1
|
Hirose Y, Miura A, Ouchi Y, Kitayama T, Omura S, Shimbo T, Tanaka A, Fujimoto M, Saga K, Tamai K. Fibroblasts fluctuating between mesenchyme and epithelium are involved in hair follicle mesenchyme development. Biochem Biophys Rep 2025; 42:102006. [PMID: 40271513 PMCID: PMC12017859 DOI: 10.1016/j.bbrep.2025.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
The transition between the mesenchyme and epithelium contributes to the development of various tissues. During skin development, epithelial-mesenchymal transition in the ectodermal epithelia is involved in the development of the dermal mesenchyme in early embryos. However, the precise roles and functions of epithelial-mesenchymal/mesenchymal-epithelial transition in cutaneous development have not been fully elucidated. In this study, we aimed to elucidate these roles and functions in the neonatal mouse skin. We conducted single-cell RNA sequencing and immunohistochemical analyses to search for Pdgfra-expressing (Pα +) fibroblasts with transition activities to/from Krt5-expressing keratinocytes. We determined that the Pα +/Krt5-lineage (K5 lin+) fibroblasts significantly contributed to developing hair follicle dermal stem cells to generate lower dermal papilla cells and lower dermal sheath cells. In the developing mouse skin, K5 lin + fibroblasts appeared concurrently with hair follicle development and formed outer edge cells in the early dermal papilla on embryonic day 16.5. K5 lin + hair follicle mesenchymal cells were also maintained in aged mouse skin. These results provide insights into the role and function of the transition between the mesenchyme and epithelium in hair follicle development and maintenance.
Collapse
Affiliation(s)
- Yoshikazu Hirose
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Asaka Miura
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuya Ouchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Inc., Ibaraki, Osaka, Japan
| | - Tomomi Kitayama
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Inc., Ibaraki, Osaka, Japan
| | - Souki Omura
- School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, Japan
| | - Akio Tanaka
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kotaro Saga
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Inc., Ibaraki, Osaka, Japan
| |
Collapse
|
2
|
Hiratsuka T, Rognoni E. Protocol for detecting 3D dermal fibroblast cellular dynamics in mice using an intravital imaging technique. STAR Protoc 2025; 6:103801. [PMID: 40338747 DOI: 10.1016/j.xpro.2025.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/01/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Dermal fibroblasts play a central role in the production and remodeling of dermal extracellular matrix. Their spatially distinct subpopulations exhibit different functions during skin homeostasis, wound healing, and other diseases such as fibrosis and cancer. Here, we present a protocol for detecting 3D dermal fibroblast cellular dynamics in mice without fixing the tissue using an intravital imaging technique. We describe steps for preparing, labeling, and mounting mice. We then describe detailed procedures for intravital imaging, recovery, and quantification. For complete details on the use and execution of this protocol, please refer to Rognoni et al.1.
Collapse
Affiliation(s)
- Toru Hiratsuka
- Department of Oncogenesis and Growth Regulation, Research Center, Osaka International Cancer Institute, Chuoku, Osaka 541-8567, Japan; Department of Molcular Oncology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Emanuel Rognoni
- Centre for Cell Biology and Cutaneous Research, The Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Abeysundara N, Rasnitsyn A, Fong V, Bahcheli A, Van Ommeren R, Juraschka K, Vladoiu M, Ong W, Livingston B, de Antonellis P, Ly M, Holgado BL, Sirbu O, Bahrampour S, Min HK, Fan J, Nor C, Visvanathan A, Zhang J, Wang H, Qin L, Huang N, Pallotta J, Douglas T, Mak E, Su H, Ng K, Zhang KY, Daniels C, Lucas CHG, Eberhart CG, Liu H, Jiang T, Notta F, Ramaswamy V, Reimand J, Gallo M, Rich JN, Wu X, Huang X, Taylor MD. Metastatic medulloblastoma remodels the local leptomeningeal microenvironment to promote further metastatic colonization and growth. Nat Cell Biol 2025; 27:863-874. [PMID: 40263572 PMCID: PMC12081294 DOI: 10.1038/s41556-025-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Leptomeningeal metastases are the major source of morbidity and mortality for patients with medulloblastoma. The biology of the leptomeningeal metastases and the local tumour microenvironment are poorly characterized. Here we show that metastasis-associated meningeal fibroblasts (MB-MAFs) are transcriptionally distinct and signal extensively to tumour cells and the tumour microenvironment. Metastatic cells secrete platelet-derived growth factor (PDGF) ligands into the local microenvironment to chemotactically recruit meningeal fibroblasts. Meningeal fibroblasts are reprogrammed to become MB-MAFs, expressing distinct transcriptomes and secretomes, including bone morphogenetic proteins. Active bone morphogenetic protein signalling and co-implantation of tumour cells with MB-MAFs enhances the colonization of the leptomeninges by medulloblastoma cells and promotes the growth of established metastases. Furthermore, treatment of patient-derived xenograft mice with a PDGF-receptor-α neutralizing antibody enhances overall survival in vivo. Collectively, our results define a targetable intercellular communication cascade in the metastatic niche to treat leptomeningeal disease.
Collapse
Affiliation(s)
- Namal Abeysundara
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexandra Rasnitsyn
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Vernon Fong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Bahcheli
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Randy Van Ommeren
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kyle Juraschka
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Vladoiu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Winnie Ong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Bryn Livingston
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Pasqualino de Antonellis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Ly
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Borja López Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olga Sirbu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shahrzad Bahrampour
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hyun-Kee Min
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jerry Fan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Nor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abhirami Visvanathan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiao Zhang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Texas Children's Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lei Qin
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ning Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonelle Pallotta
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tajana Douglas
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Esta Mak
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Haipeng Su
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen Ng
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Kevin Yang Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Craig Daniels
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Texas Children's Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | | | - Charles G Eberhart
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hailong Liu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jüri Reimand
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marco Gallo
- Texas Children's Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy N Rich
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Xiaochong Wu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Texas Children's Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Texas Children's Cancer and Hematology Center, Houston, TX, USA.
- Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Lee JY, Kim J, Zhou T, Malogan JP, Koh SD, Perrino BA. Molecular characterization of suburothelial fibrosis in murine acute recurrent bladder inflammation. Sci Rep 2025; 15:13795. [PMID: 40258857 PMCID: PMC12012138 DOI: 10.1038/s41598-025-96860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
Chronic fibrosis replaces functional organ tissue with scar tissue by overproduction of a thick and stiff extracellular matrix. Bladder fibrosis decreases bladder compliance, ultimately resulting in overactive bladder. The phenoconversion of fibroblasts into myofibroblasts is the defining feature of fibrosis. Recently, regionally distinct populations of bladder platelet-derived growth factor receptor alpha positive (PDGFRα+) cells were identified as fibroblasts. Because of this heterogeneity, the identity of the bladder fibroblast cells that undergo phenotypic conversion into myofibroblasts is not clear. The current study utilized cyclophosphamide (CYP)-induced bladder inflammation to identify and characterize bladder PDGFRα+ cells that become myofibroblasts. We found that suburothelial PDGFRα+ cells and detrusor PDGFRα+ cells display different gene expression profiles. Suburothelial PDGFRα+ cells are more abundant than detrusor PDGFRα+ cells and express higher levels of fibrosis-related genes. CYP-treatment increased the number of suburothelial PDGFRα+ cells, increased Pdgfra, Col1a1, and Fn1 transcription in suburothelial PDGFRα+ cells, and increased α-smooth muscle actin, collagen, and fibronectin protein expression. CYP-treatment likely activated TNF-α and TGF-ß pathways, as indicated by nuclear translocation of SMAD2, SMAD3, and NFκB. In conclusion, we identify suburothelial PDGFRα+ cells as the fibroblast population which convert into myofibroblasts via activation of TNF-α and TGF-ß signaling pathways, due to bladder inflammation.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Jiha Kim
- Department of Neurosurgery, Kangwon National University College of Medicine, Chuncheon-Si, Gangwon-Do, 24289, Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Justin P Malogan
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Brian A Perrino
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
5
|
Liu H, Yuan Y, Li J, Lan Z, Dai Z, Li G, Xiao K, Pu Y, He C, Qin S, Su Z. Establishment of an efficient and economical method for primary oligodendrocyte progenitor cell culture from neonatal mouse brain. Brain Res 2025; 1853:149519. [PMID: 40023233 DOI: 10.1016/j.brainres.2025.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
The primary culture of oligodendrocyte progenitor cells (OPCs) provides an indispensable tool for characterizing their biological properties and myelin repair potential. However, the current OPC preparation methods are mainly limited to rat tissues, and it remains a substantial challenge for replicating the primary culture from mouse tissues to generate large quantities of high-quality OPCs. Here, we describe a protocol to successfully establish highly enriched OPC cultures from the cerebral cortex of mice at the age of neonatal 3 days. OPCs were isolated and purified from the bed layer of astrocytes by shaking for 6 h at 250 rpm. Using this protocol, mouse OPCs can be easily produced in bulk and economically without the need for specific cell-surface antibodies and equipment. These mouse OPC cultures were identified by immunocytochemical, immunobloting and RNA-seq analysis. Furthermore, they could be expanded in vitro and differentiate into mature oligodendrocytes. We propose this method as a viable and affordable protocol to obtain mouse OPC culture, which should significantly facilitate studies on OPC lineage progression and their application in myelin-related disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China; Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Jiali Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zhida Lan
- Department of Anatomy, College of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Guanyu Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Kouwei Xiao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
6
|
Guo Z, Yao J, Zheng X, Cao J, Lv X, Gao Z, Guo S, Li H, Guan D, Li L, Qin D, Li D, Wang X, Tan M, Zhang J, Zhang Y, Wang B, Bu W, Li J, Zhao X, Meng F, Feng Y, Li L, Du J, Fan Y. Cavity oscillation drives pattern formation in early mammalian embryos. Cell Rep 2025; 44:115342. [PMID: 39985766 DOI: 10.1016/j.celrep.2025.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
During the second cell fate in mouse embryos, the inner cell mass (ICM) segregates into the spatially distinct epiblast (EPI) and primitive endoderm (PrE) layers. The mechanism driving this pattern formation, however, remains unresolved. Here, we report that, concomitant with the segregation process of EPI/PrE precursors starting from mid-blastocyst, the blastocyst cavity begins to oscillate cyclically with rapid contraction yet slow expansion, triggering a phase transition in the ICM to a fluid-like state. This asymmetric oscillation of the blastocyst cavity facilitates EPI/PrE segregation by enhancing cell-cell contact fluctuations within the ICM and initiating convergent cell flows, which induce movement of these two cell types in opposite directions, wherein PrE precursors move toward the ICM-lumen interface, whereas EPI precursors move toward the trophectoderm. Last, we found that both PDGFRα expression and YAP nuclear accumulation in PrE precursors increase in response to blastocyst cavity oscillation. This study reveals the foundational role of physical oscillation in driving embryonic pattern formation during early mammalian embryonic development.
