1
|
Xu L, Qiu J, Ren Q, Wang D, Guo A, Wang L, Hou K, Wang R, Liu Y. Gold nanoparticles modulate macrophage polarization to promote skeletal muscle regeneration. Mater Today Bio 2025; 32:101653. [PMID: 40151803 PMCID: PMC11937682 DOI: 10.1016/j.mtbio.2025.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
Skeletal muscle regeneration is a complex process that depends on the interplay between immune responses and muscle stem cell (MuSC) activity. Macrophages play a crucial role in this process, exhibiting distinct polarization states-M1 (pro-inflammatory) and M2 (anti-inflammatory)-that significantly affect tissue repair outcomes. Recent advancements in nanomedicine have positioned gold nanoparticles (Au NPs) as promising tools for modulating macrophage polarization and enhancing muscle regeneration. This review examines the role of Au NPs in influencing macrophage behavior, focusing on their physicochemical properties, biocompatibility, and mechanisms of action. We discuss how Au NPs can promote M2 polarization, facilitating tissue repair through modulation of cytokine production, interaction with cell surface receptors, and activation of intracellular signaling pathways. Additionally, we highlight the benefits of Au NPs on MuSC function, angiogenesis, and extracellular matrix remodeling. Despite the potential of Au NPs in skeletal muscle regeneration, challenges remain in optimizing nanoparticle design, developing targeted delivery systems, and understanding long-term effects. Future directions should focus on personalized medicine approaches and combination therapies to enhance therapeutic efficacy. Ultimately, this review emphasizes the transformative potential of Au NPs in regenerative medicine, offering hope for improved treatments for muscle injuries and diseases.
Collapse
Affiliation(s)
- Lining Xu
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Jiahuang Qiu
- Research Center of Nano Technology and Application Engineering, School of Public Health,Dongguan Innovation Institute, Guangdong Medical University, Dongguan, 523808, China
| | - Quanzhong Ren
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Dingding Wang
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Anyi Guo
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Ling Wang
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
- Department of Radiology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Kedong Hou
- Department of Orthopedics, Beijing Pinggu District Hospital, Beijing, 101200, China
| | - Renxian Wang
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Yajun Liu
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
- Department of Spine Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
2
|
Shi X, Askari Rizvi SF, Yang Y, Liu G. Emerging nanomedicines for macrophage-mediated cancer therapy. Biomaterials 2025; 316:123028. [PMID: 39693782 DOI: 10.1016/j.biomaterials.2024.123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Tumor-associated macrophages (TAMs) contribute to tumor progression by promoting angiogenesis, remodeling the tumor extracellular matrix, inducing tumor invasion and metastasis, as well as immune evasion. Due to the high plasticity of TAMs, they can polarize into different phenotypes with distinct functions, which are primarily categorized as the pro-inflammatory, anti-tumor M1 type, and the anti-inflammatory, pro-tumor M2 type. Notably, anti-tumor macrophages not only directly phagocytize tumor cells, but also present tumor-specific antigens and activate adaptive immunity. Therefore, targeted regulation of TAMs to unleash their potential anti-tumor capabilities is crucial for improving the efficacy of cancer immunotherapy. Nanomedicine serves as a promising vehicle and can inherently interact with TAMs, hence, emerging as a new paradigm in cancer immunotherapy. Due to their controllable structures and properties, nanomedicines offer a plethora of advantages over conventional drugs, thus enhancing the balance between efficacy and toxicity. In this review, we provide an overview of the hallmarks of TAMs and discuss nanomedicines for targeting TAMs with a focus on inhibiting recruitment, depleting and reprogramming TAMs, enhancing phagocytosis, engineering macrophages, as well as targeting TAMs for tumor imaging. We also discuss the challenges and clinical potentials of nanomedicines for targeting TAMs, aiming to advance the exploitation of nanomedicine for cancer immunotherapy.
Collapse
Affiliation(s)
- Xueying Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Syed Faheem Askari Rizvi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China; Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Punjab, Pakistan
| | - Yinxian Yang
- School of Pharmaceutical Sciences, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular, Imaging and Translational Medicine, School of Public Health, Xiamen University, No. 4221 South Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| |
Collapse
|
3
|
Zhang Z, Ma T, Liu Q, Nan J, Liu G, Yang Y, Hu Y, Xie J. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Encapsulated in M2 Macrophage Cell Membrane Targeted to Inhibit Joint Periprosthetic Inflammation. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40168527 DOI: 10.1021/acsami.4c22304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Periprosthetic osteolysis (PPOL) is a serious complication following total joint replacement surgery, and exploring treatments for this complication is of significant societal importance. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos, Exos) have diverse cellular functions, such as inhibiting osteoclast formation, suppressing inflammation progression, and promoting M2 macrophage polarization. However, standalone Exosomes are easily recognized and phagocytosed by the immune system, have a short half-life, and lack specificity. This study is based on the homing effect possessed by M2 macrophages under the regulation of various factors. By combining this with cell membrane encapsulation technology and embedding BMSC-Exos within the membrane of M2 macrophages (M2M-Exos), the aim is to inhibit inflammation and treat PPOL. It was found that M2M-Exos can target the PPOL area, enhancing the therapeutic effects of the BMSC-Exos and reducing wear particle-induced cranial osteolysis. Additionally, M2M-Exos provide immune camouflage through the cell membrane, allowing the BMSC-Exos to evade clearance by the mononuclear macrophage system in the body. Therefore, the study demonstrates the targeting ability of M2M-Exos and their unique role in preventing PPOL. These biomimetic nanoparticles establish a targeted nanodrug delivery system for PPOL treatment.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Tianliang Ma
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Qimeng Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jiangyu Nan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
4
|
Kim D, Allen CA, Chung D, Meng L, Zhang X, Zhang W, Ouyang Y, Li Z, Hong F. A novel TLR4 accessory molecule drives hepatic oncogenesis through tumor-associated macrophages. Cancer Lett 2025; 614:217543. [PMID: 39929433 DOI: 10.1016/j.canlet.2025.217543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment, yet the roles and mechanisms of TAMs in inflammation-associated oncogenesis remain enigmatic. We report that protein canopy homolog 2 (CNPY2) functions as a novel TLR4 regulator, promoting cytokine production in macrophages. CNPY2 binds directly to TLR4. Cnpy2 deficiency reduces cell surface expression of TLR4, nuclear translocation of NFκB and cytokine production in macrophages. Macrophage-specific CNPY2 deficiency significantly decreases cytokine production in macrophages and reduces hepatocarcinogenesis in a diethylnitrosamine (DEN)-induced liver cancer model. RNA-sequencing analysis revealed Cnpy2 knockout decreased the mRNA level and cell surface expression of two VEGF receptors, Flt1 and Kdr, compared to those in WT counterparts, resulting in inhibition of macrophage tumor infiltration. Cnpy2 knockout inhibits NFκB2/p52-mediated transcription of Flt1 and Kdr in macrophages. These findings demonstrate that CNPY2 regulates macrophages in both inflammation and hepatocarcinogenesis and may serve as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Doyeon Kim
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Carter A Allen
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Dongjun Chung
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Biostatistics Core, College of Nursing, College of Public Health, University of South Florida Health, 12901 Bruce B. Downs Blvd.Tampa, FL, 33612, USA
| | - Wenqing Zhang
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Yuli Ouyang
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Zihai Li
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Feng Hong
- Pelotonia Institute for Immune-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 410 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
6
|
Zhao T, Luo Y, Sun Y, Wei Z. Characterizing macrophage diversity in colorectal malignancies through single-cell genomics. Front Immunol 2025; 16:1526668. [PMID: 40191203 PMCID: PMC11968368 DOI: 10.3389/fimmu.2025.1526668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract, with increasing incidence and mortality rates, posing a significant burden on human health. Its progression relies on various mechanisms, among which the tumor microenvironment and tumor-associated macrophages (TAMs) have garnered increasing attention. Macrophage infiltration in various solid tumors is associated with poor prognosis and is linked to chemotherapy resistance in many cancers. These significant biological behaviors depend on the heterogeneity of macrophages. Tumor-promoting TAMs comprise subpopulations characterized by distinct markers and unique transcriptional profiles, rendering them potential targets for anticancer therapies through either depletion or reprogramming from a pro-tumoral to an anti-tumoral state. Single-cell RNA sequencing technology has significantly enhanced our research resolution, breaking the traditional simplistic definitions of macrophage subtypes and deepening our understanding of the diversity within TAMs. However, a unified elucidation of the nomenclature and molecular characteristics associated with this diversity remains lacking. In this review, we assess the application of conventional macrophage polarization subtypes in colorectal malignancies and explore several unique subtypes defined from a single-cell omics perspective in recent years, categorizing them based on their potential functions.
Collapse
Affiliation(s)
- Tingshuo Zhao
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Yinyi Luo
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Yuanjie Sun
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Zhigang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Shanxi Medical University, Tai Yuan, China
| |
Collapse
|
7
|
Cao X, Wan S, Wu B, Liu Z, Xu L, Ding Y, Huang H. Antitumor Research Based on Drug Delivery Carriers: Reversing the Polarization of Tumor-Associated Macrophages. Mol Pharm 2025; 22:1174-1197. [PMID: 39868820 DOI: 10.1021/acs.molpharmaceut.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The development of malignant tumors is a complex process that involves the tumor microenvironment (TME). An immunosuppressive TME presents significant challenges to current cancer therapies, serving as a key mechanism through which tumor cells evade immune detection and play a crucial role in tumor progression and metastasis. This impedes the optimal effectiveness of immunotherapeutic approaches, including cytokines, immune checkpoint inhibitors, and cancer vaccines. Tumor-associated macrophages (TAMs), a major component of tumor-infiltrating immune cells, exhibit dual functionalities: M1-like TAMs suppress tumorigenesis, while M2-like TAMs promote tumor growth and metastasis. Consequently, the development of various nanocarriers aimed at polarizing M2-like TAMs to M1-like phenotypes through distinct mechanisms has emerged as a promising therapeutic strategy to inhibit tumor immune escape and enhance antitumor responses. This Review covers the origin and types of TAMs, common pathways regulating macrophage polarization, the role of TAMs in tumor progression, and therapeutic strategies targeting TAMs, aiming to provide a comprehensive understanding and guidance for future research and clinical applications.
