1
|
Ward J, Zhang S, Sikora A, Michalski R, Yin Y, D'Alessio A, McLoughlin RM, Jaquet V, Fieschi F, Knaus UG. VEO-IBD NOX1 variant highlights a structural region essential for NOX/DUOX catalytic activity. Redox Biol 2023; 67:102905. [PMID: 37820403 PMCID: PMC10571032 DOI: 10.1016/j.redox.2023.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic intestinal disorders that result from an inappropriate inflammatory response to the microbiota in genetically susceptible individuals, often triggered by environmental stressors. Part of this response is the persistent inflammation and tissue injury associated with deficiency or excess of reactive oxygen species (ROS). The NADPH oxidase NOX1 is highly expressed in the intestinal epithelium, and inactivating NOX1 missense mutations are considered a risk factor for developing very early onset IBD. Albeit NOX1 has been linked to wound healing and host defence, many questions remain about its role in intestinal homeostasis and acute inflammatory conditions. Here, we used in vivo imaging in combination with inhibitor studies and germ-free conditions to conclusively identify NOX1 as essential superoxide generator for microbiota-dependent peroxynitrite production in homeostasis and during early endotoxemia. NOX1 loss-of-function variants cannot support peroxynitrite production, suggesting that the gut barrier is persistently weakened in these patients. One of the loss-of-function NOX1 variants, NOX1 p. Asn122His, features replacement of an asparagine residue located in a highly conserved HxxxHxxN motif. Modelling the NOX1-p22phox complex revealed near the distal heme an internal pocket restricted by His119 and Asn122 that is part of the oxygen reduction site. Functional studies in several human NADPH oxidases show that substitution of asparagine with amino acids with larger side chains is not tolerated, while smaller side chains can support catalytic activity. Thus, we identified a previously unrecognized structural feature required for the electron transfer mechanism in human NADPH oxidases.
Collapse
Affiliation(s)
- Josie Ward
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Suisheng Zhang
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radoslaw Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Yuting Yin
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Aurora D'Alessio
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Vincent Jaquet
- Department of Pathology and Immunology and READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France; Institut Universitaire de France (IUF), Paris, France.
| | - Ulla G Knaus
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Liu B, Kong Y, Alimi OA, Kuss MA, Tu H, Hu W, Rafay A, Vikas K, Shi W, Lerner M, Berry WL, Li Y, Carlson MA, Duan B. Multifunctional Microgel-Based Cream Hydrogels for Postoperative Abdominal Adhesion Prevention. ACS NANO 2023; 17:3847-3864. [PMID: 36779870 PMCID: PMC10820954 DOI: 10.1021/acsnano.2c12104] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Postoperative abdominal adhesions are a common problem after surgery and can produce serious complications. Current antiadhesive strategies focus mostly on physical barriers and are unsatisfactory and inefficient. In this study, we designed and synthesized advanced injectable cream-like hydrogels with multiple functionalities, including rapid gelation, self-healing, antioxidation, anti-inflammation, and anti-cell adhesion. The multifunctional hydrogels were facilely formed by the conjugation reaction of epigallocatechin-3-gallate (EGCG) and hyaluronic acid (HA)-based microgels and poly(vinyl alcohol) (PVA) based on the dynamic boronic ester bond. The physicochemical properties of the hydrogels including antioxidative and anti-inflammatory activities were systematically characterized. A mouse cecum-abdominal wall adhesion model was implemented to investigate the efficacy of our microgel-based hydrogels in preventing postoperative abdominal adhesions. The hydrogels, with a high molecular weight HA, significantly decreased the inflammation, oxidative stress, and fibrosis and reduced the abdominal adhesion formation, compared to the commercial Seprafilm group or Injury-only group. Label-free quantitative proteomics analysis demonstrated that S100A8 and S100A9 expressions were associated with adhesion formation; the microgel-containing hydrogels inhibited these expressions. The microgel-containing hydrogels with multifunctionality decreased the formation of postoperative intra-abdominal adhesions in a murine model, demonstrating promise for clinical applications.
Collapse
Affiliation(s)
- Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Olawale A. Alimi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell A. Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Huiyin Tu
- Department of Emergency Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wenfeng Hu
- Department of Emergency Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Abu Rafay
- Mass Spectrometry & Proteomics Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kumar Vikas
- Mass Spectrometry & Proteomics Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Megan Lerner
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William L. Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yulong Li
- Department of Emergency Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mark A. Carlson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery-General Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery-General Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
3
|
Filardy AA, Ferreira JRM, Rezende RM, Kelsall BL, Oliveira RP. The intestinal microenvironment shapes macrophage and dendritic cell identity and function. Immunol Lett 2023; 253:41-53. [PMID: 36623708 PMCID: PMC9907447 DOI: 10.1016/j.imlet.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The gut comprises the largest body interface with the environment and is continuously exposed to nutrients, food antigens, and commensal microbes, as well as to harmful pathogens. Subsets of both macrophages and dendritic cells (DCs) are present throughout the intestinal tract, where they primarily inhabit the gut-associate lymphoid tissue (GALT), such as Peyer's patches and isolated lymphoid follicles. In addition to their role in taking up and presenting antigens, macrophages and DCs possess extensive functional plasticity and these cells play complementary roles in maintaining immune homeostasis in the gut by preventing aberrant immune responses to harmless antigens and microbes and by promoting host defense against pathogens. The ability of macrophages and DCs to induce either inflammation or tolerance is partially lineage imprinted, but can also be dictated by their activation state, which in turn is determined by their specific microenvironment. These cells express several surface and intracellular receptors that detect danger signals, nutrients, and hormones, which can affect their activation state. DCs and macrophages play a fundamental role in regulating T cells and their effector functions. Thus, modulation of intestinal mucosa immunity by targeting antigen presenting cells can provide a promising approach for controlling pathological inflammation. In this review, we provide an overview on the characteristics, functions, and origins of intestinal macrophages and DCs, highlighting the intestinal microenvironmental factors that influence their functions during homeostasis. Unraveling the mechanisms by which macrophages and DCs regulate intestinal immunity will deepen our understanding on how the immune system integrates endogenous and exogenous signals in order to maintain the host's homeostasis.
Collapse
Affiliation(s)
- Alessandra A Filardy
- Laboratório de Imunologia Celular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.
| | - Jesuino R M Ferreira
- Laboratório de Imunologia Celular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, USA
| | | |
Collapse
|
4
|
Smythe P, Efthimiou G. In Silico Genomic and Metabolic Atlas of Limosilactobacillus reuteri DSM 20016: An Insight into Human Health. Microorganisms 2022; 10:microorganisms10071341. [PMID: 35889060 PMCID: PMC9320016 DOI: 10.3390/microorganisms10071341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Probiotics are bacterial strains that are known to provide host health benefits. Limosilactobacillus reuteri is a well-documented lactic acid bacterium that has been cultured from numerous human sites. The strain investigated was L. reuteri DSM 20016, which has been found to produce useful metabolites. The strain was explored using genomic and proteomic tools, manual searches, and databases, including KEGG, STRING, BLAST Sequence Similarity Search, and UniProt. This study located over 200 key genes that were involved in human health benefit pathways. L. reuteri DSM 20016 has metabolic pathways to produce acetate, propionate, and lactate, and there is evidence of a pathway for butanoate production through a FASII mechanism. The bacterium produces histamine through the hdc operon, which may be able to suppress proinflammatory TNF, and the bacterium also has the ability to synthesize folate and riboflavin, although whether they are secreted is yet to be explored. The strain can bind to human Caco2 cells through srtA, mapA/cnb, msrB, and fbpA and can compete against enteric bacteria using reuterin, which is an antimicrobial that induces oxidative stress. The atlas could be used for designing metabolic engineering approaches to improve beneficial metabolite biosynthesis and better probiotic-based cures.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Castle Hill Hospital, Daisy Building, Hull HU16 5JQ, UK;
| | - Georgios Efthimiou
- Department of Biomedical and Forensic Sciences, University of Hull, Cottingham Road, Hardy Building, Hull HU6 7RX, UK
- Correspondence: ; Tel.: +44-(0)1482-465970
| |
Collapse
|
5
|
Arnsrud Godtman R, Hallsberg L, Löf-Öhlin Z, Peeker R, Delbro D. Constitutive expression of inducible nitric oxide synthase in healthy rat urothelium? Scand J Urol 2021; 55:493-497. [PMID: 34689710 DOI: 10.1080/21681805.2021.1948097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Contrasting findings have been reported regarding a possible constitutive expression of inducible nitric oxide synthase (iNOS) in a normal mammalian bladder. The current study was designed to further investigate such putative iNOS expression. MATERIALS AND METHODS The experiments were conducted with paraffin-embedded archival material from the urinary bladder of 6 normal, male Sprague-Dawley rats. In addition, two normal female mice (C57BL/6) were sacrificed and the urinary bladders were harvested. The occurrence of iNOS mRNA was examined by the RNAScope in situ hybridization method. Protein expression of iNOS and 3-nitrotyrosine (the latter used as an indicator of oxidative stress) was investigated by immunohistochemistry. RESULTS No expression of iNOS mRNA was observed in the bladder tissue. iNOS protein and 3-nitrotyrosine were strongly expressed in the urothelium. iNOS was also expressed perinuclearly in the detrusor. CONCLUSIONS Although the RNAScope methodology could not demonstrate mRNA for iNOS in the normal urinary bladder, the results by immunohistochemistry strongly suggest the occurrence of iNOS in particular, in the urothelium. Positive reactivity for 3-nitrotyrosine may indicate ongoing oxidative stress of the urothelium. The finding of perinuclear iNOS immunoreactivity could suggest an intracrine signaling function by iNOS to the nucleus.
