1
|
Li Y, Zou H, Ma L, Hu D, Long H, Lin J, Luo Z, Zhou Y, Liao F, Wang X, Meng Y, Wang W, Li G, Zhang Z. Fuzheng Jiedu decoction alleviates H1N1 virus-induced acute lung injury in mice by suppressing the NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119314. [PMID: 39746408 DOI: 10.1016/j.jep.2024.119314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Severe influenza, marked by excessive cytokine production, is a major contributor to death in hospitalized individuals. Fuzheng Jiedu decoction (FZJDD), an effective traditional Chinese herbal recipe, has demonstrated promising results in combating the COVID-19 pandemic by reducing mortality and improving Symptoms, and has exhibited anti-inflammatory properties in both clinical trials and laboratory research. Given that pneumonia is a common outcome of SARS-CoV-2 and H1N1 virus infections, we hypothesized that FZJDD may also have therapeutic effects on influenza-related pneumonia and acute lung injury (ALI). AIM OF THE STUDY This research sought to explore the impact and underlying mechanisms of FZJDD on ALI caused by the H1N1 virus in mice. MATERIALS AND METHODS FZJDD was characterized using UHPLC-MS/MS. A mouse model infected with H1N1 virus was used to examine the therapeutic and protective benefits of FZJDD in a living organism, by monitoring body weight fluctuations, lung index, histopathological changes, lung injury scores, and survival rates. Lung tissues underwent haematoxylin-eosin staining, western blotting, qRT-PCR and plaque reduction assay. Blood serum was gathered to assess levels of IL-1β, IL-6, TNF-α through ELISA testing. The impact of FZJDD on the NLRP3 inflammasome was further evaluated in macrophages. RESULTS FZJDD treatment significantly mitigated weight loss, reduced lung index, alleviated histopathological injury, and improved the survival rates in mice with H1N1 virus-induced ALI, demonstrating a protective effect against influenza virus infection. qRT-PCR and Western blot assays revealed that FZJDD treatment ameliorated the hyperinflammatory response caused by the H1N1 virus in lung tissue by suppressing NLRP3 inflammasome activation, without impacting viral replication. In vitro experiments additionally verified that FZJDD treatment can suppress the activation of the NLRP3 inflammasome triggered by the H1N1 virus. CONCLUSION Our findings demonstrate that FZJDD treatment can mitigate ALI caused by H1N1 virus and enhance the survival rate in mice, while it doesn't lower viral titers in the lungs. FZJDD achieves these outcomes by curbing excessive inflammation and blocking the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yuting Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haimei Zou
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lin Ma
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haishan Long
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingnan Lin
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ziqing Luo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ye Zhou
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xianyang Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Meng
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenbiao Wang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Zhongde Zhang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Hassan MSH, Sharif S. Immune responses to avian influenza viruses in chickens. Virology 2025; 603:110405. [PMID: 39837219 DOI: 10.1016/j.virol.2025.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Chickens are a key species in both the manifestation of avian influenza and the potential for zoonotic transmission. Avian influenza virus (AIV) infection in chickens can range from asymptomatic or mild disease with low pathogenic AIVs (LPAIVs) to systemic fatal disease with high pathogenic AIVs (HPAIVs). During AIV infection in chickens, Toll-like receptor 7 and melanoma differentiation-associated gene 5 are upregulated to detect the single-stranded ribonucleic acid genomes of AIV, triggering a signaling cascade that produces interferons (IFNs) and pro-inflammatory cytokines. These inflammatory mediators induce the expression of antiviral proteins and recruit immune system cells, such as macrophages and dendritic cells, to the infection site. AIV evades these antiviral responses primarily through its non-structural protein 1, which suppresses type I IFNs, influencing viral pathogenicity. The uncontrolled release of pro-inflammatory cytokines may contribute to the pathogenicity and high mortality associated with HPAIV infections. AIV modulates apoptosis in chicken cells to enhance its replication, with variations in apoptosis pathways influenced by viral strain and host cell type. The presentation of AIV antigens to T and B cells leads to the production of neutralizing antibodies and the targeted destruction of infected cells by CD8+ T cells, respectively, which enhances protection and establishes immunological memory. This review explores the diverse innate and adaptive immune responses in chickens to different AIVs, focusing on the dynamics of these responses relative to protection, susceptibility, and potential immunopathology. By understanding these immune mechanisms, informed strategies for controlling AIV infection and improving chicken health can be developed.
Collapse
Affiliation(s)
- Mohamed S H Hassan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
3
|
Zhang F, Liu M, Wang Y, Zhao X, Zhao C, Liu D, Li Y, Xu X, Li X, Yang H, Tian J. Bailixiang tea, an herbal medicine formula, co-suppresses TLR2/MAPK8 and TLR2/NF-κB signaling pathways to protect against LPS-triggered cytokine storm in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118791. [PMID: 39265795 DOI: 10.1016/j.jep.2024.118791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has shown notable effectiveness and safety in managing illnesses linked to cytokine storm(CS). Bailixiang tea (BLX), an herbal medicine formula, which is a compound Chinese medicine composed of Thymus mongolicus (Ronniger) Ronniger (Bailixiang), Glycyrrhiza uralensis Fisch. (Gancao), Citrus reticulata Blanco (Chenpi), Cyperus rotundus L. (Xiangfu), and Perilla frutescens (L.) Britton (Zisu). The objective of this study was to explore the capacity of BLX in improving LPS-induced CS. AIM OF THE STUDY This study aimed to validate the mitigating effect of BLX on CS and to further investigate its mechanism. MATERIALS AND METHODS mice were orally administered BLX for 24 h after being treated with 5 mg/kg lipopolysaccharide (LPS). Histopathological observations further confirmed the significant protective effect of BLX treatment against LPS-induced lung and spleen damage. Additionally, we aimed to explore the molecular mechanism underlying its effects through blood proteomics and transcriptomics analyses. Real-Time Quantitative PCR (RT-qPCR) was utilized to detect the levels of Toll-like receptor 2 (TLR2), Matrix metalloproteinase 8 (MMP8), Matrix metalloproteinase 9 (MMP9), Integrin beta 2 (ITGB2), Mitogen-activated protein kinase 8 (MAPK8), Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon (NFKBIE), Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (NFKB2), and Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH)expressions in the lung tissue. RESULTS The results demonstrated that BLX effectively down-regulated the overproduction of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) in both the serum and lung and spleen tissues. Furthermore, BLX effectively mitigated the overproduction of monocyte chemoattractant protein-1 (MCP-1) in the serum. Through comprehensive multi-omics analysis, it was revealed that BLX specifically targeted and regulated TLR2/MAPK8 and TLR2/NF-κB signaling pathways, which play a crucial role in the production of key cytokines. CONCLUSIONS The findings of this study demonstrate that Bailixiang tea possesses the ability to alleviate lung tissue damage and inhibit the development of LPS-induced cytokine storm in mice. These effects are attributed to the tea's ability to suppress the TLR2/MAPK8 and TLR2/NF-κB pathways. Consequently, this research highlights the potential application of Bailixiang tea as a treatment option for cytokine storm.
Collapse
Affiliation(s)
- Fengrong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoang Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dewen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Youming Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jixiang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Zhang L, Chu Q, Jiang S, Shao B. Integration of Mendelian Randomization to explore the genetic influences of pediatric sepsis: a focus on RGL4, ATP9A, MAP3K7CL, and DDX11L2. BMC Pediatr 2025; 25:66. [PMID: 39871218 PMCID: PMC11770931 DOI: 10.1186/s12887-025-05424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025] Open
Abstract
OBJECTIVE This study aims to explore the genetic characteristics of pediatric sepsis through a combined analysis of multiple methods, including Mendelian Randomization (MR), differential gene expression analysis, and immune cell infiltration assessment. It explores their potential as biomarkers for sepsis risk and their involvement in immune-related pathways. METHODS Differential expression analysis was performed using public datasets to identify genes with significant expression changes between pediatric sepsis patients and healthy controls. MR analysis utilized genome-wide significant SNPs as instrumental variables to assess causal relationships between gene expression and sepsis risk. Bi-directional MR was conducted to assess both forward and reverse causality. FDR correction was applied to adjust for multiple comparisons in MR results. Immune cell infiltration analysis was performed to investigate the genes' roles in immune responses, and findings were validated with independent datasets. ROC curves were constructed to assess predictive performance. RESULTS Differential expression analysis identified significant changes in RGL4,ATP9A,MAP3K7CL, and DDX11L2. MR analysis revealed causal associations between these genes and sepsis risk, with RGL4 and ATP9A upregulated (inflammatory roles), and MAP3K7CL and DDX11L2 downregulated (protective roles). Bi-directional MR found no significant reverse causality. Immune cell analysis showed associations with key immune cell types, and ROC analysis demonstrated strong predictive potential. CONCLUSION RGL4,ATP9A,MAP3K7CL, and DDX11L2 play important roles in pediatric sepsis risk and immune response regulation, offering insights into genetic and immune mechanisms that may inform future sepsis research and treatment.
Collapse
Affiliation(s)
- Liuzhao Zhang
- Department of Critical Care Medicine, Anhui Jing'an Medicine Hospital, Hefei, 230032, China
| | - Quanwang Chu
- Department of Critical Care Medicine, Anhui Jing'an Medicine Hospital, Hefei, 230032, China
| | - Shuyue Jiang
- Department of Critical Care Medicine, Anhui Jing'an Medicine Hospital, Hefei, 230032, China
| | - Bo Shao
- Department of Pathology, Anhui Provincial Children's Hospital, 39 Wangjiang East Road, Hefei, Anhui, 230051, China.
| |
Collapse
|
5
|
Hu Z, Li S, Chen H, Yu Z, Wang W, Zhang X, Yu M, Wang J. Phage Display-Mediated Immuno-Multiplex Quantitative PCR for the Simultaneous Quantification of IFN-γ and IL-6. ACS OMEGA 2025; 10:2260-2268. [PMID: 39866602 PMCID: PMC11755140 DOI: 10.1021/acsomega.4c09624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025]
Abstract
In phage display technology, exogenous DNA is inserted into the phage genome, which generates a fusion protein with the phage coat protein, facilitates expression and promotes biological activity. This approach is primarily used to screen antibody libraries owing to its high library capacity and fast technical cycle; additionally, various types of genetically altered antibodies can be easily produced. In this study, we fused the pIII structural protein of the M13K07 phage with a scFv created by connecting the VH and VL domains of an anti-IFN-γ antibody. Western blotting and phage immunoprecipitation demonstrated that the recombinant phage can specifically bind to IFN-γ. After determining the amplification efficiency of the recombinant phage, we developed a PD-IPCR-based test for the cytokine IFN-γ. The method's linear range, detection limit, blank spiking recoveries, and stability were ascertained via a standard curve; the ability of PD-IPCR to target IFN-γ was compared with that of traditional ELISA, and the results of the two assays were consistent. Once the feasibility of using PD-IPCR to target individual cytokines was verified, we established a dual PD-IPCR quantitative assay based on a Taqman probe for IFN-γ and IL-6 in the same system, demonstrating the feasibility of the phage display technology constructed herein for multiple cytokine detection.
Collapse
Affiliation(s)
| | | | | | - Zhuoying Yu
- School of Life
Sciences, Beijing University of Chinese
Medicine, Beijing 102488, China
| | - Wenjuan Wang
- School of Life
Sciences, Beijing University of Chinese
Medicine, Beijing 102488, China
| | - Xiaotian Zhang
- School of Life
Sciences, Beijing University of Chinese
Medicine, Beijing 102488, China
| | - Mengyuan Yu
- School of Life
Sciences, Beijing University of Chinese
Medicine, Beijing 102488, China
| | - Jianxun Wang
- School of Life
Sciences, Beijing University of Chinese
Medicine, Beijing 102488, China
| |
Collapse
|
6
|
Zhou T, Li J, Li W, Yu J, Deng Y, Duan X, Lin J, Wang X, Liang Y, Zhang C, Yu M, Shi R, Chen C, Yang S, Zeng S, Shen X, Wang Y, Sun J, Shu Z. Gegen Qinlian Decoction improves H1N1-induced viral pneumonia by modulating the "gut microbiota-metabolomics-immune/inflammation" axis. Int Immunopharmacol 2025; 144:113607. [PMID: 39571267 DOI: 10.1016/j.intimp.2024.113607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND AND AIM The acute pulmonary infectious disease caused by influenza viruses is known as influenza virus pneumonia (IVP). In recent years, Gegen Qinlian Decoction (GQD) has been widely used to treat pulmonary inflammation; however, the underlying mechanism of action of GQD in IVP remains unclear. This study aimed to elucidate the molecular mechanism through which GQD improved IVP. MATERIALS AND METHODS The efficacy of GQD was evaluated using classical pharmacodynamic indicators in a murine model of H1N1-induced IVP. Network pharmacology predicted the material basis of GQD in improving IVP, while metabonomics and 16 s rDNA sequencing assessed its regulation on small molecule metabolites and intestinal flora. Additionally, molecular biology techniques were used to investigate the molecular mechanism underlying the improvement of IVP by GQD. RESULTS The study results demonstrated that GQD exhibited a significant ameliorative effect on the inflammatory response in lung tissue of IVP mice. The potential pharmacological substances of GQD for improving IVP were identified by network pharmacology combined with ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) analysis, including puerarin, baicalin, berberine, and glycyrrhizin. Further analysis of biological processes and mechanisms of action predicted that GQD could improve IVP by inhibiting activation of inflammasomes, regulating the body's immune system, and intestinal microecology. Metabolomics and microbiomics findings revealed that GQD could bi-directionally regulate lipid and amino acid metabolites by increasing the abundance of beneficial bacteria like Akkermansia and Acetobacter, thereby maintaining host metabolic balance and immune homeostasis. RT-qPCR and immunohistochemistry results indicated that GQD improved IVP by inhibiting the complement C3/NLRP3 inflammasome pathway. CONCLUSION The findings of this study confirmed that GQD effectively inhibited IVP by modulating the "gut microbiota-metabolomics-immune/inflammation" axis in the host, thereby establishing a solid immunological foundation for the clinical application of GQD.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiamin Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongan Deng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaodong Duan
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chongyang Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Miao Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengkai Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simin Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuting Zeng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100029, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
7
|
Shi Z, Jiao Y, Lai Z, Liu J, Yang B, Hu M, Meng J. Evaluation of the protective role of resveratrol on LPS-induced septic intestinal barrier function via TLR4/MyD88/NF-κB signaling pathways. Sci Rep 2025; 15:828. [PMID: 39755761 DOI: 10.1038/s41598-025-85148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025] Open
Abstract
The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear. Thus, this study aims to explore the potential beneficial effects of resveratrol on maintaining intestinal barrier function. Fifteen male Sprague Dawley rats, weighing between 180 g and 220 g, were randomly assigned to one of three groups: the control group (Con), the lipopolysaccharide (LPS) group, and the resveratrol (RSV) group. The resveratrol group received an intravenous administration of resveratrol at a dosage of 8 mg/kg, 10 min prior to lipopolysaccharide treatment. Each group comprised five rats. Various techniques including enzyme-linked immunosorbent assay (ELISA), hematoxylin and eosin staining (HE), periodic acid Schiff (PAS) staining, transmission electron microscopy (TEM), Western blot analysis (WB), and quantitative real-time polymerase chain reaction (qRT-PCR) were utilized to assess differences in inflammatory cytokine expression, histopathological changes, apoptosis, tight junction (TJ) protein, and the TLR4/MyD88/NF-кB signaling pathways. Resveratrol exhibited anti-inflammatory effects by decreasing levels of interleukin (IL)-1β, interleukin(IL)-6, and tumor necrosis factor (TNF)-α, while increasing interleukin (IL)-10. Additionally, in rats treated with resveratrol, there was a reduction in the expression of apoptosis-associated proteins Bax and Caspase-3. Resveratrol also significantly increased the expression of intestinal tight junction proteins (TJ), and decreased the levels of intestinal fatty acid binding protein (I-FABP) and D-lactic acid (D-LA). Furthermore, the expression of proteins in the related signaling pathways TLR4, MyD88, and NF-κB was decreased. Resveratrol has been shown to reduce the expression of intestinal apoptotic proteins, enhance the expression of intestinal tight junction proteins, and inhibit the inflammatory response mediated by the TLR4/MyD88/NF-κB signaling pathway, thereby alleviating LPS-induced septic intestinal injury.
