1
|
Li W, Li J, Li J, Wei C, Laviv T, Dong M, Lin J, Calubag M, Colgan LA, Jin K, Zhou B, Shen Y, Li H, Cui Y, Gao Z, Li T, Hu H, Yasuda R, Ma H. Boosting neuronal activity-driven mitochondrial DNA transcription improves cognition in aged mice. Science 2024; 386:eadp6547. [PMID: 39700269 DOI: 10.1126/science.adp6547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/28/2024] [Accepted: 10/17/2024] [Indexed: 12/21/2024]
Abstract
Deciphering the complex interplay between neuronal activity and mitochondrial function is pivotal in understanding brain aging, a multifaceted process marked by declines in synaptic function and mitochondrial performance. Here, we identified an age-dependent coupling between neuronal and synaptic excitation and mitochondrial DNA transcription (E-TCmito), which operates differently compared to classic excitation-transcription coupling in the nucleus (E-TCnuc). We demonstrated that E-TCmito repurposes molecules traditionally associated with E-TCnuc to regulate mitochondrial DNA expression in areas closely linked to synaptic activation. The effectiveness of E-TCmito weakens with age, contributing to age-related neurological deficits in mice. Boosting brain E-TCmito in aged animals ameliorated these impairments, offering a potential target to counteract age-related cognitive decline.
Collapse
Affiliation(s)
- Wenwen Li
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Jiarui Li
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Jing Li
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Chen Wei
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Tal Laviv
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Meiyi Dong
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Jingran Lin
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Mariah Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Lesley A Colgan
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kai Jin
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Ying Shen
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Haohong Li
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yihui Cui
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhihua Gao
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Tao Li
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Hailan Hu
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotion disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Ryohei Yasuda
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Huan Ma
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotion disorders, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
3
|
Belkozhayev A, Niyazova R, Kamal MA, Ivashchenko A, Sharipov K, Wilson CM. Differential microRNA expression in the SH-SY5Y human cell model as potential biomarkers for Huntington's disease. Front Cell Neurosci 2024; 18:1399742. [PMID: 39049823 PMCID: PMC11267620 DOI: 10.3389/fncel.2024.1399742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Huntington's disease (HD) is caused by an expansion of CAG trinucleotide repeat in the HTT gene; the exact pathogenesis of HD currently remains unclear. One of the promising directions in the study of HDs is to determine the molecular mechanism underlying the development and role of microRNAs (miRNAs). This study aimed to identify the profile of miRNAs in an HD human cell line model as diagnostic biomarkers for HD. To study HD, the human SH-SY5Y HD cell model is based on the expression of two different forms: pEGFP-Q23 and pEGFP-Q74 of HTT. The expression of Htt protein was confirmed using aggregation assays combined with immunofluorescence and Western blotting methods. miRNA levels were measured in SH-SY5Y neuronal cell model samples stably expressing Q23 and Q74 using the extraction-free HTG EdgeSeq protocol. A total of 2083 miRNAs were detected, and 354 (top 18 miRNAs) miRNAs were significantly differentially expressed (DE) (p < 0.05) in Q23 and Q74 cell lines. A majority of the miRNAs were downregulated in the HD cell model. Moreover, we revealed that six DE miRNAs target seven genes (ATN1, GEMIN4, EFNA5, CSMD2, CREBBP, ATXN1, and B3GNT) that play important roles in neurodegenerative disorders and showed significant expression differences in mutant Htt (Q74) when compared to wild-type Htt (Q23) using RT-qPCR (p < 0.05 and 0.01). We demonstrated the most important DE miRNA-mRNA profiles, interaction binding sites, and their related pathways in HD using experimental and bioinformatics methods. This will allow the development of novel diagnostic strategies and provide alternative therapeutic routes for treating HD.
Collapse
Affiliation(s)
- Ayaz Belkozhayev
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich, United Kingdom
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Almaty, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Raigul Niyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Mohammad Amjad Kamal
- Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- Center for High Altitude Medicine, Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Enzymoics, Hebersham, NSW, Australia
| | | | - Kamalidin Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Department of Biochemistry, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich, United Kingdom
- Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Li Y, Zhang Y, Shi H, Liu X, Li Z, Zhang J, Wang X, Wang W, Tong X. CRTC2 activates the epithelial-mesenchymal transition of diabetic kidney disease through the CREB-Smad2/3 pathway. Mol Med 2023; 29:146. [PMID: 37884902 PMCID: PMC10604535 DOI: 10.1186/s10020-023-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) plays a key role in tubulointerstitial fibrosis, which is a hallmark of diabetic kidney disease (DKD). Our previous studies showed that CRTC2 can simultaneously regulate glucose metabolism and lipid metabolism. However, it is still unclear whether CRTC2 participates in the EMT process in DKD. METHODS We used protein‒protein network (PPI) analysis to identify genes that were differentially expressed during DKD and EMT. Then, we constructed a diabetic mouse model by administering STZ plus a high-fat diet, and we used HK-2 cells that were verified to confirm the bioinformatics research results. The effects that were exerted by CRTC2 on epithelial-mesenchymal transition in diabetic kidney disease through the CREB-Smad2/3 signaling pathway were investigated in vivo and in vitro by real-time PCR, WB, IHC and double luciferase reporter gene experiments. RESULTS First, bioinformatics research showed that CRTC2 may promote EMT in diabetic renal tubules through the CREB-Smad2/3 signaling pathway. Furthermore, the Western blotting and real-time PCR results showed that CRTC2 overexpression reduced the expression of E-cadherin in HK-2 cells. The CRTC2 and α-SMA levels were increased in STZ-treated mouse kidneys, and the E-cadherin level was reduced. The luciferase activity of α-SMA, which is the key protein in EMT, was sharply increased in response to the overexpression of CRTC2 and decreased after the silencing of CREB and Smad2/3. However, the expression of E-cadherin showed the opposite trends. In the real-time PCR experiment, the mRNA expression of α-SMA increased significantly when CRTC2 was overexpressed but partially decreased when CREB and Smad2/3 were silenced. However, E-cadherin expression showed the opposite result. CONCLUSION This study demonstrated that CRTC2 activates the EMT process via the CREB-Smad2/3 signaling pathway in diabetic renal tubules.
Collapse
Affiliation(s)
- Yujie Li
- Changchun University of Traditional Chinese Medicine, Changchun, 130012, China.
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Yufeng Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Hongshuo Shi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xuemei Liu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Jiayi Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xiuge Wang
- The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130012, China
| | - Wenbo Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Kolloli A, Ramasamy S, Kumar R, Nisa A, Kaplan G, Subbian S. A phosphodiesterase-4 inhibitor reduces lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Front Immunol 2023; 14:1270414. [PMID: 37854602 PMCID: PMC10580809 DOI: 10.3389/fimmu.2023.1270414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection involves pulmonary inflammation that can progress to acute respiratory distress syndrome, a primary cause of lung damage/fibrosis in patients with Coronavirus Disease-2019 (COVID-19). Currently, there is no efficacious therapy available to alleviate lung fibrosis in COVID-19 cases. In this proof-of-concept study, we evaluated the effect of CC-11050, a small molecule phosphodiesterase-4 inhibitor, in dampening lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Methods Following intranasal inoculation with SARS-CoV-2/WA- 1/2000 strain, hamsters were treated with CC-11050 or placebo by gavage from day-1 until day-16 post-infection (dpi). Animals were monitored for body weight changes, virus titers, histopathology, fibrotic remodeling, cellular composition in the lungs between 2 and 16 dpi. Results We observed significant reduction in lung viral titer with concomitant reduction in inflammation and fibrotic remodeling in CC-11050 treated hamsters compared to untreated animals. The reductions in immunopathologic manifestations were associated with significant downregulation of inflammatory and fibrotic remodeling gene expression, reduced infiltration of activated monocytes, granulocytes, and reticular fibroblasts in CC-11050 treated animals. Cellular studies indicate a link between TNF-α and fibrotic remodeling during CC-11050 therapy. Discussion These findings suggest that CC-11050 may be a potential host-directed therapy to dampen inflammation and fibrosis in COVID-19 cases.
Collapse
Affiliation(s)
- Afsal Kolloli
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Annuurun Nisa
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Gilla Kaplan
- University of Cape Town, Cape Town, South Africa
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
6
|
Yang Q, Tang J, Cao J, Liu F, Fu M, Xue B, Zhou A, Chen S, Liu J, Zhou Y, Shi Y, Peng W, Chen X. SARS-CoV-2 infection activates CREB/CBP in cellular cyclic AMP-dependent pathways. J Med Virol 2023; 95:e28383. [PMID: 36477795 PMCID: PMC9877775 DOI: 10.1002/jmv.28383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global coronavirus disease 2019 (COVID-19) pandemic that has affected the lives of billions of individuals. However, the host-virus interactions still need further investigation to reveal the underling mechanism of SARS-CoV-2 pathogenesis. Here, transcriptomics analysis of SARS-CoV-2 infection highlighted possible correlation between host-associated signaling pathway and virus. In detail, cAMP-protein kinase (PKA) pathway has an essential role in SARS-CoV-2 infection, followed by the interaction between cyclic AMP response element binding protein (CREB) and CREB-binding protein (CBP) could be induced and leading to the enhancement of CREB/CBP transcriptional activity. The replication of Delta and Omicron BA.5 were inhibited by about 49.4% and 44.7% after knockdown of CREB and CBP with small interfering RNAs, respectively. Furthermore, a small organic molecule naphthol AS-E (nAS-E), which targets on the interaction between CREB and CBP, potently inhibited SARS-CoV-2 wild-type (WT) infection with comparable the half-maximal effective concentration (EC50 ) 1.04 μM to Remdesivir 0.57 μM. Compared with WT virus, EC50 in Calu-3 cells against Delta, Omicron BA.2, and Omicron BA.5 were, on average, 1.5-fold, 1.1-fold, and 1.5-fold higher, respectively, nAS-E had a satisfied antiviral effect against Omicron variants. Taken together, our study demonstrated the importance of CREB/CBP induced by cAMP-PKA pathway during SARS-CoV-2 infection, and further provided a novel CREB/CBP interaction therapeutic drug targets for COVID-19.