Collapse
Affiliation(s)
- Rebecka Arnsrud Godtman
- Department of Urology, Institute of Clinical Sciences, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lena Hallsberg
- Department of Surgery, Institute of Clinical Sciences, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Zarah Löf-Öhlin
- The Clinical Research Laboratory, Örebro University Hospital, Region Örebro County, Örebro, Sweden.,School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ralph Peeker
- Department of Urology, Institute of Clinical Sciences, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Dick Delbro
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
6
|
Viola MF, Boeckxstaens G. Niche-specific functional heterogeneity of intestinal resident macrophages. Gut 2021; 70:1383-1395. [PMID: 33384336 PMCID: PMC8223647 DOI: 10.1136/gutjnl-2020-323121] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
Intestinal resident macrophages are at the front line of host defence at the mucosal barrier within the gastrointestinal tract and have long been known to play a crucial role in the response to food antigens and bacteria that are able to penetrate the mucosal barrier. However, recent advances in single-cell RNA sequencing technology have revealed that resident macrophages throughout the gut are functionally specialised to carry out specific roles in the niche they occupy, leading to an unprecedented understanding of the heterogeneity and potential biological functions of these cells. This review aims to integrate these novel findings with long-standing knowledge, to provide an updated overview on our understanding of macrophage function in the gastrointestinal tract and to speculate on the role of specialised subsets in the context of homoeostasis and disease.
Collapse
Affiliation(s)
- Maria Francesca Viola
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (Chrometa), KU Leuven, Leuven, Flanders, Belgium
| | - Guy Boeckxstaens
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (Chrometa), KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
7
|
Viola MF, Boeckxstaens G. Intestinal resident macrophages: Multitaskers of the gut. Neurogastroenterol Motil 2020; 32:e13843. [PMID: 32222060 PMCID: PMC7757264 DOI: 10.1111/nmo.13843] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal resident macrophages play a crucial role in homeostasis and have been implicated in numerous gastrointestinal diseases. While historically believed to be largely of hematopoietic origin, recent advances in fate-mapping technology have unveiled the existence of long-lived, self-maintaining populations located in specific niches throughout the gut wall. Furthermore, the advent of single-cell technology has enabled an unprecedented characterization of the functional specialization of tissue-resident macrophages throughout the gastrointestinal tract. PURPOSE The purpose of this review was to provide a panorama on intestinal resident macrophages, with particular focus to the recent advances in the field. Here, we discuss the functions and phenotype of intestinal resident macrophages and, where possible, the functional specialization of these cells in response to the niche they occupy. Furthermore, we will discuss their role in gastrointestinal diseases.
Collapse
Affiliation(s)
- Maria Francesca Viola
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Laboratory for Neuro Immune InteractionTranslational Research in GastroIntestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| | - Guy Boeckxstaens
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Laboratory for Neuro Immune InteractionTranslational Research in GastroIntestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| |
Collapse
|
8
|
The anti-invasive activity of Robinia pseudoacacia L. and Amorpha fruticosa L. on breast cancer MDA-MB-231 cell line. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00257-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Nitric oxide mediated redox regulation of protein homeostasis. Cell Signal 2018; 53:348-356. [PMID: 30408515 DOI: 10.1016/j.cellsig.2018.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Nitric oxide is a versatile diffusible signaling molecule, whose biosynthesis by three NO synthases (NOS) is tightly regulated at transcriptional and posttranslational levels, availability of co-factors, and calcium binding. Above normal levels of NO have beneficial protective effects for example in the cardiovascular system, but also contribute to the pathophysiology in the context of inflammatory diseases, and to aging and neurodegeneration in the nervous system. The effect specificity relies on the functional and spatial specificity of the NOS isoenzymes, and on the duality of two major signaling mechanisms (i) activation of soluble guanylycylase (sGC)-dependent cGMP production and (ii) direct S-nitrosylation of redox sensitive cysteines of susceptible proteins. The present review summarizes the functional implications of S-nitrosylation in the context of proteostasis, and focuses on two NO target proteins, heat shock cognate of 70 kDa (Hsc70/HSPA8) and the ubiquitin 2 ligase (UBE2D), because both are modified on functionally critical cysteines and are key regulators of chaperone mediated and assisted autophagy and proteasomal protein degradation. SNO modifications of these candidates are associated with protein accumulations and adoption of a senescent phenotype of neuronal cells suggesting that S-nitrosylations of protein homeostatic machineries contribute to aging phenomena.
Collapse
|
10
|
The role of nitric oxide in diabetic skin (patho)physiology. Mech Ageing Dev 2018; 172:21-29. [DOI: 10.1016/j.mad.2017.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 01/29/2023]
|
11
|
NAD(P)H Oxidase Activity in the Small Intestine Is Predominantly Found in Enterocytes, Not Professional Phagocytes. Int J Mol Sci 2018; 19:ijms19051365. [PMID: 29734661 PMCID: PMC5983677 DOI: 10.3390/ijms19051365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/10/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
The balance between various cellular subsets of the innate and adaptive immune system and microbiota in the gastrointestinal tract is carefully regulated to maintain tolerance to the normal flora and dietary antigens, while protecting against pathogens. The intestinal epithelial cells and the network of dendritic cells and macrophages in the lamina propria are crucial lines of defense that regulate this balance. The complex relationship between the myeloid compartment (dendritic cells and macrophages) and lymphocyte compartment (T cells and innate lymphoid cells), as well as the impact of the epithelial cell layer have been studied in depth in recent years, revealing that the regulatory and effector functions of both innate and adaptive immune compartments exhibit more plasticity than had been previously appreciated. However, little is known about the metabolic activity of these cellular compartments, which is the basic function underlying all other additional tasks the cells perform. Here we perform intravital NAD(P)H fluorescence lifetime imaging in the small intestine of fluorescent reporter mice to monitor the NAD(P)H-dependent metabolism of epithelial and myeloid cells. The majority of myeloid cells which comprise the surveilling network in the lamina propria have a low metabolic activity and remain resting even upon stimulation. Only a few myeloid cells, typically localized at the tip of the villi, are metabolically active and are able to activate NADPH oxidases upon stimulation, leading to an oxidative burst. In contrast, the epithelial cells are metabolically highly active and, although not considered professional phagocytes, are also able to activate NADPH oxidases, leading to massive production of reactive oxygen species. Whereas the oxidative burst in myeloid cells is mainly catalyzed by the NOX2 isotype, in epithelial cells other isotypes of the NADPH oxidases family are involved, especially NOX4. They are constitutively expressed by the epithelial cells, but activated only on demand to ensure rapid defense against pathogens. This minimizes the potential for inadvertent damage from resting NOX activation, while maintaining the capacity to respond quickly if needed.
Collapse
|
12
|
Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol 2017; 10:845-864. [PMID: 28378807 DOI: 10.1038/mi.2017.22] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 02/04/2023]
Abstract
The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation. In the current review we discuss the function of intestinal cDC and monocyte-derived MNP, highlighting how these subsets play several non-redundant roles in the regulation of intestinal immune responses. While much remains to be learnt, recent findings also underline how the various populations of MNP adapt to deal with the challenges specific to their environment. Understanding these processes should help target individual subsets for 'fine tuning' immunological responses within the intestine, a process that may be of relevance both for the treatment of inflammatory bowel disease (IBD) and for optimized vaccine design.
Collapse
|
13
|
Nolte A, Junginger J, Baum B, Hewicker-Trautwein M. Heterogeneity of macrophages in canine histiocytic ulcerative colitis. Innate Immun 2017; 23:228-239. [DOI: 10.1177/1753425916686170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histiocytic ulcerative colitis (HUC) is a chronic enteropathy which most notably occurs in Boxer dogs and French bulldogs. The inflamed mucosa is hallmarked by large, foamy, periodic acid–Schiff (PAS)-positive macrophages infiltrating the colonic mucosa. As little is known about their origin and phenotype, an immunohistochemical study was performed using different macrophage markers. Generally, canine colonic macrophages showed high expression of ionised calcium-binding adaptor molecule 1 and MHC class II. In canine HUC, macrophages revealed up-regulation of lysozyme and L1 Ag but decreased CD163 expression compared with controls, suggesting them to be pro-inflammatory cells, whereas the healthy colonic mucosa was characterised by an anti-inflammatory macrophage phenotype. In addition, PAS reaction was used to discriminate macrophage subpopulations. PAS– macrophages displayed higher expression of L1 Ag and CD64, whereas PAS+ cells, which were only present in HUC patients, were characterised by increased expression of lysozyme, inducible nitric oxide synthase and CD204. This indicates PAS+ cells to be mature macrophages contributing to the inflammatory process, which are most likely maintained by differentiation of immature PAS– macrophages continuously recruited from blood monocytes. In summary, macrophage heterogeneity in canine HUC probably illustrates their different maturation states and functions compared with the healthy animals.