Collapse
Affiliation(s)
- Xinyu Cao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shen Wan
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Bingyu Wu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zhikuan Liu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yu Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Ishihara N, Koma YI, Omori M, Komatsu S, Torigoe R, Yokoo H, Nakanishi T, Yamanaka K, Azumi Y, Tsukamoto S, Kodama T, Nishio M, Shigeoka M, Yokozaki H, Fukumoto T. Chemokine (C-C Motif) Ligand 2/CCR2/Extracellular Signal-Regulated Kinase Signal Induced through Cancer Cell-Macrophage Interaction Contributes to Hepatocellular Carcinoma Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:589-608. [PMID: 39756577 DOI: 10.1016/j.ajpath.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Tumor-infiltrating macrophages, known as tumor-associated macrophages, play a crucial role in the tumor microenvironment. Herein, immunohistochemistry revealed that intratumoral CD68-positive macrophages are associated with poor prognosis and clinicopathologic factors in patients with hepatocellular carcinoma (HCC). Subsequently, an indirect co-culture system involving HCC cells and peripheral blood-derived macrophages was developed. cDNA microarray analysis revealed that chemokine (C-C motif) ligand 2 (CCL2) was highly expressed in HCC cells co-cultured with macrophages. CCL2 neutralization suppressed proliferation, migration, and phosphorylation of extracellular signal-regulated kinase (Erk) in HCC cells and macrophages enhanced through co-culture. In contrast, recombinant human CCL2 (rhCCL2) addition facilitated these malignant phenotypes and increased Erk phosphorylation levels in HCC cells and macrophages. The primary CCL2 receptor, CCR2, was expressed in HCC cells and macrophages and was up-regulated in co-cultured HCC cells. CCR2 inhibition suppressed malignant phenotypes and reduced phosphorylated levels of Erk enhanced by rhCCL2. Additionally, the inhibition of Erk signal suppressed rhCCL2-enhanced malignant phenotypes. Moreover, serum CCL2 levels were higher in patients with HCC than those in healthy donors. On the basis of immunohistochemistry, CCL2-positive cases with high CCR2 expression and phosphorylated Erk-positive cases exhibited poor survival outcomes. Therefore, CCL2 up-regulation through interactions between HCC cells and macrophages contributed to HCC progression, making the CCL2/CCR2/Erk signal a potential target for HCC treatment.
Collapse
Affiliation(s)
- Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Masaki Omori
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shohei Komatsu
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rikuya Torigoe
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Yokoo
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Azumi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
9
|
Toghraie FS, Bayat M, Hosseini MS, Ramezani A. Tumor-infiltrating myeloid cells; mechanisms, functional significance, and targeting in cancer therapy. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01051-y. [PMID: 39998754 DOI: 10.1007/s13402-025-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor-infiltrating myeloid cells (TIMs), which encompass tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and tumor-associated dendritic cells (TADCs), are of great importance in tumor microenvironment (TME) and are integral to both pro- and anti-tumor immunity. Nevertheless, the phenotypic heterogeneity and functional plasticity of TIMs have posed challenges in fully understanding their complexity roles within the TME. Emerging evidence suggested that the presence of TIMs is frequently linked to prevention of cancer treatment and improvement of patient outcomes and survival. Given their pivotal function in the TME, TIMs have recently been recognized as critical targets for therapeutic approaches aimed at augmenting immunostimulatory myeloid cell populations while depleting or modifying those that are immunosuppressive. This review will explore the important properties of TIMs related to immunity, angiogenesis, and metastasis. We will also document the latest therapeutic strategies targeting TIMs in preclinical and clinical settings. Our objective is to illustrate the potential of TIMs as immunological targets that may improve the outcomes of existing cancer treatments.
Collapse
Affiliation(s)
- Fatemeh Sadat Toghraie
- Institute of Biotechnology, Faculty of the Environment and Natural Sciences, Brandenburg University of Technology, Cottbus, Germany
| | - Maryam Bayat
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sadat Hosseini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Jin X, Tan W, Sun J, Jiang H, Chen J. Downregulation of CCR2 reduces ventricular remodeling after myocardial infarction by splenic nerve neuromodulation in acute and chronic rat models. Int Immunopharmacol 2025; 148:114009. [PMID: 39832456 DOI: 10.1016/j.intimp.2024.114009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Pathological remodeling after myocardial infarction (MI) confers the development of heart failure. Our prior research has indicated that splenic nerve neuromodulation mitigates myocardial ischemia-reperfusion injury (IRI) by reducing levels of proinflammatory factors. This study aims to explore the potential therapeutic benefits of splenic nerve neuromodulation in MI and the underlying mechanism. METHODS Splenic nerve neuromodulation was performed through electrical splenic nerve stimulation (SpNS). In the acute myocardial IRI model, post-mortem analyses encompassed RNA sequencing and a range of molecular biology techniques, with the application of CCR2 antagonists (RS-504393) to inhibit the CCR2. In the chronic MI model, rats underwent echocardiographic assessment four weeks post-MI, after which tissues were harvested. RESULTS In the acute IRI model, the negative regulation of chemokines production pathway was enriched by RNA-seq, and SpNS reduced the levels of CCR2, CCL2, and CCL7. The administration of RS-504393 decreased cardiomyocyte apoptosis, reduced myocardial damage, and lowered proinflammatory cytokines levels following myocardial IRI. Additionally, SpNS was shown to inhibit oxidative stress, proinflammatory cytokine levels, and cardiac collagen deposition, as observed four weeks post-MI. SpNS also restrained sympathetic nerve remodeling and improved left ventricular function, in part by downregulating CCR2 in the chronic MI model. CONCLUSIONS SpNS demonstrated significant improvements in cardiac function, reductions of cardiac remodeling and inhibitions of excessive sympathetic activation in the chronic MI model by downregulation of CCR2. Our study provides novel evidence that splenic nerve neuromodulation may serve as a potential therapeutic intervention in MI patients.
Collapse
Affiliation(s)
- Xiaoxing Jin
- Department of Cardiovascular Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060 PR China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060 PR China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060 PR China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060 PR China
| | - Jian Chen
- Department of Cardiovascular Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China; Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China.
| |
Collapse
|
11
|
Li M, Tian Y, Si L, Fu H, Lai T, Guo R. OTUD4-mediated inhibition of YAP1 signaling pathway in ovarian cancer: Implications for macrophage polarization and recruitment. Int Immunopharmacol 2025; 147:114011. [PMID: 39778277 DOI: 10.1016/j.intimp.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is a malignancy gynecologic oncology with high incidence and high mortality rate. M2-like tumor-associated macrophages promote cancer cell migration and metastasis. Ovarian tumor family deubiquitinase 4 (OTUD4) belongs to deubiquitinating enzyme family. The roles of OTUD4 in tumor microenvironments in ovarian cancer remains unknow. In this work, OTUD4 was overexpressed or knocked down in high-grade serous ovarian cancer cells OVCAR8 and CAOV3. Ovarian cells were co-cultured with THP-1 macrophages to simulate the tumor microenvironment. We found that OTUD4-expressed ovarian cells inhibited macrophage chemotaxis and M2 polarization. Besides, in ovarian tumor-bearing mouse model, OTUD4 suppressed tumor metastasis and remodeling tumor-associated macrophages phenotype (pro-tumor M2 to anti-tumor M1). In mechanism, OTUD4 protein bound to YAP1 protein, and downregulation of OTUD4 enhanced K63 ubiquitination and nuclear translocation of YAP1, thus increasing CCL2 transcription and subsequent macrophage recruitment. OTUD4 might inhibit CCL2 expression to regulate tumor-associated macrophages in ovarian tumor microenvironment. Those findings present a potential therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China
| | - Yanpeng Tian
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China
| | - Lulu Si
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China
| | - Hanlin Fu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China
| | - Tianjiao Lai
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Zhengzhou, Henan Province, China.
| |
Collapse
|
12
|
Li J, Zhang G, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Harnessing nanoparticles for reshaping tumor immune microenvironment of hepatocellular carcinoma. Discov Oncol 2025; 16:121. [PMID: 39909958 PMCID: PMC11799483 DOI: 10.1007/s12672-025-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers, characterized by high morbidity and mortality rates. Recently, immunotherapy has emerged as a crucial treatment modality for HCC, following surgery, locoregional therapies, and targeted therapies. This approach harnesses the body's immune system to target and eliminate cancer cells, potentially resulting in durable antitumor responses. However, acquired resistance and the tumor immunosuppressive microenvironment (TIME) significantly hinder its clinical application. Recently, advancements in nanotechnology, coupled with a deeper understanding of cancer biology and nano-biological interactions, have led to the development of various nanoparticles aimed at enhancing therapeutic efficacy through specific targeting of tumor tissues. These nanoparticles increase the accumulation of immunotherapeutic drugs within the tumor microenvironment, thereby transforming the TIME. In this review, we provide a concise overview of the fundamental principles governing the TIME landscape in HCC and discuss the rationale for and applications of nanoparticles in this context. Additionally, we highlight existing challenges and potential opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Liu X, Pan B, Ding J, Zhai X, Hong J, Zheng J. Identifying potential signatures of immune cells in hepatocellular carcinoma using integrative bioinformatics approaches and machine-learning strategies. Immunol Res 2025; 73:46. [PMID: 39904830 DOI: 10.1007/s12026-024-09585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/24/2024] [Indexed: 02/06/2025]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor regulated by the immune system. Immunotherapy using checkpoint inhibitors has shown encouraging outcomes in a subset of HCC patients. The main challenges in checkpoint immunotherapy for HCC are to expand treatment options and to broaden the beneficiary population. Therefore, the search for potential signatures of immune cells is meaningful in the development of immunotherapy for HCC. The HCC related datasets were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Differential expression analysis and functional analysis were performed first. Then support vector machine-recursive feature elimination (SVM-RFE), random forests (RF), least absolute shrinkage and selection operation (LASSO), and weighed gene co-expression network analysis (WGCNA) were employed to screen for critical genes, and receiver operating characteristic (ROC) analysis was performed to compare diagnostic performance. Subsequently, single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between signatures and immune cells. Finally, we validated the expression of these biomarkers in human HCC samples. 531 overlapping differentially expressed genes (DEGs) were identified. Furthermore, enrichment analysis revealed pathways associated with immune activation processes, immune cell involvement and inflammatory signaling. After using multiple machine-learning strategies, extracellular matrix protein 1 (ECM1), leukemia inhibitory factor receptor (LIFR), sushi repeat containing protein X-linked (SRPX), and thromboxane A2 receptor (TBXA2R) were identified as critical signatures, and exhibited high expression in tumor-adjacent normal tissues. According to the ssGSEA results, ECM1, LIFR, SRPX and TBXA2R were all significantly associated with diverse immune cells, such as monocytes and neutrophils. Moreover, immunostaining of human HCC samples showed that these critical signatures all colocalized with CD14-positive monocytes. Our findings report the potential signatures of immune cells in HCC and confirm that they localize in monocytes of tumor-adjacent normal tissues. ECM1, LIFR, SRPX and TBXA2R could become new potential targets for predictive diagnosis, early intervention and immunotherapy of HCC in the future.
