1
|
Elhadi A, Zhao D, Ali N, Sun F, Zhong S. Multi-method computational evaluation of the inhibitors against leucine-rich repeat kinase 2 G2019S mutant for Parkinson's disease. Mol Divers 2024; 28:4181-4197. [PMID: 38396210 DOI: 10.1007/s11030-024-10808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/07/2024] [Indexed: 02/25/2024]
Abstract
Leucine-rich repeat kinase 2 G2019S mutant (LRRK2 G2019S) is a potential target for Parkinson's disease therapy. In this work, the computational evaluation of the LRRK2 G2019S inhibitors was conducted via a combined approach which contains a preliminary screening of a large database of compounds via similarity and pharmacophore, a secondary selection via structure-based affinity prediction and molecular docking, and a rescoring treatment for the final selection. MD simulations and MM/GBSA calculations were performed to check the agreement between different prediction methods for these inhibitors. 331 experimental ligands were collected, and 170 were used to build the structure-activity relationship. Eight representative ligand structural models were employed in similarity searching and pharmacophore screening over 14 million compounds. The process for selecting proper molecular descriptors provides a successful sample which can be used as a general strategy in QSAR modelling. The rescoring used in this work presents an alternative useful treatment for ranking and selection.
Collapse
Affiliation(s)
- Ahmed Elhadi
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Dan Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Noman Ali
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Fusheng Sun
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - Shijun Zhong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Holmes G, Ferguson SR, Lewis PA, Echeverri K. LRRK2 kinase activity is necessary for development and regeneration in Nematostella vectensis. Neural Dev 2024; 19:16. [PMID: 39118162 PMCID: PMC11308222 DOI: 10.1186/s13064-024-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The starlet sea anemone, Nematostella vectensis, is an emerging model organism with a high regenerative capacity, which was recently found to possess an orthologue to the human Leucine Rich Repeat Kinase 2 (LRRK2) gene. Mutations in this gene are the most common cause of inherited Parkinson's Disease (PD), highlighting the importance of understanding its function. Despite two decades of research, however, the function of LRRK2 is not well established. METHODS To investigate the function of LRRKs in Nematostella vectensis, we applied small molecule inhibitors targeting the kinase activity of LRRK2 to examine its function in development, homeostasis and regeneration in Nematostella vectensis. RESULTS In vivo analyses inhibiting the kinase function of this enzyme demonstrated a role of nvLRRK2 in development and regeneration of N. vectensis. These findings implicate a developmental role of LRRK2 in Nematostella, adding to the expanding knowledge of its physiological function. CONCLUSIONS Our work introduces a new model organism with which to study LRRK biology. We report that LRRK kinase activity is necessary for the development and regeneration of Nematostella. Given the short generation time, genetic trackability and in vivo imaging capabilities, this work introduces Nematostella vectensis as a new model in which to study genes linked to neurodegenerative diseases such as Parkinson's.
Collapse
Affiliation(s)
- Grace Holmes
- Royal Veterinary College, University of London, Camden, London, NW1 0TU, UK
| | - Sophie R Ferguson
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA
| | - Patrick Alfryn Lewis
- Royal Veterinary College, University of London, Camden, London, NW1 0TU, UK.
- UCL Queen Square Institute of Neurology, University of London, London, WC1N 3BG, UK.
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA.
| |
Collapse
|
3
|
Akyazı O, Korkmaz D, Cevher SC. Experimental Parkinson models and green chemistry approach. Behav Brain Res 2024; 471:115092. [PMID: 38844056 DOI: 10.1016/j.bbr.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Parkinson's is the most common neurodegenerative disease after Alzheimer's. Motor findings in Parkinson's occur as a result of the degeneration of dopaminergic neurons starting in the substantia nigra pars compacta and ending in the putamen and caudate nucleus. Loss of neurons and the formation of inclusions called Lewy bodies in existing neurons are characteristic histopathological findings of Parkinson's. The disease primarily impairs the functional capacity of the person with cardinal findings such as tremor, bradykinesia, etc., as a result of the loss of dopaminergic neurons in the substantia nigra. Experimental animal models of Parkinson's have been used extensively in recent years to investigate the pathology of this disease. These models are generally based on systemic or local(intracerebral) administration of neurotoxins, which can replicate many features of Parkinson's mammals. The development of transgenic models in recent years has allowed us to learn more about the modeling of Parkinson's. Applying animal modeling, which shows the most human-like effects in studies, is extremely important. It has been demonstrated that oxidative stress increases in many neurodegenerative diseases such as Parkinson's and various age-related degenerative diseases in humans and that neurons are sensitive to it. In cases where oxidative stress increases and antioxidant systems are inadequate, natural molecules such as flavonoids and polyphenols can be used as a new antioxidant treatment to reduce neuronal reactive oxygen species and improve the neurodegenerative process. Therefore, in this article, we examined experimental animal modeling in Parkinson's disease and the effect of green chemistry approaches on Parkinson's disease.
Collapse
Affiliation(s)
- Ozge Akyazı
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey.
| | - Dılara Korkmaz
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey
| | - Sule Coskun Cevher
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
4
|
Filippini A, Cannone E, Mazziotti V, Carini G, Mutti V, Ravelli C, Gennarelli M, Schiavone M, Russo I. Leucine-Rich Repeat Kinase-2 Controls the Differentiation and Maturation of Oligodendrocytes in Mice and Zebrafish. Biomolecules 2024; 14:870. [PMID: 39062584 PMCID: PMC11274935 DOI: 10.3390/biom14070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Leucine-rich repeat kinase-2 (LRRK2), a gene mutated in familial and sporadic Parkinson's disease (PD), controls multiple cellular processes important for GLIA physiology. Interestingly, emerging studies report that LRRK2 is highly expressed in oligodendrocyte precursor cells (OPCs) compared to the pathophysiology of other brain cells and oligodendrocytes (OLs) in PD. Altogether, these observations suggest crucial function(s) of LRRK2 in OPCs/Ols, which would be interesting to explore. In this study, we investigated the role of LRRK2 in OLs. We showed that LRRK2 knock-out (KO) OPC cultures displayed defects in the transition of OPCs into OLs, suggesting a role of LRRK2 in OL differentiation. Consistently, we found an alteration of myelin basic protein (MBP) striosomes in LRRK2 KO mouse brains and reduced levels of oligodendrocyte transcription factor 2 (Olig2) and Mbp in olig2:EGFP and mbp:RFP transgenic zebrafish embryos injected with lrrk2 morpholino (MO). Moreover, lrrk2 knock-down zebrafish exhibited a lower amount of nerve growth factor (Ngf) compared to control embryos, which represents a potent regulator of oligodendrogenesis and myelination. Overall, our findings indicate that LRRK2 controls OL differentiation, affecting the number of mature OLs.