Collapse
Affiliation(s)
- Anna Nolte
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Berit Baum
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Ludwigsburg, Germany
| | | |
Collapse
|
14
|
Zschiebsch K, Fischer C, Pickert G, Häussler A, Radeke H, Grösch S, Ferreirós N, Geisslinger G, Werner ER, Tegeder I. Tetrahydrobiopterin Attenuates DSS-evoked Colitis in Mice by Rebalancing Redox and Lipid Signalling. J Crohns Colitis 2016; 10:965-78. [PMID: 26928964 DOI: 10.1093/ecco-jcc/jjw056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/01/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Guanosine triphosphate cyclohydrolase [GCH1] governs the production of the enzyme cofactor tetrahydrobiopterin [BH4] which is essential for biogenic amine synthesis, lipid metabolism via alkylglycerol monooxygenase [AGMO], and redox coupling of nitric oxide synthases [NOSs]. Inflammation-evoked unequal regulation of GCH1 and NOS or AGMO may cause redox stress and lipid imbalances. METHODS The present study assessed potential therapeutic effects of rebalancing these systems with BH4 in experimental colitis in mice. RESULTS Oral treatment with BH4 as a suspension of crushed tablets attenuated colitis, whereas inhibition of its production had opposite effects: aggravated weight loss, epithelial haemorrhages and ulcers, neutrophil infiltrates, production of reactive oxygen species, and unfavourable profile changes of endocannabinoids, ceramides, and lysophosphatidic acids. Conversely, oral BH4 normalised biopterin, reduced in vivo activity of oxidases and peroxidases in the inflamed gut, favoured nitric oxide over hydrogen peroxide, and maintained normal levels of lipid signalling molecules. BH4 favoured thereby resident CD3+CD8+ and regulatory CD3+CD25+ intraepithelial T cells that are important for epithelial integrity. CONCLUSIONS BH4 protected against colitis in mice via two major pathways: [i] by reduction of oxidative stress; and [ii] by re-orchestration of alkyl- and acylglycerolipid signalling via AGMO. Oral treatment with BH4 is a safe approved supplementary therapy for genetic BH4 deficiency and did not excessively increase systemic BH4 levels. Therefore, one may consider repurposing of oral BH4 as an adjunctive treatment for colitis.
Collapse
Affiliation(s)
- Katja Zschiebsch
- Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Caroline Fischer
- Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Geethanjali Pickert
- Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Annett Häussler
- Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Heinfried Radeke
- Department of Experimental Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Sabine Grösch
- Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Nerea Ferreirós
- Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Gerd Geisslinger
- Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Ernst R Werner
- Division of Biological Chemistry, Medical University of Innsbruck, Austria
| | - Irmgard Tegeder
- Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| |
Collapse
|
15
|
Abstract
The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD.
Collapse
Affiliation(s)
- Calum C Bain
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
16
|
Abstract
The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD.
Collapse
Affiliation(s)
- Calum C Bain
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
17
|
Mattila JT, Thomas AC. Nitric oxide synthase: non-canonical expression patterns. Front Immunol 2014; 5:478. [PMID: 25346730 PMCID: PMC4191211 DOI: 10.3389/fimmu.2014.00478] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022] Open
Abstract
Science can move ahead by questioning established or canonical views and, so it may be with the enzymes, nitric oxide synthases (NOS). Nitric oxide (NO) is generated by NOS isoforms that are often described by their tissue-specific expression patterns. NOS1 (nNOS) is abundant in neural tissue, NOS2 is upregulated in activated macrophages and known as inducible NOS (iNOS), and NOS3 (eNOS) is abundant in endothelium where it regulates vascular tone. These isoforms are described as constitutive or inducible, but in this perspective we question the broad application of these labels. Are there instances where "constitutive" NOS (NOS1 and NOS3) are inducibly expressed; conversely, are there instances where NOS2 is constitutively expressed? NOS1 and NOS3 inducibility may be linked to post-translational regulation, making their actual patterns activity much more difficult to detect. Constitutive NOS2 expression has been observed in several tissues, especially the human pulmonary epithelium where it may regulate airway tone. These data suggest that expression of the three NOS enzymes may include non-established patterns. Such information should be useful in designing strategies to modulate these important enzymes in different disease states.
Collapse
Affiliation(s)
- Joshua T. Mattila
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anita C. Thomas
- Bristol Heart Institute and Bristol CardioVascular, Bristol Royal Infirmary, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
Abstract
Mϕ are involved in gut homeostasis and the pathogenesis of intestinal inflammation. Resident and proinflammatory intestinal Mϕ both derive from Ly6Chi blood monocytes. Local environmental factors guide monocyte differentiation in the gut mucosa. Monocyte differentiation is disrupted by inflammation resulting in the accumulation of proinflammatory cells.
Macrophages are one of the most abundant leucocytes in the intestinal mucosa where they are essential for maintaining homeostasis. However, they are also implicated in the pathogenesis of disorders such as inflammatory bowel disease (IBD), offering potential targets for novel therapies. Here we discuss the function of intestinal monocytes and macrophages during homeostasis and describe how these populations and their functions change during infection and inflammation. Furthermore, we review the current evidence that the intestinal macrophage pool requires continual renewal from circulating blood monocytes, unlike most other tissue macrophages which appear to derive from primitive precursors that subsequently self-renew.
Collapse
Affiliation(s)
- Calum C Bain
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom
| | - Allan McI Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom.
| |
Collapse
|
19
|
Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters. Appl Environ Microbiol 2012; 79:516-24. [PMID: 23124234 DOI: 10.1128/aem.03046-12] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal microbiota affects the metabolism of the mammalian host and has consequences for health. However, the complexity of gut microbial communities and host metabolic pathways make functional connections difficult to unravel, especially in terms of causation. In this study, we have characterized the fecal microbiota of hamsters whose cholesterol metabolism was extensively modulated by the dietary addition of plant sterol esters (PSE). PSE intake induced dramatic shifts in the fecal microbiota, reducing several bacterial taxa within the families Coriobacteriaceae and Erysipelotrichaceae. The abundance of these taxa displayed remarkably high correlations with host cholesterol metabolites. Most importantly, the associations between several bacterial taxa with fecal and biliary cholesterol excretion showed an almost perfect fit to a sigmoidal nonlinear model of bacterial inhibition, suggesting that host cholesterol excretion can shape microbiota structure through the antibacterial action of cholesterol. In vitro experiments suggested a modest antibacterial effect of cholesterol, and especially of cholesteryl-linoleate, but not plant sterols when included in model bile micelles. The findings obtained in this study are relevant to our understanding of gut microbiota-host lipid metabolism interactions, as they provide the first evidence for a role of cholesterol excreted with the bile as a relevant host factor that modulates the gut microbiota. The findings further suggest that the connections between Coriobacteriaceae and Erysipelotrichaceae and host lipid metabolism, which have been observed in several studies, could be caused by a metabolic phenotype of the host (cholesterol excretion) affecting the gut microbiota.
Collapse
|
20
|
Janakiram NB, Rao CV. iNOS-selective inhibitors for cancer prevention: promise and progress. Future Med Chem 2012; 4:2193-204. [PMID: 23190107 PMCID: PMC3588580 DOI: 10.4155/fmc.12.168] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is involved in various physiological functions and its role in tumorigenesis has been well studied. A large majority of human and experimental tumors appear to progress owing to NO resulting from iNOS, further stimulated by proinflammatory cytokines. Conversely, in some cases, NO is associated with induction of apoptosis and tumor regression. This dichotomy of NO is largely explained by the complexity of signaling pathways in tumor cells, which respond to NO very differently depending on its concentration. In addition, NO alters many signaling pathways through chemical modifications, such as the addition of S-nitrosothiols and nitrosotyrosine to target proteins altering various biological pathways. Hence, iNOS inhibitors are designed and developed to inhibit various organ site cancers including the colon. Here, we review iNOS expression, generation of NO, involvement of NO in altering signaling pathways, and iNOS select inhibitors and their possible use for the prevention and treatment of various cancers.
Collapse
Affiliation(s)
- Naveena B Janakiram
- Center for Cancer Prevention & Drug Development, Medical Oncology, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention & Drug Development, Medical Oncology, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| |
Collapse
|
21
|
Alkim C, Sakiz D, Alkim H, Livaoglu A, Kendir T, Demirsoy H, Erdem L, Akbayir N, Sokmen M. Thrombospondin-1 and VEGF in inflammatory bowel disease. Libyan J Med 2012; 7:LJM-7-8942. [PMID: 22299021 PMCID: PMC3269884 DOI: 10.3402/ljm.v7i0.8942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 12/17/2022] Open
Abstract
Background and aim Angiogenesis is an important process in the pathogenesis of chronic inflammation. We aimed to study the angiogeneic balance in inflammatory bowel disease (IBD) by evaluating the expression of vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) on colonic epithelial cells, together with the expression of inducible nitric oxide synthase (iNOS). Methods Twenty-one ulcerative colitis (UC), 14 Crohn's disease (CD), 11 colorectal cancer patients, and 11 healthy controls colonic biopsy samples were evaluated immunohistochemically. Results The expressions of TSP-1, VEGF, and iNOS in UC and CD groups were higher than expression in healthy control group, all with statistical significance. However, in colorectal cancer group, VEGF and iNOS expressions were increased importantly, but TSP-1 expression was not statistically different from healthy control group's expression. Both TSP-1 and VEGF expressions were correlated with iNOS expression distinctly but did not correlate with each other. Conclusions Both pro-angiogeneic VEGF and antiangiogeneic TSP-1 expressions were found increased in our IBD groups, but in colorectal cancer group, only VEGF expression was increased. TSP-1 increases in IBD patients as a response to inflammatory condition, but this increase was not enough to suppress pathologic angiogenesis and inflammation in IBD.
