1
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
2
|
Liu Y, Yang J, Weng D, Xie Y. A1CF Binding to the p65 Interaction Site on NKRF Decreased IFN-β Expression and p65 Phosphorylation (Ser536) in Renal Carcinoma Cells. Int J Mol Sci 2024; 25:3576. [PMID: 38612387 PMCID: PMC11011687 DOI: 10.3390/ijms25073576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Apobec-1 complementation factor (A1CF) functions as an RNA-binding cofactor for APO-BEC1-mediated C-to-U conversion during RNA editing and as a hepatocyte-specific regulator in the alternative pre-mRNA splicing of metabolic enzymes. Its role in RNA editing has not been clearly established. Western blot, co-immunoprecipitation (Co-IP), immunofluorescence (IF), methyl thiazolyl tetrazolium (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to examine the role of A1CF beyond RNA editing in renal carcinoma cells. We demonstrated that A1CF interacts with NKRF, independent of RNA and DNA, without affecting its expression or nuclear translocation; however, it modulates p65(Ser536) phosphorylation and IFN-β levels. Truncation of A1CF or deletion on NKRF revealed that the RRM1 domain of A1CF and the p65 binding motif of NKRF are required for their interaction. Deletion of RRM1 on A1CF abrogates NKRF binding, and the decrease in IFN-β expression and p65(Ser536) phosphorylation was induced by A1CF. Moreover, full-length A1CF, but not an RRM1 deletion mutant, promoted cell proliferation in renal carcinoma cells. Perturbation of A1CF levels in renal carcinoma cells altered anchorage-independent growth and tumor progression in nude mice. Moreover, p65(Ser536) phosphorylation and IFN-β expression were lower, but ki67 was higher in A1CF-overexpressing tumor tissues of a xenograft mouse model. Notably, primary and metastatic samples from renal cancer patients exhibited high A1CF expression, low p65(Ser536) phosphorylation, and decreased IFN-β levels in renal carcinoma tissues compared with the corresponding paracancerous tissues. Our results indicate that A1CF-decreased p65(Ser536) phosphorylation and IFN-β levels may be caused by A1CF competitive binding to the p65-combined site on NKRF and demonstrate the direct binding of A1CF independent of RNA or DNA in signal pathway regulation and tumor promotion in renal carcinoma cells.
Collapse
Affiliation(s)
| | | | | | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (J.Y.); (D.W.)
| |
Collapse
|
3
|
Wang L, Cheng Q. APOBEC-1 Complementation Factor: From RNA Binding to Cancer. Cancer Control 2024; 31:10732748241284952. [PMID: 39334524 PMCID: PMC11439182 DOI: 10.1177/10732748241284952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND APOBEC-1 complementation factor (A1CF) and Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-1 (APOBEC-1) constitute the minimal proteins necessary for the editing of apolipoprotein B (apoB) mRNA in vitro. Unlike APOBEC-1 and apoB mRNA, the ubiquitous expression of A1CF in human tissues suggests its unique biological significance, with various factors such as protein kinase C, thyroid hormones, and insulin regulating the activity and expression of A1CF. Nevertheless, few studies have provided an overview of this topic. OBJECTIVE We conducted a literature review to describe the molecular mechanisms of A1CF and its relevance to human diseases. METHOD In the PubMed database, we used the keywords 'A1CF' and 'APOBEC-1 complementation factor' to collect peer-reviewed articles published in English from 2000 to 2023. Two authors independently reviewed the articles and reached the consensus. RESULT After reviewing 127 articles, a total of 61 articles that met the inclusion criteria were included in the present review. Studies revealed that A1CF is involved in epigenetic regulation of reproductive cells affecting embryonic development, and that it is closely associated with the occurrence of gout due to its editing properties on apoB. A1CF can also affect the process of epithelial-mesenchymal transition in renal tubular epithelial cells and promote liver regeneration by controlling the stability of IL-6 mRNA, but no influence on cardiac function was found. Furthermore, increasing evidence suggests that A1CF may promote the occurrence and development of breast cancer, lung cancer, renal cell carcinoma, hepatocellular carcinoma, endometrial cancer, and glioma. CONCLUSION This review clarifies the association between A1CF and other complementary factors and their impact on the development of human diseases, aiming to provide guidance for further research on A1CF, which can help treat human diseases and promote health.
Collapse
Affiliation(s)
- Longfei Wang
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Thyroid Surgery, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Cheng
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Wang C, Li W, Meng X, Yuan H, Yu T, Yang W, Ni D, Liu L, Xiao W. Downregulation of RNA binding protein 47 predicts low survival in patients and promotes the development of renal cell malignancies through RNA stability modification. MOLECULAR BIOMEDICINE 2023; 4:41. [PMID: 37962768 PMCID: PMC10645769 DOI: 10.1186/s43556-023-00148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
RNA binding proteins (RBPs) are crucial for cell function, tissue growth, and disease development in disease or normal physiological processes. RNA binding motif protein 47 (RBM47) has been proven to have anti-tumor effects on many cancers, but its effect is not yet clear in renal cancer. Here, we demonstrated the expression and the prognostic role of RBM47 in public databases and clinical samples of clear cell renal carcinoma (ccRCC) with bioinformatics analysis. The possible mechanism of RBM47 in renal cancer was verified by gene function prediction and in vitro experiments. The results showed that RBM47 was downregulated in renal cancers when compared with control groups. Low RBM47 expression indicated poor prognosis in ccRCC. RBM47 expression in renal cancer cell lines was reduced significantly when compared to normal renal tubular epithelial cells. Epithelial-mesenchymal transition (EMT) and transforming growth factor-β signaling pathway was associated with RBM47 in ccRCC by Gene set enrichment analysis. RBM47 expression had a positive correlation with e-cadherin, but a negative correlation with snail and vimentin. RBM47 overexpression could repress the migration, invasion activity, and proliferation capacity of renal cancer cells, while RBM47 inhibition could promote the development of the malignant features through EMT signaling by RNA stability modification. Therefore, our results suggest that RBM47, as a new molecular biomarker, may play a key role in the cancer development of ccRCC.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiquan Li
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangui Meng
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Yuan
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiexi Yu
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Yang
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dong Ni
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lei Liu
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wen Xiao
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Frezza V, Chellini L, Del Verme A, Paronetto MP. RNA Editing in Cancer Progression. Cancers (Basel) 2023; 15:5277. [PMID: 37958449 PMCID: PMC10648226 DOI: 10.3390/cancers15215277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Coding and noncoding RNA molecules play their roles in ensuring cell function and tissue homeostasis in an ordered and systematic fashion. RNA chemical modifications can occur both at bases and ribose sugar, and, similarly to DNA and histone modifications, can be written, erased, and recognized by the corresponding enzymes, thus modulating RNA activities and fine-tuning gene expression programs. RNA editing is one of the most prevalent and abundant forms of post-transcriptional RNA modification in normal physiological processes. By altering the sequences of mRNAs, it makes them different from the corresponding genomic template. Hence, edited mRNAs can produce protein isoforms that are functionally different from the corresponding genome-encoded variants. Abnormalities in regulatory enzymes and changes in RNA-modification patterns are closely associated with the occurrence and development of various human diseases, including cancer. To date, the roles played by RNA modifications in cancer are gathering increasing interest. In this review, we focus on the role of RNA editing in cancer transformation and provide a new perspective on its impact on tumorigenesis, by regulating cell proliferation, differentiation, invasion, migration, stemness, metabolism, and drug resistance.
Collapse
Affiliation(s)
- Valentina Frezza
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
| | - Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
| | - Arianna Del Verme
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| |
Collapse
|
6
|
Latifi N, Mack AM, Tellioglu I, Di Giorgio S, Stafforst T. Precise and efficient C-to-U RNA base editing with SNAP-CDAR-S. Nucleic Acids Res 2023; 51:e84. [PMID: 37462074 PMCID: PMC10450179 DOI: 10.1093/nar/gkad598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/08/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Site-directed RNA base editing enables the transient and dosable change of genetic information and represents a recent strategy to manipulate cellular processes, paving ways to novel therapeutic modalities. While tools to introduce adenosine-to-inosine changes have been explored quite intensively, the engineering of precise and programmable tools for cytidine-to-uridine editing is somewhat lacking behind. Here we demonstrate that the cytidine deaminase domain evolved from the ADAR2 adenosine deaminase, taken from the RESCUE-S tool, provides very efficient and highly programmable editing when changing the RNA targeting mechanism from Cas13-based to SNAP-tag-based. Optimization of the guide RNA chemistry further allowed to dramatically improve editing yields in the difficult-to-edit 5'-CCN sequence context thus improving the substrate scope of the tool. Regarding editing efficiency, SNAP-CDAR-S outcompeted the RESCUE-S tool clearly on all tested targets, and was highly superior in perturbing the β-catenin pathway. NGS analysis showed similar, moderate global off-target A-to-I and C-to-U editing for both tools.
Collapse
Affiliation(s)
- Ngadhnjim Latifi
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Aline Maria Mack
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Irem Tellioglu
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Engineering, University of Heidelberg, 69120 Heidelberg, Germany
| | - Salvatore Di Giorgio
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine University Tuebingen, Germany
| |
Collapse
|
7
|
Hong KU, Salazar-González RA, Walls KM, Hein DW. Transcriptional Regulation of Human Arylamine N-Acetyltransferase 2 Gene by Glucose and Insulin in Liver Cancer Cell Lines. Toxicol Sci 2022; 190:158-172. [PMID: 36156098 PMCID: PMC9702998 DOI: 10.1093/toxsci/kfac103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Arylamine N-acetyltransferase 2 (NAT2) is well-known for its role in phase II metabolism of xenobiotics and drugs. More recently, genome wide association studies and murine models implicated NAT2 in regulation of insulin sensitivity and plasma lipid levels. However, the mechanism remains unknown. Transcript levels of human NAT2 varied dynamically in HepG2 (hepatocellular) cells, depending on the nutrient status of the culture media. Culturing the cells in the presence of glucose induced NAT2 mRNA expression as well as its N-acetyltransferase activity significantly. In addition, insulin or acetate treatment also significantly induced NAT2 mRNA. We examined and compared the glucose- and acetate-dependent changes in NAT2 expression to those of genes involved in glucose and lipid metabolism, including FABP1, CPT1A, ACACA, SCD, CD36, FASN, ACLY, G6PC, and PCK1. Genes that are involved in fatty acid transport and lipogenesis, such as FABP1 and CD36, shared a similar pattern of expression with NAT2. In silico analysis of genes co-expressed with NAT2 revealed an enrichment of biological processes involved in lipid and cholesterol biosynthesis and transport. Among these, A1CF (APOBEC1 complementation factor) showed the highest correlation with NAT2 in terms of its expression in normal human tissues. The current study shows, for the first time, that human NAT2 is transcriptionally regulated by glucose and insulin in liver cancer cell lines and that the gene expression pattern of NAT2 is similar to that of genes involved in lipid metabolism and transport.