Collapse
Affiliation(s)
- Qi Yang
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Jielin Tang
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina,Center for Infection & Immunity, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Juan Cao
- Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Fengjiang Liu
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina
| | - Muqing Fu
- Center for Infection & Immunity, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Bao Xue
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Anqi Zhou
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Sijie Chen
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Junjun Liu
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina
| | - Yuan Zhou
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Yongxia Shi
- Guangzhou Customs District Technology CenterGuangzhouChina
| | - Wei Peng
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Guangzhou Medical UniversityGuangzhouChina
| | - Xinwen Chen
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina,Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Wesolowski LT, Semanchik PL, White-Springer SH. Beyond antioxidants: Selenium and skeletal muscle mitochondria. Front Vet Sci 2022; 9:1011159. [PMID: 36532343 PMCID: PMC9751202 DOI: 10.3389/fvets.2022.1011159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 07/22/2023] Open
Abstract
The element, Selenium (Se), has an essential nutritive and biological role as a trace mineral known primarily for its vital antioxidant functions as a constituent of the selenoenzyme, glutathione peroxidase. However, Se also has a much more global biological impact beyond antioxidant function. The objective of this review is to present an overview of prior research on the extra-antioxidant effects of Se with a key focus on skeletal muscle mitochondrial energetics. Cognizance of these additional functions of Se is requisite when formulating and recommending dietary supplementation of Se in humans or animals. Chief amongst its myriad of biological contributions, Se influences mitochondrial capacity and function and, subsequently, muscular health. Dietary Se supplementation has been shown to increase skeletal muscle mitochondrial volume density and within some cell lines, Se treatment increases mitochondrial biogenesis and respiratory capacity. In addition, the selenoproteins H, N, W, and O and deiodinases exhibit varying effects on mitochondrial and/or skeletal muscle function. Selenoprotein H enhances mitochondrial biogenesis whereas selenoproteins N and W appear to influence muscle calcium homeostasis which impacts mitochondrial function. Moreover, selenoprotein O's intramitochondrial residence facilitates Se's redox function. Deiodinases regulate thyroid hormone activation which impacts muscle cell regeneration, metabolism, and reactive oxygen species production. Although the precise relationships between dietary Se and skeletal muscle mitochondria remain unclear, previous research constitutes a firm foundation that portends promising new discoveries by future investigations.
Collapse
|
8
|
Todd D, Clapp M, Dains P, Karacay B, Bonthius DJ. Purkinje cell-specific deletion of CREB worsens alcohol-induced cerebellar neuronal losses and motor deficits. Alcohol 2022; 101:27-35. [PMID: 35378204 PMCID: PMC9783827 DOI: 10.1016/j.alcohol.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Exposure to alcohol during pregnancy can kill developing fetal neurons and lead to fetal alcohol spectrum disorder (FASD) in the offspring. However, not all fetuses are equally vulnerable to alcohol toxicity. These differences in vulnerability among individuals are likely due, at least in part, to genetic differences. Some genes encode neuroprotective molecules that act through signaling pathways to protect neurons against alcohol's toxic effects. One signaling pathway that can protect cultured neurons against alcohol-induced cell death in vitro is the cAMP pathway. A goal of this study was to determine whether the cAMP pathway can exert a similar neuroprotective effect against alcohol in vivo. A key molecule within the cAMP pathway is cAMP response element binding protein (CREB). In this study, CREB was specifically disrupted in cerebellar Purkinje cells to study its role in protection of cerebellar neurons against alcohol toxicity. METHODS Mice with Purkinje cell-specific knockout of CREB were generated with the Cre-lox system. A 2 × 2 design was used in which Cre-negative and Cre-positive mice received either 0.0 or 2.2 mg/g ethanol by intraperitoneal (i.p.) injection daily over postnatal day (PD) 4-9. Stereological cell counts of cerebellar Purkinje cells and granule cells were performed on PD 10. Motor function was assessed on PD 40 using the rotarod. RESULTS Purkinje cell-specific disruption of CREB alone (in the absence of alcohol) induced only a small reduction in Purkinje cell number. However, the loss of CREB function from Purkinje cells greatly increased the vulnerability of Purkinje cells to alcohol-induced cell death. While alcohol killed 20% of Purkinje cells in the Cre-negative (CREB-expressing) mice, alcohol killed 57% of Purkinje cells in the Cre-positive (CREB-nonexpressing) mice. This large loss of Purkinje cells did not lead to similar alcohol-induced losses of granule cells. In the absence of alcohol, lack of CREB function in Purkinje cells had no effect on rotarod performance. However, in the presence of alcohol, disruption of CREB in Purkinje cells substantially worsened rotarod performance. DISCUSSION Disruption of a single gene (CREB) in a single neuronal population (Purkinje cells) greatly increases the vulnerability of that cell population to alcohol-induced cell death and worsens alcohol-induced brain dysfunction. The results suggest that the cAMP pathway can protect cells in vivo against alcohol toxicity and underline the importance of genetics in determining the neuropathology and behavioral deficits of FASD.
Collapse
Affiliation(s)
- Dylan Todd
- Neuroscience Program, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Michael Clapp
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Parker Dains
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Bahri Karacay
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Daniel J. Bonthius
- Neuroscience Program, University of Iowa Carver College of Medicine, Iowa City, IA,Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA,Atrium Health/Levine Children’s Hospital, Charlotte, NC
| |
Collapse
|
9
|
Gasparotto M, Lee YS, Palazzi A, Vacca M, Filippini F. Nuclear and Cytoplasmatic Players in Mitochondria-Related CNS Disorders: Chromatin Modifications and Subcellular Trafficking. Biomolecules 2022; 12:biom12050625. [PMID: 35625553 PMCID: PMC9138954 DOI: 10.3390/biom12050625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Aberrant mitochondrial phenotypes are common to many central nervous system (CNS) disorders, including neurodegenerative and neurodevelopmental diseases. Mitochondrial function and homeostasis depend on proper control of several biological processes such as chromatin remodeling and transcriptional control, post-transcriptional events, vesicle and organelle subcellular trafficking, fusion, and morphogenesis. Mutation or impaired regulation of major players that orchestrate such processes can disrupt cellular and mitochondrial dynamics, contributing to neurological disorders. The first part of this review provides an overview of a functional relationship between chromatin players and mitochondria. Specifically, we relied on specific monogenic CNS disorders which share features with mitochondrial diseases. On the other hand, subcellular trafficking is coordinated directly or indirectly through evolutionarily conserved domains and proteins that regulate the dynamics of membrane compartments and organelles, including mitochondria. Among these “building blocks”, longin domains and small GTPases are involved in autophagy and mitophagy, cell reshaping, and organelle fusion. Impairments in those processes significantly impact CNS as well and are discussed in the second part of the review. Hopefully, in filling the functional gap between the nucleus and cytoplasmic organelles new routes for therapy could be disclosed.
Collapse
Affiliation(s)
- Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131 Padua, Italy;
| | - Yi-Shin Lee
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
- Pharmacology Division, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Faculty of Medicine and surgery, University of Naples Federico II, Via Pansini 5, Building 19 (Biological Tower), 80131 Naples, Italy
| | - Alessandra Palazzi
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
| | - Marcella Vacca
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131 Padua, Italy;
- Correspondence:
| |
Collapse
|
10
|
Zheng W, Guo J, Lu X, Qiao Y, Liu D, Pan S, Liang L, Liu C, Zhu H, Liu Z, Liu Z. cAMP-response element binding protein mediates podocyte injury in diabetic nephropathy by targeting lncRNA DLX6-AS1. Metabolism 2022; 129:155155. [PMID: 35093327 DOI: 10.1016/j.metabol.2022.155155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Progressive proteinuria is one of the earliest clinical features of diabetic nephropathy (DN). In our previous study, lncRNA DLX6-AS1 (DLX6-AS1, Dlx6os1 in the mouse) was found to be associated with the extent of albuminuria in DN patients. Furthermore, the lack of Dlx6os1 was pivotal in switching off the inflammatory response in db/db mouse model. However, the regulatory factors responsible for elevated DLX6-AS1 in DN remains unknown. METHODS To identify potential regulatory factors for DLX6-AS1, JASPAR database and DNA pull down combined subsequent liquid chromatography-tandem mass spectrometry were used. Dual-luciferase reporter assay and chromatin immunoprecipitation were then performed to confirm binding sites. We also investigated the effects of the regulatory factors on DN progression in db/db mouse model and cultured human podocytes. RESULTS Our analyses demonstrated that cAMP-response element binding protein (CREB) was highly expressed and closely associated with DLX6-AS1 in DN. In db/db mouse and in cultured podocytes, CREB silencing significantly reduced the level of DLX6-AS1 or Dlx6os1 and attenuated renal damage. Mechanistically, CREB overexpression aggravated renal inflammation and destroyed the structure of podocytes by targeting DLX6-AS1. The damaging role of CREB in podocyte injury was also inhibited by 666-15, a selective inhibitor, in a dose-dependent manner. In vivo, the inhibition of CREB by 666-15 significantly attenuated albuminuria and ameliorated inflammatory infiltration in podocytes. CONCLUSIONS Our findings indicated that CREB is a key mediator of podocyte injury and acts by regulating DLX6-AS1. Thus, CREB may be an effective and potential therapeutic target for the treatment of DN.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Jia Guo
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Xiaoqing Lu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
| | - Yingjin Qiao
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
| | - Lulu Liang
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Chang Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
| | - Hongchao Zhu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| |
Collapse
|
11
|
Banzai K, Izumi S. Cis-regulatory elements of the cholinergic gene locus in the silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:73-84. [PMID: 34549831 DOI: 10.1111/imb.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Genes of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter are encoded in the same gene locus, called the cholinergic gene locus. They are essential in cholinergic neurons to maintain their functional phenotype. The genomic structure of the cholinergic gene locus is conserved among invertebrates to mammals. However, the cholinergic gene expression in a specific subset of neurons is unknown in insects except for Drosophila melanogaster. In this study, we analysed the upstream sequence of cholinergic gene locus in the silkworm Bombyx mori to identify specific cis-regulatory regions. We found multiple enhancer regions that are localized within 1 kb upstream of the cholinergic gene locus. The combination of promoter assays using small deletions and bioinformatic analysis among insect species illuminates two conserved sequences in the cis-regulatory region: TGACGTA and CCAAT, which are known as the cAMP response element and CAAT box, respectively. We found that dibutyryl-cAMP, an analogue of cAMP, influences the expression of ChAT in B. mori. Tissue-specific expression analysis of transcriptional factors identified potential candidates that control the cholinergic gene locus expression. Our investigation provides new insight into the regulation mechanism of cholinergic neuron-specific gene machinery in this lepidopteran insect.
Collapse
Affiliation(s)
- K Banzai
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - S Izumi
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
12
|
Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes (Basel) 2021; 12:genes12101614. [PMID: 34681009 PMCID: PMC8535492 DOI: 10.3390/genes12101614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Methamphetamine (METH)-use disorder (MUD) is a very serious, potentially lethal, biopsychosocial disease. Exposure to METH causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug-seeking and drug-taking behavior that can remain a lifelong struggle. It is crucial to elucidate underlying mechanisms by which exposure to METH leads to molecular neuroadaptive changes at transcriptional and translational levels. Changes in gene expression are controlled by post-translational modifications via chromatin remodeling. This review article focuses on the brain-region specific combinatorial or distinct epigenetic modifications that lead to METH-induced changes in gene expression.