Collapse
Affiliation(s)
- Zhongliang Shi
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yanna Jiao
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Zhizhen Lai
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Juan Liu
- Department of Nephrology, Hangzhou Linping Hospital of Traditional Chinese Medicine, #101 Yuncheng Street, Hangzhou, 311106, Zhejiang Province, People's Republic of China
| | - Bo Yang
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Mahong Hu
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Jianbiao Meng
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Bolat İ, Bolat M, Kiliçlioğlu M, Yıldırım S, Sağlam YS, Çomaklı S, Gözegir B, Özmen M, Warda M. Differential TLR2 and TLR4 mediated inflammatory and apoptotic responses in asymptomatic and symptomatic Leptospira interrogans infections in canine uterine tissue. Microb Pathog 2025; 198:107186. [PMID: 39615709 DOI: 10.1016/j.micpath.2024.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024]
Abstract
Leptospirosis is major zoonotic disease with global implications, affecting both domestic animals and humans. It is caused by Leptospira interrogans (L. interrogans), which can damage multiple organs, including the kidneys, liver, testes, and uterus. Despite this, L. interrogans can also persist asymptomatically in tissues, akin to nonpathogenic strains. The mechanisms driving asymptomatic infections remain poorly understood. This study investigated the role of L. interrogans in asymptomatic infection within the uterine tissue of canines, focusing on the differential expression of Toll-like receptors (TLRs)2 and 4 and their roles in inflammatory and apoptotic pathways. We hypothesized that TLR2 and TLR4 coexpression is crucial for eliciting inflammation and apoptosis, whereas TLR4 alone might be insufficient. Our findings revealed that in symptomatic infections, both TLR2 and TLR4 are coexpressed, leading to markedly elevated levels of the proinflammatory cytokines IL-10, IL-1β, TNF-α, and IL-6. This enhanced inflammatory response is further evidenced by increased CD4 expression, indicating robust T helper cell activation. In contrast, asymptomatic infections are characterized by exclusive TLR4 expression, with inflammatory markers remaining at baseline levels. Additionally, we observed that L. interrogans induces apoptosis in symptomatic animals through TLR2 and TLR4 mediated activation of Caspase 8 and Caspase 3. These findings illustrate that L. interrogans drives both inflammation and apoptosis via the combination of TLR2 and TLR4 actions. When only TLR4 is activated, the immune response is insufficient, resulting in an asymptomatic disease course. This study provides novel insights into the differential roles of TLR receptors in leptospirosis, offering potential directions for targeted therapeutic strategies.
Collapse
Affiliation(s)
- İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Metin Kiliçlioğlu
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yavuz Selim Sağlam
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Berrah Gözegir
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Murat Özmen
- Molecular Diagnostics and Research Laboratory, Ministry of Agriculture and Forestry, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Dutta S, Zhu Y, Almuntashiri S, Peh HY, Zuñiga J, Zhang D, Somanath PR, Ramírez G, Irineo-Moreno V, Jiménez-Juárez F, López-Salinas K, Regino N, Campero P, Crocker SJ, Owen CA, Wang X. PDGFRα-positive cell-derived TIMP-1 modulates adaptive immune responses to influenza A viral infection. Am J Physiol Lung Cell Mol Physiol 2025; 328:L60-L74. [PMID: 39585242 DOI: 10.1152/ajplung.00104.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a physiologic inhibitor of the matrix metalloproteinases (MMPs), but little is known about the role of TIMP-1 in regulating the pathogenesis of influenza A virus (IAV) infection. Here, we performed both in vivo and in vitro experiments to investigate the regulation and function of TIMP-1 during IAV infection. Specifically, plasma levels of TIMP-1 are significantly increased in human subjects and wild-type (WT) mice infected with 2009 H1N1 IAV compared with levels in uninfected controls. Also, TIMP-1 is strikingly upregulated in PDGFRα positive (PDGFRα+) cells in IAV-infected murine lungs as demonstrated using conditional KO (cKO) mice with a specific deletion of Timp-1 in PDGFRα+ cells. Our in vitro data indicated that TIMP-1 is induced by transforming growth factor-β (TGF-β) during lipofibroblasts (lipoFBs)-to-myofibroblast (myoFB) transdifferentiation. Timp-1 deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. IAV-infected Timp-1-deficient mice showed increased macrophages, and B and T cell counts in bronchoalveolar lavage (BAL) on day 7 postinfection (p.i.), but reduced BAL neutrophil counts. Increased Cxcl12 levels were detected in both BAL cells and lungs from Timp-1-deficient mice on day 3 p.i. Taken together, our data strongly link TIMP-1 to IAV pathogenesis. We identified that PDGFRα-lineage cells are the main cellular source of elevated TIMP-1 during IAV infection. Loss of Timp-1 attenuates IAV-induced mortality and promotes T and B cell recruitment. Thus, TIMP-1 may be a novel therapeutic target for IAV infection.NEW & NOTEWORTHY Our data strongly link tissue inhibitor of metalloproteinases-1 (TIMP-1) to influenza A virus (IAV) pathogenesis. TIMP-1 is highly increased in PDGFRα-lineage cells during IAV infection. Transforming growth factor-β (TGF-β) induces TIMP-1 during lipofibroblast (lipoFB)-to- myofibroblast (myoFB) transdifferentiation. Timp-1 deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. TIMP-1 may be a novel therapeutic target for IAV infection.
Collapse
Affiliation(s)
- Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Valeria Irineo-Moreno
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Fabiola Jiménez-Juárez
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Karen López-Salinas
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Nora Regino
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Paloma Campero
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, United States
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
10
|
Tyagi S, Tyagi N, Singh A, Gautam A, Singh A, Jindal S, Singh RP, Chaturvedi R, Kushwaha HR. Linking COVID-19 and cancer: Underlying mechanism. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167563. [PMID: 39510388 DOI: 10.1016/j.bbadis.2024.167563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/13/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), lead to a global health crisis with a spectrum of clinical manifestations. A potentially vulnerable category for SARS-CoV-2 infection was identified in patients with other medical conditions. Intriguingly, parallels exist between COVID-19 and cancer at the pathophysiological level, suggesting a possible connection between them. This review discusses all possible associations between COVID-19 and cancer. Expression of receptors like angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) increases COVID-19 susceptibility. SARS-CoV-2 infection might increase cancer susceptibility and accelerate cancer progression through mechanisms involving cytokine storm, tissue hypoxia, impaired T-cell responses, autophagy, neutrophil activation, and oxidative stress. These mechanisms collectively contribute to immune suppression, hindered apoptosis, and altered cellular signaling in the tumor microenvironment, creating conditions favorable for tumor growth, metastasis, and recurrence. Approved vaccines and their impact on cancer patients along-with new clinical trials are also described.
Collapse
Affiliation(s)
- Sourabh Tyagi
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akanksha Gautam
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shelja Jindal
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rana P Singh
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Rupesh Chaturvedi
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Hemant Ritturaj Kushwaha
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
11
|
Bi Q, Zhu J, Zheng J, Xu Q, Chen J, Zhang L, Mu X. Blood Inflammatory Markers and Cytokines in COVID-19 Patients With Bacterial Coinfections. Immun Inflamm Dis 2024; 12:e70105. [PMID: 39692539 PMCID: PMC11653711 DOI: 10.1002/iid3.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Bacterial coinfection in patients with SARS-CoV-2 infection is an important risk factor for death. This study investigated whether there were differences in levels of serum inflammatory markers in COVID-19 patients with bacterial coinfections compared with those without bacterial infection. METHODS A total of 235 inpatients with SARS-CoV-2 infection admitted to Qingdao Central Hospital from December 7, 2022, to August 7, 2024, were included. Patients were divided into a bacteria-positive group (115 cases) and a bacteria-negative group (120 cases) according to whether they had bacterial coinfections. PCT, CRP, and 12 kinds of cytokines were compared between groups, and the distribution of bacterial species in the positive group was statistically analyzed. RESULTS The serum levels of CRP (Z = 8.94, p < 0.001), PCT (Z = 5.59, p < 0.001), IL-1β (t = 4.863, p < 0.001), IL-2 (t = 5.810, p < 0.001), IL-5 (t = 3.837, p < 0.001), IL-6 (t = 4.910, p < 0.001), IL-8 (t = 3.325, p < 0.001), ILIL-12p70 (t = 4.722, p < 0.001), IL-17 (t = 3.315, p = 0.001) and TNF-α (t = 4.251, p < 0.001) between the two groups were significantly different. IL-4, IL-10, IFN-α, and IFN-γ were not statistically significant (p > 0.05). Among the 115 bacteria-positive patients, 56 patients were positive for one species and 59 patients were multiple infections. Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae were common species. CONCLUSIONS Serum PCT and CRP levels in COVID-19 patients with bacterial coinfection are higher than those without bacterial infection. Cytokines such as IL-1β, IL-2, IL-5, IL-6, IL-8, IL-12p70, IL-17, and TNF-α may be involved in the progression of COVID-19 combined with bacterial infection. They can be used as potential markers to evaluate the disease condition and prognosis.
Collapse
Affiliation(s)
- Qingqing Bi
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| | - Jie Zhu
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| | - Jinju Zheng
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| | - Qingyun Xu
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
- Department of Clinical LaboratoryPeking University First HospitalBeijingChina
| | - Juan Chen
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| | - Lei Zhang
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| | - Xiaofeng Mu
- Department of Laboratory MedicineQingdao Central HospitalQingdaoChina
| |
Collapse
|
12
|
Sulić J, Marijanović I, Kraljević M, Šućur A, Kelava T, Mikulić I, Ćavar I. Correlation of Cytokine Profiles with Prostate-Specific Antigen and Disease Grade in Prostate Cancer. Med Sci Monit Basic Res 2024; 30:e946776. [PMID: 39568188 PMCID: PMC11600637 DOI: 10.12659/msmbr.946776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The development and progression of prostate cancer are multistep processes involving several growth factors, hormones, and cytokines. This study aimed to measure the serum concentrations of different cytokines and determine their correlation with prostate-specific antigen (PSA) levels and disease grade in patients with prostate adenocarcinoma. MATERIAL AND METHODS This cross-sectional study was conducted from March 2023 to March 2024 at the Clinic of Oncology of the University Hospital Center in Mostar, Bosnia and Herzegovina. Altogether, 50 male patients with prostate adenocarcinoma were included, of whom 28 had no proven metastases (PC group) and 22 had metastatic disease (MPC group). Serum concentrations of total (tPSA), free (fPSA), and complexed (cPSA) PSA were determined using a chemiluminescent microparticle immunoassay, whereas serum concentrations of cytokines were measured using a flow cytometry bead-based assay. RESULTS The MPC group had higher serum tPSA, fPSA, and cPSA levels than the PC group. The PC group had significantly higher serum levels of monocyte chemotactic protein (MCP)-1 than the MPC group (P=0.008). In the PC group, serum levels of interleukin (IL)-10 significantly correlated with cPSA. In the MPC group, serum concentrations of IL-1ß, tumor necrosis factor (TNF)-alpha, and IL-23 significantly correlated with disease grade. CONCLUSIONS Our study emphasizes the importance of MCP-1 in the development of prostate cancer, while IL-10 was the only cytokine whose serum level significantly correlated with cPSA. Serum concentrations of IL-1ß, TNF-alpha, and IL-23 may serve as potential biomarkers for disease grade.