Collapse
Affiliation(s)
- Canan Alkim
- Department of Gastroenterology, Sisli Etfal Training and Research Hospital, Istanbul, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Nitric oxide (NO) is a short-lived pleiotropic regulator and is required for numerous pathophysiological functions, including macrophage-mediated immunity and cancer. It is a highly reactive free radical produced from l-arginine by different isoforms of NO synthases (NOSs). Sustained induction of inducible NOS (iNOS) during chronic inflammatory conditions leads to the formation of reactive intermediates of NO, which are mutagenic and cause DNA damage or impairment of DNA repair, alter cell signaling, and promote proinflammatory and angiogenic properties of the cell, thus contributing to carcinogenesis. Besides its well-established role in inflammation, increased expression of iNOS has been observed in colorectal tumors and other cancers. NO-related signaling pathways involved in colon tumorigenesis seem to progress through stimulation of proinflammatory cytokines and via posttranslational protein modifications of important antiapoptotic molecules in the tumors. NO can stimulate and enhance tumor cell proliferation by promoting invasive, angiogenic, and migratory activities. In contrast, studies also suggest that high levels of NO may be protective against tumor growth by inducing tumor cell death. However, a number of in vitro studies and particularly experimental animal data support the notion that NO and its reactive metabolite peroxynitrite stimulate cyclooxygenase-2 activity, leading to generation of prostaglandins that enhance tumor growth. These prostaglandins further augment tumor promotion and invasive properties of tumor cells. Hence, selective inhibitors of iNOS and combination strategies to inhibit both iNOS and cyclooxygenase-2 may have a preventive role in colon cancer.
Collapse
Affiliation(s)
- Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, Oklahoma
| | | |
Collapse
|
23
|
Hamada Y, Kato E, Nakamura H, Fujino H, Matsumoto K, Tashima K, Horie S, Murayama T. Decrease of guanylyl cyclase β1 subunit and nitric oxide (NO)-induced relaxation in mouse rectum with colitis and its reproduction on long-term NO treatment. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:81-94. [PMID: 21947227 DOI: 10.1007/s00210-011-0681-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/11/2011] [Indexed: 02/08/2023]
Abstract
Nitric oxide (NO) influences motility in the colon in patients with ulcerative colitis, but the exact mechanism involved remains unknown. Colitis was induced in mice by the oral administration of 2.5% dextran sodium sulfate (DSS), and the motility in longitudinal preparations from rectum and distal colon and expression of β1 subunit of soluble guanylyl cyclase (sGCβ1) were analyzed. Electrical stimulation (ES) caused a transient relaxation via the NO pathway in both rectum and colon from control mice. Stimulation with sodium nitroprusside (SNP) caused relaxation in the two regions, and the half-time (T (1/2)) of the maximal relaxation induced by 100 μM SNP was 8.1 ± 1.0 s in rectum. DSS treatment (1) abolished the ES-induced relaxation, but not dibutyryl cyclic GMP-induced response, in both regions, (2) decreased the maximal response to SNP accompanied by a loss of immunoreactive sGCβ1 protein in rectum, but did not affect the amplitude of the relaxant response or the protein in distal colon, and (3) caused an increase in the T (1/2) value in response to SNP in both regions. Pretreatment of both preparations from control mice with 600 μM SNP for 30 min decreased both ES- and SNP-induced relaxation, SNP-induced cyclic GMP formation, and immunoreactive sGCβ1 levels. NO-mediated relaxation was impaired by a dysfunctional sGC with and without a loss of immunoreactivity to sGCβ1 in rectum and colon from DSS-treated mice, respectively. Long-term exposure of the tissues with an excess amount of NO changes the sGC-mediated relaxation.
Collapse
Affiliation(s)
- Yuri Hamada
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mowat AM, Bain CC. Mucosal macrophages in intestinal homeostasis and inflammation. J Innate Immun 2011; 3:550-64. [PMID: 22025201 PMCID: PMC3224516 DOI: 10.1159/000329099] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/04/2011] [Indexed: 12/17/2022] Open
Abstract
Intestinal macrophages are essential for local homeostasis and in keeping a balance between commensal microbiota and the host. However, they also play essential roles in inflammation and protective immunity, when they change from peaceful regulators to powerful aggressors. As a result, activated macrophages are important targets for treatment of inflammatory bowel diseases such as Crohn's disease. Until recently, the complexity and heterogeneity of intestinal macrophages have been underestimated and here we review current evidence that there are distinct populations of resident and inflammatory macrophages in the intestine. We describe the mechanisms that ensure macrophages remain partially inert in the healthy gut and cannot promote inflammation despite constant exposure to bacteria and other stimuli. This may be because the local environment 'conditions' macrophage precursors to become unresponsive after they arrive in the gut. Nevertheless, this permits some active, physiological functions to persist. A new population of pro-inflammatory macrophages appears in inflammation and we review the evidence that this involves recruitment of a distinct population of fully responsive monocytes, rather than alterations in the existing cells. A constant balance between these resident and inflammatory macrophages is critical for maintaining the status quo in healthy gut and ensuring protective immunity when required.
Collapse
Affiliation(s)
- Allan McI Mowat
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
25
|
Villanueva C, Giulivi C. Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic Biol Med 2010; 49:307-16. [PMID: 20388537 PMCID: PMC2900489 DOI: 10.1016/j.freeradbiomed.2010.04.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 02/06/2023]
Abstract
The effects of nitric oxide in biological systems depend on its steady-state concentration and where it is being produced. The organ where nitric oxide is produced is relevant, and within the organ, which types of cells are actually contributing to this production seem to play a major determinant of its effect. Subcellular compartmentalization of specific nitric oxide synthase enzymes has been shown to play a major role in health and disease. Pathophysiological conditions affect the cellular expression and localization of nitric oxide synthases, which in turn alter organ cross talk. In this study, we describe the compartmentalization of nitric oxide in organs, cells, and subcellular organelles and how its localization relates to several relevant clinical conditions. Understanding the complexity of the compartmentalization of nitric oxide production and the implications of this compartmentalization in terms of cellular targets and downstream effects will eventually contribute toward the development of better strategies for treating or preventing pathological events associated with the increase, inhibition, or mislocalization of nitric oxide production.
Collapse
Affiliation(s)
- Cleva Villanueva
- Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F. 11320
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
- Corresponding author: Dr. Cecilia Giulivi, Department of Molecular Biosciences, 1120 Haring Hall, University of California, Davis, CA. 95616, Tel. 530 754 8603, Fax. 530 754 9342,
| |
Collapse
|
26
|
Imai T, Hasumura M, Cho YM, Ota Y, Takami S, Hirose M, Nishikawa A. Inhibitory effects of aminoguanidine on thyroid follicular carcinoma development in inflamed capsular regions of rats treated with sulfadimethoxine after N-bis(2-hydroxypropyl)nitrosamine-initiation. Cancer Sci 2009; 100:1794-800. [PMID: 19572977 PMCID: PMC11159397 DOI: 10.1111/j.1349-7006.2009.01250.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have reported that thyroid capsular thickening with inflammation induced by an antithyroidal agent, sulfadimethoxine (SDM), might play a role in the development of invasive follicular carcinomas in rats initiated with N-bis(2-hydroxypropyl)nitrosamine (DHPN). Inducible nitric oxide synthase (iNOS) expressed in the inflamed capsular regions further appeared to be implicated in the tumor progression. In the present study, the effects of an iNOS inhibitor, aminoguanidine (AG), on thyroid carcinogenesis were examined. F344 male rats were treated with SDM in drinking water (0.1%) with or without concomitant dietary administration of AG (0.2%) for 4 and 10 weeks after subcutaneous injection of DHPN at 2800 mg/kg bodyweight. At week 4, thyroid capsular thickening with inflammation was observed and iNOS-positive foci were found in the inflamed regions. In addition, single-strand DNA-positive inflammatory cells were scattered among neighboring follicular cells, indicating some cellular damage, at least partly in association with iNOS induction. Concurrent dietary administration of AG with SDM treatment slightly decreased the number of single-strand DNA-positive cells but did not alter the incidence and multiplicity of iNOS-positive foci in the inflamed capsular regions at week 4. At week 10, however, invasive follicular carcinomas predominantly arose in the thickened capsule in the DHPN-SDM-treated rats, and AG administration decreased (P < 0.05) their multiplicity. The carcinoma cells were partly positive for iNOS. These results thus suggested that iNOS induction in both inflammatory and tumor cells might play pivotal roles in tumor progression in this DHPN-SDM rat model.