Collapse
Affiliation(s)
- Xingchen Liu
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Bo Pan
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jie Ding
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xiaofeng Zhai
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jing Hong
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jianming Zheng
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Li H, Li Y, Chen Z, He C. HOXA3 activates USP15 to suppress autophagy and promote M2-type macrophage polarization in renal cell carcinoma via facilitating the deubiquitination of SQSTM1. Am J Physiol Cell Physiol 2025; 328:C576-C594. [PMID: 39740793 DOI: 10.1152/ajpcell.00712.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/02/2025]
Abstract
The disease burden of renal cell carcinoma (RCC) has decreased in recent years with advances in treatment, but its pathogeny still remains elusive. We aim to study the role of homeobox A3 (HOXA3)/ubiquitin-specific peptidase 15 (USP15)/SQSTM1 axis on autophagy and M2-type macrophage polarization in RCC. In this study, cell apoptosis and proliferation were assessed by flow cytometry and CCK-8. Autolysosome fusion was observed by immunofluorescence detection of LC3 and LAMP2. The binding between HOXA3 and USP15 promoter was tested by chromatin immunoprecipitation (ChIP), EMSA, and dual-luciferase reporter assays. Also, the interaction between deubiquitinated enzyme (DUB) USP15 and SQSTM1, and ubiquitinated level of SQSTM1 were determined by co-immunoprecipitation (Co-IP) assay. Expression levels of HOXA3, USP15, C-C motif chemokine 2 (CCL2), CCL2 receptor (CCR2), M2-type macrophages, and autophagy-related markers were measured by Western blot, quantitative reverse transcription PCR (RT-qPCR), ELISA, and immunohistochemistry. Role of HOXA3/USP15 axis was verified by xenograft tumor experiment in vivo. We showed upregulated HOXA3 in RCC tissues and cells, and RCC tissues with metastasis showed higher HOXA3 level. The higher HOXA3 expression was relevant to worse overall survival in patients with RCC. HOXA3 induced RCC cell proliferation, and suppressed autophagy and apoptosis via transcriptionally activating USP15 expression. USP15 then induced deubiquitination modification of SQSTM1 in RCC cells. SQSTM1 supported M2-type macrophage polarization by inducing CCL2 secretion. HOXA3 or USP15 knockdown suppressed tumor growth and M2-type macrophage infiltration in vivo. In conclusion, HOXA3 transcriptionally activates USP15 expression, and upregulated USP15 facilitates the deubiquitination of SQSTM1 in RCC. This process on the one hand suppresses autophagy, on the other hand increases M2-type macrophage polarization through stimulating the secretion of CCL2.NEW & NOTEWORTHY We report a novel finding that highly expressed homeobox A3 (HOXA3) transcriptionally activates the expression of ubiquitin-specific peptidase 15 (USP15), resulting in the promotion of deubiquitination of SQSTM1. This process on the one hand suppresses autophagy in renal cell carcinoma (RCC), on the other hand increases M2-type macrophage polarization in the tumor microenvironment through stimulating the secretion of C-C motif chemokine 2 (CCL2).
Collapse
Affiliation(s)
- Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhiyong Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Cheng He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
15
|
Zhang Y, Wang X, Gu Y, Liu T, Zhao X, Cheng S, Duan L, Huang C, Wu S, Gao S. Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells. Proc Natl Acad Sci U S A 2025; 122:e2420005122. [PMID: 39847320 PMCID: PMC11789090 DOI: 10.1073/pnas.2420005122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, EV C3 induces the secretion of CCL2 and CXCL1 by lung macrophages and subsequently enhances TAM polarization and PMN-MDSC recruitment. Notably, targeting the CCL2/CCR2 or CXCL1/CXCR2 axis with the inhibitors RS504393 or Navarixin, respectively, effectively suppresses lung metastasis induced by RCC-derived C3 in a mouse model. Clinically, RCC patients with high expression of C3 demonstrate poor prognosis. Collectively, our findings reveal that tumor-derived EV C3 induces an immunosuppressive tumor microenvironment via TAMs, and thus promoting RCC metastasis.
Collapse
Affiliation(s)
- Yibi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Xiaodong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Yinmin Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Tongfeng Liu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
- Medical College, Guizhou University, Guiyang550025, China
| | - Xujie Zhao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Shuwen Cheng
- Medical School of Nanjing University, Nanjing210046, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Shanxi Provincial Key Laboratory of Protein Structure Determination, Taiyuan030032, China
| | - Chang Huang
- Medical College, Guizhou University, Guiyang550025, China
| | - Songzhe Wu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing210096, China
| |
Collapse
|
16
|
Zhou YL, Meng T, Zhang L, Xu N, Yang M, Zhang Y, Wang Z, Liu Y, Han A, Zuo J, Sun H, Zhang C, Zhu LX. The immunomodulatory role of the MAFB gene in hepatocellular carcinoma and its impact on biological activities. Gene 2025; 934:149030. [PMID: 39447710 DOI: 10.1016/j.gene.2024.149030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE The transcription factor MAFB is part of the MAF family and is known to promote hepatocellular carcinoma (HCC) by upregulating cyclin D1. However, its role in HCC immunity and prognosis remains unclear. This study explores the biological function, prognostic significance, and immune impact of MAFB in HCC. METHODS Immunohistochemistry was used to analyze MAFB expression in HCC and adjacent non-tumor tissues. RT-qPCR and Western blotting measured MAFB levels in HCC cell lines. Specific siRNA was used to knockdown MAFB in HCCLM3 and MHCC97H cells, followed by assays to evaluate cell proliferation, migration, and colony formation. Data from the TCGA database and online tools TIMER and TISDB were used to assess the relationship between MAFB and immune responses. A prognostic model based on MAFB-related immune genes was established, and drug sensitivity analysis was performed. RESULTS MAFB was significantly overexpressed in HCC tissues. Knockdown of MAFB in HCC cell lines reduced their proliferation and migration abilities. The risk model based on MAFB-related immune genes effectively predicted patient prognosis, supported by ROC curves. Gene set enrichment analysis indicated that MAFB is involved in immune-related pathways. Several drugs were identified as potentially sensitive to MAFB expression levels. CONCLUSION MAFB plays a significant role in HCC development and immune regulation. The prognostic model combining MAFB-related immune genes provides valuable insights for predicting patient outcomes and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Yang-Liu Zhou
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Meng
- Department of General Surgery, Hefei First People's Hospital, Hefei, China
| | - Li Zhang
- Department of Hematologic Lymphoma Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Na Xu
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingya Yang
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Zhang
- Department of General Surgery and Centre Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenzhen Wang
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Liu
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Anqi Han
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiawei Zuo
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyi Sun
- Clinical Medical Collage, Anhui Medical University, Hefei, China
| | - Chao Zhang
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Li-Xin Zhu
- Department of General Surgery and Centre Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Wellhausen J, Röhl L, Berszin M, Krücken I, Zebralla V, Pirlich M, Stoehr M, Wiegand S, Dietz A, Wald T, Wichmann G. Suppression of MCP-1, IFN-γ and IL-6 production of HNSCC ex vivo by pembrolizumab added to docetaxel and cisplatin (TP) exceeding those of TP alone is linked to improved survival. Front Immunol 2025; 15:1473897. [PMID: 39882242 PMCID: PMC11774711 DOI: 10.3389/fimmu.2024.1473897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Background Adding pembrolizumab, an anti-PD-1 antibody approved for treatment of head and neck squamous cell carcinoma (HNSCC) to neoadjuvant (induction-) chemotherapy utilizing docetaxel and cisplatin (TP) followed by radiotherapy may improve outcome in larynx organ-preservation (LOP) that is investigated in the European Larynx-Organ preservation Study (ELOS). As biomarkers for response to TP and pembrolizumab +TP are missing but may include cytokines, this work aims on determining cytokines potentially linked to outcome as prognostic markers sufficient to predict and/or monitor response to successful LOP. Methods Collagenase IV digests were generated from 47 histopathological confirmed HNSCC tumor samples and seeded in 96-well plates containing pembrolizumab, docetaxel, cisplatin either solely or in binary or ternary combination. According to the FLAVINO protocol, supernatants were collected after 3 days, adherent cells fixed using ethanol, air-dried and pan-cytokeratin positive epithelial cells counted using fluorescence microscopy. The cytokines IL-6, IL-8, IFN-γ, IP-10, MCP-1, TNF-α, and VEGF in the supernatant were quantified by sandwich ELISA. Results The mode of interaction between pembrolizumab and TP was assessed and correlated to outcome (overall, disease-specific and progression-free survival of patients). Suppression of MCP-1, IFN-γ and IL-6 production by pembrolizumab + TP exceeding the suppressive effect of TP was detected in the majority of samples and linked to improved survival. Multivariate Cox proportional hazard regression modeling revealed MCP-1, IFN-γ and IL-6 as independent outcome predictors. Conclusions Comparing response to TP vs. pembrolizumab vs. TP + pembrolizumab may allow for identification of patients with superior outcome independent from treatment applied.
Collapse
Affiliation(s)
- Jana Wellhausen
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Louisa Röhl
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Michael Berszin
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Irene Krücken
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Veit Zebralla
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Markus Pirlich
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Matthaeus Stoehr
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Susanne Wiegand
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andreas Dietz
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Theresa Wald
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Gunnar Wichmann
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
18
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
19
|
Wei X, Wang H, Liu H, Wang J, Zhou P, Li X, He Y, Li Y, Han D, Mei T, Wang Y, Li Z, Ning J, Xu Z, Wang A, Li Y, Cheng J, Qian D. Disruption of tumor-intrinsic PGAM5 increases anti-PD-1 efficacy through the CCL2 signaling pathway. J Immunother Cancer 2025; 13:e009993. [PMID: 39773565 PMCID: PMC11749670 DOI: 10.1136/jitc-2024-009993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Immunosuppressive phenotype compromised immunotherapy efficacy of hepatocellular carcinoma. Tumor cells intrinsic mitochondria dynamics could pass effects on the extracellular microenvironment through mtDNA stress. PGAM5 anchors at mitochondria and regulates mitochondria functions. We aim to explore whether the regulation of tumor-intrinsic PGAM5 on mitochondria affects tumor-infiltrating immune cells in the microenvironment and whether tumor-intrinsic PGAM5 can be a therapeutic target to enhance the immunotherapy efficacy of hepatocellular carcinoma (HCC). METHODS We analyzed the correlation of PGAM5 expression and immune cells infiltration using Gene Expression Omnibus (GEO) and The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) data sets based on cibersort algorithm and tumor-tissue arrays from two independent cohorts. To further validate our findings, we established subcutaneous and orthotopic mouse HCC models with tumor-intrinsic Pgam5 deficiency and analyzed tumor-infiltrating immune cells by flow cytometry and single-cell RNA sequencing. Mechanistically, we established an in vitro co-culture system and analyzed proteomics data to find out the bridge between tumor cell PGAM5 and tumor-associated macrophages (TAMs) in the microenvironment. Immunofluorescence, chromatin-immunoprecipitation, ELISA, mass spectrometry were conducted to explore the molecular pathway. Macrophages were depleted to investigate whether the effects of tumor-intrinsic PGAM5 on TAMs could affect immunotherapy efficacy in HCC orthotopic and subcutaneous mouse models. RESULTS PGAM5 expression in tumor was positively correlated with M2-phenotype TAM infiltration in patients with both HCC and mouse HCC tumor models. High tumor-intrinsic PGAM5 expression promoting M2 TAMs infiltration correlated with poor clinical-pathological characteristics and prognosis in patients with HCC. Disruption of tumor-intrinsic Pgam5 reduced TAM M2 polarization and inhibited HCC tumor growth in tumor-bearing mice. Mechanistically, in HCC cells PGAM5 deficiency inhibited mitochondria fission by promoting TRIM28 binding with DRP1, which increased ubiquitination and degradation of DRP1. Tumor-intrinsic PGAM5 deficiency mediated mitochondria fusion and reduced cytosolic mtDNA stress which attenuated TLR9 activation and downstream NF-κB-regulated CCL2 secretion. Furthermore, disruption of tumor-intrinsic Pgam5 significantly facilitated CD8+ T cells activation and improved anti-programmed cell death protein-1 therapeutic efficacy with macrophages depletion compromising synergistic antitumor immune response. CONCLUSION Our results shed light on the effect of tumor mitochondria dynamics on TAMs in tumor microenvironment. Tumor-intrinsic PGAM5 can be a therapeutic target to improve immunotherapy efficacy in patients with HCC.