Collapse
Affiliation(s)
- Alice Filippini
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Elena Cannone
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Valentina Mazziotti
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Giulia Carini
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Veronica Mutti
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Massimo Gennarelli
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Marco Schiavone
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Isabella Russo
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| |
Collapse
|
5
|
Bhatia P, Bickle M, Agrawal AA, Truss B, Nikolaidi A, Brockmann K, Reinhardt L, Vogel S, Szegoe EM, Pal A, Hermann A, Mikicic I, Yun M, Falkenburger B, Sterneckert J. Axonal Lysosomal Assays for Characterizing the Effects of LRRK2 G2019S. BIOLOGY 2024; 13:58. [PMID: 38275734 PMCID: PMC10813644 DOI: 10.3390/biology13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The degeneration of axon terminals before the soma, referred to as "dying back", is a feature of Parkinson's disease (PD). Axonal assays are needed to model early PD pathogenesis as well as identify protective therapeutics. We hypothesized that defects in axon lysosomal trafficking as well as injury repair might be important contributing factors to "dying back" pathology in PD. Since primary human PD neurons are inaccessible, we developed assays to quantify axonal trafficking and injury repair using induced pluripotent stem cell (iPSC)-derived neurons with LRRK2 G2019S, which is one of the most common known PD mutations, and isogenic controls. We observed a subtle axonal trafficking phenotype that was partially rescued by a LRRK2 inhibitor. Mutant LRRK2 neurons showed increased phosphorylated Rab10-positive lysosomes, and lysosomal membrane damage increased LRRK2-dependent Rab10 phosphorylation. Neurons with mutant LRRK2 showed a transient increase in lysosomes at axotomy injury sites. This was a pilot study that used two patient-derived lines to develop its methodology; we observed subtle phenotypes that might correlate with heterogeneity in LRRK2-PD patients. Further analysis using additional iPSC lines is needed. Therefore, our axonal lysosomal assays can potentially be used to characterize early PD pathogenesis and test possible therapeutics.
Collapse
Affiliation(s)
- Priyanka Bhatia
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Marc Bickle
- Roche Institute of Human Biology, 4070 Basel, Switzerland
| | - Amay A. Agrawal
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Buster Truss
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Aikaterina Nikolaidi
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Lydia Reinhardt
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Stefanie Vogel
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Eva M. Szegoe
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Arun Pal
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Ivan Mikicic
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
| | - Maximina Yun
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
- Max Planck Institute of Molecular Cellular Biology and Genetics, 01307 Dresden, Germany
- Physics of Life Excellence Cluster, 01307 Dresden, Germany
| | - Björn Falkenburger
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (P.B.)
- Medical Faculty Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
6
|
Di Fonzo A, Percetti M, Monfrini E, Palmieri I, Albanese A, Avenali M, Bartoletti-Stella A, Blandini F, Brescia G, Calandra-Buonaura G, Campopiano R, Capellari S, Colangelo I, Comi GP, Cuconato G, Ferese R, Galandra C, Gambardella S, Garavaglia B, Gaudio A, Giardina E, Invernizzi F, Mandich P, Mineri R, Panteghini C, Reale C, Trevisan L, Zampatti S, Cortelli P, Valente EM. Harmonizing Genetic Testing for Parkinson's Disease: Results of the PARKNET Multicentric Study. Mov Disord 2023; 38:2241-2248. [PMID: 37750340 DOI: 10.1002/mds.29617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Early-onset Parkinson's disease (EOPD) commonly recognizes a genetic basis; thus, patients with EOPD are often addressed to diagnostic testing based on next-generation sequencing (NGS) of PD-associated multigene panels. However, NGS interpretation can be challenging in a diagnostic setting, and few studies have addressed this issue so far. METHODS We retrospectively collected data from 648 patients with PD with age at onset younger than 55 years who underwent NGS of a minimal shared panel of 15 PD-related genes, as well as PD-multiplex ligation-dependent probe amplification in eight Italian diagnostic laboratories. Data included a minimal clinical dataset, the complete list of variants included in the diagnostic report, and final interpretation (positive/negative/inconclusive). Patients were further stratified based on age at onset ≤40 years (very EOPD, n = 157). All variants were reclassified according to the latest American College of Medical Genetics and Genomics criteria. For classification purposes, PD-associated GBA1 variants were considered diagnostic. RESULTS In 186 of 648 (29%) patients, the diagnostic report listed at least one variant, and the outcome was considered diagnostic (positive) in 105 (16%). After reanalysis, diagnosis changed in 18 of 186 (10%) patients, with 5 shifting from inconclusive to positive and 13 former positive being reclassified as inconclusive. A definite diagnosis was eventually reached in 97 (15%) patients, of whom the majority carried GBA1 variants or, less frequently, biallelic PRKN variants. In 89 (14%) cases, the genetic report was inconclusive. CONCLUSIONS This study attempts to harmonize reporting of PD genetic testing across several diagnostic labs and highlights current difficulties in interpreting genetic variants emerging from NGS-multigene panels, with relevant implications for counseling. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Marco Percetti
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
- School of Medicine and Surgery, Milan Center for Neuroscience, University of Milan-Bicocca, Milan, Italy
- Foundation IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Edoardo Monfrini
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | | | | | - Micol Avenali
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavior Sciences, University of Pavia, Pavia, Italy
| | - Anna Bartoletti-Stella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- DIMEC, University of Bologna, Bologna, Italy
| | - Fabio Blandini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gloria Brescia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | - Sabina Capellari
- DIMEC, University of Bologna, Bologna, Italy
- DIBINEM, University of Bologna, Bologna, Italy
| | - Isabel Colangelo
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Giacomo Pietro Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giada Cuconato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Caterina Galandra
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefano Gambardella
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- DINOGMI, University of Genoa, Genoa, Italy
| | | | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | - Stefania Zampatti
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Pietro Cortelli
- DIMEC, University of Bologna, Bologna, Italy
- DIBINEM, University of Bologna, Bologna, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
El Otmani H, Daghi M, Tahiri Jouti N, Lesage S. An overview of the worldwide distribution of LRRK2 mutations in Parkinson's disease. Neurodegener Dis Manag 2023; 13:335-350. [PMID: 38305913 DOI: 10.2217/nmt-2023-0025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with significant genetic influence. The LRRK2 gene is a major genetic contributor, particularly the Gly2019Ser mutation. This focused review investigates the global distribution of LRRK2 mutations, with emphasis on Gly2019Ser and other pathogenic variants. Prevalence rates of Gly2019Ser are highest in North Africa and the Ashkenazi-Jewish population, indicating a potential common ancestor and founder effect. Other LRRK2 mutations, including Asn1437His, Arg1441Gly/Cys/His, Tyr1699Cys and Ile2020Thr, exhibit varying global prevalences. Understanding these distributions enhances our knowledge of PD genetics and aids personalized medicine. Further research is crucial to unravel clinical implications and develop targeted therapies for LRRK2 mutation carriers.