Collapse
|
13
|
Blackwood CA, McCoy MT, Ladenheim B, Cadet JL. Oxycodone self-administration activates the mitogen-activated protein kinase/ mitogen- and stress-activated protein kinase (MAPK-MSK) signaling pathway in the rat dorsal striatum. Sci Rep 2021; 11:2567. [PMID: 33510349 PMCID: PMC7843984 DOI: 10.1038/s41598-021-82206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023] Open
Abstract
To identify signaling pathways activated by oxycodone self-administration (SA), Sprague–Dawley rats self-administered oxycodone for 20 days using short—(ShA, 3 h) and long-access (LgA, 9 h) paradigms. Animals were euthanized 2 h after SA cessation and dorsal striata were used in post-mortem molecular analyses. LgA rats escalated their oxycodone intake and separated into lower (LgA-L) or higher (LgA-H) oxycodone takers. LgA-H rats showed increased striatal protein phosphorylation of ERK1/2 and MSK1/2. Histone H3, phosphorylated at serine 10 and acetylated at lysine 14 (H3S10pK14Ac), a MSK1/2 target, showed increased abundance only in LgA-H rats. RT-qPCR analyses revealed increased AMPA receptor subunits, GluA2 and GluA3 mRNAs, in the LgA-H rats. GluA3, but not GluA2, mRNA expression correlated positively with changes in pMSK1/2 and H3S10pK14Ac. These findings suggest that escalated oxycodone SA results in MSK1/2-dependent histone phosphorylation and increases in striatal gene expression. These observations offer potential avenues for interventions against oxycodone addiction.
Collapse
Affiliation(s)
- Christopher A Blackwood
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
14
|
Wang X, Li A, Raza SHA, Liang C, Zhang S, Mei C, Yang W, Zan L. Transcription Factors ZEB1 and CREB Promote the Transcription of Bovine ABHD5 Gene. DNA Cell Biol 2020; 40:219-230. [PMID: 33332227 DOI: 10.1089/dna.2020.5994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alpha/beta hydrolase domain 5 (ABHD5) plays a significant role in intracellular lipid metabolism, which is regulated by a complex network of transcription factors. The transcriptional regulation of the ABHD5 gene in cattle and other livestock, however, has not been previously investigated. Investigations in humans and animal models indicate that the transcription factors zinc finger E-box binding homeobox 1 (ZEB1) and cAMP-response element binding protein (CREB) may play important roles in the transcriptional regulation of ABHD5 in cattle. Our comparison of the sequence similarities in the transcription factor binding sites in Bos taurus, Bos indicus, Bos mutus, and Homo sapiens revealed high homology. Based on the data collected by the Cistrome Data Browser and its visualization window, we found that ZEB1 and CREB have significant ChIP-seq enrichments in the 5'-untranslated region (5' UTR) of the human ABHD5 gene. In bovine adipocytes, we detected ZEB1 and CREB binding sites in the ABHD5 gene. Mutations in the ZEB1 and CREB binding sites significantly reduced the promoter activity (p < 0.05 and p < 0.01, respectively). Moreover, electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated the binding of the transcription factors in vivo and in vitro, respectively. And overexpression or silencing the expression of the ZEB1 and CREB, respectively, resulted in significant changes to the ABHD5 promoter activity. Collectively, these results indicate that ZEB1 and CREB are important transcription factors that regulate ABHD5 gene expression in bovine adipocytes. They further our understanding of the transcriptional regulation and biological functions of the bovine ABHD5 gene.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Song Zhang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Koch LM, Birkeland ES, Battaglioni S, Helle X, Meerang M, Hiltbrunner S, Ibáñez AJ, Peter M, Curioni-Fontecedro A, Opitz I, Dechant R. Cytosolic pH regulates proliferation and tumour growth by promoting expression of cyclin D1. Nat Metab 2020; 2:1212-1222. [PMID: 33077976 DOI: 10.1038/s42255-020-00297-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Enhanced growth and proliferation of cancer cells are accompanied by profound changes in cellular metabolism. These metabolic changes are also common under physiological conditions, and include increased glucose fermentation accompanied by elevated cytosolic pH (pHc)1,2. However, how these changes contribute to enhanced cell growth and proliferation is unclear. Here, we show that elevated pHc specifically orchestrates an E2F-dependent transcriptional programme to drive cell proliferation by promoting cyclin D1 expression. pHc-dependent transcription of cyclin D1 requires the transcription factors CREB1, ATF1 and ETS1, and the histone acetyltransferases p300 and CBP. Biochemical characterization revealed that the CREB1-p300/CBP interaction acts as a pH sensor and coincidence detector, integrating different mitotic signals to regulate cyclin D1 transcription. We also show that elevated pHc contributes to increased cyclin D1 expression in malignant pleural mesotheliomas (MPMs), and renders these cells hypersensitive to pharmacological reduction of pHc. Taken together, these data demonstrate that elevated pHc is a critical cellular signal regulating G1 progression, and provide a mechanism linking elevated pHc to oncogenic activation of cyclin D1 in MPMs, and possibly other cyclin D1~dependent tumours. Thus, an increase of pHc may represent a functionally important, early event in the aetiology of cancer that is amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Lisa Maria Koch
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Life science Zürich, PhD program for Molecular Life Sciences, Zurich, Switzerland
| | - Eivind Salmorin Birkeland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Life science Zürich, PhD program for Molecular Life Sciences, Zurich, Switzerland
| | - Stefania Battaglioni
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Xiao Helle
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Mayura Meerang
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Stefanie Hiltbrunner
- Department of Medical Oncology and Hematology, University Hospital Zurich, Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alfredo J Ibáñez
- Core facility for Omics Research and Applied Biotechnology (ICOBA), Pontificia Universidad Católica del Perú, Lima, Peru
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Reinhard Dechant
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Gutiérrez-Salmerón M, García-Martínez JM, Martínez-Useros J, Fernández-Aceñero MJ, Viollet B, Olivier S, Chauhan J, Lucena SR, De la Vieja A, Goding CR, Chocarro-Calvo A, García-Jiménez C. Paradoxical activation of AMPK by glucose drives selective EP300 activity in colorectal cancer. PLoS Biol 2020; 18:e3000732. [PMID: 32603375 PMCID: PMC7326158 DOI: 10.1371/journal.pbio.3000732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Coordination of gene expression with nutrient availability supports proliferation and homeostasis and is shaped by protein acetylation. Yet how physiological/pathological signals link acetylation to specific gene expression programs and whether such responses are cell-type–specific is unclear. AMP-activated protein kinase (AMPK) is a key energy sensor, activated by glucose limitation to resolve nutrient supply–demand imbalances, critical for diabetes and cancer. Unexpectedly, we show here that, in gastrointestinal cancer cells, glucose activates AMPK to selectively induce EP300, but not CREB-binding protein (CBP). Consequently, EP300 is redirected away from nuclear receptors that promote differentiation towards β-catenin, a driver of proliferation and colorectal tumorigenesis. Importantly, blocking glycogen synthesis permits reactive oxygen species (ROS) accumulation and AMPK activation in response to glucose in previously nonresponsive cells. Notably, glycogen content and activity of the ROS/AMPK/EP300/β-catenin axis are opposite in healthy versus tumor sections. Glycogen content reduction from healthy to tumor tissue may explain AMPK switching from tumor suppressor to activator during tumor evolution. Metabolic context determines whether the key energy sensor AMPK is a tumor suppressor or tumor promoter. This paradoxical behavior is explained through glucose inhibition of AMPK in healthy tissue versus glucose induction of AMPK in cancer colon epithelial cells.
Collapse
Affiliation(s)
- María Gutiérrez-Salmerón
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | | | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Diaz-UAM, Madrid, Spain
| | | | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Severine Olivier
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia R. Lucena
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Antonio De la Vieja
- Unidad de Tumores Endocrinos (UFIEC), Instituto de Salud Carlos III and CiberOnc, Majadahonda, Madrid, Spain
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ana Chocarro-Calvo
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail: (ACC); (CGJ)
| | - Custodia García-Jiménez
- Area of Physiology, Faculty of Health Sciences, University Rey Juan Carlos, Alcorcón, Madrid, Spain
- * E-mail: (ACC); (CGJ)
| |
Collapse
|
17
|
Influence of Intermittent Cold Stimulations on CREB and Its Targeting Genes in Muscle: Investigations into Molecular Mechanisms of Local Cryotherapy. Int J Mol Sci 2020; 21:ijms21134588. [PMID: 32605164 PMCID: PMC7370117 DOI: 10.3390/ijms21134588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/17/2023] Open
Abstract
Local cryotherapy is widely used as a treatment for sports-related skeletal muscle injuries. The molecular mechanisms are unknown. To clarify these mechanisms, we applied one to three 15-min cold stimulations at 4 °C to various cell lines (in vitro), the tibialis anterior (TA) muscle (ex vivo), and mouse limbs (in vivo). In the in vitro assay, cyclic AMP (cAMP) response element binding protein 1 (CREB1) was markedly phosphorylated (p-CREB1), and the CREB-binding protein (CBP) was recruited to p-CREB-1 in response to two or three cold stimulations. In a reporter assay with the cAMP-responsive element, the signals significantly increased after two to three cold stimulations at 4 °C. In the ex vivo study, CREB-targeting genes were significantly upregulated following two or three cold stimulations. The in vivo experiment disclosed that cold stimulation of a mouse limb for 9 days significantly increased mitochondrial DNA copy number and upregulated genes involved in mitochondrial biogenesis. The results suggest that local cryotherapy increases CREB transcription and upregulates CREB-targeting genes, in a manner dependent on cold stimulation frequency and duration. This information will inform further investigations into local cryotherapy as a treatment for sports-related skeletal muscle trauma.
Collapse
|
18
|
A Novel, Pan-PDE Inhibitor Exerts Anti-Fibrotic Effects in Human Lung Fibroblasts via Inhibition of TGF-β Signaling and Activation of cAMP/PKA Signaling. Int J Mol Sci 2020; 21:ijms21114008. [PMID: 32503342 PMCID: PMC7312375 DOI: 10.3390/ijms21114008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/24/2022] Open
Abstract
Phosphodiesterase (PDE) inhibitors are currently a widespread and extensively studied group of anti-inflammatory and anti-fibrotic compounds which may find use in the treatment of numerous lung diseases, including asthma and chronic obstructive pulmonary disease. Several PDE inhibitors are currently in clinical development, and some of them, e.g., roflumilast, are already recommended for clinical use. Due to numerous reports indicating that elevated intracellular cAMP levels may contribute to the alleviation of inflammation and airway fibrosis, new and effective PDE inhibitors are constantly being sought. Recently, a group of 7,8-disubstituted purine-2,6-dione derivatives, representing a novel and prominent pan-PDE inhibitors has been synthesized. Some of them were reported to modulate transient receptor potential ankyrin 1 (TRPA1) ion channels as well. In this study, we investigated the effect of selected derivatives (832—a pan-PDE inhibitor, 869—a TRPA1 modulator, and 145—a pan-PDE inhibitor and a weak TRPA1 modulator) on cellular responses related to airway remodeling using MRC-5 human lung fibroblasts. Compound 145 exerted the most considerable effect in limiting fibroblast to myofibroblasts transition (FMT) as well as proliferation, migration, and contraction. The effect of this compound appeared to depend mainly on its strong PDE inhibitory properties, and not on its effects on TRPA1 modulation. The strong anti-remodeling effects of 145 required activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway leading to inhibition of transforming growth factor type β1 (TGF-β1) and Smad-dependent signaling in MRC-5 cells. These data suggest that the TGF-β pathway is a major target for PDE inhibitors leading to inhibitory effects on cell responses involved in airway remodeling. These potent, pan-PDE inhibitors from the group of 7,8-disubstituted purine-2,6-dione derivatives, thus represent promising anti-remodeling drug candidates for further research.