Collapse
Affiliation(s)
- Kyung U Hong
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Raúl A Salazar-González
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Kennedy M Walls
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - David W Hein
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
8
|
C-to-U RNA Editing: A Site Directed RNA Editing Tool for Restoration of Genetic Code. Genes (Basel) 2022; 13:genes13091636. [PMID: 36140804 PMCID: PMC9498875 DOI: 10.3390/genes13091636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The restoration of genetic code by editing mutated genes is a potential method for the treatment of genetic diseases/disorders. Genetic disorders are caused by the point mutations of thymine (T) to cytidine (C) or guanosine (G) to adenine (A), for which gene editing (editing of mutated genes) is a promising therapeutic technique. In C-to-Uridine (U) RNA editing, it converts the base C-to-U in RNA molecules and leads to nonsynonymous changes when occurring in coding regions; however, for G-to-A mutations, A-to-I editing occurs. Editing of C-to-U is not as physiologically common as that of A-to-I editing. Although hundreds to thousands of coding sites have been found to be C-to-U edited or editable in humans, the biological significance of this phenomenon remains elusive. In this review, we have tried to provide detailed information on physiological and artificial approaches for C-to-U RNA editing.
Collapse
|
9
|
Abstract
The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors. In this Perspective, Pecori et al. provide an overview of the AID/APOBEC cytidine deaminase family, discussing key structural features, how they contribute to viral and tumour evolution and how they can be harnessed for (potentially therapeutic) base-editing purposes.
Collapse
|
10
|
RNA binding motif 47 (RBM47): emerging roles in vertebrate development, RNA editing and cancer. Mol Cell Biochem 2021; 476:4493-4505. [PMID: 34499322 DOI: 10.1007/s11010-021-04256-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
RNA-binding proteins (RBPs) are critical players in the post-transcriptional regulation of gene expression and are associated with each event in RNA metabolism. The term 'RNA-binding motif' (RBM) is assigned to novel RBPs with one or more RNA recognition motif (RRM) domains that are mainly involved in the nuclear processing of RNAs. RBM47 is a novel RBP conserved in vertebrates with three RRM domains whose contributions to various aspects of cellular functions are as yet emerging. Loss of RBM47 function affects head morphogenesis in zebrafish embryos and leads to perinatal lethality in mouse embryos, thereby assigning it to be an essential gene in early development of vertebrates. Its function as an essential cofactor for APOBEC1 in C to U RNA editing of several targets through substitution for A1CF in the A1CF-APOBEC1 editosome, established a new paradigm in the field. Recent advances in the understanding of its involvement in cancer progression assigned RBM47 to be a tumor suppressor that acts by inhibiting EMT and Wnt/[Formula: see text]-catenin signaling through post-transcriptional regulation. RBM47 is also required to maintain immune homeostasis, which adds another facet to its regulatory role in cellular functions. Here, we review the emerging roles of RBM47 in various biological contexts and discuss the current gaps in our knowledge alongside future perspectives for the field.
Collapse
|
11
|
Blanc V, Riordan JD, Soleymanjahi S, Nadeau JH, Nalbantoglu ILK, Xie Y, Molitor EA, Madison BB, Brunt EM, Mills JC, Rubin DC, Ng IO, Ha Y, Roberts LR, Davidson NO. Apobec1 complementation factor overexpression promotes hepatic steatosis, fibrosis, and hepatocellular cancer. J Clin Invest 2021; 131:138699. [PMID: 33445170 DOI: 10.1172/jci138699] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
The RNA-binding protein Apobec1 complementation factor (A1CF) regulates posttranscriptional ApoB mRNA editing, but the range of RNA targets and the long-term effect of altered A1CF expression on liver function are unknown. Here we studied hepatocyte-specific A1cf-transgenic (A1cf+/Tg), A1cf+/Tg Apobec1-/-, and A1cf-/- mice fed chow or high-fat/high-fructose diets using RNA-Seq, RNA CLIP-Seq, and tissue microarrays from human hepatocellular cancer (HCC). A1cf+/Tg mice exhibited increased hepatic proliferation and steatosis, with increased lipogenic gene expression (Mogat1, Mogat2, Cidea, Cd36) associated with shifts in polysomal RNA distribution. Aged A1cf+/Tg mice developed spontaneous fibrosis, dysplasia, and HCC, and this development was accelerated on a high-fat/high-fructose diet and was independent of Apobec1. RNA-Seq revealed increased expression of mRNAs involved in oxidative stress (Gstm3, Gpx3, Cbr3), inflammatory response (Il19, Cxcl14, Tnfα, Ly6c), extracellular matrix organization (Mmp2, Col1a1, Col4a1), and proliferation (Kif20a, Mcm2, Mcm4, Mcm6), and a subset of mRNAs (including Sox4, Sox9, Cdh1) were identified in RNA CLIP-Seq. Increased A1CF expression in human HCC correlated with advanced fibrosis and with reduced survival in a subset with nonalcoholic fatty liver disease. In conclusion, we show that hepatic A1CF overexpression selectively alters polysomal distribution and mRNA expression, promoting lipogenic, proliferative, and inflammatory pathways leading to HCC.
Collapse
Affiliation(s)
- Valerie Blanc
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jesse D Riordan
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | - Saeed Soleymanjahi
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | - ILKe Nalbantoglu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Xie
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A Molitor
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth M Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jason C Mills
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irene O Ng
- Department of Pathology and State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yeonjung Ha
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Lewis R Roberts
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Soleymanjahi S, Blanc V, Davidson N. APOBEC1 mediated C-to-U RNA editing: target sequence and trans-acting factor contribution to 177 RNA editing events in 119 murine transcripts in-vivo. RNA (NEW YORK, N.Y.) 2021; 27:rna.078678.121. [PMID: 34083494 PMCID: PMC8284327 DOI: 10.1261/rna.078678.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/31/2021] [Indexed: 05/04/2023]
Abstract
Mammalian C-to-U RNA editing was described more than 30 years ago as a single nucleotide modification in small intestinal Apob RNA, later shown to be mediated by the RNA-specific cytidine deaminase APOBEC1. Reports of other examples of C-to-U RNA editing, coupled with the advent of genome-wide transcriptome sequencing, identified an expanded range of APOBEC1 targets. Here we analyze the cis-acting regulatory components of verified murine C-to-U RNA editing targets, including nearest neighbor as well as flanking sequence requirements and folding predictions. RNA secondary structure of the editing cassette was associated with editing frequency and exhibited minimal free energy values comparable to small nuclear RNAs. We summarize findings demonstrating the relative importance of trans-acting factors (A1CF, RBM47) acting in concert with APOBEC1. Co-factor dominance was associated with editing frequency, with RNAs targeted by both RBM47 and A1CF edited at a lower frequency than RBM47 dominant targets. Using this information, we developed a multivariable linear regression model to predict APOBEC1 dependent C-to-U RNA editing efficiency, incorporating factors independently associated with editing frequencies based on 103 Sanger-confirmed editing sites, which accounted for 84% of the observed variance. This model also predicted a composite score for available human C-to-U RNA targets, which again correlated with editing frequency.
Collapse
|
13
|
Destefanis E, Avşar G, Groza P, Romitelli A, Torrini S, Pir P, Conticello SG, Aguilo F, Dassi E. A mark of disease: how mRNA modifications shape genetic and acquired pathologies. RNA (NEW YORK, N.Y.) 2021; 27:367-389. [PMID: 33376192 PMCID: PMC7962492 DOI: 10.1261/rna.077271.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA modifications have recently emerged as a widespread and complex facet of gene expression regulation. Counting more than 170 distinct chemical modifications with far-reaching implications for RNA fate, they are collectively referred to as the epitranscriptome. These modifications can occur in all RNA species, including messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). In mRNAs the deposition, removal, and recognition of chemical marks by writers, erasers and readers influence their structure, localization, stability, and translation. In turn, this modulates key molecular and cellular processes such as RNA metabolism, cell cycle, apoptosis, and others. Unsurprisingly, given their relevance for cellular and organismal functions, alterations of epitranscriptomic marks have been observed in a broad range of human diseases, including cancer, neurological and metabolic disorders. Here, we will review the major types of mRNA modifications and editing processes in conjunction with the enzymes involved in their metabolism and describe their impact on human diseases. We present the current knowledge in an updated catalog. We will also discuss the emerging evidence on the crosstalk of epitranscriptomic marks and what this interplay could imply for the dynamics of mRNA modifications. Understanding how this complex regulatory layer can affect the course of human pathologies will ultimately lead to its exploitation toward novel epitranscriptomic therapeutic strategies.