Collapse
Affiliation(s)
- Toshio Imai
- Division of Pathology, National Institute of Health Sciences, Cabinet Office, Government of Japan, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Bhattacharyya S, Dudeja PK, Tobacman JK. ROS, Hsp27, and IKKbeta mediate dextran sodium sulfate (DSS) activation of IkappaBa, NFkappaB, and IL-8. Inflamm Bowel Dis 2009; 15:673-83. [PMID: 19085995 PMCID: PMC2688460 DOI: 10.1002/ibd.20821] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dextran sodium sulfate (DSS) is a sulfated polysaccharide that has been very widely used to induce inflammation in experimental models of inflammatory bowel disease in which the effects of pharmacologic and biologic therapies are tested. However, the precise mechanisms by which DSS induces inflammation have not been elucidated. METHODS DSS-induced increases in phospho-IkappaBalpha, nuclear NFkappaB (p65), and IL-8 secretion in human colonic epithelial cells in tissue culture are attributable to a reactive oxygen species (ROS)-induced pathway of inflammation, and do not require TLR4, MyD88, or Bcl10, which are associated with the innate immune pathway of NFkappaB-IL-8 activation. RESULTS DSS-induced increases were inhibited by the ROS scavengers Tempol and Tiron, were associated with decreased phosphorylation of MAPK12 (p38gamma), MAPK 13 (p38delta), and Hsp27, and required the IkappaB kinase (IKK) signalosome component IKKbeta. In ex vivo colonic tissue from TLR4-deficient mice, or following knockdown of MyD88 or Bcl10 or exposure to an IRAK 1/4 inhibitor, DSS effects were not suppressed. Data demonstrated that DSS activates IkappaBalpha, NFkappaB, and IL-8 through an ROS-Hsp27-IKKbeta-mediated pathway, and not through an innate immune cascade. CONCLUSIONS These results suggest that DSS models of inflammation may not be optimal for evaluation of interventions that involve mechanisms of innate immunity.
Collapse
Affiliation(s)
| | - Pradeep K. Dudeja
- Department of Medicine, University of Illinois at Chicago, Jesse Brown VAMC, Chicago, Illinois
| | - Joanne K. Tobacman
- Department of Medicine, University of Illinois at Chicago, Jesse Brown VAMC, Chicago, Illinois
| |
Collapse
|
28
|
Figueroa-Vega N, Majano P, Larrañaga E, Miguel Bravo J, Rodríguez-Ramos R, González-Amaro R, Marazuela M. Expresión de la enzima óxido nítrico sintetasa inducible en las enfermedades tiroideas autoinmunitarias. ACTA ACUST UNITED AC 2008; 55:340-5. [DOI: 10.1016/s1575-0922(08)72794-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/20/2008] [Indexed: 11/17/2022]
|
29
|
Platt AM, Mowat AM. Mucosal macrophages and the regulation of immune responses in the intestine. Immunol Lett 2008; 119:22-31. [PMID: 18601952 DOI: 10.1016/j.imlet.2008.05.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 01/21/2023]
Abstract
The healthy intestinal mucosa is home to one of the largest populations of macrophages (mvarphi) in the body [Lee SH, Starkey PM, Gordon S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J Exp Med 1985;161:475-89], yet little is known about their function. Resident mvarphi in the large and small intestine are distinct from other mvarphi populations in the body, with regards to both their functional properties and surface phenotype. They respond in an unconventional manner to inflammatory stimuli, with little upregulation of proteins involved in antigen presentation and T cell co-stimulation, and no production of pro-inflammatory cytokines. This suggests that under resting conditions, intestinal mvarphi may be conditioned to be anti-inflammatory in response to local stimuli such as commensal bacteria. In contrast, during inflammation, intestinal mvarphi exhibit increased bactericidal and inflammatory abilities, promote protective immunity and/or mediate pathology. Thus the status of this cell may be the key to understanding how the intestine maintains a balance between being able to generate protective immunity against pathogens, but still prevent pathological inflammation under normal conditions. In this review, we discuss the current knowledge of intestinal mvarphi biology, and highlight the different levels of immunoregulation which influence these cells, with particular focus on innate pathogen recognition receptor (PRR) function and responsiveness to microbial stimuli.
Collapse
Affiliation(s)
- Andrew M Platt
- Division of Immunology, Infection & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, Scotland G12 8TA, UK
| | | |
Collapse
|
30
|
Carrageenan-induced NFkappaB activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10. Biochim Biophys Acta Gen Subj 2008; 1780:973-82. [PMID: 18452717 DOI: 10.1016/j.bbagen.2008.03.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/16/2008] [Accepted: 03/26/2008] [Indexed: 12/22/2022]
Abstract
Carrageenans are highly sulfated polysaccharides that are widely used as food additives due to their ability to improve food texture. They are also widely recognized for their ability to induce inflammation in animal models of colitis. Recently, we reported that carrageenan (CGN) activated a pathway of innate immunity in human colonic epithelial cells mediated by Bcl10 (B-cell CLL/lymphoma 10). However, increases in phospho-IkappaBalpha and Interleukin-8 (IL-8) were not completely inhibited by silencing Bcl10, suggesting that CGN also influenced another mechanism, or mechanisms, of inflammation. In this report, we demonstrate that CGN increases production of reactive oxygen species (ROS) in human colonic epithelial cells. The combination of ROS quenching by the free radical scavenger Tempol and of Bcl10 silencing by siRNA completely inhibited the CGN-induced increases in nuclear NFkappaB (p65), phospho-IkappaBalpha, and secretion of IL-8. The CGN-induced increase in ROS was associated with declines in phosphorylation of MAPK 12 (p38gamma), MAPK 13 (p38delta), and heat-shock protein (Hsp) 27. The CGN-induced decline in phospho-Hsp27 was reversed by co-administration of Tempol (100 nM), but unaffected by silencing Bcl10. Since Hsp27 phosphorylation is inversely associated with phosphorylation of the IkappaBalpha kinase (IKK) signalosome, CGN exposure appears to affect the IKK signalosome by both the catalytic component, mediated by ROS-phospho-Hsp27, and the regulatory component, mediated by Bcl10 interaction with IKKgamma (Nemo). Hence, the CGN-activated inflammatory cascades related to innate immunity and to generation of ROS may be integrated at the level of the IKK signalosome.
Collapse
|
31
|
Hennig B, Schultheiss G, Kunzelmann K, Diener M. Ca2+-induced Cl- efflux at rat distal colonic epithelium. J Membr Biol 2008; 221:61-72. [PMID: 18217180 DOI: 10.1007/s00232-007-9078-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 10/08/2007] [Indexed: 01/19/2023]
Abstract
With the aid of the halide-sensitive dye 6-methoxy-N-ethylquinolinium iodide (MEQ), changes in intracellular Cl(-) concentration were measured to characterize the role of Ca(2+)-dependent Cl(-) channels at the rat distal colon. In order to avoid indirect effects of secretagogues mediated by changes in the driving force for Cl(-) exit (i.e., mediated by opening of Ca(2+)-dependent K(+) channels), all experiments were performed under depolarized conditions, i.e., in the presence of high extracellular K(+) concentrations. The Ca(2+)-dependent secretagogue carbachol induced a stilbene-sensitive Cl(-) efflux, which was mimicked by the Ca(2+) ionophore ionomycin. Surprisingly, the activation of Ca(2+)-dependent Cl(-) efflux was resistant against blockers of classical Ca(2+) signaling pathways such as phospholipase C, protein kinase C and calmodulin. Hence, alternative pathways must be involved in the signaling cascade. One possible signaling molecule seems to be nitric oxide (NO) as the NO donor sodium nitroprusside could induce Cl(- )efflux. Vice versa, the NO synthase inhibitor N-omega-monomethyl-arginine (L: -NMMA) reduced the carbachol-induced Cl(- )efflux. This indicates that NO may be involved in part of the signaling cascade. In order to test the ability of the epithelium to produce NO, the expression of different isoforms of NO synthase was verified by immunohistochemistry. In addition, the cytoskeleton seems to play a role in the activation of Ca(2+)-dependent Cl(-) channels. Inhibitors of microtubule association such as nocodazole and colchicine as well as jasplakinolide, a drug that enhances actin polymerization, inhibited the carbachol-induced Cl(-) efflux. Consequently, the activation of apical Cl(-) channels by muscarinic receptor stimulation differs in signal transduction from the classical phospholipase C/protein kinase C way.
Collapse
Affiliation(s)
- B Hennig
- Institut für Veterinär-Physiologie, Frankfurter Str. 100, D-35392, Giessen, Germany
| | | | | | | |
Collapse
|
32
|
Woods CM, Sandstrom P, Bond M, Michael M, Svanvik J, Toouli J, Saccone GTP. Selective iNOS inhibition enhances spontaneous gallbladder motility in the Australian possum. Neurogastroenterol Motil 2007; 19:497-503. [PMID: 17564631 DOI: 10.1111/j.1365-2982.2007.00940.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gallbladder inflammation is a common and painful disease. Inducible nitric oxide synthase (iNOS) plays a major role in inflammatory diseases, and iNOS inhibitors are being developed as therapeutic agents. Reports are inconsistent regarding iNOS expression in normal gallbladder. The aim of this study was to determine the effect of iNOS inhibition on spontaneous gallbladder motility. mRNA extracted from normal possum gallbladders was analysed by PCR. Gallbladder contractility was evaluated using a highly selective iNOS inhibitor AR-C102222AA (AR-C) in in vitro muscle strips (0.1-10 000 microm) and in vivo (0.1-30 micromol kg(-1)) experiments. Gene expression analysis revealed the presence of iNOS mRNA in normal gallbladder (n = 3). In vitro, AR-C (0.1-1000 micromol L(-1)) produced a concentration-dependent increase in spontaneous gallbladder contractile activity and basal tension (P < 0.05; n = 6). The maximum effect was a 1.8-fold increase in activity and 2.1-fold increase in basal tension. Pretreatment of muscle strips with tetrodotoxin (1 micromol L(-1)) did not block the AR-C-induced response (n = 5). In vivo, AR-C (30 micromol kg(-1), i.v.) increased gallbladder contraction frequency (P < 0.05; n = 8). These data suggest that iNOS is continually expressed in the normal gallbladder, which presumably releases low levels of nitric oxide and in turn may modulate spontaneous gallbladder motility. AR-C may be a beneficial treatment for patients suffering from acute cholecystitis.