Collapse
|
19
|
Argania Spinosa Fruit Shell Extract-Induced Melanogenesis via cAMP Signaling Pathway Activation. Int J Mol Sci 2020; 21:ijms21072539. [PMID: 32268492 PMCID: PMC7177760 DOI: 10.3390/ijms21072539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/30/2022] Open
Abstract
We have previously reported that argan oil and argan press-cake from the kernels of Argania spinosa have an anti-melanogenesis effect. Here, the effect of argan fruit shell ethanol extract (AFSEE) on melanogenesis in B16F10 cells was determined, and the mechanism underlying its effect was elucidated. The proliferation of AFSEE-treated B16F10 cells was evaluated using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the melanin content was quantified using a spectrophotometric method. The expression of melanogenesis-related proteins was determined by Western blot and real-time PCR, while global gene expression was determined using a DNA microarray. In vitro analysis results showed that the melanin content of B16F10 cells was significantly increased by AFSEE, without cytotoxicity, by increasing the melanogenic enzyme tyrosinase (TRY), tyrosinase related-protein 1 (TRP1), and dopachrome tautomerase (DCT) protein and mRNA expression, as well as upregulating microphthalmia-associated transcription factor (MITF) expression through mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK) and p38, and the cyclic adenosine monophosphate (cAMP) signaling pathway, as indicated by the microarray analysis results. AFSEE’s melanogenesis promotion effect is primarily attributed to its polyphenolic components. In conclusion, AFSEE promotes melanogenesis in B16F10 cells by upregulating the expression of the melanogenic enzymes through the cAMP–MITF signaling pathway.AFSEE may be used as a cosmetics product component to promote melanogenesis, or as a therapeutic against hypopigmentation disorders.
Collapse
|
20
|
Abstract
The cyclic-AMP response element binding protein (CREB) is an important nuclear transcription factor and has been shown to be overexpressed and/or over-activated in many different cancer types, suggesting that targeting CREB is a novel approach for developing cancer therapies. Our lab discovered the first cell-permeable small molecule inhibitor of CREB, from which we further developed a potent CREB inhibitor with in vivo anti-cancer activity. In this article, we detailed our biochemical and cell-based bioassays to assess different small molecule CREB inhibitors.
Collapse
Affiliation(s)
- Bingbing X Li
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States.
| | - Xiangshu Xiao
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
21
|
Xie F, Fan Q, Li BX, Xiao X. Discovery of a Synergistic Inhibitor of cAMP-Response Element Binding Protein (CREB)-Mediated Gene Transcription with 666- 15. J Med Chem 2019; 62:11423-11429. [PMID: 31765143 DOI: 10.1021/acs.jmedchem.9b01207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CREB is a transcription factor implicated in the pathogenesis of multiple cancers. Targeting CREB is a promising strategy to develop potential cancer therapeutics. Previously, we identified 666-15 as a potent CREB inhibitor. Herein, we designed an ester prodrug of 666-15 through a long-range O,N-acyl transfer reaction for improved aqueous solubility. Unexpectedly, we discovered a small molecule 11 (653-47) that can potentiate the CREB inhibitory activity of 666-15 although 653-47 alone does not inhibit CREB.
Collapse
|
22
|
Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer's Disease Risk. J Neurosci 2019; 39:7408-7427. [PMID: 31331998 DOI: 10.1523/jneurosci.2994-18.2019] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
In blood, apolipoprotein E (ApoE) is a component of circulating lipoproteins and mediates the clearance of these lipoproteins from blood by binding to ApoE receptors. Humans express three genetic ApoE variants, ApoE2, ApoE3, and ApoE4, which exhibit distinct ApoE receptor-binding properties and differentially affect Alzheimer's disease (AD), such that ApoE2 protects against, and ApoE4 predisposes to AD. In brain, ApoE-containing lipoproteins are secreted by activated astrocytes and microglia, but their functions and role in AD pathogenesis are largely unknown. Ample evidence suggests that ApoE4 induces microglial dysregulation and impedes Aβ clearance in AD, but the direct neuronal effects of ApoE variants are poorly studied. Extending previous studies, we here demonstrate that the three ApoE variants differentially activate multiple neuronal signaling pathways and regulate synaptogenesis. Specifically, using human neurons (male embryonic stem cell-derived) cultured in the absence of glia to exclude indirect glial mechanisms, we show that ApoE broadly stimulates signal transduction cascades. Among others, such stimulation enhances APP synthesis and synapse formation with an ApoE4>ApoE3>ApoE2 potency rank order, paralleling the relative risk for AD conferred by these ApoE variants. Unlike the previously described induction of APP transcription, however, ApoE-induced synaptogenesis involves CREB activation rather than cFos activation. We thus propose that in brain, ApoE acts as a glia-secreted signal that activates neuronal signaling pathways. The parallel potency rank order of ApoE4>ApoE3>ApoE2 in AD risk and neuronal signaling suggests that ApoE4 may in an apparent paradox promote AD pathogenesis by causing a chronic increase in signaling, possibly via enhancing APP expression.SIGNIFICANCE STATEMENT Humans express three genetic variants of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), whereas ApoE2 protects against AD. Significant evidence suggests that ApoE4 impairs microglial function and impedes astrocytic Aβ clearance in brain, but the direct neuronal effects of ApoE are poorly understood, and the differences between ApoE variants in these effects are unclear. Here, we report that ApoE acts on neurons as a glia-secreted signaling molecule that, among others, enhances synapse formation. In activating neuronal signaling, the three ApoE variants exhibit a differential potency of ApoE4>ApoE3>ApoE2, which mirrors their relative effects on AD risk, suggesting that differential signaling by ApoE variants may contribute to AD pathogenesis.
Collapse
|
23
|
Sabaratnam K, Renner M, Paesen G, Harlos K, Nair V, Owens RJ, Grimes JM. Insights from the crystal structure of the chicken CREB3 bZIP suggest that members of the CREB3 subfamily transcription factors may be activated in response to oxidative stress. Protein Sci 2019; 28:779-787. [PMID: 30653278 PMCID: PMC6423718 DOI: 10.1002/pro.3573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
cAMP response element binding Protein 3 (CREB3) is an endoplasmic reticulum (ER) membrane‐bound transcription factor, which belongs to the basic leucine zipper (bZIP) superfamily of eukaryotic transcription factors. CREB3 plays a role in the ER‐stress induced unfolded protein response (UPR) and is a multifunctional cellular factor implicated in a number of biological processes including cell proliferation and migration, tumor suppression, and immune‐related gene expression. To gain structural insights into the transcription factor, we determined the crystal structure of the conserved bZIP domain of chicken CREB3 (chCREB3) to a resolution of 3.95 Å. The X‐ray structure provides evidence that chCREB3 can form a stable homodimer. The chCREB3 bZIP has a structured, pre‐formed DNA binding region, even in the absence of DNA, a feature that could potentially enhance both the DNA binding specificity and affinity of chCREB3. Significantly, the homodimeric bZIP possesses an intermolecular disulfide bond that connects equivalent cysteine residues of the parallel helices in the leucine zipper region. This disulfide bond in the hydrophobic core of the bZIP may increase the stability of the homodimer under oxidizing conditions. Moreover, sequence alignment of bZIP sequences from chicken, human, and mouse reveals that only members of the CREB3 subfamily contain this cysteine residue, indicating that it could act as a redox‐sensor. Taken together, these results suggest that the activity of these transcription factors may be redox‐regulated and they may be activated in response to oxidative stress. PDB Code(s): 6IAK
Collapse
Affiliation(s)
- Keshalini Sabaratnam
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.,The Pirbright Institute, Woking, Guildford, Surrey, GU24 0NF, United Kingdom
| | - Max Renner
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Guido Paesen
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute, Woking, Guildford, Surrey, GU24 0NF, United Kingdom
| | - Raymond J Owens
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.,The Research Complex at Harwell, Oxfordshire, OX11 0FA, United Kingdom
| | - Jonathan M Grimes
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.,Diamond Light Source Limited, Oxfordshire, OX11 0DE, United Kingdom
| |
Collapse
|
24
|
Urotensin II-induced store-operated Ca 2+ entry contributes to glomerular mesangial cell proliferation and extracellular matrix protein production under high glucose conditions. Sci Rep 2017; 7:18049. [PMID: 29273760 PMCID: PMC5741753 DOI: 10.1038/s41598-017-18143-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Glomerular mesangial cell (GMC) proliferation and matrix expansion are pathological hallmarks of a wide range of kidney diseases, including diabetic nephropathy. Although the circulating level of peptide hormone urotensin II (UII) and kidney tissue expression of UII and UII receptors (UTR) are increased in diabetic nephropathy, it remains unclear whether UII regulates GMC growth and extracellular matrix (ECM) accumulation. In this study, we tested the hypothesis that UII-induced Ca2+ signaling controls GMC proliferation and ECM production under normal and high glucose conditions. Mouse GMCs cultured under normal glucose conditions proliferated and synthesized ECM proteins in response to stimulation by mouse UII. UII-induced GMC proliferation and ECM protein synthesis were dependent on TRPC4 channel-mediated store-operated Ca2+ entry (SOCE) and sequential activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Ca2+/cAMP response element-binding protein (CREB) transcription factor. Under high glucose conditions, GMCs synthesized UII. Moreover, proliferation and ECM production in high glucose-challenged GMCs were attenuated by selective UTR antagonist, TRPC4 channel blocker, and CaMKII and CREB-binding protein/p300 inhibitors. These findings indicate that UII-induced SOCE via TRPC4 channels stimulates CaMKII/CREB-dependent GMC proliferation and ECM protein production. Our data also suggest that UII synthesis contributes to GMC proliferation and ECM accumulation under high glucose conditions.