Collapse
Affiliation(s)
- Eliana Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- The EPITRAN COST Action Consortium, COST Action CA16120
| | - Gülben Avşar
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Paula Groza
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Antonia Romitelli
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Serena Torrini
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Pınar Pir
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Silvestro G Conticello
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Francesca Aguilo
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- The EPITRAN COST Action Consortium, COST Action CA16120
| |
Collapse
|
14
|
Potential APOBEC-mediated RNA editing of the genomes of SARS-CoV-2 and other coronaviruses and its impact on their longer term evolution. Virology 2021; 556:62-72. [PMID: 33545556 PMCID: PMC7831814 DOI: 10.1016/j.virol.2020.12.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Members of the APOBEC family of cytidine deaminases show antiviral activities in mammalian cells through lethal editing in the genomes of small DNA viruses, herpesviruses and retroviruses, and potentially those of RNA viruses such as coronaviruses. Consistent with the latter, APOBEC-like directional C→U transitions of genomic plus-strand RNA are greatly overrepresented in SARS-CoV-2 genome sequences of variants emerging during the COVID-19 pandemic. A C→U mutational process may leave evolutionary imprints on coronavirus genomes, including extensive homoplasy from editing and reversion at targeted sites and the occurrence of driven amino acid sequence changes in viral proteins. If sustained over longer periods, this process may account for the previously reported marked global depletion of C and excess of U bases in human seasonal coronavirus genomes. This review synthesizes the current knowledge on APOBEC evolution and function and the evidence of their role in APOBEC-mediated genome editing of SARS-CoV-2 and other coronaviruses. SARS-CoV-2 sequence variants contain an overabundance of C- > U transitions C- > U transitions are the hallmark of the activity of APOBEC cytosine deaminases Further work is needed to determine APOBEC's role in coronavirus evolution
Collapse
|
15
|
Lerner T, Kluesner M, Tasakis RN, Moriarity BS, Papavasiliou FN, Pecori R. C-to-U RNA Editing: From Computational Detection to Experimental Validation. Methods Mol Biol 2021; 2181:51-67. [PMID: 32729074 DOI: 10.1007/978-1-0716-0787-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The AID/APOBEC family of enzymes are cytidine deaminases that act upon DNA and RNA. Among APOBECs, the best characterized family member to act on RNA is the enzyme APOBEC1. APOBEC1-mediated RNA editing plays a key role in lipid metabolism and in maintenance of brain homeostasis. Editing can be easily detected in RNA-seq data as a cytosine to thymine (C-to-T) change with regard to the reference. However, there are many other sources of base conversions relative to reference, such as PCR errors, SNPs, and even DNA editing by mutator APOBECs. Furthermore, APOBEC1 exhibits disparate activity in different cell types, with respect to which transcripts are edited and the level to which they are edited. When considering these potential sources of error and variability, an RNA-seq comparison between wild-type APOBEC1 sample and a matched control with an APOBEC1 knockout is a reliable method for the discrimination of true sites edited by APOBEC1. Here we present a detailed description of a method for studying APOBEC1 RNA editing, specifically in the murine macrophage cell line RAW 264.7. Our method covers the production of an APOBEC1 knockout cell line using the CRISPR/Cas9 system, through to experimental validation and quantification of editing sites (where we discuss a recently published algorithm (termed MultiEditR) which allows for the detection and quantification of RNA editing from Sanger sequencing). Importantly, this same protocol can be adapted to any RNA modification detectable by RNA-seq analysis for which the responsible protein is known.
Collapse
Affiliation(s)
- Taga Lerner
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mitchell Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Rafail Nikolaos Tasakis
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - F Nina Papavasiliou
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Riccardo Pecori
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Chieca M, Torrini S, Conticello SG. Live-Cell Quantification of APOBEC1-Mediated RNA Editing: A Comparison of RNA Editing Assays. Methods Mol Biol 2021; 2181:69-81. [PMID: 32729075 DOI: 10.1007/978-1-0716-0787-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
APOBEC1 is a member of the AID/APOBECs, a group of deaminases responsible for the editing of C>U in both DNA and RNA. APOBEC1 is physiologically involved in C>U RNA editing: while hundreds of targets have been discovered in mice, in humans the only well-characterized target of APOBEC1 is the apolipoprotein B (ApoB) transcript. APOBEC1 edits a CAA codon into a stop codon, which causes the translation of a truncated form of ApoB. A number of assays have been developed to investigate this process. Early assays, poisoned primer extension and Sanger sequencing, have focused on accuracy and sensitivity but rely on extraction of the RNA from tissues and cells. More recently, the need to visualize the RNA editing process directly in live cells have led to the development of fluorescence-based tools. These assays detect RNA editing through reporters whose editing causes a change in cellular localization or a change in fluorescent properties. Here we review the available assays to quantify RNA editing, and we present the protocol for cytofluorimetric analysis using a double-fluorescent reporter.
Collapse
Affiliation(s)
- Martina Chieca
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena, Siena, Italy
| | - Serena Torrini
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena, Siena, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy. .,Institute of Clinical Physiology, CNR, Pisa, Italy.
| |
Collapse
|
17
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
18
|
Wolfe AD, Li S, Goedderz C, Chen XS. The structure of APOBEC1 and insights into its RNA and DNA substrate selectivity. NAR Cancer 2020; 2:zcaa027. [PMID: 33094286 PMCID: PMC7556403 DOI: 10.1093/narcan/zcaa027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
APOBEC1 (APO1), a member of AID/APOBEC nucleic acid cytosine deaminase family, can edit apolipoprotein B mRNA to regulate cholesterol metabolism. This APO1 RNA editing activity requires a cellular cofactor to achieve tight regulation. However, no cofactors are required for deamination on DNA by APO1 and other AID/APOBEC members, and aberrant deamination on genomic DNA by AID/APOBEC deaminases has been linked to cancer. Here, we present the crystal structure of APO1, which reveals a typical APOBEC deaminase core structure, plus a unique well-folded C-terminal domain that is highly hydrophobic. This APO1 C-terminal hydrophobic domain (A1HD) interacts to form a stable dimer mainly through hydrophobic interactions within the dimer interface to create a four-stranded β-sheet positively charged surface. Structure-guided mutagenesis within this and other regions of APO1 clarified the importance of the A1HD in directing RNA and cofactor interactions, providing insights into the structural basis of selectivity on DNA or RNA substrates.
Collapse
Affiliation(s)
- Aaron D Wolfe
- Genetics, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shuxing Li
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Cody Goedderz
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Genetics, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
19
|
Nikolaou KC, Vatandaslar H, Meyer C, Schmid MW, Tuschl T, Stoffel M. The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Rep 2020; 29:283-300.e8. [PMID: 31597092 DOI: 10.1016/j.celrep.2019.08.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
The regulation of hepatic gene expression has been extensively studied at the transcriptional level; however, the control of metabolism through posttranscriptional gene regulation by RNA-binding proteins in physiological and disease states is less understood. Here, we report a major role for the hormone-sensitive RNA-binding protein (RBP) APOBEC1 complementation factor (A1CF) in the generation of hepatocyte-specific and alternatively spliced transcripts. Among these transcripts are isoforms for the dominant and high-affinity fructose-metabolizing ketohexokinase C and glycerol kinase, two key metabolic enzymes that are linked to hepatic gluconeogenesis and found to be markedly reduced upon hepatic ablation of A1cf. Consequently, mice lacking A1CF exhibit improved glucose tolerance and are protected from fructose-induced hyperglycemia, hepatic steatosis, and development of obesity. Our results identify a previously unreported function of A1CF as a regulator of alternative splicing of a subset of genes influencing hepatic glucose production through fructose and glycerol metabolism.
Collapse
Affiliation(s)
- Kostas C Nikolaou
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
20
|
Adekunle DA, Wang ET. Transcriptome-wide organization of subcellular microenvironments revealed by ATLAS-Seq. Nucleic Acids Res 2020; 48:5859-5872. [PMID: 32421779 PMCID: PMC7293051 DOI: 10.1093/nar/gkaa334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Subcellular organization of RNAs and proteins is critical for cell function, but we still lack global maps and conceptual frameworks for how these molecules are localized in cells and tissues. Here, we introduce ATLAS-Seq, which generates transcriptomes and proteomes from detergent-free tissue lysates fractionated across a sucrose gradient. Proteomic analysis of fractions confirmed separation of subcellular compartments. Unexpectedly, RNAs tended to co-sediment with other RNAs in similar protein complexes, cellular compartments, or with similar biological functions. With the exception of those encoding secreted proteins, most RNAs sedimented differently than their encoded protein counterparts. To identify RNA binding proteins potentially driving these patterns, we correlated their sedimentation profiles to all RNAs, confirming known interactions and predicting new associations. Hundreds of alternative RNA isoforms exhibited distinct sedimentation patterns across the gradient, despite sharing most of their coding sequence. These observations suggest that transcriptomes can be organized into networks of co-segregating mRNAs encoding functionally related proteins and provide insights into the establishment and maintenance of subcellular organization.
Collapse
Affiliation(s)
- Danielle A Adekunle
- Department of Molecular Genetics & Microbiology, UF Genetics Institute, Center for NeuroGenetics, University of Florida, USA.,Department of Biology, Massachusetts Institute of Technology, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, UF Genetics Institute, Center for NeuroGenetics, University of Florida, USA
| |
Collapse
|
21
|
Liu Q, Chen CY, Chen GL. High APOBEC1 Complementation Factor Expression Positively Modulates the Proliferation, Invasion, and Migration of Endometrial Cancer Cells Through Regulating P53/P21 Signaling Pathway. Cancer Biother Radiopharm 2020; 37:750-758. [PMID: 32818382 DOI: 10.1089/cbr.2020.3957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: APOBEC1 complementation factor (A1CF) is a component of the apolipoprotein-B messenger RNA editing complex that participates in various cellular processes and acts as an oncogene in many cancers. In this study, it was aimed to investigate the roles of A1CF and its potential mechanism in endometrial cancer (EC). Materials and Methods: Gene expression prolife was downloaded from The Cancer Genome Atlas database. Then Kaplan-Meier and Cox regression analyses were conducted to assess the prognostic value of A1CF in EC. Cell Counting Kit-8, plate clone formation, and transwell assays were used to estimate the functions of A1CF on the proliferation, invasion, and migration of EC cell. The gene set enrichment analysis was used to analyze the pathway that is enriched by A1CF, whereas quantitative real-time polymerase chain reaction and Western blot analyses were utilized to detect the mRNA and protein expression involved. Results: It was detected that the upregulated A1CF was enriched in P53/P21 signaling pathway and tightly associated with patients' age, stage, and death. Besides, high A1CF expression led to a shorter overall survival of patients and predicted a poor prognosis in EC. The overexpression of A1CF promoted the proliferation, invasion, and migration of EC cells, whereas the depletion of A1CF suppressed these processes. Moreover, P21 and P53 were reduced whereas cyclin D1 and proliferating cell nuclear antigen were induced along with the increasing of A1CF. However, the effects of silencing A1CF on these protein expressions were on the contrary. Conclusion: A1CF was highly expressed and closely related to the prognosis and progression of EC through the regulation of P53/P21 signaling pathway, providing a possible new therapy target site for EC.