Collapse
Affiliation(s)
- Xiaoying Wei
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hong Wang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China
| | - Huiquan Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianguo Wang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaoyang Li
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuan He
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yan Li
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Dong Han
- Department of Medical Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Ting Mei
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuwen Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Ziye Li
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Junhao Ning
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zilong Xu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Anlin Wang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yixuan Li
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
20
|
Sun X, Zhang J, Dong B, Xiong Q, Wang X, Gu Y, Wang Z, Liu H, Zhang J, He X, Liu H, Zhong Y, Yi C, Chi X, Liu Z, Pang X, Cui Y. Targeting SLITRK4 Restrains Proliferation and Liver Metastasis in Colorectal Cancer via Regulating PI3K/AKT/NFκB Pathway and Tumor-Associated Macrophage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2400367. [PMID: 39499724 PMCID: PMC11714161 DOI: 10.1002/advs.202400367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/28/2024] [Indexed: 11/07/2024]
Abstract
Liver metastasis is the major cause of death in colorectal cancer (CRC) due to the lack of effective treatment. To explore novel drivers of CRC liver metastasis, the transcriptomes of primary paracancerous, colorectal tumors and metastases from human patients are profiled. It is found that SLIT- and NTRK-like family member 4 (SLITRK4) is the top upregulated gene in liver metastases and is associated with worse overall survival of CRC patients. Multiple in vitro and in vivo models suggested SLITRK4 promoted CRC tumorigenesis, invasion, migration, and angiogenesis, and inhibition of it restrained CRC tumor growth and liver metastasis with a more profound effect on the tumor microenvironment (TME). Mechanistically, SLITRK4 overexpression significantly activated the PI3K/AKT/NFκB pathway, regulated extracellular matrix organization, and multiple cytokines expression. Furthermore, the results from coculture models and single-cell RNA sequencing analyses suggested SLITRK4 promoted tumor-associated macrophages (TAMs) infiltration and polarization. In addition, macrophage depletion significantly inhibited SLITRK4-induced liver metastasis in CRC. Finally, pharmacological inhibition of SLITRK4 by using lipid-polymer hybrid nanoparticles (NPs) for systemic siRNA delivery can effectively inhibit CRC liver metastasis. Taken together, these results pinpoint that SLITRK4 regulates CRC tumorigenesis and liver metastasis, and siRNA delivering NPs agents validate the therapeutic potential of targeting SLITRK4 in CRC.
Collapse
Affiliation(s)
- Xiaojiao Sun
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Junling Zhang
- Department of General SurgeryPeking University First HospitalXishiku Street, BeijingXicheng100034China
| | - Bingqi Dong
- Department of General SurgeryPeking University First HospitalXishiku Street, BeijingXicheng100034China
| | - Qingqing Xiong
- Department of Hepatobiliary CancerLiver Cancer CenterTianjin Medical University Cancer InstituteTianjin300060China
| | - Xin Wang
- Department of General SurgeryPeking University First HospitalXishiku Street, BeijingXicheng100034China
| | - Yanlun Gu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- Department of PharmacyPeking University First HospitalXishiku Street, BeijingXicheng100034China
- Institute of Clinical PharmacologyPeking UniversityXueyuan Road 38, BeijingHaidian100191China
| | - Zhiqi Wang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Huiyu Liu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Jixin Zhang
- Department of PathologyPeking University First HospitalXishiku Street, BeijingXicheng100034China
| | - Xu He
- Department of PharmacyPeking University First HospitalXishiku Street, BeijingXicheng100034China
- Institute of Clinical PharmacologyPeking UniversityXueyuan Road 38, BeijingHaidian100191China
| | - Hongjin Liu
- Department of General SurgeryPeking University First HospitalXishiku Street, BeijingXicheng100034China
| | - Yi Zhong
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Chuxiao Yi
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Xiaocong Pang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- Department of PharmacyPeking University First HospitalXishiku Street, BeijingXicheng100034China
- Institute of Clinical PharmacologyPeking UniversityXueyuan Road 38, BeijingHaidian100191China
| | - Yimin Cui
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- Department of PharmacyPeking University First HospitalXishiku Street, BeijingXicheng100034China
- Institute of Clinical PharmacologyPeking UniversityXueyuan Road 38, BeijingHaidian100191China
| |
Collapse
|
21
|
Liu J, Lu J, Wu L, Zhang T, Wu J, Li L, Tai Z, Chen Z, Zhu Q. Targeting tumor-associated macrophages: Novel insights into immunotherapy of skin cancer. J Adv Res 2025; 67:231-252. [PMID: 38242529 PMCID: PMC11725115 DOI: 10.1016/j.jare.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ling Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
22
|
Guo X, Song J, Liu M, Ou X, Guo Y. The interplay between the tumor microenvironment and tumor-derived small extracellular vesicles in cancer development and therapeutic response. Cancer Biol Ther 2024; 25:2356831. [PMID: 38767879 PMCID: PMC11110713 DOI: 10.1080/15384047.2024.2356831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
The tumor microenvironment (TME) plays an essential role in tumor cell survival by profoundly influencing their proliferation, metastasis, immune evasion, and resistance to treatment. Extracellular vesicles (EVs) are small particles released by all cell types and often reflect the state of their parental cells and modulate other cells' functions through the various cargo they transport. Tumor-derived small EVs (TDSEVs) can transport specific proteins, nucleic acids and lipids tailored to propagate tumor signals and establish a favorable TME. Thus, the TME's biological characteristics can affect TDSEV heterogeneity, and this interplay can amplify tumor growth, dissemination, and resistance to therapy. This review discusses the interplay between TME and TDSEVs based on their biological characteristics and summarizes strategies for targeting cancer cells. Additionally, it reviews the current issues and challenges in this field to offer fresh insights into comprehending tumor development mechanisms and exploring innovative clinical applications.
Collapse
Affiliation(s)
- Xuanyu Guo
- The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajun Song
- Department of Clinical Laboratory Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
23
|
Yang L, Fang A, Zhou S, Liu H. -RAMP3 promotes hepatocellular carcinoma tumor cell-mediated CCL2 degradation by supporting membrane distribution of ACKR2. Int Immunopharmacol 2024; 143:113419. [PMID: 39437486 DOI: 10.1016/j.intimp.2024.113419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
This study aimed to explore the potential bind of Receptor Activity-Modifying Protein 3 (RAMP3) with atypical chemokine receptor 2 (ACKR2), and their cooperative regulation on the degradation of the immunosuppressive chemokine CCL2 in the tumor microenvironment of HCC. Bioinformatic analysis was conducted using available bulk-tissue RNA-seq, single-cell RNA-seq, and protein-protein interaction datasets. Human HCC cell line Huh7 and HepG2 and mouse HCC cell line Hepa1-6 were utilized for experiments. Results showed that RAMP3 binds with ACKR2 in HCC tumor cells and promotes the membrane distribution of ACKR2 through RAB4-positive vesicles. RAMP3 promotes CCL2 scavenging through ACKR2 in HCC cells. Mouse RAMP3 inhibited the proliferation of mouse liver cancer cell line (Hepa1-6)-derived syngeneic tumors through ACKR2, reduced the intratumoral concentration of CCL2 in the tumor, and inhibited the phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3) and protein kinase B (AKT). In addition, mouse RAMP3 inhibited CD11b+/Gr-1 + myeloid cell infiltration and neovascularization in the tumors through ACKR2. In TCGA-LIHC, RAMP3low/ACKR2low group had the worst progression-free interval (PFI), while the RAMP3high/ACKR2high group had the best overall survival (OS). In summary, restoring RAMP3 expression in HCC cells may generate synergistic support for the anticancer effect of ACKR2.
Collapse
Affiliation(s)
- Lan Yang
- Department of Oncology Centre, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Aiping Fang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610072 Chengdu, China
| | - Shijie Zhou
- Jinruijie Biotechnology Center, Chengdu 610041, China.
| | - Hao Liu
- Department of Oncology Centre, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
24
|
Bukhari I, Li M, Li G, Xu J, Zheng P, Chu X. Pinpointing the integration of artificial intelligence in liver cancer immune microenvironment. Front Immunol 2024; 15:1520398. [PMID: 39759506 PMCID: PMC11695355 DOI: 10.3389/fimmu.2024.1520398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Liver cancer remains one of the most formidable challenges in modern medicine, characterized by its high incidence and mortality rate. Emerging evidence underscores the critical roles of the immune microenvironment in tumor initiation, development, prognosis, and therapeutic responsiveness. However, the composition of the immune microenvironment of liver cancer (LC-IME) and its association with clinicopathological significance remain unelucidated. In this review, we present the recent developments related to the use of artificial intelligence (AI) for studying the immune microenvironment of liver cancer, focusing on the deciphering of complex high-throughput data. Additionally, we discussed the current challenges of data harmonization and algorithm interpretability for studying LC-IME.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengxue Li
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyuan Li
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixuan Xu
- Department of Gastrointestinal & Thyroid Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiufeng Chu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Bhardwaj V, Yang ZZ, Jalali S, Villasboas JC, Mudappathi R, Wang J, Mukherjee P, Paludo J, Tang X, Kim HJ, Krull JE, Wenzl K, Novak AJ, Mondello P, Ansell SM. Expanded tumor-associated polymorphonuclear myeloid-derived suppressor cells in Waldenstrom macroglobulinemia display immune suppressive activity. Blood Cancer J 2024; 14:217. [PMID: 39695096 DOI: 10.1038/s41408-024-01173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 12/20/2024] Open
Abstract
The role of the bone marrow (BM) microenvironment in regulating the antitumor immune response in Waldenstrom macroglobulinemia (WM) remains poorly understood. Here we transcriptionally and phenotypically profiled non-malignant (CD19- CD138-) BM cells from WM patients with a focus on myeloid derived suppressive cells (MDSCs) to provide a deeper understanding of their role in WM. We found that HLA-DRlowCD11b+CD33+ MDSCs were significantly increased in WM patients as compared to normal controls, with an expansion of predominantly polymorphonuclear (PMN)-MDSCs. Single-cell immunogenomic profiling of WM MDSCs identified an immune-suppressive gene signature with upregulated inflammatory pathways associated with interferon and tumor necrosis factor (TNF) signaling. Gene signatures associated with an inflammatory and immune suppressive environment were predominately expressed in PMN-MDSCs. In vitro, WM PMN-MDSCs demonstrated robust T-cell suppression and their viability and expansion was notably enhanced by granulocyte colony stimulating factor (G-CSF) and TNFα. Furthermore, BM malignant B-cells attracted PMN-MDSCs to a greater degree than monocytic MDSCs. Collectively, these data suggest that malignant WM B cells actively recruit PMN-MDSCs which promote an immunosuppressive BM microenvironment through a direct T cell inhibition, while release of G-CSF/TNFα in the microenvironment further promotes PMN-MDSC expansion and in turn immune suppression. Targeting PMN-MDSCs may therefore represent a potential therapeutic strategy in patients with WM.
Collapse
Affiliation(s)
- Vaishali Bhardwaj
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Zhi-Zhang Yang
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Shahrzad Jalali
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Jose C Villasboas
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Rekha Mudappathi
- Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Junwen Wang
- Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Jonas Paludo
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Xinyi Tang
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Hyo Jin Kim
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Jordan E Krull
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Kerstin Wenzl
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Patrizia Mondello
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA.