Collapse
Affiliation(s)
- Jelena Sulić
- Department of Physiology and Immunology, University of Mostar School of Medicine, Mostar, Bosnia and Herzegovina
| | - Inga Marijanović
- Department of Oncology, Clinical Hospital Center Mostar, Mostar, Bosnia and Herzegovina
| | - Marija Kraljević
- Department of Oncology, Clinical Hospital Center Mostar, Mostar, Bosnia and Herzegovina
| | - Alan Šućur
- Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivanka Mikulić
- Institute for Laboratory Diagnostics, Clinical Hospital Center Mostar, Mostar, Bosnia and Herzegovina
| | - Ivan Ćavar
- Department of Physiology and Immunology, University of Mostar School of Medicine, Mostar, Bosnia and Herzegovina
| |
Collapse
|
13
|
Gao T, Liu J, Huang N, Zhou Y, Li C, Chen Y, Hong Z, Deng X, Liang X. Sangju Cold Granule exerts anti-viral and anti-inflammatory activities against influenza A virus in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118521. [PMID: 38969152 DOI: 10.1016/j.jep.2024.118521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sangju Cold Granule (SJCG) is a classical traditional Chinese medicine (TCM) prescription described in "Item Differentiation of Warm Febrile Diseases". Historically, SJCG was employed to treat respiratory illnesses. Despite its popular usage, the alleviating effect of SJCG on influenza A virus infection and its mechanisms have not been fully elucidated. AIM OF THE STUDY Influenza is a severe respiratory disease that threatens human health. This study aims to assess the therapeutic potential of SJCG and the possible molecular mechanism underlying its activity against influenza A virus in vitro and in vivo. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography (UPLC)-Q-Exactive was used to identify the components of SJCG. The 50% cytotoxic concentration of SJCG in MDCK and A549 cells were determined using the CCK-8 assay. The activity of SJCG against influenza A virus H1N1 was evaluated in vitro using plaque reduction and progeny virus titer reduction assays. RT-qPCR was performed to obtain the expression levels of inflammatory mediators and the transcriptional regulation of RIG-I and MDA5 in H1N1-infected A549 cells. Then, the mechanism of SJCG effect on viral replication and inflammation was further explored by measuring the expressions of proteins of the RIG-I/NF-kB/IFN(I/III) signaling pathway by Western blot. The impact of SJCG was explored in vivo in an intranasally H1N1-infected BALB/c mouse pneumonia model treated with varying doses of SJCG. The protective role of SJCG in this model was evaluated by survival, body weight monitoring, lung viral titers, lung index, lung histological changes, lung inflammatory mediators, and peripheral blood leukocyte count. RESULTS The main SJCG chemical constituents were flavonoids, carbohydrates and glycosides, amino acids, peptides, and derivatives, organic acids and derivatives, alkaloids, fatty acyls, and terpenes. The CC50 of SJCG were 24.43 mg/mL on MDCK cells and 20.54 mg/mL on A549 cells, respectively. In vitro, SJCG significantly inhibited H1N1 replication and reduced the production of TNF-α, IFN-β, IL-6, IL-8, IL-13, IP-10, RANTES, TRAIL, and SOCS1 in infected A549 cells. Intracellularly, SJCG reduced the expression of RIG-I, MDA5, P-NF-κB P65 (P-P65), P-IκBα, P-STAT1, P-STAT2, and IRF9. In vivo, SJCG enhanced the survival rate and decreased body weight loss in H1N1-infected mice. Mice with H1N1-induced pneumonia treated with SJCG showed a lower lung viral load and lung index than untreated mice. SJCG effectively alleviated lung damage and reduced the levels of TNF-α, IFN-β, IL-6, IP-10, RANTES, and SOCS1 in lung tissue. Moreover, SJCG significantly ameliorated H1N1-induced leukocyte changes in peripheral blood. CONCLUSIONS SJCG significantly reduced influenza A virus and virus-mediated inflammation through inhibiting the RIG-I/NF-kB/IFN(I/III) signaling pathway. Thus, SJCG could provide an effective TCM for influenza treatment.
Collapse
Affiliation(s)
- Taotao Gao
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinbing Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, China; Department of Ultrasound Medicine, Liwan Central Hospital of Guangzhou, 35 Liwan Road, Guangzhou, 510000, Guangdong, China
| | - Nan Huang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yingxuan Zhou
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Conglin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yintong Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zifan Hong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoyan Deng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xiaoli Liang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
14
|
Yao M, Li M, Peng D, Wang Y, Li S, Zhang D, Yang B, Qiu HJ, Li LF. Unraveling Macrophage Polarization: Functions, Mechanisms, and "Double-Edged Sword" Roles in Host Antiviral Immune Responses. Int J Mol Sci 2024; 25:12078. [PMID: 39596148 PMCID: PMC11593441 DOI: 10.3390/ijms252212078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Numerous viruses that propagate through the respiratory tract may be initially engulfed by macrophages (Mφs) within the alveoli, where they complete their first replication cycle and subsequently infect the adjacent epithelial cells. This process can lead to significant pathological damage to tissues and organs, leading to various diseases. As essential components in host antiviral immune systems, Mφs can be polarized into pro-inflammatory M1 Mφs or anti-inflammatory M2 Mφs, a process involving multiple signaling pathways and molecular mechanisms that yield diverse phenotypic and functional features in response to various stimuli. In general, when infected by a virus, M1 macrophages secrete pro-inflammatory cytokines to play an antiviral role, while M2 macrophages play an anti-inflammatory role to promote the replication of the virus. However, recent studies have shown that some viruses may exhibit the opposite trend. Viruses have evolved various strategies to disrupt Mφ polarization for efficient replication and transmission. Notably, various factors, such as mechanical softness, the altered pH value of the endolysosomal system, and the homeostasis between M1/M2 Mφs populations, contribute to crucial events in the viral replication cycle. Here, we summarize the regulation of Mφ polarization, virus-induced alterations in Mφ polarization, and the antiviral mechanisms associated with these changes. Collectively, this review provides insights into recent advances regarding Mφ polarization in host antiviral immune responses, which will contribute to the development of precise prevention strategies as well as management approaches to disease incidence and transmission.
Collapse
Affiliation(s)
- Meng Yao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Dingkun Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Yijing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.Y.); (M.L.); (D.P.); (Y.W.); (S.L.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (D.Z.); (B.Y.)
| |
Collapse
|
15
|
Le DD, Jang YS, Truong V, Dinh T, Dang T, Yu S, Lee M. Anti-Inflammatory Effects and Metabolomic Analysis of Ilex Rotunda Extracted by Supercritical Fluid Extraction. Int J Mol Sci 2024; 25:11965. [PMID: 39596036 PMCID: PMC11593382 DOI: 10.3390/ijms252211965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Ilex rotunda is a famous medicinal plant with many ethnopharmacological uses. It is traditionally employed for treating inflammation and cardiovascular diseases. In this study, we established green technology to extract the leaves and twigs of I. rotunda. The obtained extracts and their fractions were evaluated for their anti-inflammatory potential. In cytokine assays, the extract, n-hexane (H), methylene chloride (MC), and EtOAc (E) fractions of the twigs of I. rotunda significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α production in RAW264.7 macrophages. Furthermore, the extract, H, and MC fractions of the leaves of I. rotunda modulated cytokine expression by downregulating LPS-induced NO, IL-6, and TNF-α production in RAW264.7 macrophages. Western blotting analysis revealed that the extracts and fractions of the leaves and twigs of I. rotunda inhibited inflammatory cytokines by inactivating nuclear factor kappa B (NFκB) action by reducing the phosphorylation of transcript factor (p65) and nuclear factor-kappa B inhibitor alpha (IκBα) degradation, or by inactivating mitogen-activated protein kinase (MAPK) through the p38 or ERK signaling pathways via the active ingredients of the leaves and twigs of I. rotunda. Ultra-high-resolution liquid chromatography-Orbitrap mass analysis (UHPLC-ESI-Orbitrap-MS/MS)-based molecular networking, in cooperation with social open platform-guided isolation and dereplication, led to the identification of metabolites in this plant. Our findings indicate that the leaves and twigs of I. rotunda could be promising candidates for developing therapeutic strategies to treat anti-inflammatory diseases.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
- Nano Bio Research Center, Jeonnam Bio Foundation, Jangseong 57248, Jeonnam, Republic of Korea;
| | - Young Su Jang
- Nano Bio Research Center, Jeonnam Bio Foundation, Jangseong 57248, Jeonnam, Republic of Korea;
| | - Vinhquang Truong
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Thientam Dinh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Thinhulinh Dang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Soojung Yu
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jun-Gangno, Suncheon 57922, Jeonnam, Republic of Korea;
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jun-Gangno, Suncheon 57922, Jeonnam, Republic of Korea;
| |
Collapse
|
16
|
Li R, Zhang W, Huang B, Sun G, Xie Y, Song J, Wang S, Du G. Dayuan Yin alleviates symptoms of HCoV-229E-induced pneumonia and modulates the Ras/Raf1/MEK/ERK pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:58. [PMID: 39495380 PMCID: PMC11534925 DOI: 10.1007/s13659-024-00474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/15/2024] [Indexed: 11/05/2024]
Abstract
Viral pneumonia is characterized by inflammation in the lungs triggered by respiratory viruses. Dayuan Yin (DYY), a traditional Chinese medicine formula known for treating infectious diseases, is hypothesized to offer therapeutic benefits in treating viral pneumonia, although its specific molecular impacts remain understudied. This study aimed to evaluate the therapeutic effects of DYY in mitigating HCoV-229E virus-induced pneumonia in mice. This study employed an HCoV-229E virus-infected mouse model to investigate the therapeutic potential and underlying molecular mechanisms of DYY on virus-induced pneumonia. The respiratory function and organ indices post-treatment were assessed. Lung tissue and tracheal lesions were evaluated via immunohistochemistry. Spleen immune cell composition was analyzed using flow cytometry. Inflammatory cytokines and viral loads were quantified using hypersensitive multiplex electrochemiluminescence method and PCR analysis, respectively. The expression levels of MAS1, Ras, Raf1, MEK1/2, and ERK1/2 in lung tissues were determined through western blot analysis. DYY significantly improved respiratory function, and reduced organ pathology in infected mice. It effectively decreased viral loads and inflammatory cytokines such as IL-6, IL-1β, and TNF-α in lung tissues. Enhancements in immune response were evidenced by increased CD4/CD8 ratios in the spleen. DYY also notably upregulated MAS1 protein levels and suppressed the activation of the Ras/Raf1/MEK/ERK signaling pathway. DYY enhanced respiratory function and exerted significant antiviral and immunomodulatory effects in mice infected with the HCoV-229E virus, primarily by modulating MAS1 expression and inhibiting the Ras/Raf1/MEK/ERK pathway.
Collapse
Affiliation(s)
- Rui Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | | | - Bei Huang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guotong Sun
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yifei Xie
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Junke Song
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shumei Wang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
17
|
Cheung PHH, Yuen TL, Tang TT, Leung HY, Lee TTW, Chan P, Cheng Y, Fung SY, Ye ZW, Chan CP, Jin DY. Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling. J Med Virol 2024; 96:e70062. [PMID: 39569434 DOI: 10.1002/jmv.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Exactly why human infection of avian influenza A virus H7N9 causes more severe disease in the elderly remains elusive. In this study, we found that H7N9 PB1-F2 is a pathogenic factor in 15-18-month-old BALB/C mice (aged mice) but not in 6-8-week-old young adult mice (young mice). Recombinant influenza A virus with H7N9 PB1-F2-knockout was less pathogenic in aged mice as indicated with delayed weight loss. In contrast, survival of young mice infected with this virus was diminished. Furthermore, tissue damage, inflammation, proinflammatory cytokine and 2'3'-cGAMP production in the lung were less pronounced in infected aged mice despite no change in viral titer. cGAS is known to produce 2'3'-cGAMP to boost proinflammatory cytokine expression through STING-NF-κB signaling. We found that H7N9 PB1-F2 promoted interferon β (IFNβ) and chemokine gene expression in cultured cells through the mitochondrial DNA-cGAS-STING-NF-κB pathway. H7N9 PB1-F2 formed protein aggregate and caused mitochondrial cristae collapse, complex V-dependent electron transport dysfunction, reverse electron transfer-dependent oxidized mitochondrial DNA release to the cytoplasm and activation of cGAS-STING-NF-κB signaling. PB1-F2 N57 truncation, which is frequently observed in human circulating strains, mitigated H7N9 PB1-F2-mediated mitochondrial dysfunction and cGAS activation. In addition, we found that PB1-F2 of pathogenic avian influenza viruses triggered more robust cGAS activation than their human-adapted descendants. Our findings provide one explanation to age-dependent pathogenesis of H7N9 infection.
Collapse
Affiliation(s)
| | - Tin-Long Yuen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Tze-Tung Tang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Ho-Yin Leung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Pearl Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Liu Y, Wu M, Ren Y, Feng J, Shi W, Kang H, Tian J, He Y. Evaluation of Dry Eye Severity and Ocular Surface Inflammation in Patients with Autoimmune Rheumatic Diseases. Ocul Immunol Inflamm 2024; 32:2018-2030. [PMID: 38363334 DOI: 10.1080/09273948.2024.2315196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE To evaluate dry eye severity and ocular surface inflammation in autoimmune rheumatic diseases (ARDs). METHODS Seventy-nine patients with ARDs were enrolled, including 26 patients with rheumatoid arthritis (RA), 33 patients with systemic lupus erythematosus (SLE), and 20 patients with primary Sjögren's syndrome (pSS). All patients underwent ocular surface evaluations, including ocular surface symptoms, signs, conjunctival impression cytology, and tear multicytokine detection. Systemic conditions, including disease duration, disease activity, and serological parameters, were also noted. RESULTS SLE patients had the shortest disease duration, and nearly half of them had low disease activity, while RA patients and pSS patients had a relatively long disease duration, and approximately 90% of them had moderate or high disease activity. The incidence of dry eye and the levels of the proinflammatory tear cytokines in SLE were significantly lower than those in RA and pSS. However, ocular surface squamous metaplasia was more severe in SLE and pSS than in RA. Dry eye severity in all ARD patients was shown to be independent of disease activity, while Nelson's grades were positively correlated with disease duration in RA patients. Disease-related serological parameters were associated with tear proinflammatory cytokines in all ARD patients. CONCLUSIONS Variable degrees of dry eye and immune-mediated ocular surface inflammation persist in different ARD patients. In addition to a well-known association between dry eye and pSS, dry eye is also commonly observed in SLE and RA patients. Therefore, there is a definite need for regular ophthalmologic evaluations and topical medications in all patients with ARDs.
Collapse
Affiliation(s)
- Yingyi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China
| | - Mengbo Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jianing Feng
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi Province, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China
| |
Collapse
|
19
|
Wang C, Feng GG, Takagi J, Fujiwara Y, Sano T, Note H. Catecholamines Attenuate LPS-Induced Inflammation through β2 Adrenergic Receptor Activation- and PKA Phosphorylation-Mediated TLR4 Downregulation in Macrophages. Curr Issues Mol Biol 2024; 46:11336-11348. [PMID: 39451555 PMCID: PMC11506017 DOI: 10.3390/cimb46100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Inflammation is a tightly regulated process involving immune receptor recognition, immune cell migration, inflammatory mediator secretion, and pathogen elimination, all essential for combating infection and restoring damaged tissue. However, excessive inflammatory responses drive various human diseases. The autonomic nervous system (ANS) is known to regulate inflammatory responses; however, the detailed mechanisms underlying this regulation remain incompletely understood. Herein, we aimed to study the anti-inflammatory effects and mechanism of action of the ANS in RAW264.7 cells. Quantitative PCR and immunoblotting assays were used to assess lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) expression. The anti-inflammatory effects of catecholamines (adrenaline, noradrenaline, and dopamine) and acetylcholine were examined in LPS-treated cells to identify the receptors involved. Catecholamines inhibited LPS-induced TNFα expression by activating the β2 adrenergic receptor (β2-AR). β2-AR activation in turn downregulated the expression of Toll-like receptor 4 (TLR4) by stimulating protein kinase A (PKA) phosphorylation, resulting in the suppression of TNFα levels. Collectively, our findings reveal a novel mechanism underlying the inhibitory effect of catecholamines on LPS-induced inflammatory responses, whereby β2-AR activation and PKA phosphorylation downregulate TLR4 expression in macrophages. These findings could provide valuable insights for the treatment of inflammatory diseases and anti-inflammatory drug development.