Collapse
Affiliation(s)
- Zheng Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jie Yao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jialing Cao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xinxin Lv
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Shuyu Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hangyu Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Tan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jing Zhang
- Laboratory Animal Research Center, Tsinghua University, Beijing 100084, China
| | - Yanli Zhang
- Imaging Core Facility, Technology Center for Protein Science, Tsinghua University, Beijing 100084, China
| | - Bo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810008, China
| | - Wanjuan Bu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jianwen Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xinbin Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Fanzhe Meng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
7
|
Gallardo FS, Cruz-Soca M, Bock-Pereda A, Faundez-Contreras J, Gutiérrez-Rojas C, Gandin A, Torresan V, Casar JC, Ravasio A, Brandan E. Role of TGF-β/SMAD/YAP/TAZ signaling in skeletal muscle fibrosis. Am J Physiol Cell Physiol 2025; 328:C1015-C1028. [PMID: 39925133 DOI: 10.1152/ajpcell.00541.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Skeletal muscle fibrosis is strongly associated with the differentiation of its resident multipotent fibro/adipogenic progenitors (FAPs) toward the myofibroblast phenotype. Although transforming growth factor type β (TGF-β) signaling is well-known for driving FAPs differentiation and fibrosis, due to its pleiotropic functions its complete inhibition is not suitable for treating fibrotic disorders such as muscular dystrophies. Here, we describe that TGF-β operates through the mechanosensitive transcriptional regulators Yes-associated protein (YAP)/ transcriptional coactivator with PDZ-binding motif (TAZ) to determine the myofibroblast fate of FAPs and skeletal muscle fibrosis. Spatial transcriptomics analyses of dystrophic and acute injured muscles showed that areas with active fibrosis and TGF-β signaling displayed high YAP/TAZ activity. Using a TGF-β-driven fibrotic mouse model, we found that activation of YAP/TAZ in activated FAPs is associated with the fibrotic process. Mechanistically, primary culture of FAPs reveals the remarkable ability of TGF-β1 to activate YAP/TAZ through its canonical SMAD3 pathway. Moreover, inhibition of YAP/TAZ, either by disrupting its activity (with Verteporfin) or cellular mechanotransduction (with the Rho inhibitor C3 or soft matrices), decreased TGF-β1-dependent FAPs differentiation into myofibroblasts. In vivo, administration of Verteporfin in mice limits the deposition of collagen and fibronectin, and the activation of FAPs during the development of fibrosis. Overall, our work provides robust evidence for considering YAP/TAZ as a potential target in muscular fibroproliferative disorders.NEW & NOTEWORTHY The understanding of the nuclear factors governing the differentiation of muscular fibro/adipogenic progenitors (FAPs) into myofibroblasts is in its infancy. Here, we comprehensively elucidate the status, regulation, and role of the mechanotransducers Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) in the muscular fibrotic process. Our findings reveal that inhibiting cellular mechanotransduction limits FAP differentiation and the extent of muscular fibrosis exerted by transforming growth factor type β (TGF-β). This research shed new lights on the molecular mechanisms dictating the cell fate of FAPs and the muscular fibrosis.
Collapse
Affiliation(s)
- Felipe S Gallardo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Meilyn Cruz-Soca
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Alexia Bock-Pereda
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jennifer Faundez-Contreras
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Cristian Gutiérrez-Rojas
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alessandro Gandin
- Department of Industrial Engineering, University of Padova and INSTM, Padova, Italy
| | - Veronica Torresan
- Department of Industrial Engineering, University of Padova and INSTM, Padova, Italy
| | - Juan Carlos Casar
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, School of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
8
|
Moghe P, Belousov R, Ichikawa T, Iwatani C, Tsukiyama T, Erzberger A, Hiiragi T. Coupling of cell shape, matrix and tissue dynamics ensures embryonic patterning robustness. Nat Cell Biol 2025; 27:408-423. [PMID: 39966670 PMCID: PMC11906357 DOI: 10.1038/s41556-025-01618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/20/2024] [Indexed: 02/20/2025]
Abstract
Tissue patterning coordinates morphogenesis, cell dynamics and fate specification. Understanding how precision in patterning is robustly achieved despite inherent developmental variability during mammalian embryogenesis remains a challenge. Here, based on cell dynamics quantification and simulation, we show how salt-and-pepper epiblast and primitive endoderm (PrE) cells pattern the inner cell mass of mouse blastocysts. Coupling cell fate and dynamics, PrE cells form apical polarity-dependent actin protrusions required for RAC1-dependent migration towards the surface of the fluid cavity, where PrE cells are trapped due to decreased tension. Concomitantly, PrE cells deposit an extracellular matrix gradient, presumably breaking the tissue-level symmetry and collectively guiding their own migration. Tissue size perturbations of mouse embryos and their comparison with monkey and human blastocysts further demonstrate that the fixed proportion of PrE/epiblast cells is optimal with respect to embryo size and tissue geometry and, despite variability, ensures patterning robustness during early mammalian development.
Collapse
Grants
- The Hiiragi laboratory was supported by the EMBL, and currently by the Hubrecht Institute, the European Research Council (ERC Advanced Grant “SelforganisingEmbryo” grant agreement 742732, ERC Advanced Grant “COORDINATION” grant agreement 101055287), Stichting LSH-TKI (LSHM21020), and Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers JP21H05038 and JP22H05166. The Erzberger laboratory is supported by the EMBL.
- European Molecular Biology Laboratory (EMBL Heidelberg)
- MEXT | Japan Society for the Promotion of Science (JSPS)
- T.I. was supported by the JSPS Overseas Research Fellowship
- The Erzberger laboratory is supported by the EMBL.
- The Hiiragi laboratory was supported by the EMBL, and currently by the Hubrecht Institute, the European Research Council (ERC Advanced Grant “SelforganisingEmbryo” grant agreement 742732, ERC Advanced Grant “COORDINATION” grant agreement 101055287), Stichting LSH-TKI (LSHM21020), and Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers JP21H05038 and JP22H05166.
Collapse
Affiliation(s)
- Prachiti Moghe
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Roman Belousov
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Takafumi Ichikawa
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Anna Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Takashi Hiiragi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Department of Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Potluri T, You T, Yin P, Coon J, Stulberg JJ, Dai Y, Escobar DJ, Lieber RL, Zhao H, Bulun SE. Estrogen receptor-α ablation reverses muscle fibrosis and inguinal hernias. J Clin Invest 2025; 135:e179137. [PMID: 39903526 PMCID: PMC11910215 DOI: 10.1172/jci179137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Fibrosis of the lower abdominal muscle (LAM) contributes to muscle weakening and inguinal hernia formation, an ailment that affects a noteworthy 50% of men by age 75 and necessitates surgical correction as the singular therapy. Despite its prevalence, the mechanisms driving LAM fibrosis and hernia development remain poorly understood. Using a humanized mouse model that replicates the elevated skeletal muscle tissue estrogen concentrations seen in aging men, we identified estrogen receptor-α (ESR1) as a key driver of LAM fibroblast proliferation, extracellular matrix deposition, and hernia formation. Fibroblast-specific ESR1 ablation effectively prevented muscle fibrosis and herniation, while pharmacological ESR1 inhibition with fulvestrant reversed hernias and restored normal muscle architecture. Multiomics analyses of in vitro LAM fibroblasts from humanized mice unveiled an estrogen/ESR1-mediated activation of a distinct profibrotic cistrome and gene expression signature, concordant with observations in inguinal hernia tissues in human males. Our findings hold significant promise for prospective medical interventions targeting fibrotic conditions and present non-surgical avenues for addressing inguinal hernias.
Collapse
Affiliation(s)
- Tanvi Potluri
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tianming You
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ping Yin
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Coon
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jonah J. Stulberg
- Department of Surgery, McGovern Medical School at the University of Texas Health Sciences Center, Houston, Texas, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Richard L. Lieber
- Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
- Research Service, Hines VA Medical Center, Maywood, Illinois, USA
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Hong Zhao
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Serdar E. Bulun
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Fukada A, Enomoto Y, Horiguchi R, Aoshima Y, Meguro S, Kawasaki H, Kosugi I, Fujisawa T, Enomoto N, Inui N, Suda T, Iwashita T. Integrin α8 is a useful cell surface marker of alveolar lipofibroblasts. Respir Res 2025; 26:14. [PMID: 39806390 PMCID: PMC11731379 DOI: 10.1186/s12931-025-03103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Recent advances in comprehensive gene analysis revealed the heterogeneity of mouse lung fibroblasts. However, direct comparisons between these subpopulations are limited due to challenges in isolating target subpopulations without gene-specific reporter mouse lines. In addition, the properties of lung lipofibroblasts remain unclear, particularly regarding the appropriate cell surface marker and the niche capacity for alveolar epithelial cell type 2 (AT2), an alveolar tissue stem cell. METHODS AND RESULTS Using cell surface markers applicable even into wild-type mouse lungs, we could classify PDGFRα+ total lung resident fibroblasts into at least two major distinct subpopulations: integrin α8 (ITGA8)+ and SCA-1+ fibroblasts. We analyzed their characteristics, including lipid content, transcriptome profiles, and alveolar stem cell niche capacity. ITGA8+ fibroblasts showed higher positivity of intracellular lipid droplets compared to SCA-1+ fibroblasts (91.0 ± 1.5% vs. 5.0 ± 0.5% in LipidTOX staining; 91.3 ± 1.4% vs. 7.1 ± 1.7% in Oil Red O staining). The fluorescence intensity of LipidTOX in the ITGA8+ fibroblasts was highest in newborn compared to adult or aged lungs. The transcriptome profile of ITGA8+ fibroblasts in adult mouse lungs, evaluated through two independent single-cell RNA-seq datasets, consistently showed higher expression of Tcf21 and Plin2, which are canonical markers of lipofibroblasts. ITGA8+ fibroblasts were primarily located in the alveolar area, particularly in the neighborhood of AT2. Compared to SCA-1+ fibroblasts, ITGA8+ fibroblasts showed higher mRNA expression of potential AT2-supportive factors, Fgf10, Fgf7, and Wnt2, but unexpectedly, exhibited lower efficiency in alveolar organoid formation. CONCLUSIONS ITGA8+ lung fibroblasts correspond to alveolar lipofibroblasts, but the alveolar niche capacity may be lower than SCA-1+ lung fibroblasts. Further studies are necessary for the functional distinction between lung fibroblast subpopulations.