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
26
|
Basirjafar P, Jafarzadeh A, Salimian J. Leptin/LPS-treated dendritic cells reduce the expression of genes involved in tumor tissue metastasis and angiogenesis in an animal model of breast cancer. Immunol Res 2024; 73:2. [PMID: 39658676 DOI: 10.1007/s12026-024-09564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
Leptin, an immune-regulating protein, enhances the maturation of dendritic cells (DCs). We previously demonstrated that leptin and lipopolysaccharide (LPS) promote the expression of co-stimulatory molecules on the surface of DCs. Leptin/LPS-treated DCs increased T cell responses against 4T1 breast cancer in mice. Therefore, in the present study, we investigate the effects of a DC vaccine treated with leptin and LPS on the genes involved in tumor metastasis, angiogenesis, and related cytokines in a mouse model of breast cancer. Tumor induction was achieved through subcutaneous injection of 4T1 cells into syngeneic mice. On days 12 and 19, the mouse groups received the DC vaccine treated with leptin and a combination of leptin and LPS. After sacrificing the mice on day 26, the levels of IL-6 and IL-33 in the serum were assayed using the ELISA technique, and the expression levels of the VEGF, CCL2, MMP9, and CCL5 genes in the tumors were measured by Real-Time PCR. Compared to untreated tumor-bearing mice, the leptin-treated mature DC (mDC) group exhibited a significant reduction in the expression of MMP9 (0.33-fold, p = 0.01) and CCL5 (0.81-fold, p = 0.02). The leptin-LPS-treated mDC group showed decreased expression of genes involved in metastasis and tumor growth, including VEGF (0.72-fold, p = 0.03), MMP9 (0.26-fold, p = 0.001), and CCL5 (0.3-fold, p = 0.006), indicating more efficient prevention of metastasis. The CCL2 gene expression levels in both treatment groups showed a slight decreasing trend, but these changes were not statistically significant. The leptin-treated mDC group reduced IL-6 production by approximately 16% (p = 0.02), while treatment with the leptin-LPS-treated mDC significantly decreased IL-6 production by approximately 22% (p = 0.01) and increased IL-33 production by approximately 42% (p = 0.03). The findings of the present study indicate that the leptin-LPS-treated mDC vaccine group reduced the expression of genes and cytokines involved in metastasis and angiogenesis, demonstrating greater efficacy compared to the leptin-treated mDC vaccine group.
Collapse
Affiliation(s)
- Pedram Basirjafar
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Bannister ME, Chatterjee DA, Shetty S, Patten DA. The Role of Macrophages in Hepatocellular Carcinoma and Their Therapeutic Potential. Int J Mol Sci 2024; 25:13167. [PMID: 39684877 DOI: 10.3390/ijms252313167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant clinical burden globally and is predicted to continue to increase in incidence for the foreseeable future. The treatment of HCC is complicated by the fact that, in the majority of cases, it develops on a background of advanced chronic inflammatory liver disease. Chronic inflammation can foster an immunosuppressive microenvironment that promotes tumour progression and metastasis. In this setting, macrophages make up a major immune component of the HCC tumour microenvironment, and in this review, we focus on their contribution to HCC development and progression. Tumour-associated macrophages (TAMs) are largely derived from infiltrating monocytes and their potent anti-inflammatory phenotype can be induced by factors that are found within the tumour microenvironment, such as growth factors, cytokines, hypoxia, and extracellular matrix (ECM) proteins. In general, experimental evidence suggest that TAMs can exhibit a variety of functions that aid HCC tumour progression, including the promotion of angiogenesis, resistance to drug therapy, and releasing factors that support tumour cell proliferation and metastasis. Despite their tumour-promoting profile, there is evidence that the underlying plasticity of these cells can be targeted to help reprogramme TAMs to drive tumour-specific immune responses. We discuss the potential for targeting TAMs therapeutically either by altering their phenotype within the HCC microenvironment or by cell therapy approaches by taking advantage of their infiltrative properties from the circulation into tumour tissue.
Collapse
Affiliation(s)
- Megan E Bannister
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| | - Devnandan A Chatterjee
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Daniel A Patten
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
28
|
Arleo A, Montagner A, Giovannini C, Suzzi F, Piscaglia F, Gramantieri L. Multifaceted Aspects of Dysfunctional Myelopoiesis in Cancer and Therapeutic Perspectives with Focus on HCC. Biomolecules 2024; 14:1496. [PMID: 39766202 PMCID: PMC11673139 DOI: 10.3390/biom14121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Myelopoiesis provides for the formation and continued renewal of cells belonging primarily to the innate immune system. It is a highly plastic process that secures the response to external and internal stimuli to face acute and changing needs. Infections and chronic diseases including cancer can modulate it by producing several factors, impacting proliferation and differentiation programs. While the lymphocytic compartment has attracted major attention due to the role of adaptive immunity in anticancer immune response, in recent years, research has found convincing evidence that confirms the importance of innate immunity and the key function played by emergency myelopoiesis. Due to cancer's ability to manipulate myelopoiesis to its own advantage, the purpose of this review is to outline myelopoiesis processes within the tumor microenvironment and suggest possible therapeutic lines of research to restore the physiological functioning of the host's immune system, with a special outlook on hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
29
|
Fan CY, Zheng JS, Hong LL, Ling ZQ. Macrophage crosstalk and therapies: Between tumor cells and immune cells. Int Immunopharmacol 2024; 141:113037. [PMID: 39213868 DOI: 10.1016/j.intimp.2024.113037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In the tumor microenvironment, macrophages exhibit different phenotypes and functions in response to various signals, playing a crucial role in the initiation and progression of tumors. Several studies have indicated that intervention in the functions of different phenotypes of tumor-associated macrophages causes significant changes in the crosstalk between tumor cells and immune-related cells, such as T, NK, and B cells, markedly altering the course of tumor development. However, only a few specific therapeutic strategies targeting macrophages are yet available. This article comprehensively reviews the molecular biology mechanisms through which tumor-associated macrophages mediate the crosstalk between tumor cells and immune-related cells. Also, various treatment methods currently used in clinical practice and those in the clinical trial phase have been summarized, and the novel strategies for targeting tumor-associated macrophages have been categorized accordingly.
Collapse
Affiliation(s)
- Cheng-Yuan Fan
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China
| | - Jing-Sen Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Lian-Lian Hong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
30
|
Nov P, Zhang Y, Wang D, Sou S, Touch S, Kouy S, Vicheth V, Li L, Liu X, Wang C, Ni P, Kou Q, Li Y, Zheng C, Prasai A, Fu W, Li W, Du K, Li J. The causal relationship between immune cells and hepatocellular carcinoma: a Mendelian randomization (MR). Ecancermedicalscience 2024; 18:1794. [PMID: 39816386 PMCID: PMC11735144 DOI: 10.3332/ecancer.2024.1794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 01/18/2025] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is a complex and multifaceted disease that is increasingly prevalent globally. The involvement of immune cells in the tumour microenvironment has been linked to the progression of HCC, but the exact cause-and-effect relationship is not yet clear. In this study, we utilise Mendelian randomization (MR) to investigate the potential causal links between immune factors and the development of HCC. Method We executed a comprehensive MR study, leveraging publicly accessible genetic datasets to explore the potential causal links between 731 types of immune cells and HCC. Our analysis primarily applied inverse variance weighting and weighted median methods. To evaluate the robustness of our findings and probe for the presence of heterogeneity and pleiotropy, we also conducted thorough sensitivity analyses. Results We found 36 immune cells were associated with HCC, CD64 on CD14- CD16+ monocytes (OR = 1.328, 95% CI = 1.116- 1.581, p = 0.001), CD3- lymphocyte %lymphocytes (OR = 1.341, 95% CI = 1.027- 1.750, p = 0.031), HLA DR on CD14+ monocytes (OR = 1.256, 95% CI = 1.089- 1.448, p = 0.002), CD19 on CD19 on Plasma Blast-Plasma Cell (OR = 1.224, 95% CI = 1.073- 1.396, p = 0.003), CCR2 on monocytes (OR = 1.204, 95% CI = 1.073- 1.351, p = 0.002) and Naive CD4+ T cell Absolute Count (OR = 0.797, 95% CI = 0.655- 0.969, p = 0.023) were the most strongly associated with HCC. Among them, CD64 on CD14- CD16+ monocytes, CD3 - lymphocyte %lymphocytes, HLA DR on CD14+ monocytes and CD19 on Plasma Blast-Plasma Cells are the risk factors, while Naive CD4+ T cell Absolute Count are protective factors for HCC. Conclusion Our MR analysis of the role of immune cells and HCC provides a framework for knowledge of circulating immune status. Systematic assays of infiltrating immune cells in HCC can help dissect the immune status of HCC, assess the current use of checkpoint blockers, and most importantly, aid in the development of innovative immunotherapies. Further research is necessary to validate these findings and explore the underlying mechanisms that influence the immune response to HCC.