Collapse
Affiliation(s)
- Cong Wang
- Department of Gastroenterological Surgery, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan; (C.W.); (T.S.)
| | - Guo-Gang Feng
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan;
| | - Junko Takagi
- Division of Endocirnology and Metabolism, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan;
| | - Yoshihiro Fujiwara
- Department of Anesthesiology and Pain Medicine, Fujita Health University Bantane Hospital, 3-6-10 Otobashi, Nakagawaku, Nagoya 454-8509, Aichi, Japan;
| | - Tsuyoshi Sano
- Department of Gastroenterological Surgery, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan; (C.W.); (T.S.)
| | - Hideaki Note
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan;
| |
Collapse
|
20
|
Ochar K, Iwar K, Nair VD, Chung YJ, Ha BK, Kim SH. The Potential of Glucosinolates and Their Hydrolysis Products as Inhibitors of Cytokine Storms. Molecules 2024; 29:4826. [PMID: 39459194 PMCID: PMC11510469 DOI: 10.3390/molecules29204826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
A cytokine storm is an intense inflammatory response characterized by the overproduction of proinflammatory cytokines, resulting in tissue damage, and organ dysfunction. Cytokines play a crucial role in various conditions, such as coronavirus disease, in which the immune system becomes overactive and releases excessive levels of cytokines, including interleukins, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). This anomalous response often leads to acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation (DIC), and multiple organ injury (MOI). Glucosinolates are plant secondary metabolites predominantly found in Brassica vegetables, but are also present in other species, such as Moringa Adens and Carica papaya L. When catalyzed by the enzyme myrosinase, glucosinolates produce valuable products, including sulforaphane, phenethyl isothiocyanate, 6-(methylsulfinyl) hexyl isothiocyanate, erucin, goitrin, and moringin. These hydrolyzed products regulate proinflammatory cytokine production by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) signaling pathway and stimulating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This action can alleviate hyperinflammation in infected cells and modulate cytokine storms. In this review, we aimed to examine the potential role of glucosinolates in modulating cytokine storms and reducing inflammation in various conditions, such as coronavirus disease. Overall, we found that glucosinolates and their hydrolysis products can potentially attenuate cytokine production and the onset of cytokine storms in diseased cells. In summary, glucosinolates could be beneficial in regulating cytokine production and preventing complications related to cytokine storms.
Collapse
Affiliation(s)
- Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana;
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Kanivalan Iwar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Vadakkemuriyil Divya Nair
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur Campus, Kangra District, Shahpur 176206, HP, India;
| | - Yun-Jo Chung
- National Creative Research Laboratory for Ca Signaling Network, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| |
Collapse
|
21
|
Matsui T, Ushigome E, Hamaguchi M, Sudo K, Kitagawa N, Kondo Y, Hasegawa Y, Imai D, Hattori T, Yamazaki M, Sawa T, Fukui M. Increased Insulin Requirements in Severe Cases of Covid-19 are Higher Than in Moderate Cases. Diabetes Metab Syndr Obes 2024; 17:3727-3733. [PMID: 39539455 PMCID: PMC11558443 DOI: 10.2147/dmso.s480598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Despite the low overall death rate of coronavirus disease 2019 (COVID-19), no study has examined the association between COVID-19 severity and the total daily insulin dose required for glycemic control. The aim of this study was to determine the maximum total daily insulin dose required according to COVID-19 severity, and the number of days required to reach the maximum insulin dose in patients with COVID-19 who used insulin during hospitalization. Patients and Methods This retrospective cohort study included participants aged 20-90 years with a confirmed diagnosis of COVID-19 who used insulin during hospitalization at Kyoto Prefectural University of Medicine Hospital between March 4, 2020, and May 31, 2021. Factors associated with maximum insulin dose during hospitalization were evaluated using linear regression analyses. Results The maximum insulin doses were 31.8, 76.8, and 230.7 U/day, and the numbers of days between COVID-19 diagnosis and the need for maximum insulin were 15.6, 17.1, and 13.7 days in patients without ventilator management, with ventilator management, and with ventilator and extracorporeal membrane oxygenation management, respectively. Multivariate linear regression analyses revealed that hemoglobin A1c level (β = 15.87, P = 0.001), use of a ventilator (β = 50.53, P < 0.001), and use of extracorporeal membrane oxygenation (β = 150.36, P < 0.001) were independent determinants of maximum insulin dose. Conclusion Patients with severe COVID-19 required a significantly higher maximum insulin dose than did those with moderate COVID-19. The maximum insulin dose was reached approximately 2 weeks after onset. Furthermore, the hemoglobin A1c level on admission and the use of a ventilator or extracorporeal membrane oxygenation during hospitalization were associated with the need for maximum insulin dose.
Collapse
Affiliation(s)
- Takaaki Matsui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuki Sudo
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Nobuko Kitagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuriko Kondo
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Dan Imai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomohiro Hattori
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
22
|
Masurier A, Sieskind R, Gines G, Rondelez Y. DNA circuit-based immunoassay for ultrasensitive protein pattern classification. Analyst 2024; 149:5052-5062. [PMID: 39206940 DOI: 10.1039/d4an00728j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cytokines are important immune modulators, and pivotal biomarkers for the diagnostic of various diseases. In standard analytical procedure, each protein is detected individually, using for instance gold standard ELISA protocols or nucleic acid amplification-based immunoassays. In recent years, DNA nanotechnology has been employed for creating sophisticated biomolecular systems that perform neuromorphic computing on molecular inputs, opening the door to concentration pattern recognition for biomedical applications. This work introduces immuno-PUMA (i-PUMA), an isothermal amplification-based immunoassay for ultrasensitive protein detection. The assay couples the convenience of supported format of an ELISA protocol with the computing capabilities of a DNA/enzyme circuit. We demonstrate a limit of detection of 2.1 fM, 8.7 fM and 450 aM for IL12, IL4 and IFNγ cytokines, respectively, outperforming the traditional ELISA format. i-PUMA's versatility extends to molecular computation, allowing the creation of 2-input perceptron-like classifiers for IL12 and IL4, with tunable weight sign and amplitude. Overall, i-PUMA represents a sensitive, low-cost, and versatile immunoassay with potential applications in multimarker-based sample classification, complementing existing molecular profiling techniques.
Collapse
Affiliation(s)
- Antoine Masurier
- Gulliver Laboratory, ESPCI Paris Université PSL, 10 rue Vauquelin, 75005 Paris, France.
| | - Rémi Sieskind
- Gulliver Laboratory, ESPCI Paris Université PSL, 10 rue Vauquelin, 75005 Paris, France.
| | - Guillaume Gines
- Gulliver Laboratory, ESPCI Paris Université PSL, 10 rue Vauquelin, 75005 Paris, France.
| | - Yannick Rondelez
- Gulliver Laboratory, ESPCI Paris Université PSL, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
23
|
Wu KKL, Xu X, Wu M, Li X, Hoque M, Li GHY, Lian Q, Long K, Zhou T, Piao H, Xu A, Hui HX, Cheng KKY. MDM2 induces pro-inflammatory and glycolytic responses in M1 macrophages by integrating iNOS-nitric oxide and HIF-1α pathways in mice. Nat Commun 2024; 15:8624. [PMID: 39366973 PMCID: PMC11452520 DOI: 10.1038/s41467-024-53006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
M1 macrophages induce protective immunity against infection, but also contribute to metabolic and inflammatory diseases. Here we show that the E3 ubiquitin ligase, MDM2, promotes the glycolytic and inflammatory activities of M1 macrophage by increasing the production of IL-1β, MCP-1 and nitric oxide (NO). Mechanistically, MDM2 triggers the ubiquitination and degradation of E3 ligase, SPSB2, to stabilize iNOS and increases production of NO, which s-nitrosylates and activates HIF-1α for triggering the glycolytic and pro-inflammatory programs in M1 macrophages. Myeloid-specific haplodeletion of MDM2 in mice not only blunts LPS-induced endotoxemia and NO production, but also alleviates obesity-induced adipose tissue-resident macrophage inflammation. By contrast, MDM2 haplodeletion induces higher mortality, tissue damage and bacterial burden, and also suppresses M1 macrophage response, in the cecal ligation and puncture-induced sepsis mouse model. Our findings thus identify MDM2 as an activator of glycolytic and inflammatory responses in M1 macrophages by connecting the iNOS-NO and HIF-1α pathways.
Collapse
Affiliation(s)
- Kelvin Ka-Lok Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaofan Xu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Manyin Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital Fudan University, Shanghai, China
| | - Moinul Hoque
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Gloria Hoi Yee Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tongxi Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hailong Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Beijing, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
24
|
Deus MDC, Gadotti AC, Dias ES, Monte Alegre JB, Van Spitzenbergen BAK, Andrade GB, Tozoni SS, Stocco RB, Olandoski M, Tuon FFB, Pinho RA, de Noronha L, Baena CP, Moreno-Amaral AN. Prospective Variation of Cytokine Trends during COVID-19: A Progressive Approach from Disease Onset until Outcome. Int J Mol Sci 2024; 25:10578. [PMID: 39408907 PMCID: PMC11477561 DOI: 10.3390/ijms251910578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
COVID-19 is characterized by pronounced hypercytokinemia. The cytokine switch, marked by an imbalance between pro-inflammatory and anti-inflammatory cytokines, emerged as a focal point of investigation throughout the COVID-19 pandemic. However, the kinetics and temporal dynamics of cytokine release remain contradictory, making the development of new therapeutics difficult, especially in severe cases. This study collected serum samples from SARS-CoV-2 infected patients at 72 h intervals and monitored them for various cytokines at each timepoint until hospital discharge or death. Cytokine levels were analyzed based on time since symptom onset and patient outcomes. All cytokines studied prospectively were strong predictors of mortality, particularly IL-4 (AUC = 0.98) and IL-1β (AUC = 0.96). First-timepoint evaluations showed elevated cytokine levels in the mortality group (p < 0.001). Interestingly, IFN-γ levels decreased over time in the death group but increased in the survival group. Patients who died exhibited sustained levels of IL-1β and IL-4 and increased IL-6 levels over time. These findings suggest cytokine elevation is crucial in predicting COVID-19 mortality. The dynamic interplay between IFN-γ and IL-4 highlights the balance between Th1/Th2 immune responses and underscores IFN-γ as a powerful indicator of immune dysregulation throughout the infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea Novais Moreno-Amaral
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Escola de Medicina, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (M.d.C.D.); (A.C.G.); (E.S.D.); (J.B.M.A.); (B.A.K.V.S.); (G.B.A.); (S.S.T.); (R.B.S.); (M.O.); (F.F.B.T.); (R.A.P.); (L.d.N.); (C.P.B.)
| |
Collapse
|
25
|
Wang H, Xu Q, Heng H, Zhao W, Ni H, Chen K, Wai Chan BK, Tang Y, Xie M, Peng M, Chi Chan EW, Yang G, Chen S. High mortality of Acinetobacter baumannii infection is attributed to macrophage-mediated induction of cytokine storm but preventable by naproxen. EBioMedicine 2024; 108:105340. [PMID: 39303669 PMCID: PMC11437915 DOI: 10.1016/j.ebiom.2024.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The continuous emergence of multidrug-resistant (MDR) Acinetobacter baumannii (Ab) strains poses further challenges in its control and clinical management. It is necessary to decipher the mechanisms underlying the high mortality of Ab infections to explore unconventional strategies for controlling outbreaks of drug-resistant infections. METHODS The immune responses of Ab sepsis infection were investigated using flow cytometry, RNA-seq, qRT-PCR, and ELISA and scRNA-seq. The detailed pathways mediating Ab immune responses were also depicted and a specific therapy was developed based on the understanding of the mechanisms underlying Ab-induced cytokine storms. FINDINGS The results highlighted the critical role of alveolar and interstitial macrophages as targets of Ab during the infection process. These cells were found to undergo polarization towards the M1 phenotype, triggering a cytokine storm that eventually caused the death of the host. The polarization and excessive inflammatory response mediated by macrophages were mainly regulated by the TLR2/Myd88/NF-κB signaling pathway. Suppression of Ab-triggered inflammatory responses and M1 polarization by the drug naproxen (NPXS) was shown to confer full protection of mice from lethal infections. INTERPRETATION The findings in this work depict the major mechanisms underlying the high mortality rate of Ab infections and highlight the clinical potential application of anti-inflammatory drugs or immunosuppressants in reducing the mortality of such infections, including those caused by MDR strains. FUNDING Funding sources are described in the acknowledgments section.
Collapse
Affiliation(s)
- Han Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Qi Xu
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Heng Heng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wenxing Zhao
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kaichao Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bill Kwan Wai Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Miaomiao Xie
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Mingxiu Peng
- Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
26
|
Zhou R, Li W, Wu F, Sheng Y, Xu S, Liu Y, Zhang D, Wang M. Does Gastroesophageal Reflux Disease Increase the Risk of Sepsis and Its 28-day Mortality? A Causal Study Using a Mendelian Randomization Approach. Dig Dis Sci 2024; 69:3824-3834. [PMID: 39230635 DOI: 10.1007/s10620-024-08625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Gastroesophageal reflux disease (GERD) is a prevalent gastrointestinal disorder. Recent studies indicate that GERD may exert systemic effects, potentially elevating the risk of severe infections, including sepsis. Nevertheless, the causal relationship between GERD and sepsis, as well as sepsis-related 28-day mortality, remains uncertain. AIM The aim of this study is to investigate the causal relationship between GERD and the risk of sepsis, including 28-day mortality of sepsis. METHODS This study utilized a two-sample Mendelian Randomization (MR) approach to analyze data from publicly available genome-wide association studies (GWAS) databases ( https://gwas.mrcieu.ac.uk/ ). The analysis comprised 129,080 cases and 473,524 controls for GERD; 11,643 patients and 474,841 controls for sepsis; and 1,896 patients and 484,588 controls for 28-day mortality from sepsis. The objective was to evaluate the causal impact of GERD on the risk of sepsis and 28-day sepsis mortality. Genetic variation data pertinent to GERD were obtained from the most recent genome-wide association studies (GWAS). The primary analysis employed the Inverse Variance Weighted (IVW) method. Sensitivity and pleiotropy analyses were performed to validate the robustness of the findings. RESULTS MR analysis revealed a notable link between genetically predicted GERD and increased sepsis risk (odds ratio [OR] 1.37, 95% confidence interval [CI] 1.24-1.52; p = 2.79 × 10-9). Moreover, GERD correlated with elevated 28-day mortality of sepsis (OR 1.44, 95% CI 1.11-1.85; p = 5.34 × 10-3). These results remained consistent throughout various sensitivity analyses, indicating their resilience against potential pleiotropy and other biases. CONCLUSION This study indicates that genetic predisposition to GERD may be linked to an elevated risk of sepsis and its associated 28-day mortality. However, the study does not establish a direct causal relationship for GERD itself, nor does it assess the impact of GERD treatment. Further research is needed to explore the underlying mechanisms and potential therapeutic interventions involved.