Collapse
Affiliation(s)
- Qin Liu
- Department of the Third Gynaecology and Obstetrics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University) Changsha, China
| | - Chun-Yan Chen
- Department of the Third Gynaecology and Obstetrics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University) Changsha, China
| | - Gui-Lin Chen
- Department of Obstetrics and Gynecology, The Second People's Hospital, Lianyungang City, P.R. China
| |
Collapse
|
22
|
Solomon WC, Myint W, Hou S, Kanai T, Tripathi R, Kurt Yilmaz N, Schiffer CA, Matsuo H. Mechanism for APOBEC3G catalytic exclusion of RNA and non-substrate DNA. Nucleic Acids Res 2019; 47:7676-7689. [PMID: 31424549 PMCID: PMC6698744 DOI: 10.1093/nar/gkz550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
The potent antiretroviral protein APOBEC3G (A3G) specifically targets and deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA (ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and multiple substrate or non-substrate DNA and RNA, in combination with deamination assays. NMR ssDNA-binding experiments revealed that the interaction with residues in helix1 and loop1 (T201-L220) distinguishes the binding mode of substrate ssDNA from non-substrate. Using 2′-deoxy-2′-fluorine substituted cytidines, we show that a 2′-endo sugar conformation of the target deoxycytidine is favored for substrate binding and deamination. Trajectories of the MD simulation indicate that a ribose 2′-hydroxyl group destabilizes the π-π stacking of the target cytosine and H257, resulting in dislocation of the target cytosine base from the catalytic position. Interestingly, APOBEC3A, which can deaminate ribocytidines, retains the ribocytidine in the catalytic position throughout the MD simulation. Our results indicate that A3Gctd catalytic selectivity against RNA is dictated by both the sugar conformation and 2′-hydroxyl group.
Collapse
Affiliation(s)
- William C Solomon
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wazo Myint
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tapan Kanai
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.,Department of Chemistry, Banasthali University, Banasthali-304022, Rajasthan, India
| | - Rashmi Tripathi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali-304022, Rajasthan, India
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hiroshi Matsuo
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
23
|
Caval V, Jiao W, Berry N, Khalfi P, Pitré E, Thiers V, Vartanian JP, Wain-Hobson S, Suspène R. Mouse APOBEC1 cytidine deaminase can induce somatic mutations in chromosomal DNA. BMC Genomics 2019; 20:858. [PMID: 31726973 PMCID: PMC6854741 DOI: 10.1186/s12864-019-6216-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background APOBEC1 (A1) enzymes are cytidine deaminases involved in RNA editing. In addition to this activity, a few A1 enzymes have been shown to be active on single stranded DNA. As two human ssDNA cytidine deaminases APOBEC3A (A3A), APOBEC3B (A3B) and related enzymes across the spectrum of placental mammals have been shown to introduce somatic mutations into nuclear DNA of cancer genomes, we explored the mutagenic threat of A1 cytidine deaminases to chromosomal DNA. Results Molecular cloning and expression of various A1 enzymes reveal that the cow, pig, dog, rabbit and mouse A1 have an intracellular ssDNA substrate specificity. However, among all the enzymes studied, mouse A1 appears to be singular, being able to introduce somatic mutations into nuclear DNA with a clear 5’TpC editing context, and to deaminate 5-methylcytidine substituted DNA which are characteristic features of the cancer related mammalian A3A and A3B enzymes. However, mouse A1 activity fails to elicit formation of double stranded DNA breaks, suggesting that mouse A1 possess an attenuated nuclear DNA mutator phenotype reminiscent of human A3B. Conclusions At an experimental level mouse APOBEC1 is remarkable among 12 mammalian A1 enzymes in that it represents a source of somatic mutations in mouse genome, potentially fueling oncogenesis. While the order Rodentia is bereft of A3A and A3B like enzymes it seems that APOBEC1 may well substitute for it, albeit remaining much less active. This modifies the paradigm that APOBEC3 and AID enzymes are the sole endogenous mutator enzymes giving rise to off-target editing of mammalian genomes.
Collapse
Affiliation(s)
- Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.
| | - Wenjuan Jiao
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Noémie Berry
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Sorbonne Université, Complexité du Vivant, ED515, 75005, Paris, France
| | - Pierre Khalfi
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Sorbonne Université, Complexité du Vivant, ED515, 75005, Paris, France
| | - Emmanuelle Pitré
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Sorbonne Université, Complexité du Vivant, ED515, 75005, Paris, France
| | - Valérie Thiers
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| |
Collapse
|
24
|
Abstract
Base editing is a genome editing strategy that induces specific single-nucleotide changes within genomic DNA. Two major DNA base editors, cytosine base editors and adenine base editors, that consist of a Cas9 protein linked to a deaminase enzyme that catalyzes targeted base conversion directed by a single-guide RNA have been developed. This strategy has been used widely for precise genome editing because, unlike CRISPR-Cas nuclease-based genome editing systems, this strategy does not create double-strand DNA breaks that often result in high levels of undesirable indels. However, recent papers have reported that DNA base editors can cause substantial off-target editing in both genomic DNA and RNA. The off-target editing described in these studies is primarily independent of guide RNA and arises from the promiscuous reactivity of the deaminase enzymes used in DNA base editors. In this Perspective, we discuss the development of DNA base editors, the guide RNA-independent off-target activity reported in recent studies, and strategies that improve the selectivity of DNA base editors.
Collapse
Affiliation(s)
- SeHee Park
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Peter A. Beal
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
25
|
A1CF-Axin2 signal axis regulates apoptosis and migration in Wilms tumor-derived cells through Wnt/β-catenin pathway. In Vitro Cell Dev Biol Anim 2019; 55:252-259. [PMID: 30825095 DOI: 10.1007/s11626-019-00335-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
A1CF, a complementary factor of APOBEC-1, is involved in many cellular processes for its mRNA editing role, such as cell proliferation, apoptosis, and migration. Here, we explored the regulatory function of A1CF in Wilms tumor-derived cells. Quantitative real-time PCR was performed to detect the mRNA level of A1CF, Axin2, β-Catenin, CCND1 or NKD1 in A1CF-depleted or A1CF-overexpression G401 cells. Western bolt was used to analyze the expression of A1CF, Axin2, and β-catenin protein. The cell apoptosis and migration ability were determined using flow cytometry assay or wound healing, respectively. Our study demonstrated that overexpression of A1CF, Axin2 was upregulated and knockdown of A1CF decreased Axin2 expression at mRNA and protein levels in G401 cells. Besides, knockdown of A1CF further upregulated β-catenin, the classical regulator of Wnt signal pathway, and increased CCND1 and NKD1, the target genes of Wnt/β-catenin. Furthermore, overexpression of Axin2 partly rescued the expression of β-catenin in A1CF-deficiency stable G401 cells. In Wnt agonist BML-284 treated G401 cells, A1CF was increased like other classical regulator of Wnt signal pathway, such as Axin2 and β-catenin. Meanwhile, knockdown of Axin2 rescued β-catenin expression which was decreased in A1CF overexpression condition with BML-284. Further, overexpression of A1CF reduced cell apoptosis but promoted cell migration, and overexpression of Axin2 got similar results. In A1CF-decreased stable G401 cells, overexpression of Axin2 partly rescued the cell apoptosis and migration. We find that A1CF is a positive regulator of Axin2, a Wnt/β-catenin pathway inhibitor, and A1CF-Axin2 signal axis regulates Wilms tumor-derived cells' apoptosis and migration through Axin2.
Collapse
|
26
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
27
|
Blanc V, Xie Y, Kennedy S, Riordan JD, Rubin DC, Madison BB, Mills JC, Nadeau JH, Davidson NO. Apobec1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver. RNA (NEW YORK, N.Y.) 2019; 25:70-81. [PMID: 30309881 PMCID: PMC6298562 DOI: 10.1261/rna.068395.118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/07/2018] [Indexed: 05/05/2023]
Abstract
Mammalian C to U RNA is mediated by APOBEC1, the catalytic deaminase, together with RNA binding cofactors (including A1CF and RBM47) whose relative physiological requirements are unresolved. Although A1CF complements APOBEC1 for in vitro RNA editing, A1cf-/- mice exhibited no change in apolipoproteinB (apoB) RNA editing, while Rbm47 mutant mice exhibited impaired intestinal RNA editing of apoB as well as other targets. Here we examined the role of A1CF and RBM47 in adult mouse liver and intestine, following deletion of either one or both gene products and also following forced (liver or intestinal) transgenic A1CF expression. There were minimal changes in hepatic and intestinal apoB RNA editing in A1cf-/- mice and no changes in either liver- or intestine-specific A1CF transgenic mice. Rbm47 liver-specific knockout (Rbm47LKO ) mice demonstrated reduced editing in a subset (11 of 20) of RNA targets, including apoB. By contrast, apoB RNA editing was virtually eliminated (<6% activity) in intestine-specific (Rbm47IKO ) mice with only five of 53 targets exhibiting C-to-U RNA editing. Double knockout of A1cf and Rbm47 in liver (ARLKO ) eliminated apoB RNA editing and reduced editing in the majority of other targets, with no changes following adenoviral APOBEC1 administration. Intestinal double knockout mice (ARIKO ) demonstrated further reduced editing (<10% activity) in four of five of the residual APOBEC1 targets identified in ARIKO mice. These data suggest that A1CF and RBM47 each function independently, yet interact in a tissue-specific manner, to regulate the activity and site selection of APOBEC1 dependent C-to-U RNA editing.