Collapse
Affiliation(s)
- Pengkhun Nov
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
- These authors contributed equally to this work
| | - Yangfeng Zhang
- Department of Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
- These authors contributed equally to this work
| | - Duanyu Wang
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Syphanna Sou
- Department of Medical Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
| | - Socheat Touch
- Department of Medical Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
| | - Samnang Kouy
- Department of Medical Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
| | - Virak Vicheth
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Lilin Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Xiang Liu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Changqian Wang
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Peizan Ni
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Qianzi Kou
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Ying Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Chongyang Zheng
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Arzoo Prasai
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Wen Fu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Wandan Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Kunpeng Du
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Jiqiang Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| |
Collapse
|
31
|
Ramoni D, Montecucco F. MicroRNA-206 as a promising epigenetic approach to modulate tumor-associated macrophages in hepatocellular carcinoma. World J Gastroenterol 2024; 30:4503-4508. [PMID: 39534416 PMCID: PMC11551670 DOI: 10.3748/wjg.v30.i41.4503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
This letter comments on the recently published manuscript by Huang et al in the World Journal of Gastroenterology, which focused on the immunomodulatory effect of Calculus bovis on hepatocellular carcinoma (HCC) tumor microenvironments (TME) by inhibiting M2-tumor-associated macrophage (M2-TAM) polarization via Wnt/β-catenin pathway modulation. Recent research highlights the crucial role of TAMs and their polarization towards the M2 phenotype in promoting HCC progression. Epigenetic regulation, particularly through microRNAs (miR), has emerged as a key factor in modulating immune responses and TAM polarization in the TME, influencing treatment responses and tumor progression. This editorial focuses on miR-206, which has been found to inhibit HCC cell proliferation and migration and promote apoptosis. Moreover, miR-206 enhances anti-tumor immune responses by promoting M1-polarization of Kupffer cells, facilitating CD8+ T cell recruitment and suppressing liver cancer stem cell expansion. However, challenges remain in understanding the precise mechanisms regulating miR-206 and its potential as a therapeutic agent. Targeting epigenetic mechanisms and improving strategies, whether through pharmacological or genetic approaches, offer promising avenues to sensitize tumor cells to chemotherapy. Understanding the intricate interactions between cancer and non-coding RNA regulation opens new avenues for developing targeted therapies, potentially improving HCC prognosis.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa 16132, Italy
| |
Collapse
|
32
|
Marsh-Wakefield F, Santhakumar C, Ferguson AL, Ashhurst TM, Shin JS, Guan FH, Shields NJ, Platt BJ, Putri GH, Gupta R, Crawford M, Pulitano C, Sandroussi C, Laurence JM, Liu K, McCaughan GW, Palendira U. Spatial mapping of the HCC landscape identifies unique intratumoral perivascular-immune neighborhoods. Hepatol Commun 2024; 8:e0540. [PMID: 39761010 PMCID: PMC11495755 DOI: 10.1097/hc9.0000000000000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors. METHODS A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells. We mapped the immune landscape of tumor, invasive margin, and adjacent nontumor regions across 16 resected tumors comprising 144 regions of interest. X-shift clustering and manual gating were used to characterize cell subsets, and Spectre quantified the spatial environment to identify cellular neighborhoods. Ligand-receptor communication was quantified on 2 single-cell RNA-sequencing data sets and 1 spatial transcriptomic data set. RESULTS We show immune cell densities remain largely consistent across these 3 regions, except for subsets of monocyte-derived macrophages, which are enriched within the tumors. Mapping cellular interactions across these regions in an unbiased manner identifies immune neighborhoods comprised of tissue-resident T cells, dendritic cells, and various macrophage populations around perivascular spaces. Importantly, we identify multiple immune cells within these neighborhoods interacting with VEGFA+ perivascular macrophages. VEGFA was further identified as a ligand for communication between perivascular macrophages and CD34+ endothelial cells. CONCLUSIONS Immune cell neighborhood interactions, but not cell densities, differ between intratumoral and adjacent nontumor regions in HCC. Unique intratumoral immune neighborhoods around the perivascular space point to an altered landscape within tumors. Enrichment of VEGFA+ perivascular macrophages within these tumors could play a key role in angiogenesis and vascular permeability.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cositha Santhakumar
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Angela L. Ferguson
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Thomas M. Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Cytometry Core Research Facility, The University of Sydney, Camperdown, New South Wales, Australia
| | - Joo-Shik Shin
- Central Clinical School, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown, New South Wales, Australia
| | - Fiona H.X. Guan
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Nicholas J. Shields
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry J. Platt
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Givanna H. Putri
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ruta Gupta
- Central Clinical School, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown, New South Wales, Australia
| | - Michael Crawford
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Carlo Pulitano
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Charbel Sandroussi
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Jerome M. Laurence
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Ken Liu
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Geoffrey W. McCaughan
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Umaimainthan Palendira
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
33
|
Bagheri V, Khorramdelazad H, Kafi M, Abbasifard M. Chemokine CCL2 and its receptor CCR2 in different age groups of patients with COVID-19. BMC Immunol 2024; 25:72. [PMID: 39455952 PMCID: PMC11515099 DOI: 10.1186/s12865-024-00662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Despite the development of various antiviral drugs, most of them are not effective in the treatment of coronavirus disease 2019 (COVID-19) as a hyperinflammatory disorder. Chemokine (C-C motif) ligand 2 (CCL2) is one of the critical CC chemokines involved in the pathogenesis and severity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This study aimed to investigate the expression of CCL2 and CC chemokine receptor 2 (CCR2) in COVID-19 patients. METHODS Peripheral blood samples were collected from 60 confirmed COVID-19 patients and 60 age-matched healthy subjects. The ages of the subjects were categorized as follows: up to 20 years, 20 to 40 years, 40 to 60 years, and more than 60 years. CCL2 serum levels were measured using the enzyme-linked immunosorbent assay (ELISA). CCR2 gene expression in peripheral blood mononuclear cells (PBMCs) was measured employing real-time polymerase chain reaction (PCR). RESULTS In all age groups, CCL2 serum levels were significantly elevated in patients compared to healthy controls (P < 0.0001). CCL2 levels were higher in severe patients than in moderate patients. Moreover, CCR2 expression by PBMCs was higher in patients compared to control subjects. However, a significant difference between patients and controls over 60 years of age was identified (P = 0.0353). There was no significant difference in CCR2 expression between moderate and severe COVID-19 patients. CONCLUSIONS Taken together, the findings demonstrate that CCL2 and CCR2 are upregulated in COVID-19 patients at protein and mRNA levels, respectively. Therefore, the CCL2/CCR2 axis may be a potential therapeutic target in order to improve patient outcomes.
Collapse
Affiliation(s)
- Vahid Bagheri
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Kafi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
34
|
Zhang K, Liu K, Hu B, Du G, Chen X, Xiao L, Zhang Y, Jiang L, Jing N, Cheng C, Wang J, Xu P, Wang Y, Ma P, Zhuang G, Zhao H, Sun Y, Wang D, Wang Q, Xue W, Gao WQ, Zhang P, Zhu HH. Iron-loaded cancer-associated fibroblasts induce immunosuppression in prostate cancer. Nat Commun 2024; 15:9050. [PMID: 39426954 PMCID: PMC11490570 DOI: 10.1038/s41467-024-53233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Iron is an essential biomineral in the human body. Here, we describe a subset of iron-loaded cancer-associated fibroblasts, termed as FerroCAFs, that utilize iron to induce immunosuppression in prostate cancer and predict an unfavorable clinical outcome. FerroCAFs secrete myeloid cell-associated proteins, including CCL2, CSF1 and CXCL1, to recruit immunosuppressive myeloid cells. We report the presence of FerroCAFs in prostate cancer from both mice and human, as well as in human lung and ovarian cancers, and identify a conserved cell surface marker, the poliovirus receptor. Mechanistically, the accumulated iron in FerroCAFs is caused by Hmox1-mediated iron release from heme degradation. The intracellular iron activates the Kdm6b, an iron-dependent epigenetic enzyme, to induce an accessible chromatin state and transcription of myeloid cell-associated protein genes. Targeting the FerroCAFs by inhibiting the Hmox1/iron/Kdm6b signaling axis incurs anti-tumor immunity and tumor suppression. Collectively, we report an iron-loaded FerroCAF cluster that drives immunosuppression through an iron-dependent epigenetic reprogramming mechanism and reveal promising therapeutic targets to boost anti-tumor immunity.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyuan Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benxia Hu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Genyu Du
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Xiao
- Department of Emergency Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingchao Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyao Jiang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaping Cheng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinming Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - You Wang
- Department of Obstetrics and Gynaecology, Shanghai Key Laboratory of Gynaecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Ma
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- Department of Obstetrics and Gynaecology, Shanghai Key Laboratory of Gynaecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Zhao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xue
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Zhang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, and Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Lin X, Liu Z, Dong X, Wang K, Sun Y, Zhang H, Wang F, Chen Y, Ling J, Guo Y, Xiang H, Xie Q, Zhang Y, Guo Z, Sugimura R, Xie G. Radiotherapy enhances the anti-tumor effect of CAR-NK cells for hepatocellular carcinoma. J Transl Med 2024; 22:929. [PMID: 39396988 PMCID: PMC11472550 DOI: 10.1186/s12967-024-05724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-NK cell therapy has shown remarkable clinical efficacy and safety in the treatment of hematological malignancies. However, this efficacy was limited in solid tumors owing to hostile tumor microenvironment (TME). Radiotherapy is commonly used for solid tumors and proved to improve the TME. Therefore, the combination with radiotherapy would be a potential strategy to improve therapeutic efficacy of CAR-NK cells for solid tumors. METHODS Glypican-3 (GPC3) was used as a target antigen of CAR-NK cell for hepatocellular carcinoma (HCC). To promote migration towards HCC, CXCR2-armed CAR-NK92 cells targeting GPC3 were first developed, and their cytotoxic and migration activities towards HCC cells were evaluated. Next, the effects of irradiation on the anti-tumor activity of CAR-NK92 cells were assessed in vitro and in HCC-bearing NCG mice. Lastly, to demonstrate the potential mechanism mediating the sensitized effect of irradiation on CAR-NK cells, the differential gene expression profiles induced by irradiation were analyzed and the expression of some important ligands for the NK-cell activating receptors were further determined by qRT-PCR and flow cytometry. RESULTS In this study, we developed CXCR2-armed GPC3-targeting CAR-NK92 cells that exhibited specific and potent killing activity against HCC cells and the enhanced migration towards HCC cells. Pretreating HCC cells with irradiation enhanced in vitro anti-HCC effect and migration activity of CXCR2-armed CAR-NK92 cells. We further found that only high-dose (8 Gy) but not low-dose (2 Gy) irradiation in one fraction could significantly enhanced in vivo anti-HCC activity of CXCR2-armed CAR-NK92 cells. Irradiation with 8 Gy significantly up-regulated the expression of NK cell-activating ligands on HCC cells. CONCLUSIONS Our results indicate the evidence that irradiation could efficiently enhance the anti-tumor effect of CAR-NK cells in solid tumor model. The combination with radiotherapy would be an attractive strategy to improve therapeutic efficacy of CAR-NK cells for solid tumors.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/radiotherapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/radiation effects
- Liver Neoplasms/radiotherapy
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Animals
- Humans
- Cell Line, Tumor
- Receptors, Chimeric Antigen/metabolism
- Cell Movement/radiation effects
- Glypicans/metabolism
- Receptors, Interleukin-8B/metabolism
- Xenograft Model Antitumor Assays
- Mice
- Gene Expression Regulation, Neoplastic/radiation effects
- Immunotherapy, Adoptive/methods
- Tumor Microenvironment/radiation effects
- Cytotoxicity, Immunologic/radiation effects
Collapse
Affiliation(s)
- Xiaotong Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zishen Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Xin Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Kunyuan Wang
- State Key Laboratory of Organ Failure Research, Guangdong Province, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong, China
| | - Yao Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Han Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Fei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Ying Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jing Ling
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yuetong Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Hongjin Xiang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Qiankun Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yuqin Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhaoze Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Guozhu Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Patni H, Chaudhary R, Kumar A. Unleashing nanotechnology to redefine tumor-associated macrophage dynamics and non-coding RNA crosstalk in breast cancer. NANOSCALE 2024; 16:18274-18294. [PMID: 39292162 DOI: 10.1039/d4nr02795g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Breast cancer is a significant global health issue. Tumor-associated macrophages (TAMs) are crucial in influencing the tumor microenvironment and the progression of the disease. TAMs exhibit remarkable plasticity in adopting distinct phenotypes ranging from pro-inflammatory and anti-tumorigenic (M1-like) to immunosuppressive and tumor-promoting (M2-like). This review elucidates the multifaceted roles of TAMs in driving breast tumor growth, angiogenesis, invasion, and metastatic dissemination. Significantly, it highlights the intricate crosstalk between TAMs and non-coding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, as a crucial regulatory mechanism modulating TAM polarization and functional dynamics that present potential therapeutic targets. Nanotechnology-based strategies are explored as a promising approach to reprogramming TAMs toward an anti-tumor phenotype. Various nanoparticle delivery systems have shown potential for modulating TAM polarization and inhibiting tumor-promoting effects. Notably, nanoparticles can deliver ncRNA therapeutics to TAMs, offering unique opportunities to modulate their polarization and activity.
Collapse
Affiliation(s)
- Hardik Patni
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ramesh Chaudhary
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
37
|
Wang Q, Zhao Y, Tan G, Ai J. Single cell analysis revealed SFRP2 cancer associated fibroblasts drive tumorigenesis in head and neck squamous cell carcinoma. NPJ Precis Oncol 2024; 8:228. [PMID: 39384902 PMCID: PMC11464629 DOI: 10.1038/s41698-024-00716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
Understanding the mechanisms of invasion and metastasis in head and neck squamous cell carcinoma (HNSCC) is crucial for effective treatment, particularly in metastatic cases. In this study, we analyzed multicenter bulk sequencing and comprehensive single-cell data from 702,446 cells, leading to the identification of a novel subtype of cancer-associated fibroblasts (CAFs), termed Secreted Frizzled-Related Protein2 CAFs (SFRP2_CAFs). These cells, originating from smooth muscle cells, display unique characteristics resembling both myofibroblastic CAFs and inflammatory CAFs, and are linked to poorer survival outcomes in HNSCC patients. Our findings reveal significant interactions between SFRP2_CAFs and SPP1 tumor-associated macrophages, which facilitate tumor invasion and metastasis. Moreover, our research identifies Nuclear factor I/X (NFIX) as a key transcription factor regulating SFRP2_CAFs behavior, confirmed through gene regulatory network analysis and simulation perturbation.