Collapse
Affiliation(s)
- Hicham El Otmani
- Laboratory of Medical Genetics & Molecular Pathology. Faculty of Medicine and Pharmacy, Hassan II University, 20250, Casablanca, Morocco
- Laboratory of Cellular and Molecular Inflammatory, Degenerative & Oncologic Pathophysiology. Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco
- Department of Neurology. Ibn Rochd University Hospital, Casablanca, 20360, Morocco
| | - Mohamed Daghi
- Research Laboratory of Nervous System Diseases, Neurosensory Disorders & Disability. Faculty of Medicine & Pharmacy, Hassan II University, Casablanca, 20250, Morocco
| | - Nadia Tahiri Jouti
- Laboratory of Cellular and Molecular Inflammatory, Degenerative & Oncologic Pathophysiology. Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco
| | - Suzanne Lesage
- Sorbonne University, Institut du Cerveau-Paris Brain Institute, ICM, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Paris, 75013, France
| |
Collapse
|
8
|
Holmes G, Ferguson SR, Lewis PA, Echeverri K. LRRK2 kinase activity is necessary for development and regeneration in Nematostella vectensis. RESEARCH SQUARE 2023:rs.3.rs-3525606. [PMID: 37986927 PMCID: PMC10659525 DOI: 10.21203/rs.3.rs-3525606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background The starlet sea anemone, Nematostella vectensis, is an emerging model organism with a high regenerative capacity, which was recently found to possess an orthologue to the human LRRK2 gene (nvLRRK2). The leucine rich repeat kinase 2 (LRRK2) gene, when mutated, is the most common cause of inherited Parkinson's Disease (PD). Its protein product (LRRK2) has implications in a variety of cellular processes, however, the full function of LRRK2 is not well established. Current research is focusing on understanding the function of LRRK2, including both its physiological role as well as its pathobiological underpinnings. Methods We used bioinformatics to determine the cross-species conservation of LRRK2, then applied drugs targeting the kinase activity of LRRK2 to examine its function in development, homeostasis and regeneration in Nematostella vectensis. Results An in-silico characterization and phylogenetic analysis of nvLRRK2 comparing it to human LRRK2 highlighted key conserved motifs and residues. In vivo analyses inhibiting the kinase function of this enzyme demonstrated a role of nvLRRK2 in development and regeneration of N. vectensis. These findings implicate a developmental role of LRRK2 in Nematostella, adding to the expanding knowledge of its physiological function. Conclusions Our work introduces a new model organism with which to study LRRK biology. We show a necessity for LRRK2 in development and regeneration. Given the short generation time, genetic trackability and in vivo imaging capabilities, this work introduces Nematostella vectensis as a new model in which to study genes linked to neurodegenerative diseases such as Parkinson's.
Collapse
|
9
|
Ito G, Utsunomiya-Tate N. Overview of the Impact of Pathogenic LRRK2 Mutations in Parkinson's Disease. Biomolecules 2023; 13:biom13050845. [PMID: 37238714 DOI: 10.3390/biom13050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large protein kinase that physiologically phosphorylates and regulates the function of several Rab proteins. LRRK2 is genetically implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD), although the underlying mechanism is not well understood. Several pathogenic mutations in the LRRK2 gene have been identified, and in most cases the clinical symptoms that PD patients with LRRK2 mutations develop are indistinguishable from those of typical PD. However, it has been shown that the pathological manifestations in the brains of PD patients with LRRK2 mutations are remarkably variable when compared to sporadic PD, ranging from typical PD pathology with Lewy bodies to nigral degeneration with deposition of other amyloidogenic proteins. The pathogenic mutations in LRRK2 are also known to affect the functions and structure of LRRK2, the differences in which may be partly attributable to the variations observed in patient pathology. In this review, in order to help researchers unfamiliar with the field to understand the mechanism of pathogenesis of LRRK2-associated PD, we summarize the clinical and pathological manifestations caused by pathogenic mutations in LRRK2, their impact on the molecular function and structure of LRRK2, and their historical background.
Collapse
Affiliation(s)
- Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Naoko Utsunomiya-Tate
- Department of Biomolecular Chemistry, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
10
|
Mata I, Salles P, Cornejo-Olivas M, Saffie P, Ross OA, Reed X, Bandres-Ciga S. LRRK2: Genetic mechanisms vs genetic subtypes. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:133-154. [PMID: 36803807 DOI: 10.1016/b978-0-323-85555-6.00018-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In 2004, the identification of pathogenic variants in the LRRK2 gene across several families with autosomal dominant late-onset Parkinson's disease (PD) revolutionized our understanding of the role of genetics in PD. Previous beliefs that genetics in PD was limited to rare early-onset or familial forms of the disease were quickly dispelled. Currently, we recognize LRRK2 p.G2019S as the most common genetic cause of both sporadic and familial PD, with more than 100,000 affected carriers across the globe. The frequency of LRRK2 p.G2019S is also highly variable across populations, with some regions of Asian or Latin America reporting close to 0%, contrasting to Ashkenazi Jews or North African Berbers reporting up to 13% and 40%, respectively. Patients with LRRK2 pathogenic variants are clinically and pathologically heterogeneous, highlighting the age-related variable penetrance that also characterizes LRRK2-related disease. Indeed, the majority of patients with LRRK2-related disease are characterized by a relatively mild Parkinsonism with less motor symptoms with variable presence of α-synuclein and/or tau aggregates, with pathologic pleomorphism widely described. At a functional cellular level, it is likely that pathogenic variants mediate a toxic gain-of-function of the LRRK2 protein resulting in increased kinase activity perhaps in a cell-specific manner; by contrast, some LRRK2 variants appear to be protective reducing PD risk by decreasing the kinase activity. Therefore, employing this information to define appropriate patient populations for clinical trials of targeted kinase LRRK2 inhibition strategies is very promising and demonstrates a potential future application for PD using precision medicine.