Collapse
Affiliation(s)
- Valerie Blanc
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Susan Kennedy
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Jesse D Riordan
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Blair B Madison
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| |
Collapse
|
28
|
He P, Tian N. Curcumin modulates the apolipoprotein B mRNA editing by coordinating the expression of cytidine deamination to uridine editosome components in primary mouse hepatocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2019; 23:181-189. [PMID: 31080349 PMCID: PMC6488708 DOI: 10.4196/kjpp.2019.23.3.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/14/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022]
Abstract
Curcumin, an active ingredient of Curcuma longa L., can reduce the concentration of low-density lipoproteins in plasma, in different ways. We had first reported that curcumin exhibits hypocholesterolemic properties by improving the apolipoprotein B (apoB) mRNA editing in primary rat hepatocytes. However, the role of curcumin in the regulation of apoB mRNA editing is not clear. Thus, we investigated the effect of curcumin on the expression of multiple editing components of apoB mRNA cytidine deamination to uridine (C-to-U) editosome. Our results demonstrated that treatment with 50 µM curcumin markedly increased the amount of edited apoB mRNA in primary mouse hepatocytes from 5.13%–8.05% to 27.63%–35.61%, and significantly elevated the levels of the core components apoB editing catalytic polypeptide-1 (APOBEC-1), apobec-1 complementation factor (ACF), and RNA-binding-motif-protein-47 (RBM47), as well as suppressed the level of the inhibitory component glycine-arginine-tyrosine-rich RNA binding protein. Moreover, the increased apoB RNA editing by 50 µM curcumin was significantly reduced by siRNA-mediated APOBEC-1, ACF, and RBM47 knockdown. These findings suggest that curcumin modulates apoB mRNA editing by coordinating the multiple editing components of the editosome in primary hepatocytes. Our data provided evidence for curcumin to be used therapeutically to prevent atherosclerosis.
Collapse
Affiliation(s)
- Pan He
- Institute of Molecular Medicine, Life Science College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Nan Tian
- Institute of Molecular Medicine, Life Science College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| |
Collapse
|
29
|
Lerner T, Papavasiliou FN, Pecori R. RNA Editors, Cofactors, and mRNA Targets: An Overview of the C-to-U RNA Editing Machinery and Its Implication in Human Disease. Genes (Basel) 2018; 10:E13. [PMID: 30591678 PMCID: PMC6356216 DOI: 10.3390/genes10010013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
One of the most prevalent epitranscriptomic modifications is RNA editing. In higher eukaryotes, RNA editing is catalyzed by one of two classes of deaminases: ADAR family enzymes that catalyze A-to-I (read as G) editing, and AID/APOBEC family enzymes that catalyze C-to-U. ADAR-catalyzed deamination has been studied extensively. Here we focus on AID/APOBEC-catalyzed editing, and review the emergent knowledge regarding C-to-U editing consequences in the context of human disease.
Collapse
Affiliation(s)
- Taga Lerner
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
- Division of Biosciences, Uni Heidelberg, 69120 Heidelberg, Germany.
| | - F Nina Papavasiliou
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
| | - Riccardo Pecori
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Kung CP, Maggi LB, Weber JD. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:762. [PMID: 30619092 PMCID: PMC6305585 DOI: 10.3389/fendo.2018.00762] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
Numerous human diseases arise from alterations of genetic information, most notably DNA mutations. Thought to be merely the intermediate between DNA and protein, changes in RNA sequence were an afterthought until the discovery of RNA editing 30 years ago. RNA editing alters RNA sequence without altering the sequence or integrity of genomic DNA. The most common RNA editing events are A-to-I changes mediated by adenosine deaminase acting on RNA (ADAR), and C-to-U editing mediated by apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1). Both A-to-I and C-to-U editing were first identified in the context of embryonic development and physiological homeostasis. The role of RNA editing in human disease has only recently started to be understood. In this review, the impact of RNA editing on the development of cancer and metabolic disorders will be examined. Distinctive functions of each RNA editase that regulate either A-to-I or C-to-U editing will be highlighted in addition to pointing out important regulatory mechanisms governing these processes. The potential of developing novel therapeutic approaches through intervention of RNA editing will be explored. As the role of RNA editing in human disease is elucidated, the clinical utility of RNA editing targeted therapies will be needed. This review aims to serve as a bridge of information between past findings and future directions of RNA editing in the context of cancer and metabolic disease.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Leonard B. Maggi
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jason D. Weber
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
31
|
Voisin AS, Kültz D, Silvestre F. Early-life exposure to the endocrine disruptor 17-α-ethinylestradiol induces delayed effects in adult brain, liver and ovotestis proteomes of a self-fertilizing fish. J Proteomics 2018; 194:112-124. [PMID: 30550985 DOI: 10.1016/j.jprot.2018.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2023]
Abstract
Early-life represents a critically sensitive window to endocrine disrupting chemicals, potentially leading to long-term repercussions on the phenotype later in life. The mechanisms underlying this phenomenon, referred to as the Developmental Origins of Health and Disease (DOHaD), are still poorly understood. To gain molecular understanding of these effects, we exposed mangrove rivulus (Kryptolebias marmoratus) for 28 days post hatching (dph) to 4 and 120 ng/L 17-α-ethinylestradiol, a model xenoestrogen. After 28 days, fish were raised for 140 days in clean water and we performed quantitative label-free proteomics on brain, liver and ovotestis of 168 dph adults. A total of 820, 888 and 420 proteins were robustly identified in the brain, liver and ovotestis, respectively. Effects of 17-α-ethinylestradiol were tissue and dose-dependent: a total of 31, 51 and 18 proteins were differentially abundant at 4 ng/L in the brain, liver and ovotestis, respectively, compared to 20, 25 and 39 proteins at 120 ng/L. Our results suggest that estrogen-responsive pathways, such as lipid metabolism, inflammation, and the innate immune system were affected months after the exposure. In addition, the potential perturbation of S-adenosylmethionine metabolism encourages future studies to investigate the role of DNA methylation in mediating the long-term effects of early-life exposures. SIGNIFICANCE: The Developmental Origins of Health and Disease (DOHaD) states that early life stages of humans and animals are sensitive to environmental stressors and can develop health issues later in life, even if the stress has ceased. Molecular mechanisms supporting DOHaD are still unclear. The mangrove rivulus is a new fish model species naturally reproducing by self-fertilization, making it possible to use isogenic lineages in which all individuals are highly homozygous. This species therefore permits to strongly reduce the confounding factor of genetic variability in order to investigate the effects of environmental stress on the phenotype. After characterizing the molecular phenotype of brain, liver and ovotestis, we obtained true proteomic reaction norms of these three organs in adults after early life stages have been exposed to the common endocrine disruptor 17-α-ethinylestradiol (EE2). Our study demonstrates long-term effects of early-life endocrine disruption at the proteomic level in diverse estrogen-responsive pathways 5 months after the exposure. The lowest tested and environmentally relevant concentration of 4 ng/L had the highest impact on the proteome in brain and liver, highlighting the potency of endocrine disruptors at low concentrations.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology - Institute of Life, Earth and Environment - University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology - Institute of Life, Earth and Environment - University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium
| |
Collapse
|
32
|
Salter JD, Smith HC. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends Biochem Sci 2018; 43:606-622. [PMID: 29803538 PMCID: PMC6073885 DOI: 10.1016/j.tibs.2018.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. APOBEC proteins catalyze deamination of cytidine or deoxycytidine in either a sequence-specific or semi-specific manner on either DNA or RNA. APOBECs each possess the cytidine deaminase core fold, but sequence and structural differences among loops surrounding the zinc-dependent active site impart differences in sequence-dependent target preferences, binding affinity, catalytic rate, and regulation of substrate access to the active site among the 11 family members. APOBECs also regulate the deamination reaction through additional nucleic acid substrate binding sites located within surface grooves or patches of positive electrostatic potential that are distal to the active site but may do so nonspecifically. Binding of nonsubstrate RNA and RNA-mediated oligomerization by APOBECs that deaminate ssDNA downregulates catalytic activity but also controls APOBEC subcellular or virion localization. The presence of a second, though noncatalytic, cytidine deaminase domain for some APOBECs and the ability of some APOBECs to oligomerize add additional molecular surfaces for positive or negative regulation of catalysis through nucleic acid binding.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
33
|
Wang Y, Liang H. When MicroRNAs Meet RNA Editing in Cancer: A Nucleotide Change Can Make a Difference. Bioessays 2018; 40:10.1002/bies.201700188. [PMID: 29280160 PMCID: PMC5828010 DOI: 10.1002/bies.201700188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/22/2017] [Indexed: 12/20/2022]
Abstract
RNA editing is a major post-transcriptional mechanism that changes specific nucleotides at the RNA level. The most common RNA editing type in humans is adenosine (A) to inosine (I) editing, which is mediated by ADAR enzymes. RNA editing events can not only change amino acids in proteins, but also affect the functions of non-coding RNAs such as miRNAs. Recent studies have characterized thousands of miRNA RNA editing events across different cancer types. Importantly, individual cases of miRNA editing have been reported to play a role in cancer development. In this review, we summarize the current knowledge of miRNA editing in cancer, and discuss the mechanisms on how miRNA-related editing events modulate the initiation and progression of human cancer. Finally, we discuss the challenges and future directions of studying miRNA editing in cancer.