Collapse
Affiliation(s)
- C M Woods
- Department of General and Digestive Surgery, Flinders Medical Centre, Flinders University, Adelaide, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Cao W, Fiocchi C, Pricolo VE. Production of IL-1β, hydrogen peroxide, and nitric oxide by colonic mucosa decreases sigmoid smooth muscle contractility in ulcerative colitis. Am J Physiol Cell Physiol 2005; 289:C1408-16. [PMID: 16033908 DOI: 10.1152/ajpcell.00073.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously shown that sigmoid circular muscle cells from patients with ulcerative colitis (UC) exhibit reduced contraction and Ca2+signaling in response to the neurotransmitter neurokinin A (NKA) and that IL-1β and H2O2may contribute to these reduced responses in UC. In addition, we have found that nitric oxide (NO) levels were significantly increased in UC circular muscle. To establish the site of origin for IL-1β, H2O2, and NO, we assembled an in vitro system in which normal or UC mucosa were sealed between two chambers filled with oxygenated Krebs solution. Because the mucosa consists of full-thickness mucosa and submucosa, it is expected that whatever is released into the undernatant from the submucosal side may diffuse to the circular muscle layer in the intact colon. Treatment of normal sigmoid circular muscle cells for 2 h with undernatants collected from the UC submucosal side (UCS) significantly decreased contraction induced by NKA and thapsigargin and the NKA- and caffeine-induced Ca2+signal in Ca2+-free medium. In addition, UC mucosa released into the undernatant on its submucosal side significantly more H2O2, IL-1β, and NO than normal mucosa. The reduction in contraction and Ca2+signal induced by UCS was partially reversed by pretreatment with an IL-1β antibody or with catalase. The NO scavenger hemoglobin partially prevented UCS-induced reduction in contraction and Ca2+signaling in response to NKA but not the reduced response to thapsigargin or caffeine. Sodium nitroprusside inhibited NKA but not the caffeine-induced Ca2+signal. We conclude that in UC the mucosa releases IL-1β, H2O2, and NO, which may contribute to the impaired Ca2+release and altered sigmoid muscle contractility.
Collapse
Affiliation(s)
- Weibiao Cao
- Dept. of Medicine, Brown Medical School and Rhode Island Hospital, 55 Claverick St., Rm. 337, Providence, RI 02903, USA.
| | | | | |
Collapse
|
34
|
Aulí M, Fernández E. Characterization of functional and morphological changes in a rat model of colitis induced by Trichinella spiralis. Dig Dis Sci 2005; 50:1432-43. [PMID: 16110832 DOI: 10.1007/s10620-005-2858-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We intended to characterize the effect of inflammation on the spontaneous colonic motility pattern and the role of iNOS in its disruption in colitis. Colitis was induced by an intracolonic enema of T. spiralis larvae. Animals were studied 2-30 days postinfection (PI). Standard H&E and iNOS staining was performed on colonic sections. Altered stool consistency was found from day 1 to day 21 PI; leukocytosis peaked on days 6-21 PI. Edema and cell infiltration were found in mucosa and submucosa (days 2-14 PI). Contractility displayed a disorganized pattern with decreased high-amplitude, low-frequency (HALF) contractions. A progressive fading of spontaneous activity was observed and was partly restored in strips devoid of submucosa. iNOS immunoreactivity increased in epithelial and infiltrating cells (days 2-14 PI). In this model of colonic inflammation, the decrease in spontaneous contractility, which might be caused by NO generated from mucosal and submucosal iNOS, bears some traits with changes observed in ulcerative colitis and might thus be useful to study the dismotility observed in this human disease.
Collapse
Affiliation(s)
- Mariona Aulí
- Group for the Study of Gastrointestinal Motility, Department of Cell Biology, Physiology and Immunology, Veterinary Faculty, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain.
| | | |
Collapse
|
35
|
Walter J, Chagnaud P, Tannock GW, Loach DM, Dal Bello F, Jenkinson HF, Hammes WP, Hertel C. A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut. Appl Environ Microbiol 2005; 71:979-86. [PMID: 15691956 PMCID: PMC546760 DOI: 10.1128/aem.71.2.979-986.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Lactobacillus are common inhabitants of the gut, yet little is known about the traits that contribute to their ecological performance in gastrointestinal ecosystems. Lactobacillus reuteri 100-23 persists in the gut of the reconstituted Lactobacillus-free mouse after a single oral inoculation. Recently, three genes of this strain that were specifically induced (in vivo induced) in the murine gut were identified (38). We report here the detection of a gene of L. reuteri 100-23 that encodes a high-molecular-mass surface protein (Lsp) that shows homology to proteins involved in the adherence of other bacteria to epithelial cells and in biofilm formation. The three in vivo-induced genes and lsp of L. reuteri 100-23 were inactivated by insertional mutagenesis in order to study their biological importance in the murine gastrointestinal tract. Competition experiments showed that mutation of lsp and a gene encoding methionine sulfoxide reductase (MsrB) reduced ecological performance. Mutation of lsp impaired the adherence of the bacteria to the epithelium of the mouse forestomach and altered colonization dynamics. Homologues of lsp and msrB are present in the genomes of several strains of Lactobacillus and may play an important role in the maintenance of these bacteria in gut ecosystems.
Collapse
Affiliation(s)
- Jens Walter
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Daniels I, Cavill D, Murray IA, Long RG. Elevated expression of iNOS mRNA and protein in coeliac disease. Clin Chim Acta 2005; 356:134-42. [PMID: 15936309 DOI: 10.1016/j.cccn.2005.01.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/11/2005] [Accepted: 01/11/2005] [Indexed: 11/21/2022]
Abstract
BACKGROUND The role of nitric oxide synthase (NOS) in the pathophysiology of coeliac disease (CD) was investigated. METHODS We examined mRNA (reverse transcription multiplex polymerase chain reaction) and protein expression (Western blotting) of i,e and nNOS in enterocytes isolated from the duodenum of patients with untreated CD (n=22) and iron deficiency anaemia (IDA, n=22). Expression of IL1beta and TNFalpha, two pivotal "NOS-controlling" cytokines, was also studied. RESULTS Enterocytes from both patient groups were negative for eNOS and TNF(alpha) message but positive for n and iNOS. nNOS gene expression was not statistically different between groups (158.38+/-29.11% vs. 114.95+/-24.17%, IDA vs. CD, p=0.07, Mann-Whitney U). iNOS expression was higher in patients with CD when compared to patients with IDA (96.95+/-17.82% vs. 48.76+/-8.07%, p<0.006). Low levels of IL1beta mRNA (15.66+/-3.70%) were detected in nine samples-all of these samples were isolated from patients with CD representing a positive result in 40% of coeliac patients. In support of these observations, patients with CD expressed more iNOS protein than those with IDA (159.7+/-14.9% vs. 69.8+/-20%, p<0.05). CONCLUSION These results suggest that iNOS could be an important mediator in coeliac disease. Expression of this regulatory protein may be under the control of IL1beta.
Collapse
Affiliation(s)
- Ian Daniels
- David Evans Medical Research Centre, City Hospital, Nottingham, NG5 1PB, UK.
| | | | | | | |
Collapse
|
37
|
Birder LA, Wolf-Johnston A, Buffington CA, Roppolo JR, de Groat WC, Kanai AJ. Altered inducible nitric oxide synthase expression and nitric oxide production in the bladder of cats with feline interstitial cystitis. J Urol 2005; 173:625-9. [PMID: 15643277 DOI: 10.1097/01.ju.0000145900.22849.1d] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Alterations in nitric oxide (NO) levels have been demonstrated in some humans with interstitial cystitis (IC) as well as in chemically induced animal models of cystitis. Thus, in the current study we investigated whether inducible NO synthase (iNOS) mediated NO production is altered in the bladder of cats with a naturally occurring model of IC termed feline IC (FIC). MATERIALS AND METHODS We examined iNOS expression using Western immunoblotting and baseline NO production using an NO microsensor from smooth muscle and mucosal bladder strips in 9 healthy cats and 6 diagnosed with FIC. RESULTS There was a significant increase in baseline NO production in cats with FIC compared with that in healthy cats in smooth muscle and mucosal strips. This production was not ablated in the absence of extracellular Ca (100 microM egtazic acid) or following incubation with the calmodulin antagonist trifluoroperazine (20 microM), indicating iNOS mediated Ca independent NO production. Release was significantly decreased following incubation with the NOS antagonist L-NAME (N-nitro-L-arginine methyl ester) (100 microM). Furthermore, immunoblotting revealed a trend toward increased iNOS expression in smooth muscle and mucosal strips from FIC cats but not from healthy cats. CONCLUSIONS In light of previous findings that the barrier property of the urothelial surface is disrupted in FIC and iNOS mediated increase in NO alters barrier function in other types of epithelium our findings suggest that iNOS dependent NO production may have a role in epithelial barrier dysfunction in FIC.