Collapse
Affiliation(s)
- Ignacio Mata
- Genomic Medicine Institute (GMI), Cleveland Clinic, Cleveland, OH, United States.
| | - Philippe Salles
- Corporación Centro de Trastornos del Movimiento (CETRAM), Lo Espejo, Santiago, Chile
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | - Paula Saffie
- Corporación Centro de Trastornos del Movimiento (CETRAM), Lo Espejo, Santiago, Chile
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics and Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Nainu F, Mamada SS, Harapan H, Emran TB. Inflammation-Mediated Responses in the Development of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:39-70. [PMID: 36949305 DOI: 10.1007/978-981-19-7376-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Since its first description over a century ago, neurodegenerative diseases (NDDs) have impaired the lives of millions of people worldwide. As one of the major threats to human health, NDDs are characterized by progressive loss of neuronal structure and function, leading to the impaired function of the CNS. While the precise mechanisms underlying the emergence of NDDs remains elusive, association of neuroinflammation with the emergence of NDDs has been suggested. The immune system is tightly controlled to maintain homeostatic milieu and failure in doing so has been shown catastrophic. Here, we review current concepts on the cellular and molecular drivers responsible in the induction of neuroinflammation and how such event further promotes neuronal damage leading to neurodegeneration. Experimental data generated from cell culture and animal studies, gross and molecular pathologies of human CNS samples, and genome-wide association study are discussed to provide deeper insights into the mechanistic details of neuroinflammation and its roles in the emergence of NDDs.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Sukamto S Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Harapan Harapan
- School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| |
Collapse
|
12
|
Turski P, Chaberska I, Szukało P, Pyska P, Milanowski Ł, Szlufik S, Figura M, Hoffman-Zacharska D, Siuda J, Koziorowski D. Review of the epidemiology and variability of LRRK2 non-p.Gly2019Ser pathogenic mutations in Parkinson's disease. Front Neurosci 2022; 16:971270. [PMID: 36203807 PMCID: PMC9530194 DOI: 10.3389/fnins.2022.971270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a heterogenous neurodegenerative disorder. Genetic factors play a significant role, especially in early onset and familial cases. Mutations are usually found in the LRRK2 gene, but their importance varies. Some mutations, such as p.Arg1441Cys or other alterations in the 1441 codon, show clear correlation with PD, whereas others are risk factors found also in healthy populations or have neglectable consequences. They also exhibit various prevalence among different populations. The aim of this paper is to sum up the current knowledge regarding the epidemiology and pathogenicity of LRRK2 mutations, other than the well-established p.Gly2019Ser. We performed a review of the literature using PubMed database. 103 publications met our inclusion criteria. p.Arg1441Cys, p.Arg1441Gly, p.Arg1441His, p.Arg1441Ser are the most common pathogenic mutations in European populations, especially Hispanic. p.Asn1437His is pathogenic and occurs mostly in the Scandinavians. p.Asn1437Ser and p.Asn1437Asp have been reported in German and Chinese cohorts respectively. p.Ile2020Thr is a rare pathogenic mutation described only in a Japanese cohort. p.Met1869Thr has only been reported in Caucasians. p.Tyr1699Cys, p.Ile1122Val have only been found in one family each. p.Glu1874Ter has been described in just one patient. We found no references concerning mutation p.Gln416Ter. We also report the first case of a Polish PD family whose members carried p.Asn1437His.
Collapse
Affiliation(s)
- Paweł Turski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Chaberska
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Szukało
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Paulina Pyska
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | | | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Weindel CG, Martinez EL, Zhao X, Mabry CJ, Bell SL, Vail KJ, Coleman AK, VanPortfliet JJ, Zhao B, Wagner AR, Azam S, Scott HM, Li P, West AP, Karpac J, Patrick KL, Watson RO. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 2022; 185:3214-3231.e23. [PMID: 35907404 PMCID: PMC9531054 DOI: 10.1016/j.cell.2022.06.038] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/05/2022] [Accepted: 06/18/2022] [Indexed: 10/16/2022]
Abstract
Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.
Collapse
Affiliation(s)
- Chi G Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Eduardo L Martinez
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Xiao Zhao
- Department of Molecular and Cellular Medicine, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Cory J Mabry
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA; Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Krystal J Vail
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Aja K Coleman
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Jordyn J VanPortfliet
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Baoyu Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Sikandar Azam
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA.
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
14
|
The Human LRRK2 Modulates the Age-Dependent Effects of Developmental Methylmercury Exposure in Caenorhabditis elegans. Neurotox Res 2022; 40:1235-1247. [PMID: 35838907 DOI: 10.1007/s12640-022-00547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Methylmercury (MeHg) neurotoxicity exhibits age-dependent effects with a latent and/or persistent neurotoxic effect on aged animals. Individual susceptibility to MeHg neurotoxicity is governed by both exposure duration and genetic factors that can magnify or mitigate the pathologic processes associated with this exposure. We previously showed the G2019S mutation of leucine-rich repeat kinase 2 (LRRK2) modulates the response of worms to high levels of MeHg, mitigating its effect on neuronal morphology in pre-vesicles in cephalic (CEP) dopaminergic neurons. Here we sought to better understand the long-term effects of MeHg exposure at low levels (100-fold lower than that in our previous report) and the modulatory role of the LRRK2 mutation. Worms exposed to MeHg (10 or 50 nM) at the larval stage (L1 stage) were compared at adult stages (young age: day 1 adult; middle age: day 5 adult; old age: day 10 adult) for the swimming speeds in M9 buffer, moving speeds during locomotion on an OP50-seeded plate, and the numbers of CEP dopaminergic pre-vesicles, vesicular structures originating from the dendrites of CEP for exportation of cellular content. In addition, the expression levels of Caenorhabditis elegans homologs of dopamine transporter (dat-1) and tyrosine hydroxylase (cat-2) were also analyzed at these adult stages. Our data showed that swimming speeds were reduced in wild-type worms at the day 10 adult stage at 50 nM MeHg level; yet, reduced swimming speeds were noted in the G2019S LRRK2 transgenic line upon MeHg exposures as low as 10 nM. Compared to locomotor speeds, swimming speeds appear to be more sensitive to the behavioral effects of developmental MeHg exposures, as the locomotor speeds were largely intact and indistinguishable from controls following MeHg exposures. Furthermore, we showed an age-dependent modulation of dat-1 and cat-2 expressions, which could also be modified by the LRRK2 mutation. Although MeHg exposures did not change the number of pre-vesicles, the LRRK2 mutation was associated with increased numbers of pre-vesicles in aged worms. Our data suggest that the latent behavioral effects of MeHg are sensitized by the G2019S LRRK2 mutation, and the underlying mechanism likely involves age-dependent changes in dopaminergic signaling.