Collapse
Affiliation(s)
- Runquan Zhou
- Department of Emergency, First Affiliated Hospital of Chongqing Medical University, 12th Floor, Building 5A, 1 Youyi Rd, Yuzhong Qu, Chongqing, 400016, People's Republic of China
| | - Wenjuan Li
- Intensive Care Unit, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Wu
- Department of Emergency, First Affiliated Hospital of Chongqing Medical University, 12th Floor, Building 5A, 1 Youyi Rd, Yuzhong Qu, Chongqing, 400016, People's Republic of China
| | - Yuanhui Sheng
- Intensive Care Unit, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Xu
- Department of Emergency, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Intensive Care Unit, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Zhang
- Department of Emergency, First Affiliated Hospital of Chongqing Medical University, 12th Floor, Building 5A, 1 Youyi Rd, Yuzhong Qu, Chongqing, 400016, People's Republic of China.
| | - Mingxing Wang
- Intensive Care Unit, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Ma L, Acuff NV, Joseph IB, Ptacin JL, Caffaro CE, San Jose KM, Aerni HR, Carrio R, Byers AM, Herman RW, Pavlova Y, Pena MJ, Chen DB, Buetz C, Ismaili TK, Pham HV, Cucchetti M, Sassoon I, Koriazova LK, Leveque JA, Shawver LK, Mooney JM, Milla ME. A Precision Engineered Interleukin-2 for Bolstering CD8+ T- and NK-cell Activity without Eosinophilia and Vascular Leak Syndrome in Nonhuman Primates. CANCER RESEARCH COMMUNICATIONS 2024; 4:2799-2814. [PMID: 39320047 PMCID: PMC11503527 DOI: 10.1158/2767-9764.crc-24-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
We have created a precisely pegylated IL-2 [SAR-444245 (SAR'245) or pegenzileukin, previously THOR-707] designed for proliferation of target CD8+ T and NK cells for anticancer activity, with minimal expansion of anti-target regulatory CD4+ T cells (Treg) that counter their action, or eosinophils that trigger vascular leak syndrome (VLS). We performed in vivo studies in nonhuman primates (NHP) to monitor the safety of SAR'245, pharmacokinetic profile, and pharmacodynamic parameters including expansion of peripheral CD8+ T and NK cells, and effects on Tregs and eosinophils. Studies included multiple ascending dosing and repeat dosing with different regimens (QW, Q2W, Q3W and Q4W). We also conducted ex vivo studies using human primary cells to further evaluate SAR'245 stimulation of target cells alone and in combination with programmed cell-death 1 (PD-1) checkpoint inhibitors. The pharmacokinetic profile of SAR'245 in NHP demonstrated dose-proportional exposure that was comparable with redosing. It elicited expansion of peripheral CD8+ T and NK cells that was comparable with each dose and with multiple dosing regimens. Once-weekly dosing showed no significant adverse effects, including no hallmark signs of VLS at dosing levels up to 1 mg/kg. Ex vivo, SAR'245 enhanced T-cell receptor responses alone and in combination with PD-1 inhibitors without inducing cytokines associated with cytokine release syndrome or VLS. Results support the clinical development of SAR'245 as a drug candidate for the treatment of solid tumors, alone or in combination with PD-1 inhibitory agents. SIGNIFICANCE SAR-444245 (SAR'245, pegenzileukin) is an extended half-life IL-2 that targets effector CD8+ T and NK cells, with little effect on regulatory T cells. We show that in the nonhuman primate model that closely approximates human immune function and response to IL-2, SAR'245 selectively activates CD8+ T and NK effectors without significant serious side effects (vascular leak syndrome or cytokine release syndrome), suggesting its potential for the treatment of solid tumors in humans.
Collapse
Affiliation(s)
- Lina Ma
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | | | | | | | - Hans R. Aerni
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | - Rob W. Herman
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | - David B. Chen
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thom RE, D’Elia RV. Future applications of host direct therapies for infectious disease treatment. Front Immunol 2024; 15:1436557. [PMID: 39411713 PMCID: PMC11473292 DOI: 10.3389/fimmu.2024.1436557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
New and emerging pathogens, such as SARS-CoV2 have highlighted the requirement for threat agnostic therapies. Some antibiotics or antivirals can demonstrate broad-spectrum activity against pathogens in the same family or genus but efficacy can quickly reduce due to their specific mechanism of action and for the ability of the disease causing agent to evolve. This has led to the generation of antimicrobial resistant strains, making infectious diseases more difficult to treat. Alternative approaches therefore need to be considered, which include exploring the utility of Host-Directed Therapies (HDTs). This is a growing area with huge potential but difficulties arise due to the complexity of disease profiles. For example, a HDT given early during infection may not be appropriate or as effective when the disease has become chronic or when a patient is in intensive care. With the growing understanding of immune function, a new generation of HDT for the treatment of disease could allow targeting specific pathways to augment or diminish the host response, dependent upon disease profile, and allow for bespoke therapeutic management plans. This review highlights promising and approved HDTs that can manipulate the immune system throughout the spectrum of disease, in particular to viral and bacterial pathogens, and demonstrates how the advantages of HDT will soon outweigh the potential side effects.
Collapse
Affiliation(s)
- Ruth E. Thom
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - R V. D’Elia
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
29
|
David C, Verney C, Si-Tahar M, Guillon A. The deadly dance of alveolar macrophages and influenza virus. Eur Respir Rev 2024; 33:240132. [PMID: 39477353 PMCID: PMC11522969 DOI: 10.1183/16000617.0132-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 11/02/2024] Open
Abstract
Influenza A virus (IAV) is one of the leading causes of respiratory infections. The lack of efficient anti-influenza therapeutics requires a better understanding of how IAV interacts with host cells. Alveolar macrophages are tissue-specific macrophages that play a critical role in lung innate immunity and homeostasis, yet their role during influenza infection remains unclear. First, our review highlights an active IAV replication within alveolar macrophages, despite an abortive viral cycle. Such infection leads to persistent alveolar macrophage inflammation and diminished phagocytic function, alongside direct mitochondrial damage and indirect metabolic shifts in the alveolar micro-environment. We also discuss the "macrophage disappearance reaction", which is a drastic reduction of the alveolar macrophage population observed after influenza infection in mice but debated in humans, with unclear underlying mechanisms. Furthermore, we explore the dual nature of alveolar macrophage responses to IAV infection, questioning whether they are deleterious or protective for the host. While IAV may exploit immuno-evasion strategies and induce alveolar macrophage alteration or depletion, this could potentially reduce excessive inflammation and allow for the replacement of more effective cells. Despite these insights, the pathophysiological role of alveolar macrophages during IAV infection in humans remains understudied, urging further exploration to unravel their precise contributions to disease progression and resolution.
Collapse
Affiliation(s)
- Camille David
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Tours, France
| | - Charles Verney
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Tours, France
- CHRU de Tours, Service de Médecine Intensive Réanimation, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Tours, France
- CHRU de Tours, Service de Médecine Intensive Réanimation, Tours, France
| |
Collapse
|
30
|
Yang S, Wang Y, Yang J, Tian Z, Wu M, Sun H, Zhang X, Zhao Y, Luo J, Guan G, Yin H, Hao R, Niu Q. African swine fever virus RNA polymerase subunits C315R and H359L inhibition host translation by activating the PKR-eIF2a pathway and suppression inflammatory responses. Front Microbiol 2024; 15:1469166. [PMID: 39380677 PMCID: PMC11458487 DOI: 10.3389/fmicb.2024.1469166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
ASFV C315R is homologous to the transcription factor TFIIB of large unclassified DNA viruses, and H359L is identical to the subunit 3 (RPB3) of eukaryotic RNA polymerase II. The C315R and H359L may play an important role in ASFV replication and transcription. Here, we evaluated the biological function of the C315R and H359L genes during virus replication in vitro and during infection in pigs. Results showed that C315R and H359L are highly conserved among ASFV genotype II strains; quantitative PCR (qPCR) and western blotting analyses revealed that C315R and H359L are early transcribed genes prior to viral DNA replication, but their protein expression is delayed. The immunofluorescence and western blotting analysis revealed that both proteins localized in the cell cytoplasm and nucleus at 24 h post infection, however, pH359L was mainly detected in the cell cytoplasm. Furthermore, overexpression of pH359L in MA104 cells significantly increased viral titer, RNA transcription levels, and viral protein expression levels, while overexpression of pC315R slightly enhanced ASFV replication. In contrast, siRNA targeting ASFV-H359L or C315R reduced replication efficiency in porcine macrophage culture compared to the parent ASFV-CN/SC/2019, demonstrating that C315R and H359L genes are necessary for ASFV replication. Finally, the functional role of C315R or H359L on PKR and eIF2α phosphorylation status and SG formation, as well as cytokine production were evaluated. These studies demonstrated that C315R and H359L are involved in virus replication processes in swine and play important roles in ASFV replication.
Collapse
Affiliation(s)
- Saixia Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yiwang Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hualin Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Xiaoqiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yaru Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| |
Collapse
|
31
|
Hao T, Tsang YP, Yin M, Mao Q, Unadkat JD. Dysregulation of Human Hepatic Drug Transporters by Proinflammatory Cytokines. J Pharmacol Exp Ther 2024; 391:82-90. [PMID: 39103232 DOI: 10.1124/jpet.123.002019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Proinflammatory cytokines, elevated during inflammation caused by infection and/or autoimmune disorders, result in reduced clearance of drugs eliminated primarily by cytochrome P450 enzymes (CYPs). However, the effect of cytokines on hepatic drug transporter expression or activity has not been well-studied. Here, using plated human hepatocytes (PHHs; n = 3 lots), we investigated the effect of interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), on the mRNA expression and activity of hepatic drug transporters. PHHs were incubated for 72 hours at their pathophysiologically relevant plasma concentrations, both individually (0.01, 0.1, 1, 10 ng/ml) or as a cocktail (i.e., when each was combined at 0.1 or 1 ng/ml). Following cytokine cocktail exposure (1 ng/ml), significant downregulation of mRNA expression of organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, sodium/taurocholate cotransporting polypeptide (NTCP), breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), multidrug and toxin extrusion protein 1, multidrug resistance proteins (MRP) 2, 3, and 4 was observed. While the mRNA expression of organic anion transporter (OAT) 2 and organic cation transporter (OCT) 1 was downregulated in two lots, it was upregulated in one lot. In agreement (mostly), the 1 ng/ml cytokine cocktail reduced OATP1B1/3, OATP2B1, OAT2, OCT1, and NTCP activity by 75%, 44%, 82%, 47%, and 80%, respectively. Interestingly, upregulation of OAT2 and OCT1 mRNA in one donor did not translate into the same directional change in activity. Although significant interlot variability was observed, in general, the above effects, using individual cytokines, could be attributed to IL-1β, TNF-α, and IFN-γ. SIGNIFICANCE STATEMENT: To date, this is the first comprehensive study to investigate the effect of four major proinflammatory cytokines, both individually and as a cocktail, on the mRNA expression and activity of human hepatic drug transporters. The data obtained can be used in the future to predict transporter-mediated drug clearance changes during inflammation through physiologically based pharmacokinetic modeling and simulation.
Collapse
Affiliation(s)
- Tianran Hao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Yik Pui Tsang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Mengyue Yin
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
32
|
Lu S, Di John Portela I, Martino N, Bossardi Ramos R, Salinero AE, Smith RM, Zuloaga KL, Adam AP. A transient brain endothelial translatome response to endotoxin is associated with mild cognitive changes post-shock in young mice. Neuroscience 2024; 555:194-204. [PMID: 39067684 PMCID: PMC11470799 DOI: 10.1016/j.neuroscience.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown. Here, we performed translating ribosome affinity purification and RNA-sequencing (TRAP-seq) from the brain endothelium to determine the transcriptional changes after an acute endotoxemic (LPS) challenge. LPS induced a strong acute transcriptional response in the brain endothelium that partially correlates with the whole brain transcriptional response and suggested an endothelial-specific hypoxia response. Consistent with a crucial role for IL-6, loss of the main regulator of this pathway, SOCS3, leads to a broadening of the population of genes responsive to LPS, suggesting that an overactivation of the IL-6/JAK/STAT3 pathway leads to an increased transcriptional response that could explain our prior findings of severe brain injury in these mice. To identify any potential sequelae of this acute response, we performed brain TRAP-seq following a battery of behavioral tests in mice after apparent recovery. We found that the transcriptional response returns to baseline within days post-challenge, but reductions in gene expression regulating protein translation and respiratory electron transport remained. We observed that mice that recovered from the endotoxemic shock showed mild, sex-dependent cognitive impairment, suggesting that the acute brain injury led to sustained effects. A better understanding of the transcriptional and non-transcriptional changes in response to shock is needed in order to prevent and/or revert the devastating consequences of septic shock.
Collapse
Affiliation(s)
- Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Iria Di John Portela
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, United States
| | - Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Rachel M Smith
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, United States
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, United States; Department of Ophthalmology, Albany Medical College, United States.
| |
Collapse
|
33
|
Yin X, Liu Y, Lv Z, Ding S, Ma L, Yang M, Yao M, Zhu L, Zhao S, Chen Y, Ge J, Tong H, Meng H, You L. scRNA-seq reveals the landscape of immune repertoire of PBMNCs in iMCD. Oncogene 2024; 43:2795-2805. [PMID: 39147879 DOI: 10.1038/s41388-024-03128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The etiology of idiopathic multicentric Castleman disease (iMCD) is poorly understood, and the identification of targetable disease mediators remains an unmet clinical need. Thus, we firstly employed single-cell RNA sequencing (scRNA-seq) to elucidate the landscape of the immune repertoire of peripheral blood mononuclear cells (PBMNCs) in iMCD and to identify additional driver cytokines/cells/pathways to address IL-6 blockade-refractory cases. We revealed that the inflammatory cytokine storm observed in iMCD was a significant phenomenon pervasive across all immune cells. B-plasma cell subsets was the main source of IL-6. The IL-6 signaling pathway was significantly activated across a spectrum of immune cells. Systemic upregulation of CXCL13 is mainly driven by peripheral helper T (Tph) and regulatory T (Treg) cells. Notably, a significant positive interaction was observed between CXCL13-expressing T cells and IL-6 signaling-activated B cells. This study provides an immune perspective on PBMNCs in iMCD at the single-cell level, unveiling pathways or targets characterized by atypical inflammatory expression that could potentially serve as promising candidates for therapeutic intervention in iMCD.