Collapse
|
25
|
CRTC1 mediates preferential transcription at neuronal activity-regulated CRE/TATA promoters. Sci Rep 2017; 7:18004. [PMID: 29269871 PMCID: PMC5740062 DOI: 10.1038/s41598-017-18215-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/27/2017] [Indexed: 01/03/2023] Open
Abstract
Gene expression mediated by the transcription factor cAMP-responsive element-binding protein (CREB) is essential for a wide range of brain processes. The transcriptional coactivartor CREB-regulated transcription coactivator-1 (CRTC1) is required for efficient induction of CREB target genes during neuronal activity. However, the mechanisms regulating induction of specific CREB/CRTC1-dependent genes during neuronal activity remain largely unclear. Here, we investigated the molecular mechanisms regulating activity-dependent gene transcription upon activation of the CREB/CRTC1 signaling pathway in neurons. Depolarization and cAMP signals induce preferential transcription of activity-dependent genes containing promoters with proximal CRE/TATA sequences, such as c-fos, Dusp1, Nr4a1, Nr4a2 and Ptgs2, but not genes with proximal CRE/TATA-less promoters (e.g. Nr4a3, Presenilin-1 and Presenilin-2). Notably, biochemical and chromatin immunoprecipitation analyses reveal constitutive binding of CREB to target gene promoters in the absence of neuronal activity, whereas recruitment of CRTC1 to proximal CRE/TATA promoters depends on neuronal activity. Neuronal activity induces rapid CRTC1 dephosphorylation, nuclear translocation and binding to endogenous CREB. These results indicate that neuronal activity induces a preferential binding of CRTC1 to the transcriptional complex in CRE/TATA-containing promoters to engage activity-dependent transcription in neurons.
Collapse
|
26
|
Francelle L, Lotz C, Outeiro T, Brouillet E, Merienne K. Contribution of Neuroepigenetics to Huntington's Disease. Front Hum Neurosci 2017; 11:17. [PMID: 28194101 PMCID: PMC5276857 DOI: 10.3389/fnhum.2017.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022] Open
Abstract
Unbalanced epigenetic regulation is thought to contribute to the progression of several neurodegenerative diseases, including Huntington’s disease (HD), a genetic disorder considered as a paradigm of epigenetic dysregulation. In this review, we attempt to address open questions regarding the role of epigenetic changes in HD, in the light of recent advances in neuroepigenetics. We particularly discuss studies using genome-wide scale approaches that provide insights into the relationship between epigenetic regulations, gene expression and neuronal activity in normal and diseased neurons, including HD neurons. We propose that cell-type specific techniques and 3D-based methods will advance knowledge of epigenome in the context of brain region vulnerability in neurodegenerative diseases. A better understanding of the mechanisms underlying epigenetic changes and of their consequences in neurodegenerative diseases is required to design therapeutic strategies more effective than current strategies based on histone deacetylase (HDAC) inhibitors. Researches in HD may play a driving role in this process.
Collapse
Affiliation(s)
- Laetitia Francelle
- Department of NeuroDegeneration and Restorative Research, University Medical Center Goettingen Goettingen, Germany
| | - Caroline Lotz
- CNRS UMR 7364, Laboratory of Cognitive and Adaptive Neurosciences, University of Strasbourg Strasbourg, France
| | - Tiago Outeiro
- Department of NeuroDegeneration and Restorative Research, University Medical Center Goettingen Goettingen, Germany
| | - Emmanuel Brouillet
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de Recherche Fondamentale, Institut d'Imagerie Biomédicale, Molecular Imaging Center, Neurodegenerative diseases Laboratory, UMR 9199, CNRS Université Paris-Sud, Université Paris-Saclay Fontenay-aux-Roses, France
| | - Karine Merienne
- CNRS UMR 7364, Laboratory of Cognitive and Adaptive Neurosciences, University of Strasbourg Strasbourg, France
| |
Collapse
|
27
|
Korzus E. Rubinstein-Taybi Syndrome and Epigenetic Alterations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:39-62. [PMID: 28523540 PMCID: PMC6863608 DOI: 10.1007/978-3-319-53889-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare genetic disorder in humans characterized by growth and psychomotor delay, abnormal gross anatomy, and mild to severe mental retardation (Rubinstein and Taybi, Am J Dis Child 105:588-608, 1963, Hennekam et al., Am J Med Genet Suppl 6:56-64, 1990). RSTS is caused by de novo mutations in epigenetics-associated genes, including the cAMP response element-binding protein (CREBBP), the gene-encoding protein referred to as CBP, and the EP300 gene, which encodes the p300 protein, a CBP homologue. Recent studies of the epigenetic mechanisms underlying cognitive functions in mice provide direct evidence for the involvement of nuclear factors (e.g., CBP) in the control of higher cognitive functions. In fact, a role for CBP in higher cognitive function is suggested by the finding that RSTS is caused by heterozygous mutations at the CBP locus (Petrij et al., Nature 376:348-351, 1995). CBP was demonstrated to possess an intrinsic histone acetyltransferase activity (Ogryzko et al., Cell 87:953-959, 1996) that is required for CREB-mediated gene expression (Korzus et al., Science 279:703-707, 1998). The intrinsic protein acetyltransferase activity in CBP might directly destabilize promoter-bound nucleosomes, facilitating the activation of transcription. Due to the complexity of developmental abnormalities and the possible genetic compensation associated with this congenital disorder, however, it is difficult to establish a direct role for CBP in cognitive function in the adult brain. Although aspects of the clinical presentation in RSTS cases have been extensively studied, a spectrum of symptoms found in RSTS patients can be accessed only after birth, and, thus, prenatal genetic tests for this extremely rare genetic disorder are seldom considered. Even though there has been intensive research on the genetic and epigenetic function of the CREBBP gene in rodents, the etiology of this devastating congenital human disorder is largely unknown.
Collapse
Affiliation(s)
- Edward Korzus
- Department of Psychology and Neuroscience Program, University Of California Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
28
|
Li BX, Gardner R, Xue C, Qian DZ, Xie F, Thomas G, Kazmierczak SC, Habecker BA, Xiao X. Systemic Inhibition of CREB is Well-tolerated in vivo. Sci Rep 2016; 6:34513. [PMID: 27694829 PMCID: PMC5046085 DOI: 10.1038/srep34513] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022] Open
Abstract
cAMP-response element binding protein (CREB) is a nuclear transcription factor activated by multiple extracellular signals including growth factors and hormones. These extracellular cues activate CREB through phosphorylation at Ser133 by various protein serine/threonine kinases. Once phosphorylated, it promotes its association with transcription coactivators CREB-binding protein (CBP) and its paralog p300 to activate CREB-dependent gene transcription. Tumor tissues of different origins have been shown to present overexpression and/or overactivation of CREB, indicating CREB as a potential cancer drug target. We previously identified 666-15 as a potent inhibitor of CREB with efficacious anti-cancer activity both in vitro and in vivo. Herein, we investigated the specificity of 666-15 and evaluated its potential in vivo toxicity. We found that 666-15 was fairly selective in inhibiting CREB. 666-15 was also found to be readily bioavailable to achieve pharmacologically relevant concentrations for CREB inhibition. Furthermore, the mice treated with 666-15 showed no evidence of changes in body weight, complete blood count, blood chemistry profile, cardiac contractility and tissue histologies from liver, kidney and heart. For the first time, these results demonstrate that pharmacological inhibition of CREB is well-tolerated in vivo and indicate that such inhibitors should be promising cancer therapeutics.
Collapse
Affiliation(s)
- Bingbing X Li
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Ryan Gardner
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Changhui Xue
- Knight Cancer Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - David Z Qian
- Knight Cancer Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Fuchun Xie
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - George Thomas
- Knight Cancer Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Steven C Kazmierczak
- Department of Pathology, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Beth A Habecker
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.,Knight Cardiovascular Institute, Department of Medicine, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Xiangshu Xiao
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.,Knight Cardiovascular Institute, Department of Medicine, Oregon Health &Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| |
Collapse
|
29
|
Rahimian P, He JJ. HIV-1 Tat-shortened neurite outgrowth through regulation of microRNA-132 and its target gene expression. J Neuroinflammation 2016; 13:247. [PMID: 27634380 PMCID: PMC5025601 DOI: 10.1186/s12974-016-0716-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Synaptodendritic damage is a pathological hallmark of HIV-associated neurocognitive disorders, and HIV-1 Tat protein is known to cause such injury in the central nervous system. In this study, we aimed to determine the molecular mechanisms of Tat-induced neurite shortening, specifically the roles of miR-132, an important regulator of neurite morphogenesis in this process. METHODS The relationship between Tat expression and miR-132 expression was first determined using reverse transcription quantitative PCR (qRT-PCR) in Tat-transfected astrocytes and neurons, astrocytes from Tat-transgenic mice, and HIV-infected astrocytes. qRT-PCR and Western blotting were performed to determine Tat effects on expression of miR-132 target genes methyl CpG-binding protein 2, Rho GTPase activator p250GAP, and brain-derived neurotrophic factor. Exosomes were isolated from Tat-expressing astrocytes, and exosomal microRNA (miRNA) uptake into neurons was studied using miRNA labeling and flow cytometry. The lactate dehydrogenase release was used to determine the cytotoxicity, while immunostaining was used to determine neurite lengths and synapse formation. Tat basic domain deletion mutant and miR-132 mimic and inhibitor were used to determine the specificity of the relationship between Tat and miR-132 and its effects on astrocytes and neurons and the underlying mechanisms of Tat-induced miR-132 expression. RESULTS Tat significantly induced miR-132 expression, ensuing down-regulation of miR-132 target genes in astrocytes and neurons. miR-132 induction was associated with phosphorylation of cAMP response element-binding protein and required the basic domain of Tat. miRNA-132 induction had no effects on astrocyte activation or survival but was involved in the direct neurotoxicity of Tat. miR-132 was present in astrocyte-derived exosomes and was taken up by neurons, causing neurite shortening. CONCLUSIONS Tat-induced miR-132 expression contributes to both direct and astrocyte-mediated Tat neurotoxicity and supports the important roles of miR-132 in controlling neurite outgrowth.
Collapse
Affiliation(s)
- Pejman Rahimian
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107 USA
| | - Johnny J. He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107 USA
| |
Collapse
|
30
|
Sen T, Sen N. Isoflurane-induced inactivation of CREB through histone deacetylase 4 is responsible for cognitive impairment in developing brain. Neurobiol Dis 2016; 96:12-21. [PMID: 27544482 DOI: 10.1016/j.nbd.2016.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/13/2016] [Accepted: 08/16/2016] [Indexed: 12/14/2022] Open
Abstract
Anesthetics including isoflurane are known to induce neuronal dysfunction in the developing brain, however, the underlying mechanism is mostly unknown. The transcriptional activation of CREB (cyclic AMP response element binding protein) and the alterations in acetylation of histones modulated by several histone deacetylases such as HDAC4 (histone deacetylase 4) are known to contribute to synaptic plasticity in the brain. Here we have shown that administration of isoflurane (1.4%) for 2h leads to transcriptional inactivation of CREB which results in loss of dendritic outgrowth and decreased expression level of proteins essential for memory and cognitive functions, such as BDNF, and c-fos in the developing brain of mice at postnatal day 7 (PND7). To elucidate the molecular mechanism, we found that exposure to isoflurane leads to an increase in nuclear translocation of HDAC4, which interacts with CREB in the nucleus. This event, in turn, results in a decrease in interaction between an acetyltransferase, CBP, and CREB that ultimately leads to transcriptional inactivation of CREB. As a result, the expression level of BDNF, and c-fos were significantly down-regulated after administration of isoflurane in PND7 brain. Depletion of HDAC4 in PND7 brain rescues the transcriptional activation of CREB along with augmentation in the level of the expression level of BDNF and c-fos. Moreover, administration of lentiviral particles of HDAC4 RNAi in primary neurons rescues neurite outgrowth following isoflurane treatment. Taken together, our study suggests that HDAC4-induced transcriptional inactivation of CREB is responsible for isoflurane-induced cognitive dysfunction in the brain.