Collapse
Affiliation(s)
- Atsuki Fukada
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasunori Enomoto
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Ryo Horiguchi
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoichiro Aoshima
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Respiratory Medicine, Iwata City Hospital, Iwata, Japan
| | - Shiori Meguro
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hideya Kawasaki
- Preeminent Medical Photonics Education and Research Center Institute for NanoSuit Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
11
|
Panganiban RP, McAninch C, Chulkina M, Pinchuk IV. Telocytes in inflammatory bowel diseases: contributions to pathology and therapeutic potentials. Front Cell Dev Biol 2025; 12:1452258. [PMID: 39872845 PMCID: PMC11770051 DOI: 10.3389/fcell.2024.1452258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Telocytes, a novel mesenchymal cell population, are characterized by their distinctive long and slender projections known as telopodes and have garnered significant interest since their formal introduction to the literature in 2010. These cells have been identified in various tissues, including the gastrointestinal (GI) tract, where they are suggested to play important roles in maintaining structural integrity, immune modulation, and barrier function. Inflammatory bowel diseases (IBD), which include Crohn's disease (CD) and ulcerative colitis (UC), are characterized by chronic inflammation and fibrosis. While limited information is available on the fate of telocytes in this group of diseases, it has been suggested that loss/plasticity of telocytes can be among the key factors contributing to their pathogenesis. This review focuses on the current understanding of telocytes, their structural features, and their distribution within the GI tract under gut homeostasis and IBD. We also discuss the roles of these cells in immune regulation and intestinal repair. We highlight evidence implicating telocytes in the pathogenesis of IBD and other chronic inflammatory diseases that share similar pathophysiological processes with IBD. Lastly, we discuss the current challenges in gut telocyte biology and the potential therapeutic implications of telocytes in IBD.
Collapse
Affiliation(s)
| | | | | | - Irina V. Pinchuk
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
12
|
Miura A, Kitayama T, Ouchi Y, Saga K, Shimbo T, Tamai K. Evaluation of the digestion protocol of mouse neonatal epidermis for single-cell RNA sequencing. Biochem Biophys Res Commun 2025; 743:151159. [PMID: 39681052 DOI: 10.1016/j.bbrc.2024.151159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
The skin is primarily composed of keratinocytes and forms an effective barrier between the organism and external environment. Neonatal skin analysis is essential for understanding developmental processes and rare skin diseases. However, efficient single-cell dissociation methods for the neonatal mouse epidermis remain underexplored. Here, three enzymes (Trypsin, TrypLE, and Liberase) used for tissue dissociation were compared to optimize single-cell RNA sequencing (scRNA-seq) of the mouse neonatal epidermis. scRNA-seq revealed distinct differences in cell recovery between the enzymes, with Liberase enriching suprabasal keratinocytes and Trypsin/TrypLE favoring basal keratinocytes. Although all enzymes produced comparable data quality, the observed bias in cell population recovery highlights the significant impact of dissociation protocols on the scRNA-seq results. These findings highlight the importance and optimal selection of enzymes for the analysis of unbiased neonatal epidermis.
Collapse
Affiliation(s)
- Asaka Miura
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | - Kotaro Saga
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan.
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc., Ibaraki, Osaka, Japan.
| |
Collapse
|
13
|
Jones DL, Morley MP, Li X, Ying Y, Zhao G, Schaefer SE, Rodriguez LR, Cardenas-Diaz FL, Li S, Zhou S, Chembazhi UV, Kim M, Shen C, Nottingham A, Lin SM, Cantu E, Diamond JM, Basil MC, Vaughan AE, Morrisey EE. An injury-induced mesenchymal-epithelial cell niche coordinates regenerative responses in the lung. Science 2024; 386:eado5561. [PMID: 39666855 DOI: 10.1126/science.ado5561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 12/14/2024]
Abstract
Severe lung injury causes airway basal stem cells to migrate and outcompete alveolar stem cells, resulting in dysplastic repair. We found that this "stem cell collision" generates an injury-induced tissue niche containing keratin 5+ epithelial cells and plastic Pdgfra+ mesenchymal cells. Single-cell analysis revealed that the injury-induced niche is governed by mesenchymal proliferation and Notch signaling, which suppressed Wnt/Fgf signaling in the injured niche. Conversely, loss of Notch signaling rewired alveolar signaling patterns to promote functional regeneration and gas exchange. Signaling patterns in injury-induced niches can differentiate fibrotic from degenerative human lung diseases through altering the direction of Wnt/Fgf signaling. Thus, we have identified an injury-induced niche in the lung with the ability to discriminate human lung disease phenotypes.
Collapse
Affiliation(s)
- Dakota L Jones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinyuan Li
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Ying
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gan Zhao
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Schaefer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luis R Rodriguez
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabian L Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ullas V Chembazhi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mijeong Kim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chen Shen
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Nottingham
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua M Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
McClure JJ, McIlroy GD, Symons RA, Clark SM, Cunningham I, Han W, Kania K, Colella F, Rochford JJ, De Bari C, Roelofs AJ. Disentangling the detrimental effects of local from systemic adipose tissue dysfunction on articular cartilage in the knee. Osteoarthritis Cartilage 2024; 32:1552-1565. [PMID: 39103079 DOI: 10.1016/j.joca.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Obesity increases osteoarthritis (OA) risk due to adipose tissue dysfunction with associated metabolic syndrome and excess weight. Lipodystrophy syndromes exhibit systemic metabolic and inflammatory abnormalities similar to obesity without biomechanical overloading. Here, we used lipodystrophy mouse models to investigate the effects of systemic versus intra-articular adipose tissue dysfunction on the knee. METHODS Intra-articular adipose tissue development was studied using reporter mice. Mice with selective lipodystrophy of intra-articular adipose tissue were generated by conditional knockout (cKO) of Bscl2 in Gdf5-lineage cells, and compared with whole-body Bscl2 knockout (KO) mice with generalised lipodystrophy and associated systemic metabolic dysfunction. OA was induced by surgically destabilising the medial meniscus (DMM) and obesity by high-fat diet (HFD). Gene expression was analysed by quantitative RT-PCR and tissues were analysed histologically. RESULTS The infrapatellar fat pad (IFP), in contrast to overlying subcutaneous adipose tissue, developed from a template established from the Gdf5-expressing joint interzone during late embryogenesis, and was populated shortly after birth by adipocytes stochastically arising from Pdgfrα-expressing Gdf5-lineage progenitors. While female Bscl2 KO mice with generalised lipodystrophy developed spontaneous knee cartilage damage, Bscl2 cKO mice with intra-articular lipodystrophy did not, despite the presence of synovial hyperplasia and inflammation of the residual IFP. Furthermore, male Bscl2 cKO mice showed no worse cartilage damage after DMM. However, female Bscl2 cKO mice showed increased susceptibility to the cartilage-damaging effects of HFD-induced obesity. CONCLUSION Our findings emphasise the prevalent role of systemic metabolic and inflammatory effects in impairing cartilage homeostasis, with a modulatory role for intra-articular adipose tissue.
Collapse
Affiliation(s)
- Jessica J McClure
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - George D McIlroy
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Rebecca A Symons
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Susan M Clark
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Iain Cunningham
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore
| | - Karolina Kania
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Fabio Colella
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Justin J Rochford
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Cosimo De Bari
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anke J Roelofs
- Arthritis & Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
15
|
Dansu DK, Selcen I, Sauma S, Prentice E, Huang D, Li M, Moyon S, Casaccia P. Histone H4 acetylation differentially modulates proliferation in adult oligodendrocyte progenitors. J Cell Biol 2024; 223:e202308064. [PMID: 39133301 PMCID: PMC11318668 DOI: 10.1083/jcb.202308064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Adult oligodendrocyte progenitors (aOPCs) generate myelinating oligodendrocytes like neonatal progenitors (nOPCs), and they also display unique functional features. Here, using unbiased histone proteomics analysis and ChIP sequencing analysis of PDGFRα+ OPCs sorted from neonatal and adult Pdgfra-H2B-EGFP reporter mice, we identify the activating H4K8ac histone mark as enriched in the aOPCs. We detect increased occupancy of the H4K8ac activating mark at chromatin locations corresponding to genes related to the progenitor state (e.g., Hes5, Gpr17), metabolic processes (e.g., Txnip, Ptdgs), and myelin components (e.g., Cnp, Mog). aOPCs showed higher levels of transcripts related to lipid metabolism and myelin, and lower levels of transcripts related to cell cycle and proliferation compared with nOPCs. In addition, pharmacological inhibition of histone acetylation decreased the expression of the H4K8ac target genes in aOPCs and decreased their proliferation. Overall, this study identifies acetylation of the histone H4K8 as a regulator of the proliferative capacity of aOPCs.