Collapse
|
15
|
Simpson C, Vinikoor-Imler L, Nassan FL, Shirvan J, Lally C, Dam T, Maserejian N. Prevalence of ten LRRK2 variants in Parkinson's disease: A comprehensive review. Parkinsonism Relat Disord 2022; 98:103-113. [PMID: 35654702 DOI: 10.1016/j.parkreldis.2022.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Variants in the leucine-rich repeat kinase 2 gene (LRRK2) are risk factors for Parkinson's disease (PD), but their prevalence varies geographically, reflecting the locations of founder events and dispersion of founders' descendants. METHODS A comprehensive literature review was conducted to identify studies providing prevalence estimates for any of ten variants in LRRK2 (G2019S, R1441C, R1441G, R1441H, I2020T, N1437H, Y1699C, S1761R, G2385R, R1628P) among individuals with PD globally. We calculated crude country-specific variant prevalence estimates and, when possible, adjusted estimates for ethno-racial composition. For clinic-based studies, probands were used over other familial cases, whereas for population-based studies, all PD cases were used. RESULTS The analysis included 161 articles from 52 countries yielding 581 prevalence estimates across the ten variants. G2019S was the most common variant, exceeding 1.0% in 26 of 51 countries with estimates. The other variants were far less common. G2385R and R1628P were observed almost exclusively in East Asian countries, where they were found in ∼5-10% of cases. All prevalence estimates adjusted for ethno-racial composition were lower than their unadjusted counterparts, although data permitting this adjustment was only available for six countries. CONCLUSIONS Except for G2019S, the LRRK2 variants covered in this review were uncommon in most countries studied. However, there were countries with higher prevalence for some variants, reflecting the uneven geographic distribution of LRRK2 variants. The fact that ethno-racial group‒adjusted estimates were lower than crude estimates suggests that estimates derived largely from clinic-based studies may overstate the true prevalence of some LRRK2 variants in PD.
Collapse
Affiliation(s)
| | | | | | | | - Cathy Lally
- Epidemiology Research and Methods LLC, Atlanta, GA, USA.
| | | | | |
Collapse
|
16
|
α-Synuclein at the Presynaptic Axon Terminal as a Double-Edged Sword. Biomolecules 2022; 12:biom12040507. [PMID: 35454096 PMCID: PMC9029495 DOI: 10.3390/biom12040507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
α-synuclein (α-syn) is a presynaptic, lipid-binding protein strongly associated with the neuropathology observed in Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and Alzheimer’s Disease (AD). In normal physiology, α-syn plays a pivotal role in facilitating endocytosis and exocytosis. Interestingly, mutations and modifications of precise α-syn domains interfere with α-syn oligomerization and nucleation that negatively affect presynaptic vesicular dynamics, protein expressions, and mitochondrial profiles. Furthermore, the integration of the α-syn oligomers into the presynaptic membrane results in pore formations, ion influx, and excitotoxicity. Targeted therapies against specific domains of α-syn, including the use of small organic molecules, monoclonal antibodies, and synthetic peptides, are being screened and developed. However, the prospect of an effective α-syn targeted therapy is still plagued by low permeability across the blood–brain barrier (BBB), and poor entry into the presynaptic axon terminals. The present review proposes a modification of current strategies, which includes the use of novel encapsulation technology, such as lipid nanoparticles, to bypass the BBB and deliver such agents into the brain.
Collapse
|
17
|
Cai J, Kropf E, Hou YM, Iacovitti L. A stress-free strategy to correct point mutations in patient iPS cells. Stem Cell Res 2021; 53:102332. [PMID: 33857832 PMCID: PMC8283763 DOI: 10.1016/j.scr.2021.102332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/06/2022] Open
Abstract
When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 "knock-in" methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-PuroR cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-PuroR cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.
Collapse
Affiliation(s)
- Jingli Cai
- Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
| | - Elizabeth Kropf
- Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB Suite 220, Philadelphia, PA 19107, USA
| | - Lorraine Iacovitti
- Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA.
| |
Collapse
|
18
|
Bono F, Mutti V, Devoto P, Bolognin S, Schwamborn JC, Missale C, Fiorentini C. Impaired dopamine D3 and nicotinic acetylcholine receptor membrane localization in iPSCs-derived dopaminergic neurons from two Parkinson's disease patients carrying the LRRK2 G2019S mutation. Neurobiol Aging 2020; 99:65-78. [PMID: 33422895 DOI: 10.1016/j.neurobiolaging.2020.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) are the most common genetic determinants of Parkinson's disease (PD), with the G2019S accounting for about 3% of PD cases. LRRK2 regulates various cellular processes, including vesicle trafficking that is crucial for receptor localization at the plasma membrane. In this study, induced pluripotent stem cells derived from 2 PD patients bearing the G2019S LRRK2 kinase activating mutation were used to generate neuronal cultures enriched in dopaminergic neurons. The results show that mutant LRRK2 prevents the membrane localization of both the dopamine D3 receptors (D3R) and the nicotinic acetylcholine receptors (nAChR) and the formation of the D3R-nAChR heteromer, a molecular unit crucial for promoting neuronal homeostasis and preserving dopaminergic neuron health. Interestingly, D3R and nAChR as well as the corresponding heteromer membrane localization were rescued by inhibiting the abnormally increased kinase activity. Thus, the altered membrane localization of the D3R-nAChR heteromer associated with mutation in LRRK2 might represent a pre-degenerative feature of dopaminergic neurons contributing to the special vulnerability of this neuronal population.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; "C. Golgi" Women Health Center, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
19
|
Smolders S, Van Broeckhoven C. Reply: Segregation of ATP10B variants in families with autosomal recessive Parkinsonism. Acta Neuropathol 2020; 140:787-789. [PMID: 32892228 DOI: 10.1007/s00401-020-02220-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Stefanie Smolders
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, Campus CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, Campus CDE, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
20
|
Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. J Pharmacol Sci 2020; 144:151-164. [PMID: 32807662 DOI: 10.1016/j.jphs.2020.07.011] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamate transmission efficiency depends on the correct functionality and expression of a plethora of receptors and transporters, located both on neurons and glial cells. Of note, glutamate reuptake by dedicated transporters prevents its accumulation at the synapse as well as non-physiological spillover. Indeed, extracellular glutamate increase causes aberrant synaptic signaling leading to neuronal excitotoxicity and death. Moreover, extrasynaptic glutamate diffusion is strongly associated with glia reaction and neuroinflammation. Glutamate-induced excitotoxicity is mainly linked to an impaired ability of glial cells to reuptake and respond to glutamate, then this is considered a common hallmark in many neurodegenerative diseases, including Parkinson's disease (PD). In this review, we discuss the function of astrocytes and microglia in glutamate homeostasis, focusing on how glial dysfunction causes glutamate-induced excitotoxicity leading to neurodegeneration in PD.