Collapse
Affiliation(s)
- Tanusree Sen
- University of Georgia, Department of Veterinary, USA
| | - Nilkantha Sen
- Augusta University, Department of Neuroscience and Regenerative Medicine, 1120 15th Street, CA 2018, Augusta, GA 30907, USA.
| |
Collapse
|
31
|
Reyskens KMSE, Arthur JSC. Emerging Roles of the Mitogen and Stress Activated Kinases MSK1 and MSK2. Front Cell Dev Biol 2016; 4:56. [PMID: 27376065 PMCID: PMC4901046 DOI: 10.3389/fcell.2016.00056] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/30/2016] [Indexed: 01/17/2023] Open
Abstract
Mitogen- and stress-activated kinases (MSK) 1 and 2 are nuclear proteins activated downstream of the ERK1/2 or p38 MAPK pathways. MSKs phosphorylate multiple substrates, including CREB and Histone H3, and their major role is the regulation of specific subsets of Immediate Early genes (IEG). While MSKs are expressed in multiple tissues, their levels are high in immune and neuronal cells and it is in these systems most is known about their function. In immunity, MSKs have predominantly anti-inflammatory roles and help regulate production of the anti-inflammatory cytokine IL-10. In the CNS they are implicated in neuronal proliferation and synaptic plasticity. In this review we will focus on recent advances in understanding the roles of MSKs in the innate immune system and neuronal function.
Collapse
Affiliation(s)
- Kathleen M S E Reyskens
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee Dundee, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee Dundee, UK
| |
Collapse
|
32
|
Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway. PLoS One 2015; 10:e0133181. [PMID: 26230734 PMCID: PMC4521865 DOI: 10.1371/journal.pone.0133181] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/23/2015] [Indexed: 01/07/2023] Open
Abstract
Sterol response element binding protein (SREBP) is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM) were related to peroxisome proliferator–activated receptor-γ (PPARγ), which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths) or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK) but not JNK or p38 mitogen-activated protein kinase (MAPK). Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP), where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess membrane SM might be critical for regulating SREBPs in adipocytes via a MAPK-dependent pathway.
Collapse
|
33
|
Li W, Liu J, Hammond SL, Tjalkens RB, Saifudeen Z, Feng Y. Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein. Am J Physiol Regul Integr Comp Physiol 2015; 309:R138-47. [PMID: 25994957 DOI: 10.1152/ajpregu.00319.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 05/03/2015] [Indexed: 11/22/2022]
Abstract
We reported that brain (pro)renin receptor (PRR) expression levels are elevated in DOCA-salt-induced hypertension; however, the underlying mechanism remained unknown. To address whether ANG II type 1 receptor (AT1R) signaling is involved in this regulation, we implanted a DOCA pellet and supplied 0.9% saline as the drinking solution to C57BL/6J mice. Sham pellet-implanted mice that were provided regular drinking water served as controls. Concurrently, mice were intracerebroventricularly infused with the AT1R blocker losartan, angiotensin-converting-enzyme inhibitor captopril, or artificial cerebrospinal fluid for 3 wk. Intracerebroventricular infusion of losartan or captopril attenuated DOCA-salt-induced PRR mRNA elevation in the paraventricular nucleus of the hypothalamus, suggesting a role for ANG II/AT1R signaling in regulating PRR expression during DOCA-salt hypertension. To test which ANG II/AT1R downstream transcription factors were involved in PRR regulation, we treated Neuro-2A cells with ANG II with or without CREB (cAMP response element-binding protein) or AP-1 (activator protein-1) inhibitors, or CREB siRNA. CREB and AP-1 inhibitors, as well as CREB knockdown abolished ANG II-induced increases in PRR levels. ANG II also induced PRR upregulation in primary cultured neurons. Chromatin immunoprecipitation assays revealed that ANG II treatment increased CREB binding to the endogenous PRR promoter in both cultured neurons and hypothalamic tissues of DOCA-salt hypertensive mice. This increase in CREB activity was reversed by AT1R blockade. Collectively, these findings indicate that ANG II acts via AT1R to upregulate PRR expression both in cultured cells and in DOCA-salt hypertensive mice by increasing CREB binding to the PRR promoter.
Collapse
Affiliation(s)
- Wencheng Li
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jiao Liu
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Sean L Hammond
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Yumei Feng
- Department of Pharmacology, Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
34
|
Nabokina SM, Ramos MB, Valle JE, Said HM. Regulation of basal promoter activity of the human thiamine pyrophosphate transporter SLC44A4 in human intestinal epithelial cells. Am J Physiol Cell Physiol 2015; 308:C750-7. [PMID: 25715703 DOI: 10.1152/ajpcell.00381.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
Microbiota of the large intestine synthesize considerable amount of vitamin B1 in the form of thiamine pyrophosphate (TPP). There is a specific high-affinity regulated carrier-mediated uptake system for TPP in human colonocytes (product of the SLC44A4 gene). The mechanisms of regulation of SLC44A4 gene expression are currently unknown. In this study, we characterized the SLC44A4 minimal promoter region and identified transcription factors important for basal promoter activity in colonic epithelial cells. The 5'-regulatory region of the SLC44A4 gene (1,022 bp) was cloned and showed promoter activity upon transient transfection into human colonic epithelial NCM460 cells. With the use of a series of 5'- and 3'-deletion luciferase reporter constructs, the minimal genomic region that required basal transcription of the SLC44A4 gene expression was mapped between nucleotides -178 and +88 (using the distal transcriptional start site as +1). Mutational analysis performed on putative cis-regulatory elements established the involvement of ETS/ELF3 [E26 transformation-specific sequence (ETS) proteins], cAMP-responsive element (CRE), and SP1/GC-box sequence motifs in basal SLC44A4 promoter activity. By means of EMSA, binding of ELF3 and CRE-binding protein-1 (CREB-1) transcription factors to the SLC44A4 minimal promoter was shown. Contribution of CREB into SLC44A4 promoter activity was confirmed using NCM460 cells overexpressing CREB. We also found high expression of ELF3 and CREB-1 in colonic (NCM460) compared with noncolonic (ARPE19) cells, suggesting their possible contribution to colon-specific pattern of SLC44A4 expression. This study represents the first characterization of the SLC44A4 promoter and reports the importance of both ELF3 and CREB-1 transcription factors in the maintenance of basal promoter activity in colonic epithelial cells.
Collapse
Affiliation(s)
- Svetlana M Nabokina
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Mel Brendan Ramos
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Judith E Valle
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
35
|
Li BX, Xie F, Fan Q, Barnhart KM, Moore CE, Rheingold AL, Xiao X. Novel Type of Prodrug Activation through a Long-Range O,N-Acyl Transfer: A Case of Water-Soluble CREB Inhibitor. ACS Med Chem Lett 2014; 5:1104-9. [PMID: 25313320 DOI: 10.1021/ml500330n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/22/2014] [Indexed: 11/29/2022] Open
Abstract
CREB (cAMP response element binding protein) has been shown to play an important role in tumor initiation, progression, and metastasis. We discovered that naphthol AS-E, a cell-permeable CREB inhibitor, presented antiproliferative activity in a broad panel of cancer cell lines in vitro. However, it has limited aqueous solubility. In this report, we described a water-soluble inhibitor (compound 6) of CREB-mediated gene transcription with in vivo anticancer activity. Unexpectedly, compound 6 was found to be a prodrug of compound 12 necessitating an unprecedented long-range O,N-acyl transfer. The rate of this transfer was pH- and temperature-dependent. To the best of our knowledge, this is the first time to show that a long-range O,N-acyl transfer could be exploited as a prodrug activation strategy to improve aqueous solubility. This type of prodrug may be applicable to other structures with spatially arranged hydroxyl amide to improve their aqueous solubility.
Collapse
Affiliation(s)
| | | | | | | | - Curtis E. Moore
- Department
of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Arnold L. Rheingold
- Department
of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
36
|
Two histone/protein acetyltransferases, CBP and p300, are indispensable for Foxp3+ T-regulatory cell development and function. Mol Cell Biol 2014; 34:3993-4007. [PMID: 25154413 DOI: 10.1128/mcb.00919-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-regulatory (Treg) cells are important to immune homeostasis, and Treg cell deficiency or dysfunction leads to autoimmune disease. A histone/protein acetyltransferase (HAT), p300, was recently found to be important for Treg function and stability, but further insights into the mechanisms by which p300 or other HATs affect Treg biology are needed. Here we show that CBP, a p300 paralog, is also important in controlling Treg function and stability. Thus, while mice with Treg-specific deletion of CBP or p300 developed minimal autoimmune disease, the combined deletion of CBP and p300 led to fatal autoimmunity by 3 to 4 weeks of age. The effects of CBP and p300 deletion on Treg development are dose dependent and involve multiple mechanisms. CBP and p300 cooperate with several key Treg transcription factors that act on the Foxp3 promoter to promote Foxp3 production. CBP and p300 also act on the Foxp3 conserved noncoding sequence 2 (CNS2) region to maintain Treg stability in inflammatory environments by regulating pCREB function and GATA3 expression, respectively. Lastly, CBP and p300 regulate the epigenetic status and function of Foxp3. Our findings provide insights into how HATs orchestrate multiple aspects of Treg development and function and identify overlapping but also discrete activities for p300 and CBP in control of Treg cells.
Collapse
|
37
|
Periodic Estrogen Receptor-Beta Activation: A Novel Approach to Prevent Ischemic Brain Damage. Neurochem Res 2014; 40:2009-17. [PMID: 24906488 DOI: 10.1007/s11064-014-1346-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
In women, the risk for cerebral ischemia climbs rapidly after menopause. At menopause, production of ovarian hormones; i.e., progesterone and estrogen, slowly diminishes. Estrogen has been suggested to confer natural protection to premenopausal women from ischemic stroke and some of its debilitating consequences. This notion is also strongly supported by laboratory studies showing that a continuous chronic 17β-estradiol (E2; a potent estrogen) regimen protects brain from ischemic injury. However, concerns regarding the safety of the continuous intake of E2 were raised by the failed translation to the clinic. Recent studies demonstrated that repetitive periodic E2 pretreatments, in contrast to continuous E2 treatment, provided neuroprotection against cerebral ischemia in ovariectomized rats. Periodic E2 pretreatment protects hippocampal neurons through activation of estrogen receptor subtype beta (ER-β). Apart from neuroprotection, periodic activation of ER-β in ovariectomized rats significantly improves hippocampus-dependent learning and memory. Difficulties in learning and memory loss are the major consequence of ischemic brain damage. Periodic ER-β agonist pretreatment may provide pharmacological access to a protective state against ischemic stroke and its debilitating consequences. The use of ER-β-selective agonists constitutes a safer target for future research than ER-α agonist or E2, inasmuch as it lacks the ability to stimulate the proliferation of breast or endometrial tissue. In this review, we highlight ER-β signaling as a guide for future translational research to reduce cognitive decline and cerebral ischemia incidents/impact in post-menopausal women, while avoiding the side effects produced by chronic E2 treatment.