Collapse
Affiliation(s)
- David K. Dansu
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Ipek Selcen
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
| | - Sami Sauma
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Emily Prentice
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Dennis Huang
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Sarah Moyon
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Institute of NeuroPhysiopathology (INP) UMR7051, Aix-Marseille University, CNRS, Marseille, France
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center at the City University of New York, New York, NY, USA
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY, USA
- Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
16
|
Li R, Hanna A, Huang S, Hernandez SC, Tuleta I, Kubota A, Humeres C, Chen B, Liu Y, Zheng D, Frangogiannis NG. Macrophages in the infarcted heart acquire a fibrogenic phenotype, expressing matricellular proteins, but do not undergo fibroblast conversion. J Mol Cell Cardiol 2024; 196:152-167. [PMID: 39089570 PMCID: PMC11534516 DOI: 10.1016/j.yjmcc.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Although some studies have suggested that macrophages may secrete structural collagens, and convert to fibroblast-like cells, macrophage to fibroblast transdifferentiation in infarcted and remodeling hearts remains controversial. Our study uses linage tracing approaches and single cell transcriptomics to examine whether macrophages undergo fibroblast conversion, and to characterize the extracellular matrix expression profile of myeloid cells in myocardial infarction. To examine whether infarct macrophages undergo fibroblast conversion, we identified macrophage-derived progeny using the inducible CX3CR1CreER mice crossed with the PDGFRαEGFP reporter line for reliable fibroblast identification. The abundant fibroblasts that infiltrated the infarcted myocardium after 7 and 28 days of coronary occlusion were not derived from CX3CR1+ macrophages. Infarct macrophages retained myeloid cell characteristics and did not undergo conversion to myofibroblasts, endothelial or vascular mural cells. Single cell RNA-seq of CSF1R+ myeloid cells harvested from control and infarcted hearts showed no significant expression of fibroblast identity genes by myeloid cell clusters. Moreover, infarct macrophages did not express significant levels of genes encoding structural collagens. However, infarct macrophage and monocyte clusters were the predominant source of the fibrogenic growth factors Tgfb1 and Pdgfb, and of the matricellular proteins Spp1/Osteopontin, Thbs1/Thrombospondin-1, Emilin2, and Fn1/fibronectin, while expressing significant amounts of several other matrix genes, including Vcan/versican, Ecm1 and Sparc. ScRNA-seq data suggested similar patterns of matrix gene expression in human myocardial infarction. In conclusion, infarct macrophages do not undergo fibroblast or myofibroblast conversion and do not exhibit upregulation of structural collagens but may contribute to fibrotic remodeling by producing several fibrogenic matricellular proteins.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akihiko Kubota
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
17
|
Pfau SJ, Langen UH, Fisher TM, Prakash I, Nagpurwala F, Lozoya RA, Lee WCA, Wu Z, Gu C. Characteristics of blood-brain barrier heterogeneity between brain regions revealed by profiling vascular and perivascular cells. Nat Neurosci 2024; 27:1892-1903. [PMID: 39210068 PMCID: PMC11452347 DOI: 10.1038/s41593-024-01743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The blood-brain barrier (BBB) protects the brain and maintains neuronal homeostasis. BBB properties can vary between brain regions to support regional functions, yet how BBB heterogeneity occurs is poorly understood. Here, we used single-cell and spatial transcriptomics to compare the mouse median eminence, one of the circumventricular organs that has naturally leaky blood vessels, with the cortex. We identified hundreds of molecular differences in endothelial cells (ECs) and perivascular cells, including astrocytes, pericytes and fibroblasts. Using electron microscopy and an aqueous-based tissue-clearing method, we revealed distinct anatomical specializations and interaction patterns of ECs and perivascular cells in these regions. Finally, we identified candidate regionally enriched EC-perivascular cell ligand-receptor pairs. Our results indicate that both molecular specializations in ECs and unique EC-perivascular cell interactions contribute to BBB functional heterogeneity. This platform can be used to investigate BBB heterogeneity in other regions and may facilitate the development of central nervous system region-specific therapeutics.
Collapse
Affiliation(s)
- Sarah J Pfau
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Urs H Langen
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Theodore M Fisher
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Indumathi Prakash
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Faheem Nagpurwala
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ricardo A Lozoya
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wei-Chung Allen Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Zhuhao Wu
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chenghua Gu
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Uhrbom M, Muhl L, Genové G, Liu J, Palmgren H, Alexandersson I, Karlsson F, Zhou AX, Lunnerdal S, Gustafsson S, Buyandelger B, Petkevicius K, Ahlstedt I, Karlsson D, Aasehaug L, He L, Jeansson M, Betsholtz C, Peng XR. Adipose stem cells are sexually dimorphic cells with dual roles as preadipocytes and resident fibroblasts. Nat Commun 2024; 15:7643. [PMID: 39223126 PMCID: PMC11369120 DOI: 10.1038/s41467-024-51867-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cell identities are defined by intrinsic transcriptional networks and spatio-temporal environmental factors. Here, we explored multiple factors that contribute to the identity of adipose stem cells, including anatomic location, microvascular neighborhood, and sex. Our data suggest that adipose stem cells serve a dual role as adipocyte precursors and fibroblast-like cells that shape the adipose tissue's extracellular matrix in an organotypic manner. We further find that adipose stem cells display sexual dimorphism regarding genes involved in estrogen signaling, homeobox transcription factor expression and the renin-angiotensin-aldosterone system. These differences could be attributed to sex hormone effects, developmental origin, or both. Finally, our data demonstrate that adipose stem cells are distinct from mural cells, and that the state of commitment to adipogenic differentiation is linked to their anatomic position in the microvascular niche. Our work supports the importance of sex and microvascular function in adipose tissue physiology.
Collapse
Affiliation(s)
- Martin Uhrbom
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden.
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway
| | - Guillem Genové
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Jianping Liu
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Henrik Palmgren
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ida Alexandersson
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D AstraZeneca, Gothenburg, Sweden
| | - Alex-Xianghua Zhou
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandra Lunnerdal
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sonja Gustafsson
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Byambajav Buyandelger
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Kasparas Petkevicius
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Ahlstedt
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Karlsson
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leif Aasehaug
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 23, Uppsala, Sweden
| | - Marie Jeansson
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 23, Uppsala, Sweden.
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
19
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
20
|
Huycke TR, Häkkinen TJ, Miyazaki H, Srivastava V, Barruet E, McGinnis CS, Kalantari A, Cornwall-Scoones J, Vaka D, Zhu Q, Jo H, Oria R, Weaver VM, DeGrado WF, Thomson M, Garikipati K, Boffelli D, Klein OD, Gartner ZJ. Patterning and folding of intestinal villi by active mesenchymal dewetting. Cell 2024; 187:3072-3089.e20. [PMID: 38781967 PMCID: PMC11166531 DOI: 10.1016/j.cell.2024.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/30/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.
Collapse
Affiliation(s)
- Tyler R Huycke
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Teemu J Häkkinen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hikaru Miyazaki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Vasudha Srivastava
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Emilie Barruet
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ali Kalantari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jake Cornwall-Scoones
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dedeepya Vaka
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Qin Zhu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Roger Oria
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Dario Boffelli
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
21
|
Suthya AR, Wong CHY, Bourne JH. Diving head-first into brain intravital microscopy. Front Immunol 2024; 15:1372996. [PMID: 38817606 PMCID: PMC11137164 DOI: 10.3389/fimmu.2024.1372996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Tissue microenvironments during physiology and pathology are highly complex, meaning dynamic cellular activities and their interactions cannot be accurately modelled ex vivo or in vitro. In particular, tissue-specific resident cells which may function and behave differently after isolation and the heterogenous vascular beds in various organs highlight the importance of observing such processes in real-time in vivo. This challenge gave rise to intravital microscopy (IVM), which was discovered over two centuries ago. From the very early techniques of low-optical resolution brightfield microscopy, limited to transparent tissues, IVM techniques have significantly evolved in recent years. Combined with improved animal surgical preparations, modern IVM technologies have achieved significantly higher speed of image acquisition and enhanced image resolution which allow for the visualisation of biological activities within a wider variety of tissue beds. These advancements have dramatically expanded our understanding in cell migration and function, especially in organs which are not easily accessible, such as the brain. In this review, we will discuss the application of rodent IVM in neurobiology in health and disease. In particular, we will outline the capability and limitations of emerging technologies, including photoacoustic, two- and three-photon imaging for brain IVM. In addition, we will discuss the use of these technologies in the context of neuroinflammation.
Collapse
|
22
|
Sanketi BD, Mantri M, Huang L, Tavallaei MA, Hu S, Wang MFZ, De Vlaminck I, Kurpios NA. Villus myofibroblasts are developmental and adult progenitors of mammalian gut lymphatic musculature. Dev Cell 2024; 59:1159-1174.e5. [PMID: 38537630 PMCID: PMC11078612 DOI: 10.1016/j.devcel.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 03/01/2024] [Indexed: 05/09/2024]
Abstract
Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.
Collapse
Affiliation(s)
- Bhargav D Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Liqing Huang
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Mohammad A Tavallaei
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Shing Hu
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael F Z Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA.
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
Yin Y, Koenitzer JR, Patra D, Dietmann S, Bayguinov P, Hagan AS, Ornitz DM. Identification of a myofibroblast differentiation program during neonatal lung development. Development 2024; 151:dev202659. [PMID: 38602479 PMCID: PMC11165721 DOI: 10.1242/dev.202659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey R. Koenitzer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter Bayguinov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S. Hagan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Harrington A, Moore-Morris T. Cardiac fibroblasts in heart failure and regeneration. Front Cell Dev Biol 2024; 12:1388378. [PMID: 38699159 PMCID: PMC11063332 DOI: 10.3389/fcell.2024.1388378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
In heart disease patients, myocyte loss or malfunction invariably leads to fibrosis, involving the activation and accumulation of cardiac fibroblasts that deposit large amounts of extracellular matrix. Apart from the vital replacement fibrosis that follows myocardial infarction, ensuring structural integrity of the heart, cardiac fibrosis is largely considered to be maladaptive. Much work has focused on signaling pathways driving the fibrotic response, including TGF-β signaling and biomechanical strain. However, currently there are very limited options for reducing cardiac fibrosis, with most patients suffering from chronic fibrosis. The adult heart has very limited regenerative capacity. However, cardiac regeneration has been reported in humans perinatally, and reproduced experimentally in neonatal mice. Furthermore, model organisms such as the zebrafish are able to fully regenerate their hearts following massive cardiac damage into adulthood. Increasing evidence points to a transient immuno-fibrotic response as being key for cardiac regeneration to occur. The mechanisms at play in this context are changing our views on fibrosis, and could be leveraged to promote beneficial remodeling in heart failure patients. This review summarizes our current knowledge of fibroblast properties associated with the healthy, failing or regenerating heart. Furthermore, we explore how cardiac fibroblast activity could be targeted to assist future therapeutic approaches.