Collapse
Affiliation(s)
- Qiwei Wang
- MD, Department of head and neck surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya school of medicine, Central South University, Changsha, Hunan, China
- MD, Department of otolaryngology head and neck surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinan Zhao
- PhD, Xiangya school of nursing, Central South University, Changsha, Hunan, China
| | - Guolin Tan
- MD, PhD, Department of otolaryngology head and neck surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - JinGang Ai
- MD, Department of otolaryngology head and neck surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
38
|
Malik S, Sureka N, Ahuja S, Aden D, Zaheer S, Zaheer S. Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire. Cell Biol Int 2024; 48:1406-1449. [PMID: 39054741 DOI: 10.1002/cbin.12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The tumor microenvironment (TME) is a critical determinant in the initiation, progression, and treatment outcomes of various cancers. Comprising of cancer-associated fibroblasts (CAF), immune cells, blood vessels, and signaling molecules, the TME is often likened to the soil supporting the seed (tumor). Among its constituents, tumor-associated macrophages (TAMs) play a pivotal role, exhibiting a dual nature as both promoters and inhibitors of tumor growth. This review explores the intricate relationship between TAMs and the TME, emphasizing their diverse functions, from phagocytosis and tissue repair to modulating immune responses. The plasticity of TAMs is highlighted, showcasing their ability to adopt either protumorigenic or anti-tumorigenic phenotypes based on environmental cues. In the context of cancer, TAMs' pro-tumorigenic activities include promoting angiogenesis, inhibiting immune responses, and fostering metastasis. The manuscript delves into therapeutic strategies targeting TAMs, emphasizing the challenges faced in depleting or inhibiting TAMs due to their multifaceted roles. The focus shifts towards reprogramming TAMs to an anti-tumorigenic M1-like phenotype, exploring interventions such as interferons, immune checkpoint inhibitors, and small molecule modulators. Noteworthy advancements include the use of CSF1R inhibitors, CD40 agonists, and CD47 blockade, demonstrating promising results in preclinical and clinical settings. A significant section is dedicated to Chimeric Antigen Receptor (CAR) technology in macrophages (CAR-M cells). While CAR-T cells have shown success in hematological malignancies, their efficacy in solid tumors has been limited. CAR-M cells, engineered to infiltrate solid tumors, are presented as a potential breakthrough, with a focus on their development, challenges, and promising outcomes. The manuscript concludes with the exploration of third-generation CAR-M technology, offering insight into in-vivo reprogramming and nonviral vector approaches. In conclusion, understanding the complex and dynamic role of TAMs in cancer is crucial for developing effective therapeutic strategies. While early-stage TAM-targeted therapies show promise, further extensive research and larger clinical trials are warranted to optimize their targeting and improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaivy Malik
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| |
Collapse
|
39
|
Lemaitre L, Adeniji N, Suresh A, Reguram R, Zhang J, Park J, Reddy A, Trevino AE, Mayer AT, Deutzmann A, Hansen AS, Tong L, Arjunan V, Kambham N, Visser BC, Dua MM, Bonham CA, Kothary N, D'Angio HB, Preska R, Rosen Y, Zou J, Charu V, Felsher DW, Dhanasekaran R. Spatial analysis reveals targetable macrophage-mediated mechanisms of immune evasion in hepatocellular carcinoma minimal residual disease. NATURE CANCER 2024; 5:1534-1556. [PMID: 39304772 DOI: 10.1038/s43018-024-00828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Hepatocellular carcinoma (HCC) frequently recurs from minimal residual disease (MRD), which persists after therapy. Here, we identified mechanisms of persistence of residual tumor cells using post-chemoembolization human HCC (n = 108 patients, 1.07 million cells) and a transgenic mouse model of MRD. Through single-cell high-plex cytometric imaging, we identified a spatial neighborhood within which PD-L1 + M2-like macrophages interact with stem-like tumor cells, correlating with CD8+ T cell exhaustion and poor survival. Further, through spatial transcriptomics of residual HCC, we showed that macrophage-derived TGFβ1 mediates the persistence of stem-like tumor cells. Last, we demonstrate that combined blockade of Pdl1 and Tgfβ excluded immunosuppressive macrophages, recruited activated CD8+ T cells and eliminated residual stem-like tumor cells in two mouse models: a transgenic model of MRD and a syngeneic orthotopic model of doxorubicin-resistant HCC. Thus, our spatial analyses reveal that PD-L1+ macrophages sustain MRD by activating the TGFβ pathway in stem-like cancer cells and targeting this interaction may prevent HCC recurrence from MRD.
Collapse
Affiliation(s)
- Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Nia Adeniji
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Akanksha Suresh
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Reshma Reguram
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Jangho Park
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Amit Reddy
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | | | | | - Anja Deutzmann
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Aida S Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ling Tong
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Vinodhini Arjunan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Monica M Dua
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - C Andrew Bonham
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Nishita Kothary
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Yanay Rosen
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - James Zou
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - Vivek Charu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
40
|
Li P, Zhou M, Gan X, Yuan C, Li G, Jin GN, Ding ZY. Regulator of nonsense transcripts 3B is a prognostic biomarker and associated with immune cell infiltration in lung squamous cell and hepatocellular carcinoma. Discov Oncol 2024; 15:479. [PMID: 39331207 PMCID: PMC11436519 DOI: 10.1007/s12672-024-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE The characteristic of RENT3B in cancer remains ambiguous. We aimed to study the relationship between RENT3B and immune infiltration in liver hepatocellular carcinoma (LIHC) and lung squamous cell carcinoma (LUSC). PATIENTS AND METHODS We investigated the expression levels of RENT3B using ONCOMINE and TIMER databases, and assessed the interrelationship between RENT3B expression and survival using PrognoScan, GEPIA, and Kaplan-Meier plotter. Additionally, we examined the association between RENT3B and immune cells in the tumor microenvironment (TME), as well as markers of immune cells, using TIMER. Subsequently, we performed prognostic analysis based on the expression level of RENT3B within specific immune cell subgroups. Furthermore, we evaluated the promoter methylation profile of RENT3B between tumor and normal tissues in LIHC and LUSC using the DNMIVD database. RESULTS RENT3B exhibited increased levels in both in LIHC and LUSC. High RENT3B expression was associated with unfavorable prognosis in LIHC, whereas it indicated a beneficial prognosis in LUSC. In LIHC, the expression of RENT3B positively correlated with immune infiltration levels of B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells. However, in LUSC, the expression of RENT3B showed a negative correlation with immune infiltration levels of B cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells. RENT3B exhibited positive correlations with 42 immune markers in LIHC, while it displayed negative associations with 10 immune markers in LUSC. Despite variations in immune cell enrichment and reduction subgroups, high RENT3B expression consistently indicated poor prognosis in LIHC, whereas it remained favorable in LUSC. Additionally, there were no significant differences observed in RENT3B promoter methylation between tumor and normal tissues in both LIHC and LUSC. CONCLUSION RENT3B can affect the overall tumor prognosis and is associated with immune infiltration, especially in LIHC and LUSC. Consequently, RENT3B can become a prognostic biomarker for LIHC and LUSC.
Collapse
Affiliation(s)
- Pengcheng Li
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Mi Zhou
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Xiaoli Gan
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Ganxun Li
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Guan-Nan Jin
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
- Department of Internal Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430071, People's Republic of China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
41
|
Tang X, Xue J, Zhang J, Zhou J. Causal Effect of Immunocytes, Plasma Metabolites, and Hepatocellular Carcinoma: A Bidirectional Two-Sample Mendelian Randomization Study and Mediation Analysis in East Asian Populations. Genes (Basel) 2024; 15:1183. [PMID: 39336774 PMCID: PMC11431556 DOI: 10.3390/genes15091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a primary malignant liver tumor characterized by a low survival rate and high mortality. This study aimed to investigate the causal effect of immune cell phenotypes, plasma metabolites, and HCC in East Asian populations. Methods: The summary results for 731 immunocytes, 1400 plasma metabolites, and HCCs were acquired from publicly available genome-wide association studies (GWASs). This study utilized two-sample Mendelian randomization (MR) analysis to establish causal relationships, which was achieved by employing various statistical methods including inverse variance-weighted, simple mode, MR-Egger, weighted median, and weighted mode. Multiple sensitivity analyses were conducted to confirm the reliability of the MR data. Ultimately, mediation analysis was employed to ascertain the path that leads from immunocytes to plasma metabolites. Results: Among the 20 immune cells and HCC for East Asians, causal links were found, with one showing an inverse correlation. In addition, 36 metabolites were significantly associated with HCC for East Asians. Through analysis of established causative metabolites, we identified a strong correlation between the glycerophospholipid metabolic pathway and HCC for East Asians. By employing a two-step MR analysis, we identified 11 immunocytes that are causally linked to HCC for East Asians through the mediation of 14 plasma metabolites, with Linolenate [α or γ; (18:3n3 or 6)] levels showing the highest mediation proportion (19.3%). Conclusions: Our findings affirm the causal links among immunocytes, plasma metabolites, and HCC in eastern Asia populations by calculating the percentage of the impact that is influenced by plasma metabolites. This study offers innovative perspectives on the early detection, diagnosis, and therapy of HCC.
Collapse
Affiliation(s)
- Xilong Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jianjin Xue
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Zhang
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiajia Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
42
|
Bai H, Feng L, Schmid F. Macrophage-based cancer immunotherapy: Challenges and opportunities. Exp Cell Res 2024; 442:114198. [PMID: 39103071 DOI: 10.1016/j.yexcr.2024.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Macrophages play crucial roles in the tumor microenvironment (TME), exerting diverse functions ranging from promoting tumor growth and metastasis to orchestrating anti-tumor immune responses. Their plasticity allows them to adopt distinct activation states, often called M1-like (pro-inflammatory) and M2-like (anti-inflammatory or pro-tumoral), significantly influencing tumor progression and response to therapy. Harnessing the potential of macrophages in cancer immunotherapy has emerged as a promising strategy, with increasing interest in targeting these cells directly or modulating their functions within the TME. This review explores the intricate interplay between macrophages, the TME, and immunotherapeutic approaches. We discuss the dynamic phenotypic and functional heterogeneity of tumor-associated macrophages (TAMs), their impact on disease progression, and the mechanisms underlying their response to immunotherapy. Furthermore, we highlight recent advancements in macrophage-based immunotherapeutic strategies, including macrophage-targeting agents, adoptive cell transfer, and engineering approaches. Understanding the complex crosstalk between macrophages and the TME is essential for developing effective immunotherapeutic interventions that exploit the immunomodulatory functions of macrophages to enhance anti-tumor immunity and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Haotian Bai
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Li Feng
- Emergency Department, People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong Province, China.
| | - Felix Schmid
- School of Biomedical Sciences, Carleton University, Ottawa, Canada.
| |
Collapse
|
43
|
Hong WF, Zhang F, Wang N, Bi JM, Zhang DW, Wei LS, Song ZT, Mills GB, Chen MM, Li XX, Du SS, Yu M. Dynamic immunoediting by macrophages in homologous recombination deficiency-stratified pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 76:101115. [PMID: 39002266 DOI: 10.1016/j.drup.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.