Collapse
Affiliation(s)
- L Iovino
- Department of Biology, University of Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - L Civiero
- Department of Biology, University of Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|
21
|
Tan MMX, Malek N, Lawton MA, Hubbard L, Pittman AM, Joseph T, Hehir J, Swallow DMA, Grosset KA, Marrinan SL, Bajaj N, Barker RA, Burn DJ, Bresner C, Foltynie T, Hardy J, Wood N, Ben-Shlomo Y, Grosset DG, Williams NM, Morris HR. Genetic analysis of Mendelian mutations in a large UK population-based Parkinson's disease study. Brain 2019; 142:2828-2844. [PMID: 31324919 PMCID: PMC6735928 DOI: 10.1093/brain/awz191] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/05/2019] [Accepted: 04/28/2019] [Indexed: 01/01/2023] Open
Abstract
Our objective was to define the prevalence and clinical features of genetic Parkinson's disease in a large UK population-based cohort, the largest multicentre prospective clinico-genetic incident study in the world. We collected demographic data, Movement Disorder Society Unified Parkinson's Disease Rating Scale scores, and Montreal Cognitive Assessment scores. We analysed mutations in PRKN (parkin), PINK1, LRRK2 and SNCA in relation to age at symptom onset, family history and clinical features. Of the 2262 participants recruited to the Tracking Parkinson's study, 424 had young-onset Parkinson's disease (age at onset ≤ 50) and 1799 had late onset Parkinson's disease. A range of methods were used to genotype 2005 patients: 302 young-onset patients were fully genotyped with multiplex ligation-dependent probe amplification and either Sanger and/or exome sequencing; and 1701 late-onset patients were genotyped with the LRRK2 'Kompetitive' allele-specific polymerase chain reaction assay and/or exome sequencing (two patients had missing age at onset). We identified 29 (1.4%) patients carrying pathogenic mutations. Eighteen patients carried the G2019S or R1441C mutations in LRRK2, and one patient carried a heterozygous duplication in SNCA. In PRKN, we identified patients carrying deletions of exons 1, 4 and 5, and P113Xfs, R275W, G430D and R33X. In PINK1, two patients carried deletions in exon 1 and 5, and the W90Xfs point mutation. Eighteen per cent of patients with age at onset ≤30 and 7.4% of patients from large dominant families carried pathogenic Mendelian gene mutations. Of all young-onset patients, 10 (3.3%) carried biallelic mutations in PRKN or PINK1. Across the whole cohort, 18 patients (0.9%) carried pathogenic LRRK2 mutations and one (0.05%) carried an SNCA duplication. There is a significant burden of LRRK2 G2019S in patients with both apparently sporadic and familial disease. In young-onset patients, dominant and recessive mutations were equally common. There were no differences in clinical features between LRRK2 carriers and non-carriers. However, we did find that PRKN and PINK1 mutation carriers have distinctive clinical features compared to young-onset non-carriers, with more postural symptoms at diagnosis and less cognitive impairment, after adjusting for age and disease duration. This supports the idea that there is a distinct clinical profile of PRKN and PINK1-related Parkinson's disease. We estimate that there are approaching 1000 patients with a known genetic aetiology in the UK Parkinson's disease population. A small but significant number of patients carry causal variants in LRRK2, SNCA, PRKN and PINK1 that could potentially be targeted by new therapies, such as LRRK2 inhibitors.
Collapse
Affiliation(s)
- Manuela M X Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Naveed Malek
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Alan M Pittman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Theresita Joseph
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jason Hehir
- University College London Hospitals NHS Foundation Trust, UK
| | - Diane M A Swallow
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Katherine A Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sarah L Marrinan
- Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne, UK
| | - Nin Bajaj
- Department of Clinical Neurosciences, University of Nottingham, UK
| | - Roger A Barker
- UCL Movement Disorders Centre, University College London, London, UK
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Cambridge, UK
| | - David J Burn
- Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - John Hardy
- Reta Lila Weston Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | | | - Donald G Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Nigel M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| |
Collapse
|
22
|
Marte A, Russo I, Rebosio C, Valente P, Belluzzi E, Pischedda F, Montani C, Lavarello C, Petretto A, Fedele E, Baldelli P, Benfenati F, Piccoli G, Greggio E, Onofri F. Leucine‐rich repeat kinase 2 phosphorylation on synapsin I regulates glutamate release at pre‐synaptic sites. J Neurochem 2019; 150:264-281. [PMID: 31148170 DOI: 10.1111/jnc.14778] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain scaffolding protein with kinase and GTPase activities involved in synaptic vesicle (SV) dynamics. While its role in Parkinson's disease has been largely investigated, little is known about LRRK2 physiological role and until now few proteins have been described as substrates. We have previously demonstrated that LRRK2 through its WD40 domain interacts with synapsin I, an important SV-associated phosphoprotein involved in neuronal development and in the regulation of neurotransmitter release. To test whether synapsin I is substrate for LRRK2 and characterize the properties of its phosphorylation, we used in vitro kinase and binding assays as well as cellular model and site-direct mutagenesis. Using synaptosomes in superfusion, patch-clamp recordings in autaptic WT and synapsin I KO cortical neurons and SypHy assay on primary cortical culture from wild-type and BAC human LRRK2 G2019S mice we characterized the role of LRRK2 kinase activity on glutamate release and SV trafficking. Here we reported that synapsin I is phosphorylated by LRRK2 and demonstrated that the interaction between LRRK2 WD40 domain and synapsin I is crucial for this phosphorylation. Moreover, we showed that LRRK2 phosphorylation of synapsin I at threonine 337 and 339 significantly reduces synapsin I-SV/actin interactions. Using complementary experimental approaches, we demonstrated that LRRK2 controls glutamate release and SV dynamics in a kinase activity and synapsin I-dependent manner. Our findings show that synapsin I is a LRRK2 substrate and describe a novel mechanisms of regulation of glutamate release by LRRK2 kinase activity.