Collapse
Affiliation(s)
- Yumeng Wang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
34
|
Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, Saleheen D, Emdin C, Alam D, Alves AC, Amouyel P, di Angelantonio E, Arveiler D, Assimes TL, Auer PL, Baber U, Ballantyne CM, Bang LE, Benn M, Bis JC, Boehnke M, Boerwinkle E, Bork-Jensen J, Bottinger EP, Brandslund I, Brown M, Busonero F, Caulfield MJ, Chambers JC, Chasman DI, Chen YE, Chen YDI, Chowdhury R, Christensen C, Chu AY, Connell JM, Cucca F, Cupples LA, Damrauer SM, Davies G, Deary IJ, Dedoussis G, Denny JC, Dominiczak A, Dubé MP, Ebeling T, Eiriksdottir G, Esko T, Farmaki AE, Feitosa MF, Ferrario M, Ferrieres J, Ford I, Fornage M, Franks PW, Frayling TM, Frikke-Schmidt R, Fritsche L, Frossard P, Fuster V, Ganesh SK, Gao W, Garcia ME, Gieger C, Giulianini F, Goodarzi MO, Grallert H, Grarup N, Groop L, Grove ML, Gudnason V, Hansen T, Harris TB, Hayward C, Hirschhorn JN, Holmen OL, Huffman J, Huo Y, Hveem K, Jabeen S, Jackson AU, Jakobsdottir J, Jarvelin MR, Jensen GB, Jørgensen ME, Jukema JW, Justesen JM, Kamstrup PR, Kanoni S, Karpe F, Kee F, Khera AV, Klarin D, Koistinen HA, Kooner JS, Kooperberg C, Kuulasmaa K, Kuusisto J, Laakso M, Lakka T, Langenberg C, Langsted A, Launer LJ, Lauritzen T, Liewald DCM, Lin LA, Linneberg A, Loos RJ, Lu Y, Lu X, Mägi R, Malarstig A, Manichaikul A, Manning AK, Mäntyselkä P, Marouli E, Masca NGD, Maschio A, Meigs JB, Melander O, Metspalu A, Morris AP, Morrison AC, Mulas A, Müller-Nurasyid M, Munroe PB, Neville MJ, Nielsen JB, Nielsen SF, Nordestgaard BG, Ordovas JM, Mehran R, O’Donnell CJ, Orho-Melander M, Molony CM, Muntendam P, Padmanabhan S, Palmer CNA, Pasko D, Patel AP, Pedersen O, Perola M, Peters A, Pisinger C, Pistis G, Polasek O, Poulter N, Psaty BM, Rader DJ, Rasheed A, Rauramaa R, Reilly D, Reiner AP, Renström F, Rich SS, Ridker PM, Rioux JD, Robertson NR, Roden DM, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sanna S, Sattar N, Schmidt EM, Scott RA, Sever P, Sevilla RS, Shaffer CM, Sim X, Sivapalaratnam S, Small KS, Smith AV, Smith BH, Somayajula S, Southam L, Spector TD, Speliotes EK, Starr JM, Stirrups KE, Stitziel N, Strauch K, Stringham HM, Surendran P, Tada H, Tall AR, Tang H, Tardif JC, Taylor KD, Trompet S, Tsao PS, Tuomilehto J, Tybjaerg-Hansen A, van Zuydam NR, Varbo A, Varga TV, Virtamo J, Waldenberger M, Wang N, Wareham NJ, Warren HR, Weeke PE, Weinstock J, Wessel J, Wilson JG, Wilson PWF, Xu M, Yaghootkar H, Young R, Zeggini E, Zhang H, Zheng NS, Zhang W, Zhang Y, Zhou W, Zhou Y, Zoledziewska M, Howson JMM, Danesh J, McCarthy MI, Cowan C, Abecasis G, Deloukas P, Musunuru K, Willer CJ, Kathiresan S. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet 2017; 49:1758-1766. [PMID: 29083408 PMCID: PMC5709146 DOI: 10.1038/ng.3977] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/26/2017] [Indexed: 02/02/2023]
Abstract
We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.
Collapse
Affiliation(s)
- Dajiang J. Liu
- Department of Public Health Sciences, Institute of Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Haojie Yu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Adam S. Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Xiao Wang
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Danish Saleheen
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Connor Emdin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Lille, France
| | - Emanuele di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Dominique Arveiler
- Department of Epidemiology and Public Health, EA 3430, University of Strasbourg, Strasbourg, France
| | - Themistocles L. Assimes
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Usman Baber
- Cardiovascular Institute, Mount Sinai Medical Center, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | | | - Lia E. Bang
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marianne Benn
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Denmark, Denmark
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael Boehnke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin P. Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Ichan School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Morris Brown
- Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London, UK
- The Barts Heart Centre, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Daniel I. Chasman
- Division of Preventive Medicine, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Departments of Pediatrics and Medicine, Los Angeles, California, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Audrey Y. Chu
- Division of Preventive Medicine, Boston, Massachusetts, USA
- NHLBI Framingham Heart Study, Framingham, Massachusetts, USA
| | - John M Connell
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Universita’ degli Studi di Sassari, Sassari, Italy
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- NHLBI Framingham Heart Study, Framingham, Massachusetts, USA
| | - Scott M. Damrauer
- Corporal Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna Dominiczak
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, Quebec, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Tapani Ebeling
- Department of Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Tõnu Esko
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marco Ferrario
- Research Centre in Epidemiology and Preventive Medicine – EPIMED, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jean Ferrieres
- Department of Epidemiology, UMR 1027- INSERM, Toulouse University-CHU Toulouse, Toulouse, France
| | - Ian Ford
- University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Paul W. Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Timothy M. Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Fritsche
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | - Valentin Fuster
- Cardiovascular Institute, Mount Sinai Medical Center, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Gao
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China
| | | | - Christian Gieger
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Mark O. Goodarzi
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Harald Grallert
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Vilmundur Gudnason
- The Icelandic Heart Association, Kopavogur, Iceland
- The University of Iceland, Reykjavik, Iceland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, Maryland, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Joel N. Hirschhorn
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, MA, USA
| | - Oddgeir L. Holmen
- Department of Public Health and General Practice, HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
- St Olav Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Jennifer Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Dept of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Anne U Jackson
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Johanna Jakobsdottir
- The Icelandic Heart Association, Kopavogur, Iceland
- The University of Iceland, Reykjavik, Iceland
| | | | - Gorm B Jensen
- The Copenhagen City Heart Study, Frederiksberg Hospital, Denmark
| | - Marit E. Jørgensen
- Steno Diabetes Center, Gentofte, Denmark
- National Institute of Public Health, Southern Denmark University, Denmark
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- The Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Johanne M. Justesen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia R. Kamstrup
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Frank Kee
- Director, UKCRC Centre of Excellence for Public Health, Queens University, Belfast, Northern Ireland
| | - Amit V. Khera
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Derek Klarin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Heikki A. Koistinen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- University of Helsinki; and Department of Medicine, and Abdominal Center: Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kari Kuulasmaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo Lakka
- Department of Physiology, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anne Langsted
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Denmark, Denmark
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, Maryland, USA
| | - Torsten Lauritzen
- Department of Public Health, Section of General Practice, University of Aarhus, Aarhus, Denmark
| | - David CM Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Li An Lin
- Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Allan Linneberg
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Center for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Ichan School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, New York, USA
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Ichan School of Medicine at Mount Sinai, New York, New York, USA
| | - Xiangfeng Lu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Anders Malarstig
- Cardiovascular Genetics and Genomics Group, Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Pharmatherapeutics Clinical Research, Pfizer Worldwide R&D, Sollentuna, Sweden
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Alisa K. Manning
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pekka Mäntyselkä
- Unit of Primary Health Care, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nicholas GD Masca
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester UK
| | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - James B. Meigs
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Olle Melander
- Department of Clinical Sciences, University Hospital Malmo Clinical Research Center, Lund University, Malmo, Sweden
| | | | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Martina Müller-Nurasyid
- Department of Medicine I, Ludwig-Maximilians-University, Munich, Germany
- DZHK German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany
| | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jonas B. Nielsen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sune F Nielsen
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Denmark, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Denmark, Denmark
| | - Jose M. Ordovas
- Department of Cardiovascular Epidemiology and Population Genetics, National Center for Cardiovascular Investigation, Madrid, Spain
- IMDEA-Alimentacion, Madrid, Spain
- Nutrition and Genomics Laboratory, Jean Mayer-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Roxana Mehran
- Cardiovascular Institute, Mount Sinai Medical Center, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Christoper J. O’Donnell
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Marju Orho-Melander
- Department of Clinical Sciences, University Hospital Malmo Clinical Research Center, Lund University, Malmo, Sweden
| | - Cliona M. Molony
- Genetics, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | | | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Colin NA Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Dorota Pasko
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Aniruddh P. Patel
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Institute of Molecular Medicine FIMM, University of Helsinki, Finland
| | - Annette Peters
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Charlotta Pisinger
- Research Center for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, UK
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
- Departments of Epidemiology and Health Services, University of Washington, Seattle, Washington, USA
| | - Daniel J. Rader
- Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Dermot Reilly
- Genetics, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - Alex P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Boston, Massachusetts, USA
| | | | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Departments of Pediatrics and Medicine, Los Angeles, California, USA
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester UK
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Naveed Sattar
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ellen M. Schmidt
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, UK
| | | | - Christian M. Shaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xueling Sim
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Suthesh Sivapalaratnam
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, NL
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Albert V. Smith
- The Icelandic Heart Association, Kopavogur, Iceland
- The University of Iceland, Reykjavik, Iceland
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Lorraine Southam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Elizabeth K. Speliotes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Nathan Stitziel
- Cardiovascular Division, Departments of Medicine and Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Heather M Stringham
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Hayato Tada
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Departments of Pediatrics and Medicine, Los Angeles, California, USA
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Philip S. Tsao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jaakko Tuomilehto
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- Dasman Diabetes Institute, Dasman, Kuwait
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- Saudi Diabetes Research Group, King Abdulaziz University, Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalie R van Zuydam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Anette Varbo
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Denmark, Denmark
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Jarmo Virtamo
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Melanie Waldenberger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - Nick J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Peter E. Weeke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Joshua Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jennifer Wessel
- Department of Epidemiology, Indiana University Fairbanks School of Public Health, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Peter W. F. Wilson
- Atlanta VA Medical Center, Decatur, Georgia, USA
- Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, USA
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Robin Young
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - He Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanhua Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Joanna MM Howson
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Chad Cowan
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Goncalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kiran Musunuru
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cristen J. Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Yang B, Li X, Lei L, Chen J. APOBEC: From mutator to editor. J Genet Genomics 2017; 44:423-437. [PMID: 28964683 DOI: 10.1016/j.jgg.2017.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
APOBECs (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) are a family of cytidine deaminases that prefer single-stranded nucleic acids as substrates. Besides their physiological functions, APOBEC family members have been found to cause hypermutations of cancer genomes, which could be correlated with cancer development and poor prognosis. Recently, APOBEC family members have been combined with the versatile CRISPR/Cas9 system to perform targeted base editing or induce hypermutagenesis. This combination improved the CRISPR/Cas9-mediated gene editing at single-base precision, greatly enhancing its usefulness. Here, we review the physiological functions and structural characteristics of APOBEC family members and their roles as endogenous mutators that contribute to hypermutations during carcinogenesis. We also review the various iterations of the APOBEC-CRISPR/Cas9 gene-editing tools, pointing out their features and limitations as well as the possibilities for future developments.