Collapse
|
38
|
Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Res Bull 2014; 105:17-24. [DOI: 10.1016/j.brainresbull.2014.04.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/19/2014] [Accepted: 04/12/2014] [Indexed: 01/07/2023]
|
39
|
Chen Y, Yang S, Yao W, Zhu H, Xu X, Meng G, Zhang W. Prostacyclin analogue beraprost inhibits cardiac fibroblast proliferation depending on prostacyclin receptor activation through a TGF β-Smad signal pathway. PLoS One 2014; 9:e98483. [PMID: 24852754 PMCID: PMC4031177 DOI: 10.1371/journal.pone.0098483] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/02/2014] [Indexed: 01/12/2023] Open
Abstract
Previous studies showed that prostacyclin inhibited fibrosis. However, both receptors of prostacyclin, prostacyclin receptor (IP) and peroxisome proliferator-activated receptor (PPAR), are abundant in cardiac fibroblasts. Here we investigated which receptor was vital in the anti-fibrosis effect of prostacyclin. In addition, the possible mechanism involved in protective effects of prostacyclin against cardiac fibrosis was also studied. We found that beraprost, a prostacyclin analogue, inhibited angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast proliferation in a concentration-dependent and time-dependent manner. Beraprost also suppressed Ang II-induced collagen I mRNA expression and protein synthesis in cardiac fibroblasts. After IP expression was knocked down by siRNA, Ang II-induced proliferation and collagen I synthesis could no longer be rescued by beraprost. However, treating cells with different specific inhibitors of PPAR subtypes prior to beraprost and Ang II stimulation, all of the above attenuating effects of beraprost were still available. Moreover, beraprost significantly blocked transforming growth factor β (TGF β) expression as well as Smad2 phosphorylation and reduced Smad-DNA binding activity. Beraprost also increased phosphorylation of cAMP response element binding protein (CREB) at Ser133 in the nucleus. Co-immunoprecipitation analysis revealed that beraprost increased CREB but decreased Smad2 binding to CREB-binding protein (CBP) in nucleus. In conclusion, beraprost inhibits cardiac fibroblast proliferation by activating IP and suppressing TGF β-Smad signal pathway.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Shengju Yang
- Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenjuan Yao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Hongyan Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaole Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
- * E-mail: (GM); (WZ)
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
- * E-mail: (GM); (WZ)
| |
Collapse
|
40
|
The environmental neurotoxicant PCB 95 promotes synaptogenesis via ryanodine receptor-dependent miR132 upregulation. J Neurosci 2014; 34:717-25. [PMID: 24431430 DOI: 10.1523/jneurosci.2884-13.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca(2+) oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders.
Collapse
|
41
|
Cope JL, Regev L, Chen Y, Korosi A, Rice CJ, Ji S, Rogge GA, Wood MA, Baram TZ. Differential contribution of CBP:CREB binding to corticotropin-releasing hormone expression in the infant and adult hypothalamus. Stress 2014; 17:39-50. [PMID: 23768074 PMCID: PMC3869921 DOI: 10.3109/10253890.2013.806907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) contributes crucially to the regulation of central and peripheral responses to stress. Because of the importance of a finely tuned stress system, CRH expression is tightly regulated in an organ- and brain region-specific manner. Thus, in the hypothalamus, CRH is constitutively expressed and this expression is further enhanced by stress; however, the underlying regulatory mechanisms are not fully understood. The regulatory region of the crh gene contains several elements, including the cyclic-AMP response element (CRE), and the role of the CRE interaction with the cyclic-AMP response element binding protein (CREB) in CRH expression has been a focus of intensive research. Notably, whereas thousands of genes contain a CRE, the functional regulation of gene expression by the CRE:CREB system is limited to ∼100 genes, and likely requires additional proteins. Here, we investigated the role of a member of the CREB complex, CREB binding protein (CBP), in basal and stress-induced CRH expression during development and in the adult. Using mice with a deficient CREB-binding site on CBP, we found that CBP:CREB interaction is necessary for normal basal CRH expression at the mRNA and protein level in the nine-day-old mouse, prior to onset of functional regulation of hypothalamic CRH expression by glucocorticoids. This interaction, which functions directly on crh or indirectly via regulation of other genes, was no longer required for maintenance of basal CRH expression levels in the adult. However, CBP:CREB binding contributed to stress-induced CRH expression in the adult, enabling rapid CRH synthesis in hypothalamus. CBP:CREB binding deficiency did not disrupt basal corticosterone plasma levels or acute stress-evoked corticosterone release. Because dysregulation of CRH expression occurs in stress-related disorders including depression, a full understanding of the complex regulation of this gene is important in both health and disease.
Collapse
Affiliation(s)
- Jessica L. Cope
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
| | - Limor Regev
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
| | - Yuncai Chen
- Department of Pediatrics, University of California-Irvine, Irvine, CA 92697, USA
| | - Aniko Korosi
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
| | - Courtney J. Rice
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
| | - Sung Ji
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
| | - George A. Rogge
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA 92697, USA
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA 92697, USA
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697, USA
- Department of Pediatrics, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
42
|
Haack KKV, Mitra AK, Zucker IH. NF-κB and CREB are required for angiotensin II type 1 receptor upregulation in neurons. PLoS One 2013; 8:e78695. [PMID: 24244341 PMCID: PMC3823855 DOI: 10.1371/journal.pone.0078695] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/12/2013] [Indexed: 01/14/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) and the Ets like gene-1 (Elk-1) are two transcription factors that have been previously established to contribute to the Angiotensin II mediated upregulation of Angiotensin II type 1 receptor (AT1R) in neurons. The cAMP response element binding protein (CREB) is another transcription factor that has also been implicated in AT1R gene transcription. The goal of the current study was to determine if NF-κB and CREB association was required for AT1R upregulation. We hypothesized that the transcription of the AT1R gene occurs via an orchestration of transcription factor interactions including NF-κB, CREB, and Elk-1. The synergistic role of CREB and NFκB in promoting AT1R gene expression was determined using siRNA-mediated silencing of CREB. Electrophorectic Mobility Shift Assay studies employing CREB and NF-κB demonstrated increased protein - DNA binding as a result of Ang II stimulation which was blunted by siRNA silencing of CREB. Upstream inhibition of p38 mitogen activated protein kinase (p38 MAPK) with SB203580 or inhibition of the calmodulin kinase (CAMK) pathway using KN-62 blunted changes in CREB and NF-κB expression. These findings suggest that Ang II may activate multiple signaling pathways involving p38 MAPK leading to the activation of NF-κB and CREB, which feed back to upregulate the AT1R gene. This study provides insight into the molecular mechanisms involving multiple transcription factor activation in a coordinated fashion which may be partially responsible for sympathoexcitation in clinical conditions associated with increased activation of the renin angiotensin system.
Collapse
Affiliation(s)
- Karla K. V. Haack
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Amit K. Mitra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
43
|
Planeta CS, Lepsch LB, Alves R, Scavone C. Influence of the dopaminergic system, CREB, and transcription factor-κB on cocaine neurotoxicity. Braz J Med Biol Res 2013; 46:909-915. [PMID: 24141554 PMCID: PMC3854330 DOI: 10.1590/1414-431x20133379] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/19/2013] [Indexed: 01/04/2023] Open
Abstract
Cocaine is a widely used drug and its abuse is associated with physical, psychiatric
and social problems. Abnormalities in newborns have been demonstrated to be due to
the toxic effects of cocaine during fetal development. The mechanism by which cocaine
causes neurological damage is complex and involves interactions of the drug with
several neurotransmitter systems, such as the increase of extracellular levels of
dopamine and free radicals, and modulation of transcription factors. The aim of this
review was to evaluate the importance of the dopaminergic system and the
participation of inflammatory signaling in cocaine neurotoxicity. Our study showed
that cocaine activates the transcription factors NF-κB and CREB, which regulate genes
involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine
(a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine.
However, the attenuation of NF-κB activity after the pretreatment of the cells with
SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine
is, at least partially, due to activation of D1 receptors. NF-κB seems to have a
protective role in these cells because its inhibition increased cellular death caused
by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be
related to the protective role of both CREB and NF-κB transcription factors. An
understanding of the mechanisms by which cocaine induces cell death in the brain will
contribute to the development of new therapies for drug abusers, which can help to
slow down the progress of degenerative processes.
Collapse
Affiliation(s)
- C S Planeta
- Universidade Estadual Paulista, Laboratório de Neuropsicofarmacologia, Faculdade de Ciências Farmacêuticas, AraraquaraSP, Brasil
| | | | | | | |
Collapse
|
44
|
Seidl MD, Nunes F, Fels B, Hildebrandt I, Schmitz W, Schulze-Osthoff K, Müller FU. A novel intronic promoter of the Crem gene induces small ICER (smICER) isoforms. FASEB J 2013; 28:143-52. [PMID: 24022402 DOI: 10.1096/fj.13-231977] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transcription factors cAMP-responsive element binding protein (CREB) and cAMP-responsive element modulator (CREM) regulate gene transcription in response to elevated cAMP levels. The Crem isoform inducible cAMP early repressor (Icer) is transcribed by the internal promoter P2 as a critical regulator of multiple cellular processes. Here, we describe a novel inducible Crem isoform, small Icer (smIcer), regulated by a newly identified promoter (P6). ChIP revealed binding of CREB to P6 in human and mouse myocardium. P6 activity was induced by constitutively active CREB or stimulation of adenylyl cyclase. In mice, smIcer mRNA was ubiquitously expressed and transiently induced by β-adrenoceptor stimulation e.g., in heart and lung. SmICER repressed both basal and cAMP-induced activities of P6 and P2 promoters. Stimulation of adenylyl cyclase induced P2 and P6 in cell type-specific manner. Alternative translational start sites resulted in three different smICER proteins, linked to increased apoptosis sensitivity. In conclusion, the Crem gene provides two distinct and mutually controlled mechanisms of a cAMP-dependent induction of transcriptional repressors. Our results suggest not only that smICER is a novel regulator of cAMP-mediated gene regulation, but also emphasize that biological effects that have been ascribed solely to ICER, should be revised with regard to smICER.