Collapse
Affiliation(s)
| | - Thomas Moore-Morris
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
25
|
Ewing-Crystal NA, Mroz NM, Chang AA, Merrill ED, Caryotakis SE, Teo L, Larpthaveesarp A, Tsukui T, Katewa A, Pennington R, McKinsey GL, Nelson S, Ciesielska A, Dahlgren MW, Paidassi H, Jain S, Aghi MK, Bourne JA, Paz JT, Gonzalez FF, Sheppard D, Molofsky AV, Arnold TD, Molofsky AB. Dynamic fibroblast-immune interactions shape wound healing after brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584873. [PMID: 40093059 PMCID: PMC11908209 DOI: 10.1101/2024.03.13.584873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Fibroblasts coordinate the response to tissue injury, directing organ regeneration versus scarring. In the central nervous system (CNS), fibroblasts are uncommon cells enriched at tissue borders, and their molecular, cellular, and functional interactions after brain injury are poorly understood. Here we define the fibroblast response to sterile brain damage across time and space. Early pro-fibrotic myofibroblasts infiltrated CNS lesions and were functionally and spatially organized by fibroblast TGF β signaling, pro-fibrotic macrophages and microglia, and perilesional brain glia that activated TGF β via integrin α v β 8 . Early myofibroblasts subsequently transitioned into a variety of late states, including meningeal and lymphocyte-interactive fibroblasts that persisted long term. Interruption of this dynamic fibroblast-macrophage-glial coordination impaired brain wound healing and the resolution of neuroinflammation, disrupted generation of late de novo CNS lymphocyte niches, and increased mortality in a stroke model. This work highlights an unexpected role of fibroblasts as coordinate regulators of CNS healing and neuroinflammation after brain injury.
Collapse
|
26
|
Jones DL, Morley MP, Li X, Ying Y, Cardenas-Diaz FL, Li S, Zhou S, Schaefer SE, Chembazhi UV, Nottingham A, Lin S, Cantu E, Diamond JM, Basil MC, Vaughan AE, Morrisey EE. An injury-induced tissue niche shaped by mesenchymal plasticity coordinates the regenerative and disease response in the lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582147. [PMID: 38529490 PMCID: PMC10962740 DOI: 10.1101/2024.02.26.582147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Severe lung injury causes basal stem cells to migrate and outcompete alveolar stem cells resulting in dysplastic repair and a loss of gas exchange function. This "stem cell collision" is part of a multistep process that is now revealed to generate an injury-induced tissue niche (iTCH) containing Keratin 5+ epithelial cells and plastic Pdgfra+ mesenchymal cells. Temporal and spatial single cell analysis reveals that iTCHs are governed by mesenchymal proliferation and Notch signaling, which suppresses Wnt and Fgf signaling in iTCHs. Conversely, loss of Notch in iTCHs rewires alveolar signaling patterns to promote euplastic regeneration and gas exchange. The signaling patterns of iTCHs can differentially phenotype fibrotic from degenerative human lung diseases, through apposing flows of FGF and WNT signaling. These data reveal the emergence of an injury and disease associated iTCH in the lung and the ability of using iTCH specific signaling patterns to discriminate human lung disease phenotypes.
Collapse
Affiliation(s)
- Dakota L. Jones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinyuan Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Ying
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabian L. Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E. Schaefer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ullas V. Chembazhi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Nottingham
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua M. Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C. Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew E. Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E. Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Girolamo DD, Benavente-Diaz M, Murolo M, Grimaldi A, Lopes PT, Evano B, Kuriki M, Gioftsidi S, Laville V, Tinevez JY, Letort G, Mella S, Tajbakhsh S, Comai G. Extraocular muscle stem cells exhibit distinct cellular properties associated with non-muscle molecular signatures. Development 2024; 151:dev202144. [PMID: 38240380 DOI: 10.1242/dev.202144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Maria Benavente-Diaz
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Melania Murolo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Alexandre Grimaldi
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Priscilla Thomas Lopes
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Brendan Evano
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Mao Kuriki
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Stamatia Gioftsidi
- Université Paris-Est, 77420 Champs-sur- Marne, France
- Freie Universität Berlin, 14195 Berlin, Germany
- Inserm, IMRB U955-E10, 94000 Créteil, France
| | - Vincent Laville
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sebastian Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Glenda Comai
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| |
Collapse
|
28
|
Dansu DK, Sauma S, Huang D, Li M, Moyon S, Casaccia P. The epigenetic landscape of oligodendrocyte progenitors changes with time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579145. [PMID: 38501119 PMCID: PMC10946295 DOI: 10.1101/2024.02.06.579145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
SUMMARY Dansu et al. identify distinct histone H4 modifications as potential mechanism underlying the functional differences between adult and neonatal progenitors. While H4K8ac favors the expression of differentiation genes, their expression is halted by H4K20me3. Adult oligodendrocyte progenitors (aOPCs) generate myelinating oligodendrocytes, like neonatal progenitors (nOPCs), but they also display unique functional features. Here, using RNA-sequencing, unbiased histone proteomics analysis and ChIP-sequencing, we define the transcripts and histone marks underlying the unique properties of aOPCs. We describe the lower proliferative capacity and higher levels of expression of oligodendrocyte specific genes in aOPCs compared to nOPCs, as well as the greater levels of H4 histone marks. We also report increased occupancy of the H4K8ac mark at chromatin locations corresponding to oligodendrocyte-specific transcription factors and lipid metabolism genes. Pharmacological inhibition of H4K8ac deposition reduces the levels of these transcripts in aOPCs, rendering their transcriptome more similar to nOPCs. The repressive H4K20me3 mark is also higher in aOPCs compared to nOPCs and pharmacological inhibition of its deposition results in increased levels of genes related to the mature oligodendrocyte state. Overall, this study identifies two histone marks which are important for the unique transcriptional and functional identity of aOPCs.
Collapse
|
29
|
Lund H, Hunt MA, Kurtović Z, Sandor K, Kägy PB, Fereydouni N, Julien A, Göritz C, Vazquez-Liebanas E, Andaloussi Mäe M, Jurczak A, Han J, Zhu K, Harris RA, Lampa J, Graversen JH, Etzerodt A, Haglund L, Yaksh TL, Svensson CI. CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier. J Exp Med 2024; 221:e20230675. [PMID: 38117255 PMCID: PMC10733632 DOI: 10.1084/jem.20230675] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
Collapse
Affiliation(s)
- Harald Lund
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A. Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zerina Kurtović
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul B. Kägy
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Noah Fereydouni
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Vazquez-Liebanas
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Keying Zhu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Burdick LN, DelVichio AH, Hanson LR, Griffith BB, Bouchard KR, Hunter JW, Goldhamer DJ. Sex as a Critical Variable in Basic and Pre-Clinical Studies of Fibrodysplasia Ossificans Progressiva. Biomolecules 2024; 14:177. [PMID: 38397414 PMCID: PMC10886767 DOI: 10.3390/biom14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Heterotopic ossification (HO) is most dramatically manifested in the rare and severely debilitating disease, fibrodysplasia ossificans progressiva (FOP), in which heterotopic bone progressively accumulates in skeletal muscles and associated soft tissues. The great majority of FOP cases are caused by a single amino acid substitution in the type 1 bone morphogenetic protein (BMP) receptor ACVR1, a mutation that imparts responsiveness to activin A. Although it is well-established that biological sex is a critical variable in a range of physiological and disease processes, the impact of sex on HO in animal models of FOP has not been explored. We show that female FOP mice exhibit both significantly greater and more variable HO responses after muscle injury. Additionally, the incidence of spontaneous HO was significantly greater in female mice. This sex dimorphism is not dependent on gonadally derived sex hormones, and reciprocal cell transplantations indicate that apparent differences in osteogenic activity are intrinsic to the sex of the transplanted cells. By circumventing the absolute requirement for activin A using an agonist of mutant ACVR1, we show that the female-specific response to muscle injury or BMP2 implantation is dependent on activin A. These data identify sex as a critical variable in basic and pre-clinical studies of FOP.
Collapse
Affiliation(s)
- Lorraine N. Burdick
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - Amanda H. DelVichio
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - L. Russell Hanson
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - Brenden B. Griffith
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - Keith R. Bouchard
- Alexion Pharmaceuticals Inc., 100 College Street, New Haven, CT 06510, USA; (K.R.B.); (J.W.H.)
| | - Jeffrey W. Hunter
- Alexion Pharmaceuticals Inc., 100 College Street, New Haven, CT 06510, USA; (K.R.B.); (J.W.H.)
| | - David J. Goldhamer
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| |
Collapse
|
31
|
Janeckova L, Knotek T, Kriska J, Hermanova Z, Kirdajova D, Kubovciak J, Berkova L, Tureckova J, Camacho Garcia S, Galuskova K, Kolar M, Anderova M, Korinek V. Astrocyte-like subpopulation of NG2 glia in the adult mouse cortex exhibits characteristics of neural progenitor cells. Glia 2024; 72:245-273. [PMID: 37772368 DOI: 10.1002/glia.24471] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.
Collapse
Affiliation(s)
- Lucie Janeckova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Berkova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Galuskova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
32
|
Grainger N. Identifying peristaltic pacemaker cells in the upper urinary tract. J Physiol 2024. [PMID: 38180778 DOI: 10.1113/jp284754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Urine expulsion from the upper urinary tract is a necessary process that eliminates waste, promotes renal filtration and prevents nephron damage. To facilitate the movement of urine boluses throughout the upper urinary tract, smooth muscle cells that line the renal pelvis contract in a coordinated effort to form peristaltic waves. Resident pacemaker cells in the renal pelvis are critical to this process and spontaneously evoke transient depolarizations that initiate each peristaltic wave and establish rhythmic contractions. Renal pacemakers have been termed atypical smooth muscle cells due to their low expression of smooth muscle myosin and poor organization of myofilaments compared to typical (or contractile) smooth muscle cells that perform peristalsis. Recent findings discovered that pacemaker cells also express the tyrosine kinase receptor PDGFRα, enabling their identification and purification amongst other renal pelvis cell types. Improved identification methods have determined that the calcium-activated chloride channel, ANO1, is expressed by pacemaker cells and may contribute to spontaneous depolarization. A greater understanding of pacemaker and peristaltic mechanisms is warranted since aberrant contractile function may underlie diseases such as hydronephrosis, a deleterious condition that can cause significant and irreversible nephron injury.