Collapse
Affiliation(s)
- L A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Chang FY, Chen CY, Lu CL, Luo JC, Lu RH, Lee SD. Response of blood endothelin-1 and nitric oxide activity in duodenal ulcer patients undergoing Helicobacter pylori eradication. World J Gastroenterol 2005; 11:1048-51. [PMID: 15742413 PMCID: PMC4250770 DOI: 10.3748/wjg.v11.i7.1048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of Helicobacter pylori eradication on endothelin-1 (ET-1) and nitric oxide (NO) in duodenal ulcer (DU) patients.
METHODS: Sixty-six H pylori-infected active DU patients were consecutively enrolled to receive one-week triple therapy (rabeprazole, amoxicillin and metronidazole) and then one-month rabeprazole therapy. They were asked back to determine ulcer and H pylori status using endoscopy one month later. Thirty-seven healthy controls (H pylori +/-: 17/20) were enrolled for comparison. Blood samples were collected in each visit to measure plasma ET-1 and nitrate/nitrite levels using an enzyme immunoassay kit.
RESULTS: Sixty DU patients finished trial per protocol. The ulcer healing and H pylori-eradication rates were 86.7% and 83.3%, respectively. Plasma ET-1 level in DU patients was higher than that of H pylori-negative and positive controls (3.59±0.96 vs 0.89±0.54 vs 0.3±0.2 pg/mL, P<0.01), while nitrate/nitrite levels among them were also significantly different (8.55±0.71 vs 5.27±0.68 vs 6.39±0.92 µmol/L, P<0.05). H pylori eradication diminished ET-1 levels (3.64±0.55 vs 2.64±0.55 pg/mL, P<0.01) but elevated nitrate/nitrite level (8.16±0.84 vs 11.41±1.42 µmol/L, P<0.05).
CONCLUSION: Both plasma ET-1 and nitrate/nitrite levels increase in active DU patients. After an effective H pylori eradication, DU healing is associated with diminished blood ET-1 level and elevated nitrate/nitrite level.
Collapse
Affiliation(s)
- Full-Young Chang
- Chief, Division of Gastroenterology, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 112, Taiwan, China.
| | | | | | | | | | | |
Collapse
|
39
|
Yu Z, Xia X, Kone BC. Expression profile of a human inducible nitric oxide synthase promoter reporter in transgenic mice during endotoxemia. Am J Physiol Renal Physiol 2005; 288:F214-20. [PMID: 15507544 DOI: 10.1152/ajprenal.00258.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is involved in many physiological and pathophysiological processes, including septic shock and acute kidney failure. Little is known about transcriptional regulation of the human iNOS gene in vivo under basal conditions or in sepsis. Accordingly, we developed transgenic mice carrying an insertional human iNOS promoter-reporter gene construct. In these mice, the proximal 8.3 kb of the human iNOS 5′-flanking region controls expression of the reporter gene of enhanced green fluorescent protein (EGFP). Patterns of human iNOS promoter/EGFP transgene expression in tissues were examined by fluorescence microscopy and immunoblotting. Endogenous murine iNOS was basally undetectable in kidney, intestine, spleen, heart, lung, liver, stomach, or brain. In contrast, EGFP from the transgene was basally expressed in kidney, brain, and spleen, but not the other tissues of the transgenic mice. Bacterial lipopolysaccharide induced endogenous iNOS expression in kidney, intestine, spleen, lung, liver, stomach, and heart, but not brain. In contrast, human iNOS promoter/EGFP transgene expression was induced above basal levels only in intestine, spleen, brain, stomach, and lung. Within kidney, human iNOS promoter/EGFP fluorescence was detected most prominently in proximal tubules of the outer cortex and collecting ducts and colocalized with endogenous mouse iNOS. Within the collecting duct, both endogenous iNOS and the human iNOS promoter/EGFP transgene were expressed in cells lacking aquaporin-2 immunoreactivity, consistent with expression in intercalated cells. Although it remains possible that essential regulatory elements reside in remote locations of the gene, our data concerning this 8.3-kb region provide the first in vivo evidence suggesting differential transcriptional control of the human iNOS gene in these organs and marked differences in transcriptional regulatory regions between the murine and human genes.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Internal Medicine, The University of Texas Medical School at Houston, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | | | | |
Collapse
|
40
|
Affiliation(s)
- Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
41
|
Abstract
Nitric oxide is an intracellular and intercellular messenger with important functions in a number of physiologic and pathobiologic processes within gastroenterology and hepatology, including gastrointestinal tract motility, mucosal function, inflammatory responses, gastrointestinal malignancy, and blood flow regulation. Since the broad review of this topic in Gastroenterology more than 10 years ago, a number of advances have been made in the area of NO biology and its relevance to the gastrointestinal system. The aim of this review is to focus on our expanded understanding of the role NO plays in human gastrointestinal and hepatic physiology and disease processes by drawing on data from relevant in vitro and animal models as well as observational human studies.
Collapse
Affiliation(s)
- Vijay Shah
- GI Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
42
|
Torrents D, Prats N, Vergara P. Inducible nitric oxide synthase inhibitors ameliorate hypermotility observed after T. spiralis infection in the rat. Dig Dis Sci 2003; 48:1035-49. [PMID: 12822860 DOI: 10.1023/a:1023796108391] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Trichinella spiralis infection in rodents is a well-known model of intestinal inflammation associated with hypermotility and hypersecretion. Our aim was to use this experimental model to elucidate if iNOS was involved in the development of gastrointestinal hypermotility. Rats infected with Trichinella spiralis were treated for 4 days with the nitric oxide synthase inhibitors L-NAME or L-NIL. Treatment began either simultaneously with the infection or 3 days after infection when inflammation was already fully developed. In all cases, at day 10-12 after infection, anesthetized rats were prepared with strain gauges and electrodes in the small intestine to evaluate motor activity of the small intestine. In addition, histology and iNOS immunohistochemistry studies were performed. The results showed that both NOS inhibitors blocked iNOS expression in the intestine. None of the NOS inhibitors attenuated the inflammatory process. However, the preventive treatment with L-NIL reversed hypermotility. In contrast, the treatment with NOS inhibitors 3 days after infection was not so effective in reversing motor alterations. L-NAME, but not L-NIL, caused alterations on spontaneous motility. In conclusion, these results indicate that iNOS participates in the development of motor hypermotility in the gut.
Collapse
Affiliation(s)
- D Torrents
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | | | | |
Collapse
|
43
|
Abstract
Nitric oxide (NO) is a pleiotropic free radical messenger molecule. There is a large body of evidence that the inducible form of the NO synthase enzyme (iNOS) that is responsible for high-output production of NO from l-arginine is up-regulated in various forms of mucosal inflammation. Consistent with this, multiple detection strategies have demonstrated that iNOS expression, enzymatic activity, and NO production are increased in human inflammatory bowel disease tissues. There is also evidence that the level of iNOS-derived NO correlates well with disease activity in ulcerative colitis, while for Crohn's disease, the results are more variable. A substantial number of animal studies have assessed the role of inducible NO production. While the majority of studies have shown improvement in experimental inflammatory bowel disease with iNOS inhibition, there are also a significant number of reports of exacerbation of disease with inhibitors. Similarly, studies using iNOS-deficient mice in colitis models have shown improvement, worsening, or no effect on disease. The authors suggest that additional studies to assess the role of the competing biochemical pathway, namely the conversion of l-arginine to polyamines via the actions of arginase and ornithine decarboxylase, may provide important new insights into understanding the regulation of mucosal inflammation and inflammatory bowel disease.
Collapse
Affiliation(s)
- Raymond K Cross
- Department of Medicine, Division of Gastroenterology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
44
|
Tubaro E, Belogi L, Mezzadri CM, Bettelli E. Impact on the bowel of amtolmetin guacyl, a new gastroprotective non-steroidal anti-inflammatory drug. Eur J Pharmacol 2003; 467:173-83. [PMID: 12706472 DOI: 10.1016/s0014-2999(03)01598-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Amtolmetin guacyl (MED15) is a new non-steroidal anti-inflammatory drug (NSAID) which shares anti-inflammatory, analgesic and antipyretic activity with the other drugs of the NSAID family but which shows, unexpectedly, strong gastroprotective activity similar to misoprostol. This effect has been attributed to the presence in its molecule of a vanillic moiety responsible for stimulation of capsaicin receptors present throughout the length of the gastrointestinal tract. MED15 shows antispasmodic activity in the bowel against a number of agonists and compares favourably with reference compounds. In in vivo indomethacin-induced rat ileitis, MED15 heals better than 5-aminosalicylic acid and sulfasalazine, as well as down-regulating intestinal wall myeloperoxidase content. In acetic acid-induced colitis in the rat, levels of malondialdehyde were found to be more markedly reduced with MED15 than with 5-aminosalicylic acid. In contrast with the effect in the stomach, MED15 protective effect in the bowel appears to be unrelated to nitric oxide (NO) production. The MED15 enteroprotective effect is related to stimulation of intestinal capsaicin receptors as demonstrated by the loss of protective effect in the presence of capsazepine, a specific receptor antagonist of capsaicin. In conclusion, following the favourable results obtained in animal models and notwithstanding the pharmacological effects typical of an NSAID, MED15 may rationally be proposed for the treatment of various human colitis conditions and Crohn's disease.