Collapse
Affiliation(s)
- Antonella Marte
- Department of Experimental Medicine University of Genova Genova Italy
| | | | | | - Pierluigi Valente
- Department of Experimental Medicine University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Elisa Belluzzi
- Rheumatology Unit, Department of Medicine‐DIMED University Hospital of Padova Padova Italy
| | - Francesca Pischedda
- Center for Integrative Biology (CIBIO) University of Trento Trento Italy
- Dulbecco Telethon Institute Trento Italy
| | - Caterina Montani
- Center for Integrative Biology (CIBIO) University of Trento Trento Italy
- Dulbecco Telethon Institute Trento Italy
| | - Chiara Lavarello
- Laboratory of Mass Spectrometry ‐ Core Facilities Istituto Giannina Gaslini Genova Italy
| | - Andrea Petretto
- Laboratory of Mass Spectrometry ‐ Core Facilities Istituto Giannina Gaslini Genova Italy
| | - Ernesto Fedele
- Department of Pharmacy University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Pietro Baldelli
- Department of Experimental Medicine University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino Genova Italy
- Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia Genova Italy
| | - Giovanni Piccoli
- Center for Integrative Biology (CIBIO) University of Trento Trento Italy
- Dulbecco Telethon Institute Trento Italy
| | - Elisa Greggio
- Department of Biology University of Padova Padova Italy
| | - Franco Onofri
- Department of Experimental Medicine University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genova Italy
| |
Collapse
|
23
|
Wang Y, Liu N, Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci Ther 2019; 25:859-875. [PMID: 31050206 PMCID: PMC6566062 DOI: 10.1111/cns.13140] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are double‐membrane‐encircled organelles existing in most eukaryotic cells and playing important roles in energy production, metabolism, Ca2+ buffering, and cell signaling. Mitophagy is the selective degradation of mitochondria by autophagy. Mitophagy can effectively remove damaged or stressed mitochondria, which is essential for cellular health. Thanks to the implementation of genetics, cell biology, and proteomics approaches, we are beginning to understand the mechanisms of mitophagy, including the roles of ubiquitin‐dependent and receptor‐dependent signals on damaged mitochondria in triggering mitophagy. Mitochondrial dysfunction and defective mitophagy have been broadly associated with neurodegenerative diseases. This review is aimed at summarizing the mechanisms of mitophagy in higher organisms and the roles of mitophagy in the pathogenesis of neurodegenerative diseases. Although many studies have been devoted to elucidating the mitophagy process, a deeper understanding of the mechanisms leading to mitophagy defects in neurodegenerative diseases is required for the development of new therapeutic interventions, taking into account the multifactorial nature of diseases and the phenotypic heterogeneity of patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Na Liu
- Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
24
|
Yang L, Wald P, Roychowdhury S, Noonan AM, Zuo L, Chuang CC, Reeser J, Wuthrick E, Schmidt C, Williams T. Significant and Durable Clinical Response to Sorafenib and Radiation Therapy for a Patient With Stage IV Hepatocellular Carcinoma and LRRK2 Mutation. JCO Precis Oncol 2019; 3:1800277. [PMID: 32914030 DOI: 10.1200/po.18.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Affiliation(s)
- Linlin Yang
- Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Patrick Wald
- Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | | | - Anne M Noonan
- Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Li Zuo
- College of Medicine, The Ohio State University, Columbus, OH.,College of Arts and Sciences, University of Maine, Presque Isle, ME.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH
| | - Chia-Chen Chuang
- College of Medicine, The Ohio State University, Columbus, OH.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH
| | - Julie Reeser
- Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Evan Wuthrick
- Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Moffitt Cancer Center, Tampa, FL
| | - Carl Schmidt
- Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Terence Williams
- Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
25
|
Shu L, Zhang Y, Sun Q, Pan H, Tang B. A Comprehensive Analysis of Population Differences in LRRK2 Variant Distribution in Parkinson's Disease. Front Aging Neurosci 2019; 11:13. [PMID: 30760999 PMCID: PMC6363667 DOI: 10.3389/fnagi.2019.00013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Background:LRRK2 variants have been demonstrated to have distinct distributions in different populations. However, researchers have thus far chosen to focus on relatively few variants, such as R1628P, G2019S, and G2385R. We therefore investigated the relationship between common LRRK2 variants and PD risk in various populations. Methods: Using a set of strict inclusion criteria, six databases were searched, resulting in the selection of 94 articles covering 49,299 cases and 47,319 controls for final pooled analysis and frequency analysis. Subgroup analysis were done for Africans, European/West Asians, Hispanics, East Asians, and mixed populations. Statistical analysis was carried out using the Mantel-Haenszel approach to determine the relationship between common LRRK2 variants and PD risk, with the significance level set at p < 0.05. Results: In the absence of obvious heterogeneities and publication biases among the included studies, we concluded that A419V, R1441C/G/H, R1628P, G2019S, and G2385R were associated with increased PD risk (p: 0.001, 0.0004, < 0.00001, < 0.00001, and < 0.00001, respectively), while R1398H was associated with decreased risk (p: < 0.00001). In East Asian populations, A419V, R1628P, and G2385R increased risk (p: 0.001, < 0.00001, < 0.00001), while R1398H had the opposite effect (p: 0.0005). G2019S increased PD risk in both European/West Asian and mixed populations (p: < 0.00001, < 0.00001), while R1441C/G/H increased risk in European/West Asian populations only (p: 0.0004). Conclusions: We demonstrated that LRRK2 variant distribution is different among various populations, which should inform decisions regarding the development of future genetic screening strategies.
Collapse
Affiliation(s)
- Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
26
|
Kuusimäki T, Korpela J, Pekkonen E, Martikainen MH, Antonini A, Kaasinen V. Deep brain stimulation for monogenic Parkinson's disease: a systematic review. J Neurol 2019; 267:883-897. [PMID: 30659355 PMCID: PMC7109183 DOI: 10.1007/s00415-019-09181-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
Abstract
Deep brain stimulation (DBS) is an effective treatment for Parkinson’s disease (PD) patients with motor fluctuations and dyskinesias. The key DBS efficacy studies were performed in PD patients with unknown genotypes; however, given the estimated monogenic mutation prevalence of approximately 5–10%, most commonly LRRK2, PRKN, PINK1 and SNCA, and risk-increasing genetic factors such as GBA, proper characterization is becoming increasingly relevant. We performed a systematic review of 46 studies that reported DBS effects in 221 genetic PD patients. The results suggest that monogenic PD patients have variable DBS benefit depending on the mutated gene. Outcome appears excellent in patients with the most common LRRK2 mutation, p.G2019S, and good in patients with PRKN mutations but poor in patients with the more rare LRRK2 p.R1441G mutation. The overall benefit of DBS in SNCA, GBA and LRRK2 p.T2031S mutations may be compromised due to rapid progression of cognitive and neuropsychiatric symptoms. In the presence of other mutations, the motor changes in DBS-treated monogenic PD patients appear comparable to those of the general PD population.
