binding EGF gene expression independently of effects on p42/p44 MAPK activation. Biochem Biophys Res Commun 2000; 277:558-61. [PMID: 11061993 DOI: 10.1006/bbrc.2000.3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) mRNA levels are increased up to 20-fold in RIE-1 cells by two agonists that act through distinct receptor types. We demonstrated a common requirement for p42/p44 mitogen-activated protein kinase (MAPK) in this response using the selective MAPK kinase (MEK) inhibitor, PD 098059. Agonist-mediated induction of HB-EGF mRNA was markedly suppressed in cells that had been treated with cyclic AMP-elevating agents. In contrast, the activation of p42 MAPK in response to agonists was not affected by raising cellular cyclic AMP levels. We conclude that cyclic AMP negatively regulates the HB-EGF gene, but that the inhibitory action is either independent of the p42/p44 MAPK pathway or the site of action is distal to MAPK activation.
Collapse
Affiliation(s)
- P D Ellis
- Babraham Institute, Babraham, Cambridge, CB2 4AT, United Kingdom
| | | | | | | |
Collapse
|
50
|
Chung KC, Kim SM, Rhang S, Lau LF, Gomes I, Ahn YS. Expression of immediate early gene pip92 during anisomycin-induced cell death is mediated by the JNK- and p38-dependent activation of Elk1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4676-84. [PMID: 10903500 DOI: 10.1046/j.1432-1327.2000.01517.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here that immediate early gene pip92 is expressed during anisomycin-induced cell death in fibroblast NIH3T3 cells. To determine the mechanism by which this occurs and to identify downstream signaling pathways, we investigated the induction of the pip92 promoter. The activation of pip92 by anisomycin is mediated by the activation of MAP kinases, such as JNK and p38 kinase, but not ERK. Deletion analysis of the pip92 promoter indicated that pip92 activation occurs primarily within the region containing a serum response element (SRE). Further analysis of the SRE using a heterologous thymidine kinase promoter showed that both an Ets and CArG-like site are required for anisomycin-induced pip92 expression. Elk1, which binds to the Ets site, was phosphorylated by the JNK- and p38-dependent pathways and the phosphorylation of Elk1-GAL4 fusion proteins by these pathways was sufficient for the transactivation. Overall, this study suggested that different MAPK pathways are involved in the expression of immediate early gene pip92 by growth factors and environmental stresses.
Collapse
Affiliation(s)
- K C Chung
- Department of Pharmacology and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|