Collapse
Affiliation(s)
- Nathan Grainger
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
33
|
Sumbal J, Sumbalova Koledova Z. Fibroblast-Epithelium Co-culture Methods Using Epithelial Organoids and Cell Line-Derived Spheroids. Methods Mol Biol 2024; 2764:107-129. [PMID: 38393591 DOI: 10.1007/978-1-0716-3674-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Fibroblasts are an integral cell type of mammary gland stroma, which plays crucial roles in development, homeostasis, and tumorigenesis of mammary epithelium. Fibroblasts produce and remodel extracellular matrix proteins and secrete a plethora of paracrine signals, which instruct both epithelial and other stromal cells of the mammary gland through mechanisms, which have not been fully understood. To enable deciphering of the intricate fibroblast-epithelial interactions, we developed several 3D co-culture methods. In this chapter, we describe methods for establishment of various types of embedded 3D co-cultures of mammary fibroblasts with mammary epithelial organoids, mammary tumor organoids, or breast cancer spheroids to investigate the role of fibroblasts in mammary epithelial development, morphogenesis, and tumorigenesis. The co-culture types include dispersed, aggregated, and transwell cultures.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Zuzana Sumbalova Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Laboratory of Tissue Morphogenesis and Cancer, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
34
|
Riccetti MR, Green J, Taylor TJ, Perl AKT. Prenatal FGFR2 Signaling via PI3K/AKT Specifies the PDGFRA + Myofibroblast. Am J Respir Cell Mol Biol 2024; 70:63-77. [PMID: 37734036 PMCID: PMC10768833 DOI: 10.1165/rcmb.2023-0245oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
It is well known that FGFR2 (fibroblast growth factor receptor 2) signaling is critical for proper lung development. Recent studies demonstrate that epithelial FGFR2 signaling during the saccular phase of lung development (sacculation) regulates alveolar type 1 (AT1) and AT2 cell differentiation. During sacculation, PDGFRA (platelet-derived growth factor receptor-α)-positive lung fibroblasts exist as three functional subtypes: contractile myofibroblasts, extracellular matrix-producing matrix fibroblasts, and lipofibroblasts. All three subtypes are required during alveolarization to establish a niche that supports AT2 epithelial cell self-renewal and AT1 epithelial cell differentiation. FGFR2 signaling directs myofibroblast differentiation in PDGFRA+ fibroblasts during alveolar reseptation after pneumonectomy. However, it remains unknown if FGFR2 signaling regulates PDGFRA+ myo-, matrix, or lipofibroblast differentiation during sacculation. In this study, FGFR2 signaling was inhibited by temporal expression of a secreted dominant-negative FGFR2b (dnFGFR2) by AT2 cells from embryonic day (E) 16.5 to E18.5. Fibroblast and epithelial differentiation were analyzed at E18.5 and postnatal days 7 and 21. At all time points, the number of myofibroblasts was reduced and the number of lipo-/matrix fibroblasts was increased. AT2 cells are increased and AT1 cells are reduced postnatally, but not at E18.5. Similarly, in organoids made with PDGFRA+ fibroblasts from dnFGFR2 lungs, increased AT2 cells and reduced AT1 cells were observed. In vitro treatment of primary wild-type E16.5 adherent saccular lung fibroblasts with recombinant dnFGFR2b/c resulted in reduced myofibroblast contraction. Treatment with the PI3K/AKT activator 740 Y-P rescued the lack of myofibroblast differentiation caused by dnFGFR2b/2c. Moreover, treatment with the PI3K/AKT activator 740 Y-P rescued myofibroblast differentiation in E18.5 fibroblasts isolated from dnFGFR2 lungs.
Collapse
Affiliation(s)
- Matthew R. Riccetti
- Division of Neonatology and Pulmonary Biology and
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jenna Green
- Division of Neonatology and Pulmonary Biology and
| | - Thomas J. Taylor
- Division of Neonatology and Pulmonary Biology and
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio; and
| | - Anne-Karina T. Perl
- Division of Neonatology and Pulmonary Biology and
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
35
|
Todorova PK, Jackson BT, Garg V, Paras KI, Brunner JS, Bridgeman AE, Chen Y, Baksh SC, Yan J, Hadjantonakis AK, Finley LWS. Amino acid intake strategies define pluripotent cell states. Nat Metab 2024; 6:127-140. [PMID: 38172382 PMCID: PMC10842923 DOI: 10.1038/s42255-023-00940-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
Mammalian preimplantation development is associated with marked metabolic robustness, and embryos can develop under a wide variety of nutrient conditions, including even the complete absence of soluble amino acids. Here we show that mouse embryonic stem cells (ESCs) capture the unique metabolic state of preimplantation embryos and proliferate in the absence of several essential amino acids. Amino acid independence is enabled by constitutive uptake of exogenous protein through macropinocytosis, alongside a robust lysosomal digestive system. Following transition to more committed states, ESCs reduce digestion of extracellular protein and instead become reliant on exogenous amino acids. Accordingly, amino acid withdrawal selects for ESCs that mimic the preimplantation epiblast. More broadly, we find that all lineages of preimplantation blastocysts exhibit constitutive macropinocytic protein uptake and digestion. Taken together, these results highlight exogenous protein uptake and digestion as an intrinsic feature of preimplantation development and provide insight into the catabolic strategies that enable embryos to sustain viability before implantation.
Collapse
Affiliation(s)
- Pavlina K Todorova
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin T Jackson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, New York, NY, USA
| | - Vidur Garg
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katrina I Paras
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Julia S Brunner
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna E Bridgeman
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyang Chen
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanjeethan C Baksh
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jielin Yan
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, New York, NY, USA
| | | | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Yin Y, Koenitzer JR, Patra D, Dietmann S, Bayguinov P, Hagan AS, Ornitz DM. Identification of a myofibroblast differentiation program during neonatal lung development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573370. [PMID: 38234814 PMCID: PMC10793446 DOI: 10.1101/2023.12.28.573370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFB) and a stable but poorly described population of lipid rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFB). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single cell RNA sequencing, and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a myofibroblast differentiation program that is distinct form other mesenchymal cells types and increases the known repertoire of mesenchymal cell types in the neonatal lung.
Collapse
Affiliation(s)
- Yongjun Yin
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Debabrata Patra
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sabine Dietmann
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO 63110
| | - Peter Bayguinov
- Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew S. Hagan
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - David M. Ornitz
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
37
|
Yang X, Li X, Guo Z, Zhang Z, Song X, Zhang M, Han X, He L, Zhou B. Generation and characterization of PDGFRα-GFP knock-in mice for visualization of PDGFRα + fibroblasts in vivo. Biochem Biophys Res Commun 2023; 687:149215. [PMID: 37949027 DOI: 10.1016/j.bbrc.2023.149215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The platelet-derived growth factor (PDGF) and its receptor, PDGFRα, are critical for tissue development and injury repair. To track PDGFRα-expressing cells in vivo, we generated a knock-in mouse line that expresses green fluorescent protein (GFP) under the control of the PDGFRα promoter. This genetic tool enabled us to detect PDGFRα expression in various organs during both neonatal and adult stages. Additionally, we confirmed the correlation between endogenous PDGFRα and transgenic PDGFRα expression using mouse injury models, showing the potential of this genetic reporter for studying PDGFRα-mediated signaling pathways and developing therapeutic strategies. Overall, the PDGFRα-GFP knock-in mouse line serves as a valuable tool for investigating the biology of PDGFRα and its role in normal development and disease.
Collapse
Affiliation(s)
- Xueying Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xufeng Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihou Guo
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Zhuonan Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xin Song
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Mingjun Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ximeng Han
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China.
| | - Bin Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
38
|
Toth A, Kannan P, Snowball J, Kofron M, Wayman JA, Bridges JP, Miraldi ER, Swarr D, Zacharias WJ. Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. Nat Commun 2023; 14:8452. [PMID: 38114516 PMCID: PMC10775890 DOI: 10.1038/s41467-023-44184-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Lung epithelial regeneration after acute injury requires coordination cellular coordination to pattern the morphologically complex alveolar gas exchange surface. During adult lung regeneration, Wnt-responsive alveolar epithelial progenitor (AEP) cells, a subset of alveolar type 2 (AT2) cells, proliferate and transition to alveolar type 1 (AT1) cells. Here, we report a refined primary murine alveolar organoid, which recapitulates critical aspects of in vivo regeneration. Paired scRNAseq and scATACseq followed by transcriptional regulatory network (TRN) analysis identified two AT1 transition states driven by distinct regulatory networks controlled in part by differential activity of Nkx2-1. Genetic ablation of Nkx2-1 in AEP-derived organoids was sufficient to cause transition to a proliferative stressed Krt8+ state, and AEP-specific deletion of Nkx2-1 in adult mice led to rapid loss of progenitor state and uncontrolled growth of Krt8+ cells. Together, these data implicate dynamic epigenetic maintenance via Nkx2-1 as central to the control of facultative progenitor activity in AEPs.
Collapse
Affiliation(s)
- Andrea Toth
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paranthaman Kannan
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John Snowball
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Bio-Imaging and Analysis Facility, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph A Wayman
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James P Bridges
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - Emily R Miraldi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Swarr
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Zacharias
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
39
|
Babaeijandaghi F, Kajabadi N, Long R, Tung LW, Cheung CW, Ritso M, Chang CK, Cheng R, Huang T, Groppa E, Jiang JX, Rossi FMV. DPPIV + fibro-adipogenic progenitors form the niche of adult skeletal muscle self-renewing resident macrophages. Nat Commun 2023; 14:8273. [PMID: 38092736 PMCID: PMC10719395 DOI: 10.1038/s41467-023-43579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Adult tissue-resident macrophages (RMs) are either maintained by blood monocytes or through self-renewal. While the presence of a nurturing niche is likely crucial to support the survival and function of self-renewing RMs, evidence regarding its nature is limited. Here, we identify fibro-adipogenic progenitors (FAPs) as the main source of colony-stimulating factor 1 (CSF1) in resting skeletal muscle. Using parabiosis in combination with FAP-deficient transgenic mice (PdgfrαCreERT2 × DTA) or mice lacking FAP-derived CSF1 (PdgfrαCreERT2 × Csf1flox/null), we show that local CSF1 from FAPs is required for the survival of both TIM4- monocyte-derived and TIM4+ self-renewing RMs in adult skeletal muscle. The spatial distribution and number of TIM4+ RMs coincide with those of dipeptidyl peptidase IV (DPPIV)+ FAPs, suggesting their role as CSF1-producing niche cells for self-renewing RMs. This finding identifies opportunities to precisely manipulate the function of self-renewing RMs in situ to further unravel their role in health and disease.