Collapse
Affiliation(s)
- Matthias D Seidl
- 2Institute of Pharmacology and Toxicology, University of Münster, Domagkstr. 12, 48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Al-Huseini LMA, Aw Yeang HX, Sethu S, Alhumeed N, Hamdam JM, Tingle Y, Djouhri L, Kitteringham N, Park BK, Goldring CE, Sathish JG. Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) modulates dendritic cell immune function through regulation of p38 MAPK-cAMP-responsive element binding protein/activating transcription factor 1 signaling. J Biol Chem 2013; 288:22281-8. [PMID: 23775080 PMCID: PMC3829319 DOI: 10.1074/jbc.m113.483420] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nrf2 is a redox-responsive transcription factor that has been implicated in the regulation of DC immune function. Loss of Nrf2 results in increased co-stimulatory molecule expression, enhanced T cell stimulatory capacity, and increased reactive oxygen species (ROS) levels in murine immature DCs (iDCs). It is unknown whether altered immune function of Nrf2-deficient DCs (Nrf2−/− iDCs) is due to elevated ROS levels. Furthermore, it is unclear which intracellular signaling pathways are involved in Nrf2-mediated regulation of DC function. Using antioxidant vitamins to reset ROS levels in Nrf2−/− iDCs, we show that elevated ROS is not responsible for the altered phenotype and function of these DCs. Pharmacological inhibitors were used to explore the role of key MAPKs in mediating the altered phenotype and function in Nrf2−/− iDCs. We demonstrate that the increased co-stimulatory molecule expression (MHC II and CD86) and antigen-specific T cell activation capacity observed in Nrf2−/− iDCs was reversed by inhibition of p38 MAPK but not JNK. Importantly, we provide evidence for increased phosphorylation of cAMP-responsive element binding protein (CREB) and activating transcription factor 1 (ATF1), transcription factors that are downstream of p38 MAPK. The increased phosphorylation of CREB/ATF1 in Nrf2−/− iDCs was sensitive to p38 MAPK inhibition. We also show data to implicate heme oxygenase-1 as a potential molecular link between Nrf2 and CREB/ATF1. These results indicate that dysregulation of p38 MAPK-CREB/ATF1 signaling axis underlies the altered function and phenotype in Nrf2-deficient DCs. Our findings provide new insights into the mechanisms by which Nrf2 mediates regulation of DC function.
Collapse
Affiliation(s)
- Laith M A Al-Huseini
- Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lesiak A, Pelz C, Ando H, Zhu M, Davare M, Lambert TJ, Hansen KF, Obrietan K, Appleyard SM, Impey S, Wayman GA. A genome-wide screen of CREB occupancy identifies the RhoA inhibitors Par6C and Rnd3 as regulators of BDNF-induced synaptogenesis. PLoS One 2013; 8:e64658. [PMID: 23762244 PMCID: PMC3675129 DOI: 10.1371/journal.pone.0064658] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022] Open
Abstract
Neurotrophin-regulated gene expression is believed to play a key role in long-term changes in synaptic structure and the formation of dendritic spines. Brain-derived neurotrophic factor (BDNF) has been shown to induce increases in dendritic spine formation, and this process is thought to function in part by stimulating CREB-dependent transcriptional changes. To identify CREB-regulated genes linked to BDNF-induced synaptogenesis, we profiled transcriptional occupancy of CREB in hippocampal neurons. Interestingly, de novo motif analysis of hippocampal ChIP-Seq data identified a non-canonical CRE motif (TGGCG) that was enriched at CREB target regions and conferred CREB-responsiveness. Because cytoskeletal remodeling is an essential element of the formation of dendritic spines, within our screens we focused our attention on genes previously identified as inhibitors of RhoA GTPase. Bioinformatic analyses identified dozens of candidate CREB target genes known to regulate synaptic architecture and function. We showed that two of these, the RhoA inhibitors Par6C (Pard6A) and Rnd3 (RhoE), are BDNF-induced CREB-regulated genes. Interestingly, CREB occupied a cluster of non-canonical CRE motifs in the Rnd3 promoter region. Lastly, we show that BDNF-stimulated synaptogenesis requires the expression of Par6C and Rnd3, and that overexpression of either protein is sufficient to increase synaptogenesis. Thus, we propose that BDNF can regulate formation of functional synapses by increasing the expression of the RhoA inhibitors, Par6C and Rnd3. This study shows that genome-wide analyses of CREB target genes can facilitate the discovery of new regulators of synaptogenesis.
Collapse
Affiliation(s)
- Adam Lesiak
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Carl Pelz
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Hideaki Ando
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Mingyan Zhu
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Monika Davare
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Talley J. Lambert
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Katelin F. Hansen
- Department of Neuroscience, Ohio State University, Columbus, Ohio, United States of America
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, Ohio, United States of America
| | - Suzanne M. Appleyard
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail: (GAW); (SI)
| | - Gary A. Wayman
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington, United States of America
- * E-mail: (GAW); (SI)
| |
Collapse
|
47
|
MSK1 and MSK2 inhibit lipopolysaccharide-induced prostaglandin production via an interleukin-10 feedback loop. Mol Cell Biol 2013; 33:1456-67. [PMID: 23382072 DOI: 10.1128/mcb.01690-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prostaglandin production is catalyzed by cyclooxygenase 2 (cox-2). We demonstrate here that MSK1 and MSK2 (MSK1/2) can exert control on the induction of cox-2 mRNA by Toll-like receptor (TLR) agonists. In the initial phase of cox-2 induction, MSK1/2 knockout macrophages confirmed a role for MSK in the positive regulation of transcription. However, at later time points both lipopolysaccharide (LPS)-induced prostaglandin and cox-2 protein levels were increased in MSK1/2 knockout. Further analysis found that while MSKs promoted cox-2 mRNA transcription, following longer LPS stimulation MSKs also promoted degradation of cox-2 mRNA. This was found to be the result of an interleukin 10 (IL-10) feedback mechanism, with endogenously produced IL-10 promoting cox-2 degradation. The ability of IL-10 to do this was dependent on the mRNA binding protein TTP through a p38/MK2-mediated mechanism. As MSKs regulate IL-10 production in response to LPS, MSK1/2 knockout results in reduced IL-10 secretion and therefore reduced feedback from IL-10 on cox-2 mRNA stability. Following LPS stimulation, this increased mRNA stability correlated to an elevated induction of both of cox-2 protein and prostaglandin secretion in MSK1/2 knockout macrophages relative to that in wild-type cells. This was not restricted to isolated macrophages, as a similar effect of MSK1/2 knockout was seen on plasma prostaglandin E2 (PGE2) levels following intraperitoneal injection of LPS.
Collapse
|
48
|
Hirai H, Kamio N, Huang G, Matsusue A, Ogino S, Kimura N, Satake S, Ashihara E, Imanishi J, Tenen DG, Maekawa T. Cyclic AMP responsive element binding proteins are involved in 'emergency' granulopoiesis through the upregulation of CCAAT/enhancer binding protein β. PLoS One 2013; 8:e54862. [PMID: 23382991 PMCID: PMC3559830 DOI: 10.1371/journal.pone.0054862] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 12/19/2012] [Indexed: 11/18/2022] Open
Abstract
In contrast to the definitive role of the transcription factor, CCAAT/Enhancer binding protein α (C/EBPα), in steady-state granulopoiesis, previous findings have suggested that granulopoiesis during emergency situations, such as infection, is dependent on C/EBPβ. In this study, a novel lentivirus-based reporter system was developed to elucidate the molecular switch required for C/EBPβ-dependency. The results demonstrated that two cyclic AMP responsive elements (CREs) in the proximal promoter region of C/EBPβ were involved in the positive regulation of C/EBPβ transcription during granulocyte-macrophage colony-stimulating factor (GM-CSF)–induced differentiation of bone marrow cells. In addition, the transcripts of CRE binding (CREB) family proteins were readily detected in hematopoietic stem/progenitor cells. CREB was upregulated, phosphorylated and bound to the CREs in response to GM-CSF stimulation. Retroviral transduction of a dominant negative CREB mutant reduced C/EBPβ mRNA levels and significantly impaired the proliferation/differentiation of granulocyte precursors, while a constitutively active form of CREB facilitated C/EBPβ transcription. These data suggest that CREB proteins are involved in the regulation of granulopoiesis via C/EBPβ upregulation.
Collapse
Affiliation(s)
- Hideyo Hirai
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chiappini F, Ramadoss P, Vella KR, Cunha LL, Ye FD, Stuart RC, Nillni EA, Hollenberg AN. Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus. Mol Cell Endocrinol 2013; 365:84-94. [PMID: 23000398 PMCID: PMC3572472 DOI: 10.1016/j.mce.2012.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 01/19/2023]
Abstract
Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1(ΔSIM1) mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1(ΔSIM1) mice but TSH, T₄ and T₃ levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1(ΔSIM1) mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1(ΔSIM1) mice regardless of thyroid status, demonstrating that the regulation of TRH by T₃ in vivo likely occurs independently of the CREB/CREM family.
Collapse
Affiliation(s)
- Franck Chiappini
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
- Address correspondence and reprint request to: Dr. Franck Chiappini or Dr. Anthony Hollenberg, MD, 330 Brookline Avenue, E/CLS 0728, MA, 02215. Tel: 617-735-3268. Fax: 617-735-3323; ,
| | - Preeti Ramadoss
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Kristen R. Vella
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Lucas L. Cunha
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Felix D. Ye
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
| | - Ronald C. Stuart
- Division of Endocrinology, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903. ;
| | - Eduardo A. Nillni
- Division of Endocrinology, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903. ;
| | - Anthony N. Hollenberg
- Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School. Center of Life Science, Boston, MA, 02115. ; ; ; ; ;
- Address correspondence and reprint request to: Dr. Franck Chiappini or Dr. Anthony Hollenberg, MD, 330 Brookline Avenue, E/CLS 0728, MA, 02215. Tel: 617-735-3268. Fax: 617-735-3323; ,
| |
Collapse
|
50
|
Kida S. A Functional Role for CREB as a Positive Regulator of Memory Formation and LTP. Exp Neurobiol 2012; 21:136-40. [PMID: 23319873 PMCID: PMC3538177 DOI: 10.5607/en.2012.21.4.136] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
cAMP response element-binding protein (CREB), a transcription factor, has been shown to play a central role in memory formation, and its involvement in this process has been investigated using a wide range of animal models, from nematodes to higher animals. Various CREB mutant mice have been developed and investigated. Several types of mutant mice with loss of CREB function have impaired memory formation and long-term potentiation (LTP), suggesting that CREB plays essential roles in these processes. To characterize the roles of CREB in memory formation and LTP further, mutant mice displaying gain of CREB function have been generated and analyzed. Importantly, CREB-DIEDML mice and CREB-Y134F mice showed enhanced memory formation, whereas CREB-VP16 mice displayed a lowered threshold of long-lasting LTP (L-LTP) induction, strongly suggesting that CREB functions as a positive regulator of memory formation and LTP. In this review, I focus on the effects of the genetic activation of CREB in LTP and memory formation and summarize previous findings.
Collapse
Affiliation(s)
- Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan. ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|