Collapse
Affiliation(s)
- Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Xiaosa Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liqun Lei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
36
|
Abstract
All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability. Whichever the case, the overall importance of modifications is highlighted by both their evolutionary conservation and the fact that organisms use a substantial portion of their genomes to encode modification enzymes, far exceeding what is needed for the de novo synthesis of the canonical nucleotides themselves [2]. Although some modifications occur at exactly the same nucleotide position in tRNAs from the three domains of life, many can be found at various positions in a particular tRNA and their location may vary between and within different tRNAs. With this wild array of chemical diversity and substrate specificities, one of the big challenges in the tRNA modification field has been to better understand at a molecular level the modes of substrate recognition by the different modification enzymes; in this realm RNA binding rests at the heart of the problem. This chapter will focus on several examples of modification enzymes where their mode of RNA binding is well understood; from these, we will try to draw general conclusions and highlight growing themes that may be applicable to the RNA modification field at large.
Collapse
|
37
|
Snyder EM, McCarty C, Mehalow A, Svenson KL, Murray SA, Korstanje R, Braun RE. APOBEC1 complementation factor (A1CF) is dispensable for C-to-U RNA editing in vivo. RNA (NEW YORK, N.Y.) 2017; 23:457-465. [PMID: 28069890 PMCID: PMC5340909 DOI: 10.1261/rna.058818.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/14/2016] [Indexed: 05/20/2023]
Abstract
Editing of the human and murine ApoB mRNA by APOBEC1, the catalytic enzyme of the protein complex that catalyzes C-to-U RNA editing, creates an internal stop codon within the APOB coding sequence, generating two protein isoforms. It has been long held that APOBEC1-mediated editing activity is dependent on the RNA binding protein A1CF. The function of A1CF in adult tissues has not been reported because a previously reported null allele displays embryonic lethality. This work aimed to address the function of A1CF in adult mouse tissues using a conditional A1cf allele. Unexpectedly, A1cf-null mice were viable and fertile with modest defects in hematopoietic, immune, and metabolic parameters. C-to-U RNA editing was quantified for multiple targets, including ApoB, in the small intestine and liver. In all cases, no changes in RNA editing efficiency were observed. Blood plasma analysis demonstrated a male-specific increase in solute concentration and increased cellularity in the glomeruli of male A1cf-null mice. Urine analysis showed a reduction in solute concentration, suggesting abnormal water homeostasis and possible kidney abnormalities exclusive to the male. Computational identification of kidney C-to-U editing sites from polyadenylated RNA-sequencing identified a number of editing sites exclusive to the kidney. However, molecular analysis of kidney C-to-U editing showed no changes in editing efficiency with A1CF loss. Taken together, these observations demonstrate that A1CF does not act as the APOBEC1 complementation factor in vivo under normal physiological conditions and suggests new roles for A1CF, specifically within the male adult kidney.
Collapse
Affiliation(s)
| | | | | | | | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | |
Collapse
|
38
|
Vu LT, Tsukahara T. C-to-U editing and site-directed RNA editing for the correction of genetic mutations. Biosci Trends 2017; 11:243-253. [DOI: 10.5582/bst.2017.01049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Luyen Thi Vu
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| | - Toshifumi Tsukahara
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| |
Collapse
|
39
|
Schaefermeier P, Heinze S. Hippocampal Characteristics and Invariant Sequence Elements Distribution of GLRA2 and GLRA3 C-to-U Editing. Mol Syndromol 2016; 8:85-92. [PMID: 28611548 DOI: 10.1159/000453300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
Glycine receptor α2 and α3 subunit (GLRA2/GLRA3) high-affinity variants, of which the subjacent amino acid substitutions issue from C-to-U RNA editing, are thought to influence tonic inhibition and pathophysiology. In light of the detection of GLRA3 NM_006529:r.1157C>U and GLRA2 NM_002063:r.1416C>U exchanges in hippocampus explants of temporal lobe epilepsy patients, we now examine the healthy situation and relate it to the epileptic situation by ascertaining controls in a legitimate reanalysis. The GLRA2 and GLRA3 editing events that would ultimately result in a glycine receptor with increased affinity occur in the postmortem nonepileptic hippocampus. Most notably, their relative amounts do not significantly differ from those in increased damaged hippocampus explants, whereas curbed relative amounts in epileptic explants without cell loss come out statistically significant. Local sequence alignment reveals invariant sequence stretches consistent in GLRA2/ GLRA3 and other edited transcripts that coincide with known APOB sequence elements. Concerning the essential mooring element, GLRA2/GLRA3 comply strictly only with the motif's 5' part. While this lack of canonical mooring elements and uncertain action of the famous deaminase APOBEC1 suggest a specific regulation of GLRA2/GLRA3 editing, its reduction in the less-damaged epileptic hippocampus could be attributed to anomalous epileptic neurogenesis.
Collapse
Affiliation(s)
- Philipp Schaefermeier
- Charité University Medicine Berlin, Germany,Helmholtz Group RNA Editing and Hyperexcitability Disorders, Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Sarah Heinze
- Institute of Forensic Sciences and Legal Medicine, Charité Berlin, Berlin, Germany,Klinikum Oldenburg gGmbH, Oldenburg, Germany,Institute of Forensic Medicine, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
40
|
Meier JC, Kankowski S, Krestel H, Hetsch F. RNA Editing-Systemic Relevance and Clue to Disease Mechanisms? Front Mol Neurosci 2016; 9:124. [PMID: 27932948 PMCID: PMC5120146 DOI: 10.3389/fnmol.2016.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Recent advances in sequencing technologies led to the identification of a plethora of different genes and several hundreds of amino acid recoding edited positions. Changes in editing rates of some of these positions were associated with diseases such as atherosclerosis, myopathy, epilepsy, major depression disorder, schizophrenia and other mental disorders as well as cancer and brain tumors. This review article summarizes our current knowledge on that front and presents glycine receptor C-to-U RNA editing as a first example of disease-associated increased RNA editing that includes assessment of disease mechanisms of the corresponding gene product in an animal model.
Collapse
Affiliation(s)
- Jochen C Meier
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Svenja Kankowski
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Heinz Krestel
- Neurology, Universitätsspital und Universität Bern Bern, Switzerland
| | - Florian Hetsch
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
41
|
Sun T, Bentolila S, Hanson MR. The Unexpected Diversity of Plant Organelle RNA Editosomes. TRENDS IN PLANT SCIENCE 2016; 21:962-973. [PMID: 27491516 DOI: 10.1016/j.tplants.2016.07.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 05/02/2023]
Abstract
Flowering plants convert many hundreds of organelle cytidines (Cs) to uridines (Us) during post-transcriptional RNA editing. Pentatricopeptide repeat (PPR) proteins dictate specificity by recognizing RNA sequences near C targets. However, the complete mechanism of the editing machinery is not yet understood. Recently, non-PPR editing factors [RNA editing factor interacting proteins (RIPs)/multiple organellar RNA editing factors (MORFs), organelle RNA recognition motif (ORRM) proteins, organelle zinc-finger (OZ) proteins, and protoporphyrinogen oxidase 1 (PPO1)] have been identified as components of the plant RNA editosome, which is a small RNA-protein complex. Surprisingly, plant editosomes are highly diverse not only with regard to the PPR proteins they contain but also in the non-PPR components that are present. Here we review the most recent progress in the field and discuss the implications of the diversity of plant editosomes for the evolution of RNA editing and for possible future applications.
Collapse
Affiliation(s)
- Tao Sun
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
42
|
Abstract
The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.
Collapse
Affiliation(s)
- Sachini U Siriwardena
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University , Detroit, Michigan 48201, United States
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
43
|
Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc Natl Acad Sci U S A 2016; 113:E5425-33. [PMID: 27582469 DOI: 10.1073/pnas.1604773113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular tumors, the most common cancer in young men, arise from abnormalities in germ cells during fetal development. Unconventional inheritance for testicular germ cell tumor (TGCT) risk both in humans and mice implicates epigenetic mechanisms. Apolipoprotein B mRNA-editing enzyme complex 1 (APOBEC1) cytidine deaminase and Deadend-1, which are involved in C-to-U RNA editing and microRNA-dependent mRNA silencing, respectively, are potent epigenetic modifiers of TGCT susceptibility in the genetically predisposed 129/Sv inbred mouse strain. Here, we show that partial loss of either APOBEC1 complementation factor (A1CF), the RNA-binding cofactor of APOBEC1 in RNA editing, or Argonaute 2 (AGO2), a key factor in the biogenesis of certain noncoding RNAs, modulates risk for TGCTs and testicular abnormalities in both parent-of-origin and conventional genetic manners. In addition, non-Mendelian inheritance was found among progeny of A1cf and Ago2 mutant intercrosses but not in backcrosses and without fetal loss. Together these findings suggest nonrandom union of gametes rather than meiotic drive or preferential lethality. Finally, this survey also suggested that A1CF contributes to long-term reproductive performance. These results directly implicate the RNA-binding proteins A1CF and AGO2 in the epigenetic control of germ-cell fate, urogenital development, and gamete functions.
Collapse
|
44
|
Marino D, Perković M, Hain A, Jaguva Vasudevan AA, Hofmann H, Hanschmann KM, Mühlebach MD, Schumann GG, König R, Cichutek K, Häussinger D, Münk C. APOBEC4 Enhances the Replication of HIV-1. PLoS One 2016; 11:e0155422. [PMID: 27249646 PMCID: PMC4889046 DOI: 10.1371/journal.pone.0155422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/28/2016] [Indexed: 12/24/2022] Open
Abstract
APOBEC4 (A4) is a member of the AID/APOBEC family of cytidine deaminases. In this study we found a high mRNA expression of A4 in human testis. In contrast, there were only low levels of A4 mRNA detectable in 293T, HeLa, Jurkat or A3.01 cells. Ectopic expression of A4 in HeLa cells resulted in mostly cytoplasmic localization of the protein. To test whether A4 has antiviral activity similar to that of proteins of the APOBEC3 (A3) subfamily, A4 was co-expressed in 293T cells with wild type HIV-1 and HIV-1 luciferase reporter viruses. We found that A4 did not inhibit the replication of HIV-1 but instead enhanced the production of HIV-1 in a dose-dependent manner and seemed to act on the viral LTR. A4 did not show detectable cytidine deamination activity in vitro and weakly interacted with single-stranded DNA. The presence of A4 in virus producer cells enhanced HIV-1 replication by transiently transfected A4 or stably expressed A4 in HIV-susceptible cells. APOBEC4 was capable of similarly enhancing transcription from a broad spectrum of promoters, regardless of whether they were viral or mammalian. We hypothesize that A4 may have a natural role in modulating host promoters or endogenous LTR promoters.