Collapse
Affiliation(s)
- Xuejiao Yin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Yi Liu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Zuopo Lv
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Shengnan Ding
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang, China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang, China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang, China
| | - Meiqiu Yao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang, China
| | - Li Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang, China
| | - Shuqi Zhao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Chen
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Jiaying Ge
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
| | - Liangshun You
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Osyodlo GV, Husieva SA, Svicharova SV, Savichan KV. Autoimmune Hemolytic Anemia Associated with COVID-19 Infection in a Patient with High Cardio-metabolic Risk. Mil Med 2024; 189:e2274-e2279. [PMID: 38015753 DOI: 10.1093/milmed/usad446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
The article analyses data on the occurrence of hematological abnormalities in severe acute respiratory syndrome 2 infection. Among these hematological abnormalities, the majority of patients develop a hypercoagulable state associated with thromboembolic complications and poor prognosis. Approximately one-third of patients with severe acute respiratory syndrome 2 infection are diagnosed with mild to severe thrombocytopenia. Another hematological autoimmune disease observed in patients with coronavirus disease 2019 is autoimmune hemolytic anemia. A clinical case with the development of autoimmune hemolytic anemia in the setting of coronavirus infection was described. The diagnosis was based on the presence of anemia, reticulocytosis, a significant decrease in haptoglobin levels, and a positive antiglobulin test (Coombs test). Given the comorbidity, the risks of adverse effects of severe coronavirus disease were high, despite this, it was possible to achieve clinical and hematological remission of autoimmune hemolytic anemia by prescribing pathogenetic therapy with anti-CD-20 monoclonal antibody (rituximab), recombinant erythropoietin and glucocorticoid hormones. This clinical case demonstrates the possibility of successful treatment of patients with severe hemolytic anemia. Special attention should be paid to the discrepancy between the severity of the condition and objective data. This case demonstrates the need for a more in-depth approach to each patient with anemia associated with coronavirus disease infection, namely, in the presence of anemic syndrome, it is imperative to include a full range of laboratory tests.
Collapse
Affiliation(s)
- Galyna V Osyodlo
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01010, Ukraine
| | - Svitlana A Husieva
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01010, Ukraine
| | - Svitlana V Svicharova
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01010, Ukraine
| | - Kyrylo V Savichan
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01010, Ukraine
| |
Collapse
|
35
|
Silawal S, Gögele C, Pelikan P, Werner C, Levidou G, Mahato R, Schulze-Tanzil G. A Histological Analysis and Detection of Complement Regulatory Protein CD55 in SARS-CoV-2 Infected Lungs. Life (Basel) 2024; 14:1058. [PMID: 39337843 PMCID: PMC11432792 DOI: 10.3390/life14091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND A complement imbalance in lung alveolar tissue can play a deteriorating role in COVID-19, leading to acute respiratory distress syndrome (ARDS). CD55 is a transmembrane glycoprotein that inhibits the activation of the complement system at the intermediate cascade level, blocking the activity of the C3 convertase. OBJECTIVE In our study, lung specimens from COVID-19 and ARDS-positive COVID+/ARDS+ patients were compared with COVID-19 and ARDS-negative COVID-/ARDS- as well as COVID-/ARDS+ patients. METHODS Histochemical staining and immunolabeling of CD55 protein were performed. RESULTS The COVID-/ARDS- specimen showed higher expression and homogeneous distribution of glycosaminoglycans as well as compactly arranged elastic and collagen fibers of the alveolar walls in comparison to ARDS-affected lungs. In addition, COVID-/ARDS- lung tissues revealed stronger and homogenously distributed CD55 expression on the alveolar walls in comparison to the disrupted COVID-/ARDS+ lung tissues. CONCLUSIONS Even though the collapse of the alveolar linings and the accumulation of cellular components in the alveolar spaces were characteristic of COVID+/ARDS+ lung tissues, evaluating CD55 expression could be relevant to understand its relation to the disease. Furthermore, targeting CD55 upregulation as a potential therapy could be an option for post-infectious complications of COVID-19 and other inflammatory lung diseases in the future.
Collapse
Affiliation(s)
- Sandeep Silawal
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Petr Pelikan
- Institute for Pathology, Paracelsus Medical University, Nuremberg, General Hospital, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Georgia Levidou
- Institute for Pathology, Paracelsus Medical University, Nuremberg, General Hospital, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Raman Mahato
- Department of Emergency and Intensive Care Medicine, Klinikum Ernst von Bergmann, Charlottenstraße 72, 14467 Potsdam, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, General Hospital Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
36
|
Akpoviroro O, Sauers NK, Uwandu Q, Castagne M, Akpoviroro OP, Humayun S, Mirza W, Woodard J. Severe COVID-19 infection: An institutional review and literature overview. PLoS One 2024; 19:e0304960. [PMID: 39163410 PMCID: PMC11335168 DOI: 10.1371/journal.pone.0304960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/21/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Our study aimed to describe the group of severe COVID-19 patients at an institutional level, and determine factors associated with different outcomes. METHODS A retrospective chart review of patients admitted with severe acute hypoxic respiratory failure due to COVID-19 infection. Based on outcomes, we categorized 3 groups of severe COVID-19: (1) Favorable outcome: progressive care unit admission and discharge (2) Intermediate outcome: ICU care (3) Poor outcome: in-hospital mortality. RESULTS Eighty-nine patients met our inclusion criteria; 42.7% were female. The average age was 59.7 (standard deviation (SD):13.7). Most of the population were Caucasian (95.5%) and non-Hispanic (91.0%). Age, sex, race, and ethnicity were similar between outcome groups. Medicare and Medicaid patients accounted for 62.9%. The average BMI was 33.5 (SD:8.2). Moderate comorbidity was observed, with an average Charlson Comorbidity index (CCI) of 3.8 (SD:2.6). There were no differences in the average CCI between groups(p = 0.291). Many patients (67.4%) had hypertension, diabetes (42.7%) and chronic lung disease (32.6%). A statistical difference was found when chronic lung disease was evaluated; p = 0.002. The prevalence of chronic lung disease was 19.6%, 27.8%, and 40% in the favorable, intermediate, and poor outcome groups, respectively. Smoking history was associated with poor outcomes (p = 0.04). Only 7.9% were fully vaccinated. Almost half (46.1%) were intubated and mechanically ventilated. Patients spent an average of 12.1 days ventilated (SD:8.5), with an average of 6.0 days from admission to ventilation (SD:5.1). The intermediate group had a shorter average interval from admission to ventilator (77.2 hours, SD:67.6), than the poor group (212.8 hours, SD:126.8); (p = 0.001). The presence of bacterial pneumonia was greatest in the intermediate group (72.2%), compared to the favorable group (17.4%), and the poor group (56%); this was significant (p<0.0001). In-hospital mortality was seen in 28.1%. CONCLUSION Most patients were male, obese, had moderate-level comorbidity, a history of tobacco abuse, and government-funded insurance. Nearly 50% required mechanical ventilation, and about 28% died during hospitalization. Bacterial pneumonia was most prevalent in intubated groups. Patients who were intubated with a good outcome were intubated earlier during their hospital course, with an average difference of 135.6 hours. A history of cigarette smoking and chronic lung disease were associated with poor outcomes.
Collapse
Affiliation(s)
- Ogheneyoma Akpoviroro
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Nathan Kyle Sauers
- Department of Engineering, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Queeneth Uwandu
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Myriam Castagne
- Clinical & Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | | | - Sara Humayun
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Wasique Mirza
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Jameson Woodard
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| |
Collapse
|
37
|
Zhu W, Chen Y, Xiao J, Cheng C, Ma G, Wang Y, Zhang Y, Chen M. Ferroptosis-Related Genes in IgA Nephropathy: Screening for Potential Targets of the Mechanism. Int J Genomics 2024; 2024:8851124. [PMID: 39171207 PMCID: PMC11338665 DOI: 10.1155/2024/8851124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/04/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Aims: Exploring key genes and potential molecular pathways of ferroptosis in immunoglobulin A nephropathy (IgAN). Methods: The IgAN datasets and ferroptosis-related genes (FRGs) were obtained in the Gene Expression Omnibus (GEO) and FerrDb database. Differentially expressed genes (DEGs) were identified using R software and intersected with FRGs to obtain differentially expressed FRGs (DE-FRGs). After that, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis (PEA) and Gene Ontology (GO) functional annotation were performed on DE-FRGs. In the Search Tool for the Retrieval of Interacting Genes (STRING) website, we construct a protein-protein interaction (PPI) network. The PPI network was further investigated with screening hub genes with Cytoscape software. The core genes were then subjected to gene set enrichment analysis (GSEA). Finally, the samples were analyzed for immune infiltration in R, and the correlation between hub genes and immune cells was analyzed. Results: A total of 347 DEGs were identified. CD44, CDO1, CYBB, IL1B, RRM2, AKR1C1, activated transcription factor-3 (ATF3), CDKN1A, GDF15, JUN, MGST1, MIOX, MT1G, NR4A1, PDK4, TNFAIP3, and ZFP36 were determined as DE-FRGs. JUN, IL1B, and ATF3 were then screened as hub genes. GSEA and immune infiltration analysis revealed that the hub genes were closely associated with immune inflammatory responses such as NOD-like receptor signaling, IL-17 signaling, and TNF signaling. Conclusions: Our results show that JUN and ATF3 are possibly critical genes in the process of IgAN ferroptosis and may be related with immune cell infiltration.
Collapse
Affiliation(s)
- Wenhui Zhu
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
- College of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun, China
| | - Yao Chen
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chuchu Cheng
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Guijie Ma
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yonggang Zhang
- Department of Renal DivisionFirst People's Hospital of Qiqihar City, Qiqihar, China
| | - Ming Chen
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| |
Collapse
|
38
|
Kurimoto C, Furukawa Y, Akamizu T, Doi A, Takeshima K, Morita S, Iwakura H, Ariyasu H, Furuta H, Nishi M, Matsuoka TA. Generation of a mouse model of thyroid storm and preliminary investigation of the therapeutic effects of ghrelin. BMC Endocr Disord 2024; 24:150. [PMID: 39135012 PMCID: PMC11318345 DOI: 10.1186/s12902-024-01680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Thyroid storm (TS), a life-threatening condition that can damage multiple organs, has limited therapeutic options. Hypercytokinemia is a suggested background, but the pathological condition is unclear and there are no appropriate animal models. We aimed to develop a TS mouse model by administration of triiodothyronine and lipopolysaccharide, and then to examine the effects of ghrelin on this model. METHODS We evaluated the use of serum IL-6 levels as a representative marker of hypercytokinemia in patients with TS. To establish the mouse model, preliminary experiments were conducted to determine the non-lethal doses of triiodothyronine and lipopolysaccharide when administered individually. As a TS model, C57BL/6 mice were administered with triiodothyronine 1.0 mg/kg (subcutaneously, once daily for seven consecutive days) and lipopolysaccharide 0.5 mg/kg (intraperitoneally, on day 7) to develop a lethal model with approximately 30% survival on day 8. We assessed the survival ratio, mouse sepsis scores and blood biomarkers (IL-6, metanephrine, alanine aminotransferase) and evaluated the effects of ghrelin 300 µg/kg on these parameters in TS model. RESULTS Serum IL-6 was increased in patients with TS compared with those with Graves' disease as the diseased control (18.2 vs. 2.85 pg/mL, P < .05, n = 4 each). The dosage for the murine TS model was triiodothyronine 1.0 mg/kg and lipopolysaccharide 0.5 mg/kg. The TS model group had increased mouse sepsis score, serum IL-6, metanephrine and alanine aminotransferase. In this model, the ghrelin improved the survival rate to 66.7% (P < .01, vs. 0% [saline-treated group]) as well as the mouse sepsis score, and it decreased the serum IL-6 and metanephrine. CONCLUSION We established an animal model of TS that exhibits pathophysiological states similar to human TS with induction of serum IL-6 and other biomarkers by administration of T3 and LPS. The results suggest the potential effectiveness of ghrelin for TS in humans.
Collapse
Affiliation(s)
- Chiaki Kurimoto
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yasushi Furukawa
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akamizu
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan.
- Department of Internal Medicine, Kuma Hospital, Hyogo, Japan.
| | - Asako Doi
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ken Takeshima
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shuhei Morita
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Iwakura
- Department of Pharmacotherapeutics, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Ariyasu
- Department of Diabetes and Endocrinology, Shizuoka General Hospital, Shizuoka, Japan
| | - Hiroto Furuta
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | | | - Taka-Aki Matsuoka
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
39
|
Kaur A, Krishnan VV. Immunoprofiles of COVID-19 uniquely differentiated from other viruses: A machine learning investigation of multiplex immunoassay data. PNAS NEXUS 2024; 3:pgae327. [PMID: 39157461 PMCID: PMC11327922 DOI: 10.1093/pnasnexus/pgae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Cytokines and chemokines are vital in maintaining a healthy state by efficiently controlling invading microbes. In addition, the dysregulation of these immune mediators can contribute to viral infection pathology. We comprehensively analyzed the profiles of host immunomodulators in response to infections with members of several virus families, particularly if the SARS-CoV-2 infection produces a unique immune profile compared with other viral infections. Multiplex microbead immunoassay results from 219 datasets with a range of viruses were curated systematically. The curated immunoassay data, obtained using Luminex technology, include 35 different viruses in 18 different viral families; this analysis also incorporated data from studies performed in 7 different cell model systems with 28 different sample types. A multivariate statistical analysis was performed with a specific focus involving many investigations (>10), which include the viral families of Coronaviridae, Orthomyxoviridae, Retroviridae, Flaviviridae, and Hantaviridae. A random forest-based classification of the profiles indicates that IL1-RA, C-X-C motif chemokine ligand 9, C-C motif chemokine ligand 4, interferon (IFN)-λ1, IFN-γ-inducing protein 10, and interleukin (IL)-27 are the top immunomodulators among human samples. Similar approaches only between Coronaviridae (COVID-19) and Orthomyxoviridae (influenza A/B) indicated that transforming growth factor-β, IFN-λ1, IL-9, and eotaxin-1 are important features. In particular, the IFN-λ1 protein was implicated as one of the significant immunomodulators differentiating viral family infection. It is evident that Coronaviridae infection, including SARS-CoV-2, induces a unique cytokine-chemokine profile and can lead to specific immunoassays for diagnosing and prognosis of viral diseases based on host immune responses. Alternatively, we can use diagnosing and prognosing. It is also essential to note that meta-analysis-based predictions must be appropriately validated before clinical implementation.