Collapse
Affiliation(s)
- Ezio Tubaro
- Research Laboratories, Medosan Ricerca S.r.l., Via Cancelleria, 12, 00040 Albano Laziale, Rome, Italy.
| | | | | | | |
Collapse
|
45
|
Beta-adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J Neurosci 2002. [PMID: 12223560 DOI: 10.1523/jneurosci.22-18-08063.2002] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have investigated the intracellular signaling mechanisms underlying the release of nitric oxide (NO) evoked by beta-adrenoceptor (AR) agonists in urinary bladder strips and cultured bladder urothelial cells from adult rats. Reverse transcription-PCR revealed that inducible NO synthase and endothelial NOS but not neuronal NOS genes were expressed in urothelial cells. NO release from both urothelial cells and bladder strips was decreased (37-42%) in the absence of extracellular Ca2+ (100 microm EGTA) and was ablated after incubation with BAPTA-AM (5 microm) or caffeine (10 mm), indicating that the NO production is mediated in part by intracellular calcium stores. NO release was reduced (18-24%) by nifedipine (10 microm) and potentiated (29-32%) by incubation with the Ca2+ channel opener BAYK8644 (1-10 microm). In addition, beta-AR-evoked NO release (isoproterenol; dobutamine; terbutaline; 10(-9) to 10(-5) m) was blocked by the NOS inhibitors N(G)-nitro-L-arginine methyl ester (30 microm) or N(G)-monomethyl-L-arginine (50 microm), by beta-adrenoceptor antagonists (propranol, beta1/beta2; atenolol, beta1; ICI 118551; beta2; 100 microm), or by the calmodulin antagonist trifluoperazine (50 microm). Incubating cells with the nonhydrolyzable GTP analog GTPgammaS (1 microm) or the membrane-permeant cAMP analog dibutyryl-cAMP (10-100 microm) directly evoked NO release. Forskolin (10 microm) or the phosphodiesterase IBMX (50 microm) enhanced (39-42%) agonist-evoked NO release. These results indicate that beta-adrenoceptor stimulation activates the adenylate cyclase pathway in bladder epithelial cells and initiates an increase in intracellular Ca2+ that triggers NO production and release. These findings are considered in light of recent reports that urothelial cells may exhibit a number of "neuron-like" properties, including the expression of receptors/ion channels similar to those found in sensory neurons.
Collapse
|
46
|
Birder LA, Nealen ML, Kiss S, de Groat WC, Caterina MJ, Wang E, Apodaca G, Kanai AJ. Beta-adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J Neurosci 2002; 22:8063-70. [PMID: 12223560 PMCID: PMC6758083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2002] [Revised: 06/12/2002] [Accepted: 06/20/2002] [Indexed: 02/26/2023] Open
Abstract
We have investigated the intracellular signaling mechanisms underlying the release of nitric oxide (NO) evoked by beta-adrenoceptor (AR) agonists in urinary bladder strips and cultured bladder urothelial cells from adult rats. Reverse transcription-PCR revealed that inducible NO synthase and endothelial NOS but not neuronal NOS genes were expressed in urothelial cells. NO release from both urothelial cells and bladder strips was decreased (37-42%) in the absence of extracellular Ca2+ (100 microm EGTA) and was ablated after incubation with BAPTA-AM (5 microm) or caffeine (10 mm), indicating that the NO production is mediated in part by intracellular calcium stores. NO release was reduced (18-24%) by nifedipine (10 microm) and potentiated (29-32%) by incubation with the Ca2+ channel opener BAYK8644 (1-10 microm). In addition, beta-AR-evoked NO release (isoproterenol; dobutamine; terbutaline; 10(-9) to 10(-5) m) was blocked by the NOS inhibitors N(G)-nitro-L-arginine methyl ester (30 microm) or N(G)-monomethyl-L-arginine (50 microm), by beta-adrenoceptor antagonists (propranol, beta1/beta2; atenolol, beta1; ICI 118551; beta2; 100 microm), or by the calmodulin antagonist trifluoperazine (50 microm). Incubating cells with the nonhydrolyzable GTP analog GTPgammaS (1 microm) or the membrane-permeant cAMP analog dibutyryl-cAMP (10-100 microm) directly evoked NO release. Forskolin (10 microm) or the phosphodiesterase IBMX (50 microm) enhanced (39-42%) agonist-evoked NO release. These results indicate that beta-adrenoceptor stimulation activates the adenylate cyclase pathway in bladder epithelial cells and initiates an increase in intracellular Ca2+ that triggers NO production and release. These findings are considered in light of recent reports that urothelial cells may exhibit a number of "neuron-like" properties, including the expression of receptors/ion channels similar to those found in sensory neurons.
Collapse
Affiliation(s)
- Lori A Birder
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA. lbirder+@pitt.edu
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Murray IA, Daniels I, Coupland K, Smith JA, Long RG. Increased activity and expression of iNOS in human duodenal enterocytes from patients with celiac disease. Am J Physiol Gastrointest Liver Physiol 2002; 283:G319-26. [PMID: 12121878 DOI: 10.1152/ajpgi.00324.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The activity of nitric oxide synthase (NOS) was assayed in enterocytes isolated from human duodenal biopsies to determine its role in celiac disease. Patients were categorized into groups with irritable bowel syndrome, iron-deficiency anemia, B(12)/folate deficiency, and treated and untreated celiac disease. Enterocytes isolated from all groups showed 1400W-inhibitable Ca2+-independent NOS activity with a pH level and temperature optimum of 9.4 and 37 degrees C, respectively. Western blotting showed that enterocytes expressed the inducible NOS protein and proteins with nitrated tyrosine residues, the latter being indicative of nitric oxide-driven peroxynitrite and/or free-radical damage. Endothelial NOS was seen only in the lamina propria. Patients with celiac disease had higher NOS activity than other patient groups. Treatment of the condition led to a fall in activity. Enzyme-linked immunosorbent assay demonstrated cGMP production by the enterocyte fraction, but cGMP levels did not correlate with NOS activity. These results suggest that inducible NOS is constitutively expressed in human duodenal enterocytes, is increased in patients with untreated celiac disease, and is partially corrected when such patients are treated. We found no evidence to support a role for nitric oxide in the formation of cGMP within the small intestine. Furthermore, we were unable to demonstrate a role for peroxynitrite/free radical damage in the pathophysiology of celiac disease.
Collapse
Affiliation(s)
- Iain A Murray
- David Evans Medical Research Centre, City Hospital, NG5 1PB Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Cameron EAB, Middleton SJ, Roberts PJ. Expression of isoforms of nitric oxide synthase in collagenous colitis. Gut 2002; 50:899; author reply 899. [PMID: 12010901 PMCID: PMC1773257 DOI: 10.1136/gut.50.6.899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- E A B Cameron
- Department of Gastroenterology, Addenbrooke's NHS Trust, Cambridge CB2 2QQ, UK
| | - S J Middleton
- Department of Gastroenterology, Addenbrooke's NHS Trust, Cambridge CB2 2QQ, UK
| | - P J Roberts
- Department of Gastroenterology, Hinchingbrooke NHS Trust, Huntingdon, Cambridge PE18 8NT, UK
| |
Collapse
|
49
|
Abstract
New therapies for inflammatory bowel disease are needed, because standard therapies fail to induce remission in about 30% of patients, and because of the relative inefficacy of current maintenance therapies. This review summarises the current status of the development of small therapeutic molecules for inflammatory bowel disease.
Collapse
Affiliation(s)
- S J H van Deventer
- Department of Hepato-Gastroenterology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Masuda KF, Yamaza T, Tsukiyama Y, Murakami R, Nishijima K, Kido MA, Koyano K, Tanaka T. Distribution of Inducible Nitric Oxide Synthase, Interleukin-1.BETA., and Interleukin-1 Receptor in the Temporomandibular Joint of Normal Rats. Acta Histochem Cytochem 2002. [DOI: 10.1267/ahc.35.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Keitaro F. Masuda
- Department of Removable Prosthetic Dentistry, Graduate School of Dental Science, Kyushu University
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University
| | - Takayoshi Yamaza
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University
| | - Yoshihiro Tsukiyama
- Department of Removable Prosthetic Dentistry, Graduate School of Dental Science, Kyushu University
| | - Rie Murakami
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University
- Department of Orthodontics, Graduate School of Dental Science, Kyushu University
| | - Katsushi Nishijima
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University
| | - Mizuho A. Kido
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University
| | - Kiyoshi Koyano
- Department of Removable Prosthetic Dentistry, Graduate School of Dental Science, Kyushu University
| | - Teruo Tanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Dental Science, Kyushu University
| |
Collapse
|