Collapse
Affiliation(s)
- Farshad Babaeijandaghi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada.
- Altos Labs Inc, San Diego, CA, USA.
| | - Nasim Kajabadi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Reece Long
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Lin Wei Tung
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Chun Wai Cheung
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Morten Ritso
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Chih-Kai Chang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Ryan Cheng
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Tiffany Huang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Elena Groppa
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, TX, USA
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T1Z3, BC, Canada.
| |
Collapse
|
40
|
Pietilä R, Del Gaudio F, He L, Vázquez-Liébanas E, Vanlandewijck M, Muhl L, Mocci G, Bjørnholm KD, Lindblad C, Fletcher-Sandersjöö A, Svensson M, Thelin EP, Liu J, van Voorden AJ, Torres M, Antila S, Xin L, Karlström H, Storm-Mathisen J, Bergersen LH, Moggio A, Hansson EM, Ulvmar MH, Nilsson P, Mäkinen T, Andaloussi Mäe M, Alitalo K, Proulx ST, Engelhardt B, McDonald DM, Lendahl U, Andrae J, Betsholtz C. Molecular anatomy of adult mouse leptomeninges. Neuron 2023; 111:3745-3764.e7. [PMID: 37776854 DOI: 10.1016/j.neuron.2023.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.
Collapse
Affiliation(s)
- Riikka Pietilä
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Francesca Del Gaudio
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Elisa Vázquez-Liébanas
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Lars Muhl
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Giuseppe Mocci
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Katrine D Bjørnholm
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurosurgery, Uppsala University Hospital, 75185 Uppsala, Sweden; Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Alexander Fletcher-Sandersjöö
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden
| | - A Jantine van Voorden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Monica Torres
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, 00014 Helsinki, Finland
| | - Li Xin
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Helena Karlström
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jon Storm-Mathisen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Linda Hildegard Bergersen
- Brain and Muscle Energy Group, Institute of Oral Biology, University of Oslo, 0316 Oslo, Norway; Center for Healthy Aging, Copenhagen University, 2200 Copenhagen, Denmark
| | - Aldo Moggio
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emil M Hansson
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria H Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, 00014 Helsinki, Finland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Donald M McDonald
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 14157 Huddinge, Sweden.
| |
Collapse
|
41
|
Manieri E, Tie G, Malagola E, Seruggia D, Madha S, Maglieri A, Huang K, Fujiwara Y, Zhang K, Orkin SH, Wang TC, He R, McCarthy N, Shivdasani RA. Role of PDGFRA + cells and a CD55 + PDGFRA Lo fraction in the gastric mesenchymal niche. Nat Commun 2023; 14:7978. [PMID: 38042929 PMCID: PMC10693581 DOI: 10.1038/s41467-023-43619-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023] Open
Abstract
PDGFRA-expressing mesenchyme supports intestinal stem cells. Stomach epithelia have related niche dependencies, but their enabling mesenchymal cell populations are unknown, in part because previous studies pooled the gastric antrum and corpus. Our high-resolution imaging, transcriptional profiling, and organoid assays identify regional subpopulations and supportive capacities of purified mouse corpus and antral PDGFRA+ cells. Sub-epithelial PDGFRAHi myofibroblasts are principal sources of BMP ligands and two molecularly distinct pools distribute asymmetrically along antral glands but together fail to support epithelial growth in vitro. In contrast, PDGFRALo CD55+ cells strategically positioned beneath gastric glands promote epithelial expansion in the absence of other cells or factors. This population encompasses a small fraction expressing the BMP antagonist Grem1. Although Grem1+ cell ablation in vivo impairs intestinal stem cells, gastric stem cells are spared, implying that CD55+ cell activity in epithelial self-renewal derives from other subpopulations. Our findings shed light on spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for epithelial support.
Collapse
Affiliation(s)
- Elisa Manieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Davide Seruggia
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adrianna Maglieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kun Huang
- Molecular Imaging Core and Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yuko Fujiwara
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Kevin Zhang
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stuart H Orkin
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
42
|
Trempus CS, Papas BN, Sifre MI, Bortner CD, Scappini E, Tucker CJ, Xu X, Johnson KL, Deterding LJ, Williams JG, Johnson DJ, Li JL, Sutton D, Ganta C, Mahapatra D, Arif M, Basu A, Pommerolle L, Cinar R, Perl AK, Garantziotis S. Functional Pdgfra fibroblast heterogeneity in normal and fibrotic mouse lung. JCI Insight 2023; 8:e164380. [PMID: 37824216 PMCID: PMC10721331 DOI: 10.1172/jci.insight.164380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Aberrant fibroblast function plays a key role in the pathogenesis of idiopathic pulmonary fibrosis, a devastating disease of unrelenting extracellular matrix deposition in response to lung injury. Platelet-derived growth factor α-positive (Pdgfra+) lipofibroblasts (LipoFBs) are essential for lung injury response and maintenance of a functional alveolar stem cell niche. Little is known about the effects of lung injury on LipoFB function. Here, we used single-cell RNA-Seq (scRNA-Seq) technology and PdgfraGFP lineage tracing to generate a transcriptomic profile of Pdgfra+ fibroblasts in normal and injured mouse lungs 14 days after bleomycin exposure, generating 11 unique transcriptomic clusters that segregated according to treatment. While normal and injured LipoFBs shared a common gene signature, injured LipoFBs acquired fibrogenic pathway activity with an attenuation of lipogenic pathways. In a 3D organoid model, injured Pdgfra+ fibroblast-supported organoids were morphologically distinct from those cultured with normal fibroblasts, and scRNA-Seq analysis suggested distinct transcriptomic changes in alveolar epithelia supported by injured Pdgfra+ fibroblasts. In summary, while LipoFBs in injured lung have not migrated from their niche and retain their lipogenic identity, they acquire a potentially reversible fibrogenic profile, which may alter the kinetics of epithelial regeneration and potentially contribute to dysregulated repair, leading to fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Katina L. Johnson
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Leesa J. Deterding
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Jason G. Williams
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | | | | | - Deloris Sutton
- Comparative & Molecular Pathogenesis Branch, National Institute of Environmental Health Sciences, Division of Translational Toxicology, Research Triangle Park, North Carolina, USA
| | - Charan Ganta
- Comparative & Molecular Pathogenesis Branch, National Institute of Environmental Health Sciences, Division of Translational Toxicology, Research Triangle Park, North Carolina, USA
- Inotiv, Research Triangle Park, North Carolina, USA
| | | | - Muhammad Arif
- Section on Fibrotic Disorders, and
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA
| | | | | | | | - Anne K. Perl
- Division of Pulmonary Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
43
|
Chen L, Qiu X, Dupre A, Pellon-Cardenas O, Fan X, Xu X, Rout P, Walton KD, Burclaff J, Zhang R, Fang W, Ofer R, Logerfo A, Vemuri K, Bandyopadhyay S, Wang J, Barbet G, Wang Y, Gao N, Perekatt AO, Hu W, Magness ST, Spence JR, Verzi MP. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell 2023; 30:1520-1537.e8. [PMID: 37865088 PMCID: PMC10841757 DOI: 10.1016/j.stem.2023.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/03/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
The gut epithelium has a remarkable ability to recover from damage. We employed a combination of high-throughput sequencing approaches, mouse genetics, and murine and human organoids and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. The depletion of macrophages or genetic disruption of TGFB signaling significantly impaired the regenerative response. Intestinal regeneration is characterized by the induction of a fetal-like transcriptional signature during repair. In organoid culture, TGFB1 treatment was necessary and sufficient to induce the fetal-like/regenerative state. Mesenchymal cells were also responsive to TGFB1 and enhanced the regenerative response. Mechanistically, pro-regenerative factors, YAP/TEAD and SOX9, are activated in the epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for cellular therapy.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.
| | - Xia Qiu
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Xiaojiao Fan
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Prateeksha Rout
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Katherine D Walton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenxin Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Rachel Ofer
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Sheila Bandyopadhyay
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Gaetan Barbet
- Child Health Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nan Gao
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Ansu O Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA; Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI, Piscataway, NJ 08854, USA.
| |
Collapse
|
44
|
Kim EE, Shekhar A, Ramachandran J, Khodadadi-Jamayran A, Liu FY, Zhang J, Fishman GI. The transcription factor EBF1 non-cell-autonomously regulates cardiac growth and differentiation. Development 2023; 150:dev202054. [PMID: 37787076 PMCID: PMC10652039 DOI: 10.1242/dev.202054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Reciprocal interactions between non-myocytes and cardiomyocytes regulate cardiac growth and differentiation. Here, we report that the transcription factor Ebf1 is highly expressed in non-myocytes and potently regulates heart development. Ebf1-deficient hearts display myocardial hypercellularity and reduced cardiomyocyte size, ventricular conduction system hypoplasia, and conduction system disease. Growth abnormalities in Ebf1 knockout hearts are observed as early as embryonic day 13.5. Transcriptional profiling of Ebf1-deficient embryonic cardiac non-myocytes demonstrates dysregulation of Polycomb repressive complex 2 targets, and ATAC-Seq reveals altered chromatin accessibility near many of these same genes. Gene set enrichment analysis of differentially expressed genes in cardiomyocytes isolated from E13.5 hearts of wild-type and mutant mice reveals significant enrichment of MYC targets and, consistent with this finding, we observe increased abundance of MYC in mutant hearts. EBF1-deficient non-myocytes, but not wild-type non-myocytes, are sufficient to induce excessive accumulation of MYC in co-cultured wild-type cardiomyocytes. Finally, we demonstrate that BMP signaling induces Ebf1 expression in embryonic heart cultures and controls a gene program enriched in EBF1 targets. These data reveal a previously unreported non-cell-autonomous pathway controlling cardiac growth and differentiation.