Collapse
Affiliation(s)
- Ashneet Kaur
- Department of Biology, California State University, Fresno, CA 93740, USA
| | - Viswanathan V Krishnan
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
40
|
Bourhis M, Idir A, Machraoui S, Hachimi A, Elouardi Y, Jamil O, Khallouki M, Zahlane K, Guennouni M, Hazime R, Essaadouni L, Lourhlam B, Ennaji MM, Mouse HA, Admou B, Zyad A. Cytokine and chemokine profiles in the sera of COVID-19 patients with different stages of severity. Cytokine 2024; 180:156653. [PMID: 38781873 DOI: 10.1016/j.cyto.2024.156653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION COVID-19 is a viral infection that disturbs the host's immune system and causes an overproduction of cytokines leading to a cytokine storm. The present study aimed to evaluate the serum levels of 27 protein biomarkers to determine their association with COVID-19 disease severity. METHODS The serum levels of 89 patients with different degrees of COVID-19 disease severity [asymptomatic (n = 14), moderate (n = 14), severe (n = 30), and critical (n = 31)] and 14 healthy individuals were tested for a panel of 27 cytokines and chemokines using Luminex assay (27 Bio‑Plex Pro Human Cytokine, Bio-rad™). RESULTS IL-12, IL-2 and IL-13, as well as IL-17 and GM-CSF were clearly undetectable in asymptomatic patients. IL-8 levels were higher in asymptomatic compared with other groups. Very high levels of IL-6, IL-10 and the chemokines MIP-1α, MCP-1 and IP10 were associated with disease progression, while IL-4 tends to decrease with disease severity. CONCLUSION Our study provides more evidence that excessive cytokine synthesis is linked to the disease progression.
Collapse
Affiliation(s)
- Maryam Bourhis
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Laboratory of Agro-industrial and Medical Biotechnology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BeniMellal, Morocco
| | - Abderrazak Idir
- Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University, El Jadida, Morocco
| | - Safa Machraoui
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Abdelhamid Hachimi
- Department of Intensive Care, Mohamed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Youssef Elouardi
- Department of Anesthesia and Intensive Care Medicine, Ibn Tofail Hospital, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Oumayma Jamil
- Department of Anesthesia and Intensive Care Medicine, Ibn Tofail Hospital, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mohammed Khallouki
- Department of Anesthesia and Intensive Care Medicine, Ibn Tofail Hospital, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Kawtar Zahlane
- Laboratory of Medical Analysis, IbnTofail Hospital, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Morad Guennouni
- Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University, El Jadida, Morocco
| | - Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Lamiaa Essaadouni
- Internal Medicine Department, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Bouchra Lourhlam
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Laboratory of Agro-industrial and Medical Biotechnology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BeniMellal, Morocco
| | - Moulay Mustapha Ennaji
- Team of Virology, Oncology and Biotechnology, Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences & Technologies Mohammedia, University Hassan II of Casablanca, Casablanca, Morocco
| | - Hassan Ait Mouse
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Laboratory of Agro-industrial and Medical Biotechnology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BeniMellal, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Laboratory of Agro-industrial and Medical Biotechnology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BeniMellal, Morocco.
| |
Collapse
|
41
|
Bassetti M, Andreoni M, Santus P, Scaglione F. NSAIDs for early management of acute respiratory infections. Curr Opin Infect Dis 2024; 37:304-311. [PMID: 38779903 PMCID: PMC11213495 DOI: 10.1097/qco.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
PURPOSE OF REVIEW To review the rationale for and the potential clinical benefits of an early approach to viral acute respiratory infections with NSAIDs to switch off the inflammatory cascade before the inflammatory process becomes complicated. RECENT FINDINGS It has been shown that in COVID-19 as in other viral respiratory infections proinflammatory cytokines are produced, which are responsible of respiratory and systemic symptoms. There have been concerns that NSAIDs could increase susceptibility to SARS-CoV-2 infection or aggravate COVID-19. However, recent articles reviewing experimental research, observational clinical studies, randomized clinical trials, and meta-analyses conclude that there is no basis to limit the use of NSAIDs, which may instead represent effective self-care measures to control symptoms. SUMMARY The inflammatory response plays a pivotal role in the early phase of acute respiratory tract infections (ARTIs); a correct diagnosis of the cause and a prompt therapeutic approach with NSAIDs may have the potential to control the pathophysiological mechanisms that can complicate the condition, while reducing symptoms to the benefit of the patient. A timely treatment with NSAIDs may limit the inappropriate use of other categories of drugs, such as antibiotics, which are useless when viral cause is confirmed and whose inappropriate use is responsible for the development of resistance.
Collapse
Affiliation(s)
- Matteo Bassetti
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova
- IRCCS Ospedale Policlinico San Martino, Genova
| | - Massimo Andreoni
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital
- Department of System Medicine Tor Vergata, University of Rome, Rome, Italy
| | - Pierachille Santus
- Division of Respiratory Diseases, Ospedale Luigi Sacco, Polo Universitario, ASST Fatebenefratelli-Sacco
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano
| | - Francesco Scaglione
- Department of Oncology and Hemato-Oncology, Postgraduate School of Clinical Pharmacology and Toxicology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
42
|
Zhuang Z, Chen Y, Liu Z, Fu Y, Wang F, Bai L. Pharmacological validation of a novel exopolysaccharide from Streptomyces sp. 139 to effectively inhibit cytokine storms. Heliyon 2024; 10:e34392. [PMID: 39816356 PMCID: PMC11734065 DOI: 10.1016/j.heliyon.2024.e34392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
With the rapid development of immunotherapy in recent years, cytokine storm has been recognized as a common adverse effect of immunotherapy. The emergence of COVID-19 has renewed global attention to it. The cytokine storm's inflammatory response results in infiltration of large amounts of monocytes/macrophages in the lungs, heart, spleen, lymph nodes, and kidneys. This infiltration leads to secondary tissue damage, acute respiratory distress syndrome (ARDS), organismal damage, and even death. However, there is currently no designated treatment for cytokine storm and the resulting ARDS. Consequently, there is a pressing need to identify a pharmaceutical agent that can effectively mitigate cytokine storms. Ebosin is a new exopolysaccharide generated by Streptomyces sp.139 and pharmacological activity for cytokine storm is investigated in vivo. The results show that Ebosin significantly augments the survival rates of mice, and its effectiveness increases with higher doses. It significantly inhibited the expression of cytokines IL-5, IL-6, IL-9 and chemokine Eotaxin in serum and lung tissues. Ebosin can alleviate the pathological damage in the lungs, liver, and spleen caused by LPS. Additionally, it can inhibit the phosphorylation of IKKα/β, Stat3 and NF-κB p65 upon LPS stimulation in vitro. We hypothesized that Ebosin may decrease cytokine release by inhibiting the phosphorylation of IKKα/β, Stat3, and NF-κB p65, neutrophil infiltration in animals. The article preliminarily elucidated the activity and mechanism of Ebosin against cytokine storm, which provides a reference for the study of anti-cytokine storm activity of microbial natural products.
Collapse
Affiliation(s)
- Zhuochen Zhuang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu Chen
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
| | - Zhe Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu Fu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fei Wang
- The Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot, 010050, Inner Mongolia, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
43
|
Caohuy H, Eidelman O, Chen T, Mungunsukh O, Yang Q, Walton NI, Pollard BS, Khanal S, Hentschel S, Florez C, Herbert AS, Pollard HB. Inflammation in the COVID-19 airway is due to inhibition of CFTR signaling by the SARS-CoV-2 spike protein. Sci Rep 2024; 14:16895. [PMID: 39043712 PMCID: PMC11266487 DOI: 10.1038/s41598-024-66473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
SARS-CoV-2-contributes to sickness and death in COVID-19 patients partly by inducing a hyper-proinflammatory immune response in the host airway. This hyper-proinflammatory state involves activation of signaling by NFκB, and unexpectedly, ENaC, the epithelial sodium channel. Post-infection inflammation may also contribute to "Long COVID"/PASC. Enhanced signaling by NFκB and ENaC also marks the airway of patients suffering from cystic fibrosis, a life-limiting proinflammatory genetic disease due to inactivating mutations in the CFTR gene. We therefore hypothesized that inflammation in the COVID-19 airway might similarly be due to inhibition of CFTR signaling by SARS-CoV-2 spike protein, and therefore activation of both NFκB and ENaC signaling. We used western blot and electrophysiological techniques, and an organoid model of normal airway epithelia, differentiated on an air-liquid-interface (ALI). We found that CFTR protein expression and CFTR cAMP-activated chloride channel activity were lost when the model epithelium was exposed to SARS-CoV-2 spike proteins. As hypothesized, the absence of CFTR led to activation of both TNFα/NFκB signaling and α and γ ENaC. We had previously shown that the cardiac glycoside drugs digoxin, digitoxin and ouabain blocked interaction of spike protein and ACE2. Consistently, addition of 30 nM concentrations of the cardiac glycoside drugs, prevented loss of both CFTR protein and CFTR channel activity. ACE2 and CFTR were found to co-immunoprecipitate in both basal cells and differentiated epithelia. Thus spike-dependent CFTR loss might involve ACE2 as a bridge between Spike and CFTR. In addition, spike exposure to the epithelia resulted in failure of endosomal recycling to return CFTR to the plasma membrane. Thus, failure of CFTR recovery from endosomal recycling might be a mechanism for spike-dependent loss of CFTR. Finally, we found that authentic SARS-CoV-2 virus infection induced loss of CFTR protein, which was rescued by the cardiac glycoside drugs digitoxin and ouabain. Based on experiments with this organoid model of small airway epithelia, and comparisons with 16HBE14o- and other cell types expressing normal CFTR, we predict that inflammation in the COVID-19 airway may be mediated by inhibition of CFTR signaling by the SARS-CoV-2 spike protein, thus inducing a cystic fibrosis-like clinical phenotype. To our knowledge this is the first time COVID-19 airway inflammation has been experimentally traced in normal subjects to a contribution from SARS-CoV-2 spike-dependent inhibition of CFTR signaling.