Collapse
Affiliation(s)
- Wei-Feng Hong
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310005, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310005, China
| | - Feng Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Wang
- Cosmos Wisdom Biotech, co. ltd, Building 10, No. 617 Jiner Road, Hangzhou, Zhejiang, China
| | - Jun-Ming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ding-Wen Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lu-Sheng Wei
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen-Tao Song
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd. Jinan, Shandong, China
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Min-Min Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xue-Xin Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna 17165, Sweden.
| | - Shi-Suo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Becker AL, Scholle L, Klause CH, Staege MS, Strauss C, Otto M, Rampp S, Scheller C, Leisz S. Correlation of Immunomodulatory Cytokines with Tumor Volume and Cerebrospinal Fluid in Vestibular Schwannoma Patients. Cancers (Basel) 2024; 16:3002. [PMID: 39272860 PMCID: PMC11394145 DOI: 10.3390/cancers16173002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Sporadic vestibular schwannomas (VSs) often exhibit slow or negligible growth. Nevertheless, some VSs increase significantly in volume within a few months or grow continuously. Recent evidence indicates a role of inflammation in promoting VS growth. Therefore, our study aimed to identify cytokines, which are associated with larger VSs. The expression of different cytokines in VS tumor samples and VS primary cultures was investigated. Additionally, the concentration of cytokines in cell culture supernatants of VS primary cultures and cerebrospinal fluid (CSF) of VS patients and healthy controls were determined. Correlation analysis of cytokine levels with tumor volume, growth rate, Koos grade, age, and hearing was examined with Spearman's-rank test. The mRNA expression of CC-chemokine ligand (CCL) 18, growth differentiation factor (GDF) 15, and interferon regulatory factor 4 correlated positively with tumor volume. Moreover, the amount of GDF15 in the cell culture supernatant of primary cells correlated positively with tumor volume. The concentrations of the cytokines CCL2, CCL5, and CCL18 and transforming growth factor beta (TGFB) 1 in the CSF of the patients were significantly different from those in the CSF controls. Inhibition of immune cell infiltration could be a putative approach to prevent and control VS growth.
Collapse
Affiliation(s)
- Anna-Louisa Becker
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Leila Scholle
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Clara Helene Klause
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Martin Sebastian Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Stefan Rampp
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
45
|
Yang R, Kwan W, Du Y, Yan R, Zang L, Li C, Zhu Z, Cheong IH, Kozlakidis Z, Yu Y. Drug-induced senescence by aurora kinase inhibitors attenuates innate immune response of macrophages on gastric cancer organoids. Cancer Lett 2024; 598:217106. [PMID: 38992487 PMCID: PMC11364160 DOI: 10.1016/j.canlet.2024.217106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Diffuse-type gastric cancer (DGC) is a subtype of gastric cancer with aggressiveness and poor prognosis. It is of great significance to find sensitive drugs for DGC. In the current study, a total of 20 patient-derived organoids (PDOs) were analyzed for screening the therapeutic efficacy of small molecule kinases inhibitors on gastric cancers, especially the therapeutic difference between intestinal-type gastric cancer (IGCs) and DGCs. The IGCs are sensitive to multiple kinases inhibitors, while DGCs are resistant to most of these kinases inhibitors. It was found that DGCs showed drug-induced senescent phenotype after treatment by aurora kinases inhibitors (AURKi) Barasertib-HQPA and Danusertib. The cell diameter of cancer cells are increased with stronger staining of senescence-associated β-galactosidase (SA-β-GAL), and characteristic appearance of multinucleated giant cells. The senescent cancer cells secrete large amounts of chemokine MCP-1/CCL2, which recruit and induce macrophage to M2-type polarization in PDOs of DGC (DPDOs)-macrophage co-culture system. The up-regulation of local MCP-1/CCL2 can interact with MCP-1/CCL2 receptor (CCR2) expressed on macrophages and suppress their innate immunity to cancer cells. Overall, the special response of DGC to AURKi suggests that clinicians should select a sequential therapy with senescent cell clearance after AURKi treatment for DGC.
Collapse
Affiliation(s)
- Ruixin Yang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wingyan Kwan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yutong Du
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ranlin Yan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Lu Zang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Chen Li
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhenggang Zhu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Io Hong Cheong
- Healthy Macau New-Generation Association, 999078, Macau, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group of International Agency for Research on Cancer, World Health Organization, 25 avenue Tony Garnier, CS 90627, 69366, LYON, CEDEX 07, France.
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
46
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J, Liu Y, Liu L. Exploring the role of the immune microenvironment in hepatocellular carcinoma: Implications for immunotherapy and drug resistance. eLife 2024; 13:e95009. [PMID: 39146202 PMCID: PMC11326777 DOI: 10.7554/elife.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
47
|
Tian H, Xu W, Wen L, Song T, Tian Y, Tang L, Guo N, Chen Q, Wang H, Zhang K, Zhang X, Peng Y. Relationship between CCL2 gene 2518A/G (rs1024611) polymorphism and age-related macular degeneration susceptibility: meta-analysis and trial sequential analysis. Int Ophthalmol 2024; 44:348. [PMID: 39141020 DOI: 10.1007/s10792-024-03266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE This study aimed to investigate the association between the CC-cytokine ligand-2 (CCL2) 2518A/G (rs1024611) single nucleotide polymorphism (SNP) and susceptibility to age-related macular degeneration (AMD). METHODS PubMed, Embase, Web of Science, and other databases were searched for articles published before August 24, 2023. After searching, data extraction, and quality assessment, meta-analysis and trial sequential analysis were conducted using RevMan 5.4, Stata 17.0, and TSA 0.9.5.10 Beta software. Combined OR, P values, and 95% confidence intervals (CIs) were calculated. Sensitivity analysis, subgroup analysis and publication bias assessment were also performed. RESULTS Six articles, comprising 1186 cases and 1124 controls, were included. No significant statistical difference was found in six main outcomes. However, due to observed heterogeneity and high sensitivity, subgroup analysis was performed, revealing statistically significant differences across different regions. No significant publication bias was observed. Trial sequential analysis suggested the need for additional follow-up case-control studies to further validate the findings. CONCLUSION The CCL2 gene 2518A/G (rs1024611) polymorphism is associated with AMD susceptibility. Among Caucasian populations in West Asia and Europe, the G allele is protective against AMD, whereas in East and South Asia, it poses a risk factor.
Collapse
Affiliation(s)
- Haokun Tian
- Joint Programme of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Weikai Xu
- Joint Programme of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lequan Wen
- Joint Programme of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Tiangang Song
- Joint Programme of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ye Tian
- Joint Programme of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lirui Tang
- Joint Programme of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Nan Guo
- The Third Affiliated Hospital of Nanchang University, Nanchang, China
- The Third Clinical Medical College, Nanchang University, Nanchang, China
| | - Qianxi Chen
- Joint Programme of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Haoran Wang
- Joint Programme of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Kaiyuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinyuan Zhang
- Joint Programme of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Yu Peng
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
48
|
Ruishi X, Linyi X, Yunfan B, Wenbo Y, Xiaoying Z, Xiaoxue F, Difu Z, Xintian L, Ming Z, Haoming L. New perspectives on chemokines in hepatocellular carcinoma therapy: a critical pathway for natural products regulation of the tumor microenvironment. Front Immunol 2024; 15:1456405. [PMID: 39206194 PMCID: PMC11349538 DOI: 10.3389/fimmu.2024.1456405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary neoplasms of the liver and one of the most common solid tumors in the world. Its global incidence is increasing and it has become the third leading cause of cancer-related deaths. There is growing evidence that chemokines play an important role in the tumor microenvironment, regulating the migration and localization of immune cells in tissues and are critical for the function of the immune system. This review comprehensively analyses the expression and activity of chemokines in the TME of HCC and describes their interrelationship with hepatocarcinogenesis and progression. Special attention is given to the role of chemokine-chemokine receptors in the regulation of immune cell accumulation in the TME. Therapeutic strategies targeting tumor-promoting chemokines or the induction/release of beneficial chemokines are reviewed, highlighting the potential value of natural products in modulating chemokines and their receptors in the treatment of HCC. The in-depth discussion in this paper provides a theoretical basis for the treatment of HCC. It is an important reference for new drug development and clinical research.
Collapse
Affiliation(s)
- Xie Ruishi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Linyi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bai Yunfan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Wenbo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhang Xiaoying
- The First Hospital of Jilin University, Changchun, China
| | - Fang Xiaoxue
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Difu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lan Xintian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Ming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Luo Haoming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
49
|
Haag F, Gylstorff S, Bujok J, Pech M, Relja B. CCL2 Predicts Survival in Patients with Inoperable Hepatocellular Carcinoma Undergoing Selective Internal Radiotherapy. Cancers (Basel) 2024; 16:2832. [PMID: 39199602 PMCID: PMC11352291 DOI: 10.3390/cancers16162832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the largest subgroup of primary liver tumors. Ablative therapies, such as selective internal radiation therapy (SIRT), are used in late stages for patients with unresectable liver metastases and no response to other therapies. CCL2 (C-C motif chemokine ligand 2) is a potent monocyte chemoattractant. It is associated with tumor progression and metastasis. The role of circulating CCL2 as a biomarker in HCC undergoing selective internal radiation therapy remains unclear. METHODS A total of 41 patients (8 female, 33 male) suffering from HCC and undergoing SIRT were enrolled. Pre- and post-therapy changes in circulating CCL2 levels were determined by bead-based immunoassay and compared with clinical laboratory parameters and patient data. RESULTS A total of 32 patients exhibited survival beyond 60 days. It was observed that levels of CCL2 correlated with scores indicating a higher likelihood of non-survival and with the severity of the disease. Moreover, a significant inverse correlation was discovered between CCL2 levels and the survival of patients over 60 days in relation to counts of leukocytes, granulocytes, monocytes, and C-reactive protein. CONCLUSIONS CCL2 may serve as a potential marker for patient survival after SIRT. The prediction of which HCC patients are likely to benefit from SIRT may be helpful in guiding therapeutic management.
Collapse
Affiliation(s)
- Florian Haag
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Severin Gylstorff
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Translational and Experimental Trauma Research, Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Ulm, 89081 Ulm, Germany
| | - Jasmin Bujok
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, 69115 Heidelberg, Germany
| | - Maciej Pech
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Translational and Experimental Trauma Research, Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Ulm, 89081 Ulm, Germany
| |
Collapse
|
50
|
Zhang Y, Han G, Gu J, Chen Z, Wu J. Role of tumor-associated macrophages in hepatocellular carcinoma: impact, mechanism, and therapy. Front Immunol 2024; 15:1429812. [PMID: 39170620 PMCID: PMC11335564 DOI: 10.3389/fimmu.2024.1429812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly frequent malignancy worldwide. The occurrence and progression of HCC is a complex process closely related to the polarization of tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). The polarization of TAMs is affected by a variety of signaling pathways and surrounding cells. Evidence has shown that TAMs play a crucial role in HCC, through its interaction with other immune cells in the TME. This review summarizes the origin and phenotypic polarization of TAMs, their potential impacts on HCC, and their mechanisms and potential targets for HCC immunotherapy.
Collapse
Affiliation(s)
- Yinqi Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| |
Collapse
|