Collapse
Affiliation(s)
- Daniela Marino
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Mario Perković
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Anika Hain
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ananda A. Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Henning Hofmann
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Michael D. Mühlebach
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
- Product Testing of Immunological Medicinal Products for Veterinary Uses, Paul-Ehrlich-Institute, Langen, Germany
| | - Gerald G. Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
- Sanford Burnham Prebys Medical Discovery Institute, Immunity and Pathogenesis Program, La Jolla, California, United States of America
| | - Klaus Cichutek
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
- * E-mail:
| |
Collapse
|
45
|
Zhou L, Hao J, Yuan Y, Peng R, Wang H, Ni D, Gu Y, Huang L, Mao Z, Lyu Z, Du Y, Liu Z, Li Y, Ju P, Long Y, Liu J, Zhou Q. EIYMNVPV Motif is Essential for A1CF Nucleus Localization and A1CF (-8aa) Promotes Proliferation of MDA-MB-231 Cells via Up-Regulation of IL-6. Int J Mol Sci 2016; 17:ijms17060811. [PMID: 27231908 PMCID: PMC4926345 DOI: 10.3390/ijms17060811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/05/2016] [Accepted: 05/20/2016] [Indexed: 02/07/2023] Open
Abstract
Apobec-1 complementation factor (A1CF) is a heterogeneous nuclear ribonuceloprotein (hnRNP) and mediates apolipoprotein-B mRNA editing. A1CF can promote the regeneration of the liver by post-transcriptionally stabilizing Interleukin-6 (IL-6) mRNA. It also contains two transcriptional variants-A1CF64 and A1CF65, distinguished by the appearance of a 24-nucleotide motif which contributes to the corresponding eight-amino acid motif of EIYMNVPV. For the first time, we demonstrated that the EIYMNVPV motif was essential for A1CF nucleus localization, A1CF deficient of the EIYMNVPV motif, A1CF (-8aa) showed cytoplasm distribution. More importantly, we found that A1CF (-8aa), but not its full-length counterpart, can promote proliferation of MDA-MB-231 cells accompanied with increased level of IL-6 mRNA. Furthermore, silencing of IL-6 attenuated A1CF (-8aa)-induced proliferation in MDA-MB-231 cells. In conclusion, notably, these findings suggest that A1CF (-8aa) promoted proliferation of MDA-MB-231 cells in vitro viewing IL-6 as a target. Thus, the EIYMNVPV motif could be developed as a potential target for basal-like breast cancer therapy.
Collapse
Affiliation(s)
- Li Zhou
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jin Hao
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yue Yuan
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Rui Peng
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Honglian Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Sichuan Medical University, Luzhou 646000, China.
| | - Dongsheng Ni
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yuping Gu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Liyuan Huang
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Zhaomin Mao
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Zhongshi Lyu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yao Du
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Zhicheng Liu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yiman Li
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Pan Ju
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yaoshui Long
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jianing Liu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Qin Zhou
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
46
|
Harkins S, Whitton JL. Chromosomal mapping of the αMHC-MerCreMer transgene in mice reveals a large genomic deletion. Transgenic Res 2016; 25:639-48. [PMID: 27165291 DOI: 10.1007/s11248-016-9960-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023]
Abstract
Transgenic mice expressing a tamoxifen-inducible Cre recombinase specifically in cardiomyocytes were generated in 2001 and are in widespread use, having been employed in >150 published studies. However, several groups recently have reported that tamoxifen administration to these mice can have off-target effects that include cardiac dysfunction, fibrosis, and death. For this reason, among others, we considered it important to better characterize the transgene (termed herein, CM-MCM) and its chromosomal location(s). Cytogenetic analysis positioned the CM-MCM transgene within the C band of chromosome 19, and more precise mapping, using genome walking and DNA sequencing, showed that transgene insertion is in the C1 region. Using the genome walking data, we have developed PCR assays that not only identify mice that carry the transgene, but also distinguish homozygous animals (CM-MCM(Tg/Tg)) from hemizygous (CM-MCM(Tg/0)), permitting the rapid assessment of transgene zygosity and, thereby, helping to minimize off-target tamoxifen-induced effects. Substantial rearrangement/duplication of transgene elements is present, and transgene integration was accompanied by the deletion of a 19,500 bp fragment of genomic DNA that contains the promoter, exon 1 and part of intron 1 of the APOBEC1 complementation factor (A1cf) gene, as well as several elements that are predicted to regulate chromosomal architecture. A1cf protein expression is ablated by the deletion and, therefore, homozygous mice are functionally A1cf knockout. The implications of this unexpected finding are discussed.
Collapse
Affiliation(s)
- Stephanie Harkins
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - J Lindsay Whitton
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
47
|
Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins. Proc Natl Acad Sci U S A 2016; 113:E1545-54. [PMID: 26929374 DOI: 10.1073/pnas.1601678113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.
Collapse
|
48
|
Apobec-1 Complementation Factor (A1CF) Inhibits Epithelial-Mesenchymal Transition and Migration of Normal Rat Kidney Proximal Tubular Epithelial Cells. Int J Mol Sci 2016; 17:ijms17020197. [PMID: 26848653 PMCID: PMC4783931 DOI: 10.3390/ijms17020197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/15/2016] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Apobec-1 complementation factor (A1CF) is a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family, which participates in site-specific posttranscriptional RNA editing of apolipoprotein B (apoB) transcript. The posttranscriptional editing of apoB mRNA by A1CF in the small intestine is required for lipid absorption. Apart from the intestine, A1CF mRNA is also reported to be highly expressed in the kidneys. However, it is remained unknown about the functions of A1CF in the kidneys. The aim of this paper is to explore the potential functions of A1CF in the kidneys. Our results demonstrated that in C57BL/6 mice A1CF was weakly expressed in embryonic kidneys from E15.5dpc while strongly expressed in mature kidneys after birth, and it mainly existed in the tubules of inner cortex. More importantly, we identified A1CF negatively regulated the process of epithelial-mesenchymal transition (EMT) in kidney tubular epithelial cells. Our results found ectopic expression of A1CF up-regulated the epithelial markers E-cadherin, and down-regulated the mesenchymal markers vimentin and α-smooth muscle actin (α-SMA) in NRK52e cells. In addition, knockdown of A1CF enhanced EMT contrary to the overexpression effect. Notably, the two A1CF variants led to the similar trend in the EMT process. Taken together, these data suggest that A1CF may be an antagonistic factor to the EMT process of kidney tubular epithelial cells.
Collapse
|
49
|
Severi F, Conticello SG. Flow-cytometric visualization of C>U mRNA editing reveals the dynamics of the process in live cells. RNA Biol 2016; 12:389-97. [PMID: 25806564 PMCID: PMC4615904 DOI: 10.1080/15476286.2015.1026033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
APOBEC1 is the catalytic subunit of the complex that edits ApolipoproteinB (ApoB) mRNA, which specifically deaminates cytidine 6666 to uracil in the human transcript. The editing leads to the generation of a stop codon, resulting in the synthesis of a truncated form of ApoB. We have developed a method to quantitatively assay ApoB RNA editing in live cells by using a double fluorescent mCherry-EGFP chimera containing a ∼300bp fragment encompassing the region of ApoB subject to RNA editing. Coexpression of APOBEC1 together with this chimera causes specific RNA editing of the ApoB fragment. The insertion of a stop codon between the mCherry and EGFP thus induces the loss of EGFP fluorescence. Using this method we analyze the dynamics of APOBEC1-dependent RNA editing under various conditions. Namely we show the interplay of APOBEC1 with known interactors (ACF, hnRNP-C1, GRY-RBP) in cells that are RNA editing-proficient (HuH-7) or -deficient (HEK-293T), and the effects of restricted cellular localization of APOBEC1 on the efficiency of the editing. Furthermore, our approach is effective in assaying the induction of RNA editing in Caco-2, a cellular model physiologically capable of ApoB RNA editing.
Collapse
Key Words
- ACF, APOBEC1 Complementation Factor
- ADAR, Adenosine Deaminase, RNA-specific
- ADAT, Adenosine Deaminase, tRNA-specific
- AID/APOBECs
- APOBEC1, Apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1
- ApoB, Apolipoprotein B
- EGFP, Enhanced Green Fluorescent Protein
- FACS, Fluorescence activated cell sorting
- FBS, Fetal bovine serum
- GRY-RBP, Glycine-Arginine-Tyrosine-rich RNA-binding protein
- RBM47, RNA binding motif protein 47
- RNA editing
- cds, coding sequence
- cytosine deaminase
- hnRNP-C1, heterogeneous nuclear ribonucleoprotein C1
- lipid metabolism
- mRNA
- post-transcriptional modification
Collapse
Affiliation(s)
- Francesco Severi
- a Core Research Laboratory; Istituto Toscano Tumori ; Firenze , Italy
| | | |
Collapse
|
50
|
Knisbacher BA, Gerber D, Levanon EY. DNA Editing by APOBECs: A Genomic Preserver and Transformer. Trends Genet 2016; 32:16-28. [PMID: 26608778 DOI: 10.1016/j.tig.2015.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Information warfare is not limited to the cyber world because it is waged within our cells as well. The unique AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide) family comprises proteins that alter DNA sequences by converting deoxycytidines to deoxyuridines through deamination. This C-to-U DNA editing enables them to inhibit parasitic viruses and retrotransposons by disrupting their genomic content. In addition to attacking genomic invaders, APOBECs can target their host genome, which can be beneficial by initiating processes that create antibody diversity needed for the immune system or by accelerating the rate of evolution. AID can also alter gene regulation by removing epigenetic modifications from genomic DNA. However, when uncontrolled, these powerful agents of change can threaten genome stability and eventually lead to cancer.
Collapse
Affiliation(s)
- Binyamin A Knisbacher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel.
| |
Collapse
|