Collapse
Affiliation(s)
- Hung Caohuy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tinghua Chen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ognoon Mungunsukh
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Qingfeng Yang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Center for the Study of Traumatic Stress (CSTS), and Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Nathan I Walton
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Sara Khanal
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
- The Geneva Foundation, Tacoma, WA, 98402, USA
| | - Shannon Hentschel
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
- Cherokee Nation Assurance, Catoosa, OK, 74015, USA
| | - Catalina Florez
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
- The Geneva Foundation, Tacoma, WA, 98402, USA
| | - Andrew S Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, 21702, USA
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Collaborative Health Initiative Research Program (CHIRP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Consortium for Health and Military Performance (CHAMP), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
44
|
von Loeffelholz C, Winkler R, Weigel C, Piskor EM, Vivas W, Rauchfuß F, Settmacher U, Rubio I, Weis S, Gräler MH, Bauer M, Kosan C. Increased peritoneal B1-like cells during acute phase of human septic peritonitis. iScience 2024; 27:110133. [PMID: 38984201 PMCID: PMC11231613 DOI: 10.1016/j.isci.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/13/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Sepsis is a life-threatening condition caused by dysregulated host responses to infection. Myeloid cell accumulation and lymphocyte decline are widely recognized phenomena in septic patients. However, the fate of specific immune cells remains unclear. Here, we report the results of a human explorative study of patients with septic peritonitis and patients undergoing abdominal surgery without sepsis. We analyzed pairwise peritoneal fluid and peripheral blood taken 24 h after surgery to characterize immediate immune cell changes. Our results show that myeloid cell expansion and lymphocyte loss occur in all patients undergoing open abdominal surgery, indicating that these changes are not specific to sepsis. However, B1-like lymphocytes were specifically increased in the peritoneal fluid of septic patients, correlating positively with sequential organ failure assessment (SOFA) and acute physiology and chronic health evaluation II (APACHE-II) clinical severity scores. In support of this notion, we identified an accumulation of peritoneal B1b lymphocytes in septic mice.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07749 Jena, Germany
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Cynthia Weigel
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07749 Jena, Germany
- Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Eva-Maria Piskor
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Wolfgang Vivas
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07749 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute of Infectious Disease and Infection Control, Friedrich Schiller University, Am Klinikum 1, 07749 Jena, Germany
| | - Falk Rauchfuß
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Am Klinikum 1, 07749 Jena, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Am Klinikum 1, 07749 Jena, Germany
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07749 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07749 Jena, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07749 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute of Infectious Disease and Infection Control, Friedrich Schiller University, Am Klinikum 1, 07749 Jena, Germany
| | - Markus H. Gräler
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07749 Jena, Germany
- Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knöll-Str. 2, 07745 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07749 Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07749 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07749 Jena, Germany
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knöll-Str. 2, 07745 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07749 Jena, Germany
| |
Collapse
|
45
|
Wang Y, Li J, Yang Q, Zhu Z, Cheng F, Ai X, Liu Y, Zhao D, Zhao F, Cheng P. 5-Methoxytryptophan Alleviates Dextran Sulfate Sodium-Induced Colitis by Inhibiting the Intestinal Epithelial Damage and Inflammatory Response. Mediators Inflamm 2024; 2024:1484806. [PMID: 39262415 PMCID: PMC11390199 DOI: 10.1155/2024/1484806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Background Colitis is a refractory intestinal inflammatory disease significantly affecting the quality of a patient's life and increasing the risk of exacerbation. The primary factors leading to colitis encompass infections, insufficient blood flow, and the buildup of collagen as well as white blood cells. Among various available therapeutics, 5-methoxytryptophan (5-MTP) has emerged as one of the protectants by inhibiting inflammatory damage. Nonetheless, there is no report on the role of 5-MTP in the treatment of colitis. Materials and Methods To verify the anti-inflammatory effect of 5-MTP in vivo, we first constructed mouse model with dextran sulfate sodium-induced colitis. Furthermore, the macrophage infiltration and release of inflammatory factors through western blot (WB) and hematoxylin-eosin staining analyses were examined. Intestinal epithelial cell tight junction damage and apoptosis were investigated by WB analysis, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Finally, we examined the generation of cellular inflammation and analyzed the influence of 5-MTP on M1 polarization at the cellular level. Results This study initially confirmed that 5-MTP possessed an excellent therapeutic effect on colitis. 5-MTP inhibits macrophage infiltration and the generation of inflammatory factors. In addition to its effects on immune cells, 5-MTP significantly inhibits intestinal epithelial cell tight junction damage and apoptosis in vivo. Moreover, it inhibits inflammation and M1 polarization response in vitro. Conclusion 5-MTP counteracts excessive inflammation, thereby preventing intestinal epithelial tight junction damage. In addition, inhibition of apoptosis suggests that 5-MTP may be a potential therapeutic agent for colitis.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Rheumatology and Immunology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- Department of Rheumatology and Immunology Shanghai Tenth People's Hospital Tongji University School of Medicine, Shanghai, China
| | - Qinyuan Yang
- Department of Geriatrics Shanghai Health and Medical Center, Wuxi, Jiangsu 214000, China
| | - Zhenhang Zhu
- Department of Rheumatology and Immunology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Cheng
- Department of Rheumatology and Immunology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyan Ai
- Department of Rheumatology and Immunology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Rheumatology and Immunology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology Changhai Hospital Naval Medical University, Shanghai 200433, China
| | - Futao Zhao
- Department of Rheumatology and Immunology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Cheng
- Department of Gastroenterology Hainan West Central Hospital, 2 Fubo East Road, Danzhou, Hainan, China
- Department of Gastroenterology Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, China
| |
Collapse
|
46
|
Li F, Nie L, Huang J, Sin TH, Wang X, Zhang F, Ma J, Shi X, Chen L, Niu K, Zhang X, Zhou Y. Evaluation of significantly changed chemokine factors of idiopathic granulomatous mastitis in non-puerperal patients. FASEB J 2024; 38:e23745. [PMID: 38923065 DOI: 10.1096/fj.202400114rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Idiopathic granulomatous mastitis (IGM), a recurrent inflammation disease of the non-lactating breast, has had an increasing clinical morbidity rate in recent years, and its complicated symptoms and unclear etiology make it challenging to treat. This rare benign inflammatory breast disease, centered on the lobules, represents the most challenging type of non-puerperal mastitis (NPM), also known as non-lactating mastitis. In this study, patients diagnosed with IGM (M, n = 23) were recruited as cases, and patients with benign control breast disease (C, n = 17) were enrolled as controls. Cytokine microarray detection measured and analyzed the differentially expressed cytokine factors between IGM and control patients. Then, we verified the mRNA and protein expression levels of the significantly changed cytokine factors using Q-RT-PCR, ELISA, western blot, and IHC experiments. The cytokine factor expression levels significantly changed compared to the control group. We observed a significant increase between IGM and control patients in cytokine factors expression, such as interleukin-1β (IL-1β), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, MIP-1β, tumor necrosis factor receptor 2 (TNF RII). Then, we verified the expression of these top five dysregulated factors in both mRNA and protein levels. Our results demonstrated the cytokine map in IGM and indicated that several cytokines, especially chemokines, were associated with and significantly dysregulated in IGM tissues compared to the control group. The chemokine factors involved might be essential in developing and treating IGM. These findings would be helpful for a better understanding of IGM and offer valuable insights for devising novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Fangyuan Li
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College, Beijing, China
| | - Longzhu Nie
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College, Beijing, China
| | - Junying Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College, Beijing, China
| | - Tat-Hang Sin
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College, Beijing, China
| | - Xuejing Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College, Beijing, China
| | - Fan Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College, Beijing, China
| | - Jia Ma
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College, Beijing, China
| | - Xiaoguang Shi
- Department of Breast Surgery, Beijing Dangdai Hospital, Beijing, China
| | - Linlin Chen
- Department of Breast Surgery, Beijing Dangdai Hospital, Beijing, China
| | - Kunying Niu
- Department of Breast Surgery, Beijing Dangdai Hospital, Beijing, China
| | - Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College, Beijing, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Zhang Z, Wu W, Li Q, Du F, Wang X, Yang M, Zhang H. The effect of matrine and glycyrrhizic acid on porcine reproductive and respiratory syndrome virus in Vitro and in vivo. Virol J 2024; 21:150. [PMID: 38965549 PMCID: PMC11225320 DOI: 10.1186/s12985-024-02415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is endemic worldwide, seriously affecting the development of the pig industry, but vaccines have limited protective effects against PRRSV transmission. The aim of this study was to identify potential anti-PRRSV drugs. We examined the cytotoxicity of seven compounds formulated based on the mass ratio of glycyrrhizic acid to matrine and calculated their inhibition rates against PRRSV in vitro. The results showed that the seven compounds all had direct killing and therapeutic effects on PRRSV, and the compounds inhibited PRRSV replication in a time- and dose-dependent manner. The compound with the strongest anti-PRRSV effect was selected for subsequent in vivo experiments. Pigs were divided into a control group and a medication group for the in vivo evaluation. The results showed that pigs treated with the 4:1 compound had 100% morbidity after PRRSV challenge, and the mortality rate reached 75% on the 8th day of the virus challenge. These results suggest that this compound has no practical anti-PRRSV effect in vivo and can actually accelerate the death of infected pigs. Next, we further analyzed the pigs that exhibited semiprotective effects following vaccination with the compound to determine whether the compound can synergize with the vaccine in vivo. The results indicated that pigs treated with the compound had higher mortality rates and more severe clinical reactions after PRRSV infection (p < 0.05). The levels of proinflammatory cytokines (IL-6, IL-8, IL-1β, IFN-γ, and TNF-α) were significantly greater in the compound-treated pigs than in the positive control-treated pigs (p < 0.05), and there was no synergistic enhancement with the live attenuated PRRSV vaccine (p < 0.05). The compound enhanced the inflammatory response, prompted the body to produce excessive levels of inflammatory cytokines and caused body damage, preventing a therapeutic effect. In conclusion, the present study revealed that the in vitro effectiveness of these agents does not indicate that they are effective in vivo or useful for developing anti-PRRSV drugs. Our findings also showed that, to identify effective anti-PRRSV drugs, comprehensive drug screening is needed, for compounds with solid anti-inflammatory effects both in vitro and in vivo. Our study may aid in the development of new anti-PRRSV drugs.
Collapse
Affiliation(s)
- Zhilong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou city, Henan, P.R. China
| | - Wenyi Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou city, Henan, P.R. China
| | - Qiannan Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou city, Henan, P.R. China
| | - Fangfang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou city, Henan, P.R. China
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou city, Henan, P.R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou city, Henan, P.R. China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou city, Henan, P.R. China
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou city, Henan, P.R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou city, Henan, P.R. China
| | - Mingfan Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou city, Henan, P.R. China
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou city, Henan, P.R. China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou city, Henan, P.R. China
| | - Hongying Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou city, Henan, P.R. China.
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou city, Henan, P.R. China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou city, Henan, P.R. China.
| |
Collapse
|
48
|
Borbolla-Flores P, Villegas-Gutiérrez LY, Samaniego-Segovia BM, Torres-Quintanilla FJ, Gómez-Villarreal JP, Garza-Treviño RA, Rizo-Topete LM. Critically Ill Patients with COVID-19 Pneumonia Requiring Continuous Renal Replacement Therapy with oXiris® Membrane in a Third-Level Hospital in Northeast Mexico. Blood Purif 2024; 53:634-640. [PMID: 38934142 DOI: 10.1159/000539481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION The coronavirus disease 2019 (COVID-19) pandemic represented a global public health problem with devastating consequences that have challenged conventional medical treatments. Continuous renal replacement therapy (CRRT), based on a spectrum of modalities and dialysis membranes, can modify cytokine storms, and improve the clearance of inflammatory factors. As severe COVID-19 can lead to acute kidney injury (AKI) requiring RRT, most patients require more than one extracorporeal organ support at this point. This is due to complications that lead to organ dysfunction. The aim of our study was to assess renal recovery and survival while use of the oXiris membrane, as well as a decrease in vasopressors and hemodynamic parameters. METHODS This was a retrospective, observational study. The population included adult patients (aged >18 years) with a real-time PCR COVID-19 positive test, admitted to the intensive care unit (ICU) with AKI KDIGO 3, which required CRRT, in a hospital in northern Mexico. The primary outcomes were renal recovery and survival, and the secondary outcomes were a decrease in the vasopressor requirements and changes in the hemodynamic parameters. RESULTS Thirteen patients were included from January 2020 to August 2021, all of whom met the inclusion criteria. oXiris, an AN69-modified membrane, was used for blood purification and cytokine storm control in all the patients. The primary outcome, renal recovery, and survival were observed in 23% of the patients. The secondary outcome was a decrease of 12% in the use of noradrenaline in the first 24 h of CRRT initiation with oXiris, in addition to a decrease in creatinine and C-reactive protein levels in all patients. DISCUSSION The use of the oXiris membrane in patients with severe COVID-19 improved hemodynamic parameters, with 23% of the patients achieving renal recovery. The decrease on the requirement of vasopressors in the overall patients in the first 24 h of CRRT with oXiris was achieved. The mean decrease was of 12%, accompanied by a decrease in inflammatory markers. There is literature on the benefit of CRRT with a modified AN69 membrane in Mexico; however, studies in this regard are scarce, and our research provides valuable information on our experience in this field.
Collapse
Affiliation(s)
- Paola Borbolla-Flores
- Internal Medicine Department, Hospital Christus Muguerza Alta Especialidad, Universidad de Monterrey, UDEM, San Pedro Garza García, Mexico
- Internal Medicine Department and Nephrology Service, Hospital Universitario "José Eleuterio González," Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico
- Nephrology Department, Hospital Regional Dr. Valentín Gómez Farías, Institute for Social Security and Services for State Workers, Zapopan, Mexico
| | - Luz Yareli Villegas-Gutiérrez
- Nephrology Department, Hospital Regional Dr. Valentín Gómez Farías, Institute for Social Security and Services for State Workers, Zapopan, Mexico
| | | | | | - Juan Pablo Gómez-Villarreal
- Internal Medicine Department, Hospital Christus Muguerza Alta Especialidad, Universidad de Monterrey, UDEM, San Pedro Garza García, Mexico
- Internal Medicine Department and Nephrology Service, Hospital Universitario "José Eleuterio González," Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico
| | - Ricardo Abraham Garza-Treviño
- Internal Medicine Department, Hospital Christus Muguerza Alta Especialidad, Universidad de Monterrey, UDEM, San Pedro Garza García, Mexico
- Internal Medicine Department and Nephrology Service, Hospital Universitario "José Eleuterio González," Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico
| | - Lilia María Rizo-Topete
- Internal Medicine Department, Hospital Christus Muguerza Alta Especialidad, Universidad de Monterrey, UDEM, San Pedro Garza García, Mexico
- Internal Medicine Department and Nephrology Service, Hospital Universitario "José Eleuterio González," Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico
| |
Collapse
|
49
|
Koch-Heier J, Vogel AB, Füll Y, Ebensperger M, Schönsiegel A, Zinser RS, Planz O. MEK-inhibitor treatment reduces the induction of regulatory T cells in mice after influenza A virus infection. Front Immunol 2024; 15:1360698. [PMID: 38979428 PMCID: PMC11228811 DOI: 10.3389/fimmu.2024.1360698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Regulatory T cells (Tregs) play a crucial and complex role in balancing the immune response to viral infection. Primarily, they serve to regulate the immune response by limiting the expression of proinflammatory cytokines, reducing inflammation in infected tissue, and limiting virus-specific T cell responses. But excessive activity of Tregs can also be detrimental and hinder the ability to effectively clear viral infection, leading to prolonged disease and potential worsening of disease severity. Not much is known about the impact of Tregs during severe influenza. In the present study, we show that CD4+/CD25+FoxP3+ Tregs are strongly involved in disease progression during influenza A virus (IAV) infection in mice. By comparing sublethal with lethal dose infection in vivo, we found that not the viral load but an increased number of CD4+/CD25+FoxP3+ Tregs may impair the immune response by suppressing virus specific CD8+ T cells and favors disease progression. Moreover, the transfer of induced Tregs into mice with mild disease symptoms had a negative and prolonged effect on disease outcome, emphasizing their importance for pathogenesis. Furthermore, treatment with MEK-inhibitors resulted in a significant reduction of induced Tregs in vitro and in vivo and positively influenced the progression of the disease. Our results demonstrate that CD4+/CD25+FoxP3+ Tregs are involved in the pathogenesis of severe influenza and indicate the potential of the MEK-inhibitor zapnometinib to modulate CD4+/CD25+FoxP3+ Tregs. Thus, making MEK-inhibitors even more promising for the treatment of severe influenza virus infections.
Collapse
Affiliation(s)
- Julia Koch-Heier
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
- Atriva Therapeutics GmbH, Tübingen, Germany
| | | | | | | | - Annika Schönsiegel
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
- Atriva Therapeutics GmbH, Tübingen, Germany
| | - Raphael S. Zinser
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
50
|
Brunner P, Kiwitz L, Li L, Thurley K. Diffusion-limited cytokine signaling in T cell populations. iScience 2024; 27:110134. [PMID: 39678490 PMCID: PMC11639737 DOI: 10.1016/j.isci.2024.110134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/30/2024] [Accepted: 05/25/2024] [Indexed: 12/17/2024] Open
Abstract
Effective immune-cell responses depend on collective decision-making mediated by diffusible intercellular signaling proteins called cytokines. Here, we designed a three-dimensional spatiotemporal modeling framework and a precise finite-element simulation setup to systematically investigate the origin and consequences of spatially inhomogeneous cytokine distributions in lymph nodes. We found that such inhomogeneities are critical for effective paracrine signaling, and they do not arise by diffusion and uptake alone, but rather depend on properties of the cell population such as an all-or-none behavior of cytokine secreting cells. Furthermore, we assessed the regulatory properties of negative and positive feedback in combination with diffusion-limited signaling dynamics, and we derived statistical quantities to characterize the spatiotemporal signaling landscape in the context of specific tissue architectures. Overall, our simulations highlight the complex spatiotemporal dynamics imposed by cell-cell signaling with diffusible ligands, which entails a large potential for fine-tuned biological control especially if combined with feedback mechanisms.
Collapse
Affiliation(s)
- Patrick Brunner
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz-Institute, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Lukas Kiwitz
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz-Institute, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Lisa Li
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Kevin Thurley
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz-Institute, Berlin, Germany
| |
Collapse
|