Collapse
Affiliation(s)
- Eugene E. Kim
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jayalakshmi Ramachandran
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
45
|
Hirakawa H, Gao L, Tavakol DN, Vunjak-Novakovic G, Ding L. Cellular plasticity of the bone marrow niche promotes hematopoietic stem cell regeneration. Nat Genet 2023; 55:1941-1952. [PMID: 37857934 DOI: 10.1038/s41588-023-01528-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Hematopoietic stem cells (HSCs) regenerate after myeloablation, a procedure that adversely disrupts the bone marrow and drives leptin receptor-expressing cells, a key niche component, to differentiate extensively into adipocytes. Regeneration of the bone marrow niche is associated with the resolution of adipocytes, but the mechanisms remain poorly understood. Using Plin1-creER knock-in mice, we followed the fate of adipocytes in the regenerating niche in vivo. We found that bone marrow adipocytes were highly dynamic and dedifferentiated to leptin receptor-expressing cells during regeneration after myeloablation. Bone marrow adipocytes could give rise to osteolineage cells after skeletal injury. The cellular fate of steady-state bone marrow adipocytes was also plastic. Deletion of adipose triglyceride lipase (Atgl) from bone marrow stromal cells, including adipocytes, obstructed adipocyte dedifferentiation and led to severely compromised regeneration of HSCs as well as impaired B lymphopoiesis after myeloablation, but not in the steady state. Thus, the regeneration of HSCs and their niche depends on the cellular plasticity of bone marrow adipocytes.
Collapse
Affiliation(s)
- Hiroyuki Hirakawa
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Longfei Gao
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniel Naveed Tavakol
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Lei Ding
- Columbia Stem Cell Initiative, New York, NY, USA.
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
46
|
Strawbridge SE, Kurowski A, Corujo-Simon E, Fletcher AN, Nichols J, Fletcher AG. insideOutside: an accessible algorithm for classifying interior and exterior points, with applications in embryology. Biol Open 2023; 12:bio060055. [PMID: 37623821 PMCID: PMC10461464 DOI: 10.1242/bio.060055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
A crucial aspect of embryology is relating the position of individual cells to the broader geometry of the embryo. A classic example of this is the first cell-fate decision of the mouse embryo, where interior cells become inner cell mass and exterior cells become trophectoderm. Fluorescent labelling, imaging, and quantification of tissue-specific proteins have advanced our understanding of this dynamic process. However, instances arise where these markers are either not available, or not reliable, and we are left only with the cells' spatial locations. Therefore, a simple, robust method for classifying interior and exterior cells of an embryo using spatial information is required. Here, we describe a simple mathematical framework and an unsupervised machine learning approach, termed insideOutside, for classifying interior and exterior points of a three-dimensional point-cloud, a common output from imaged cells within the early mouse embryo. We benchmark our method against other published methods to demonstrate that it yields greater accuracy in classification of nuclei from the pre-implantation mouse embryos and greater accuracy when challenged with local surface concavities. We have made MATLAB and Python implementations of the method freely available. This method should prove useful for embryology, with broader applications to similar data arising in the life sciences.
Collapse
Affiliation(s)
- Stanley E. Strawbridge
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge, UK
| | - Agata Kurowski
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Corujo-Simon
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge, UK
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Alastair N. Fletcher
- Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge, UK
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Alexander G. Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
- The Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
47
|
Herriges MJ, Yampolskaya M, Thapa BR, Lindstrom-Vautrin J, Wang F, Huang J, Na CL, Ma L, Montminy MM, Bawa P, Villacorta-Martin C, Mehta P, Kotton DN. Durable alveolar engraftment of PSC-derived lung epithelial cells into immunocompetent mice. Cell Stem Cell 2023; 30:1217-1234.e7. [PMID: 37625412 PMCID: PMC10529386 DOI: 10.1016/j.stem.2023.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Durable reconstitution of the distal lung epithelium with pluripotent stem cell (PSC) derivatives, if realized, would represent a promising therapy for diseases that result from alveolar damage. Here, we differentiate murine PSCs into self-renewing lung epithelial progenitors able to engraft into the injured distal lung epithelium of immunocompetent, syngeneic mouse recipients. After transplantation, these progenitors mature in the distal lung, assuming the molecular phenotypes of alveolar type 2 (AT2) and type 1 (AT1) cells. After months in vivo, donor-derived cells retain their mature phenotypes, as characterized by single-cell RNA sequencing (scRNA-seq), histologic profiling, and functional assessment that demonstrates continued capacity of the engrafted cells to proliferate and differentiate. These results indicate durable reconstitution of the distal lung's facultative progenitor and differentiated epithelial cell compartments with PSC-derived cells, thus establishing a novel model for pulmonary cell therapy that can be utilized to better understand the mechanisms and utility of engraftment.
Collapse
Affiliation(s)
- Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Cheng-Lun Na
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - McKenna M Montminy
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
48
|
Berková L, Fazilaty H, Yang Q, Kubovčiak J, Stastna M, Hrckulak D, Vojtechova M, Dalessi T, Brügger MD, Hausmann G, Liberali P, Korinek V, Basler K, Valenta T. Terminal differentiation of villus tip enterocytes is governed by distinct Tgfβ superfamily members. EMBO Rep 2023; 24:e56454. [PMID: 37493498 PMCID: PMC10481656 DOI: 10.15252/embr.202256454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023] Open
Abstract
The protective and absorptive functions of the intestinal epithelium rely on differentiated enterocytes in the villi. The differentiation of enterocytes is orchestrated by sub-epithelial mesenchymal cells producing distinct ligands along the villus axis, in particular Bmps and Tgfβ. Here, we show that individual Bmp ligands and Tgfβ drive distinct enterocytic programs specific to villus zonation. Bmp4 is expressed from the centre to the upper part of the villus and activates preferentially genes connected to lipid uptake and metabolism. In contrast, Bmp2 is produced by villus tip mesenchymal cells and it influences the adhesive properties of villus tip epithelial cells and the expression of immunomodulators. Additionally, Tgfβ induces epithelial gene expression programs similar to those triggered by Bmp2. Bmp2-driven villus tip program is activated by a canonical Bmp receptor type I/Smad-dependent mechanism. Finally, we establish an organoid cultivation system that enriches villus tip enterocytes and thereby better mimics the cellular composition of the intestinal epithelium. Our data suggest that not only a Bmp gradient but also the activity of individual Bmp drives specific enterocytic programs.
Collapse
Affiliation(s)
- Linda Berková
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Hassan Fazilaty
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Qiutan Yang
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jan Kubovčiak
- Laboratory of Genomics and BioinformaticsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Monika Stastna
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Dusan Hrckulak
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Martina Vojtechova
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Tosca Dalessi
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | | | - George Hausmann
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | - Vladimir Korinek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Konrad Basler
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Tomas Valenta
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
49
|
Wei H, Du S, Parksong J, Pasolli HA, Matte-Martone C, Regot S, Gonzalez LE, Xin T, Greco V. Organ function is preserved despite reorganization of niche architecture in the hair follicle. Cell Stem Cell 2023; 30:962-972.e6. [PMID: 37419106 PMCID: PMC10362479 DOI: 10.1016/j.stem.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
The ability of stem cells to build and replenish tissues depends on support from their niche. Although niche architecture varies across organs, its functional importance is unclear. During hair follicle growth, multipotent epithelial progenitors build hair via crosstalk with their remodeling fibroblast niche, the dermal papilla, providing a powerful model to functionally interrogate niche architecture. Through mouse intravital imaging, we show that dermal papilla fibroblasts remodel individually and collectively to form a morphologically polarized, structurally robust niche. Asymmetric TGF-β signaling precedes morphological niche polarity, and loss of TGF-β signaling in dermal papilla fibroblasts leads them to progressively lose their stereotypic architecture, instead surrounding the epithelium. The reorganized niche induces the redistribution of multipotent progenitors but nevertheless supports their proliferation and differentiation. However, the differentiated lineages and hairs produced by progenitors are shorter. Overall, our results reveal that niche architecture optimizes organ efficiency but is not absolutely essential for organ function.
Collapse
Affiliation(s)
- Haoyang Wei
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shuangshuang Du
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeeun Parksong
- Departments of Cell Biology and Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | | | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lauren E Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianchi Xin
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
50
|
Chaen T, Kurosawa T, Kishi K, Kaji N, Ikemoto-Uezumi M, Uezumi A, Hori M. Transcriptome analysis of mesenchymal stromal cells of the large and small intestinal smooth muscle layers reveals a unique gastrontestinal stromal signature. Biochem Biophys Rep 2023; 34:101478. [PMID: 37153863 PMCID: PMC10160341 DOI: 10.1016/j.bbrep.2023.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023] Open
Abstract
Mesenchymal stromal cells in the muscle layer of the large intestine are essential for the regulation of intestinal motility. They form electrogenic syncytia with the smooth muscle and interstitial cells of Cajal (ICCs) to regulate smooth muscle contraction. Mesenchymal stromal cells are present in the muscle layer throughout the gastrointestinal tract. However, their area-specific characteristics remain ambiguous. In this study, we compared mesenchymal stromal cells from the large and small intestinal muscle layers. Histological analysis using immunostaining showed that the cells in the large and small intestines were morphologically distinct. We established a method to isolate mesenchymal stromal cells from wild-type mice with platelet-derived growth factor receptor-alpha (PDGFRα) as a marker on the cell surface and performed RNAseq. Transcriptome analysis revealed that PDGFRα+ cells in the large intestine exhibited increased expression levels of collagen-related genes, whereas PDGFRα+ cells in the small intestine exhibited increased expression levels of channel/transporter genes, including Kcn genes. These results suggest that mesenchymal stromal cells differ morphologically and functionally depending on gastrointestinal tract. Further investigations of the cellular properties of mesenchymal stromal cells in the gastrointestinal tract will aid in optimizing methods for the prevention and treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Takashi Chaen
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tamaki Kurosawa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Division of Cell Heterogeneity, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Kazuhisa Kishi
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriyuki Kaji
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Madoka Ikemoto-Uezumi
- Division of Cell Heterogeneity, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Masatoshi Hori
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Corresponding author.
| |
Collapse
|