Collapse
Affiliation(s)
- Tomi Kuusimäki
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland. .,Department of Neurology, University of Turku, Turku, Finland.
| | - Jaana Korpela
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Mika H Martikainen
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - Angelo Antonini
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Valtteri Kaasinen
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Kim J, Pajarillo E, Rizor A, Son DS, Lee J, Aschner M, Lee E. LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia. PLoS One 2019; 14:e0210248. [PMID: 30645642 PMCID: PMC6333340 DOI: 10.1371/journal.pone.0210248] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Long-term exposure to elevated levels of manganese (Mn) causes manganism, a neurodegenerative disorder with Parkinson's disease (PD)-like symptoms. Increasing evidence suggests that leucine-rich repeat kinase 2 (LRRK2), which is highly expressed in microglia and macrophages, contributes to the inflammation and neurotoxicity seen in autosomal dominant and sporadic PD. As gene-environment interactions have emerged as important modulators of PD-associated toxicity, LRRK2 may also mediate Mn-induced inflammation and pathogenesis. In this study, we investigated the role of LRRK2 in Mn-induced toxicity using human microglial cells (HMC3), LRRK2-wild-type (WT) and LRRK2-knockout (KO) RAW264.7 macrophage cells. Results showed that Mn activated LRRK2 kinase by phosphorylation of its serine residue at the 1292 position (S1292) as a marker of its kinase activity in macrophage and microglia, while inhibition with GSK2578215A (GSK) and MLi-2 abolished Mn-induced LRRK2 activation. LRRK2 deletion and its pharmacological inhibition attenuated Mn-induced apoptosis in macrophages and microglia, along with concomitant decreases in the pro-apoptotic Bcl-2-associated X (Bax) protein. LRRK2 deletion also attenuated Mn-induced production of reactive oxygen species (ROS) and the pro-inflammatory cytokine TNF-α. Mn-induced phosphorylation of mitogen-activated protein kinase (MAPK) p38 and ERK signaling proteins was significantly attenuated in LRRK2 KO cells and GSK-treated cells. Moreover, inhibition of MAPK p38 and ERK as well as LRRK2 attenuated Mn-induced oxidative stress and cytotoxicity. These findings suggest that LRRK2 kinase activity plays a critical role in Mn-induced toxicity via downstream activation of MAPK signaling in macrophage and microglia. Collectively, these results suggest that LRRK2 could be a potential molecular target for developing therapeutics to treat Mn-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Judong Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| |
Collapse
|
28
|
Breger LS, Fuzzati Armentero MT. Genetically engineered animal models of Parkinson's disease: From worm to rodent. Eur J Neurosci 2018; 49:533-560. [PMID: 30552719 DOI: 10.1111/ejn.14300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterised by aberrant accumulation of insoluble proteins, including alpha-synuclein, and a loss of dopaminergic neurons in the substantia nigra. The extended neurodegeneration leads to a drop of striatal dopamine levels responsible for disabling motor and non-motor impairments. Although the causes of the disease remain unclear, it is well accepted among the scientific community that the disorder may also have a genetic component. For that reason, the number of genetically engineered animal models has greatly increased over the past two decades, ranging from invertebrates to more complex organisms such as mice and rats. This trend is growing as new genetic variants associated with the disease are discovered. The EU Joint Programme - Neurodegenerative Disease Research (JPND) has promoted the creation of an online database aiming at summarising the different features of experimental models of Parkinson's disease. This review discusses available genetic models of PD and the extent to which they adequately mirror the human pathology and reflects on future development and uses of genetically engineered experimental models for the study of PD.
Collapse
Affiliation(s)
- Ludivine S Breger
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Centre Broca Nouvelle Aquitaine, Université de Bordeaux, Bordeaux cedex, France
| | | |
Collapse
|
29
|
Caldwell KA, Thies JL, Caldwell GA. No Country for Old Worms: A Systematic Review of the Application of C. elegans to Investigate a Bacterial Source of Environmental Neurotoxicity in Parkinson's Disease. Metabolites 2018; 8:metabo8040070. [PMID: 30380609 PMCID: PMC6315381 DOI: 10.3390/metabo8040070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
While progress has been made in discerning genetic associations with Parkinson's disease (PD), identifying elusive environmental contributors necessitates the application of unconventional hypotheses and experimental strategies. Here, we provide an overview of studies that we conducted on a neurotoxic metabolite produced by a species of common soil bacteria, Streptomyces venezuelae (S. ven), indicating that the toxicity displayed by this bacterium causes stress in diverse cellular mechanisms, such as the ubiquitin proteasome system and mitochondrial homeostasis. This dysfunction eventually leads to age and dose-dependent neurodegeneration in the nematode Caenorhabditis elegans. Notably, dopaminergic neurons have heightened susceptibility, but all of the neuronal classes eventually degenerate following exposure. Toxicity further extends to human SH-SY5Y cells, which also degenerate following exposure. Additionally, the neurons of nematodes expressing heterologous aggregation-prone proteins display enhanced metabolite vulnerability. These mechanistic analyses collectively reveal a unique metabolomic fingerprint for this bacterially-derived neurotoxin. In considering that epidemiological distinctions in locales influence the incidence of PD, we surveyed soils from diverse regions of Alabama, and found that exposure to ~30% of isolated Streptomyces species caused worm dopaminergic neurons to die. In addition to aging, one of the few established contributors to PD appears to be a rural lifestyle, where exposure to soil on a regular basis might increase the risk of interaction with bacteria producing such toxins. Taken together, these data suggest that a novel toxicant within the Streptomyces genus might represent an environmental contributor to the progressive neurodegeneration that is associated with PD.
Collapse
Affiliation(s)
- Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487, USA.
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA.
| | - Jennifer L Thies
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487, USA.
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487, USA.
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA.
| |
Collapse
|
30
|
Russo I, Di Benedetto G, Kaganovich A, Ding J, Mercatelli D, Morari M, Cookson MR, Bubacco L, Greggio E. Leucine-rich repeat kinase 2 controls protein kinase A activation state through phosphodiesterase 4. J Neuroinflammation 2018; 15:297. [PMID: 30368241 PMCID: PMC6204045 DOI: 10.1186/s12974-018-1337-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evidence indicates a cross-regulation between two kinases, leucine-rich repeat kinase 2 (LRRK2) and protein kinase A (PKA). In neurons, LRRK2 negatively regulates PKA activity in spiny projecting neurons during synaptogenesis and in response to dopamine D1 receptor activation acting as an A-anchoring kinase protein (AKAP). In microglia cells, we showed that LRRK2 kinase activity negatively regulates PKA, impacting NF-κB p50 signaling and the inflammatory response. Here, we explore the molecular mechanism underlying the functional interaction between LRRK2 and PKA in microglia. METHODS To understand which step of PKA signaling is modulated by LRRK2, we used a combination of in vitro and ex vivo systems with hyperactive or inactive LRRK2 as well as different readouts of PKA signaling. RESULTS We confirmed that LRRK2 kinase activity acts as a negative regulator of PKA activation state in microglia. Specifically, we found that LRRK2 controls PKA by affecting phosphodiesterase 4 (PDE4) activity, modulating cAMP degradation, content, and its dependent signaling. Moreover, we showed that LRRK2 carrying the G2019S pathological mutation downregulates PKA activation causing a reduction of PKA-mediated NF-κB inhibitory signaling, which results, in turn, in increased inflammation in LRRK2 G2019S primary microglia upon α-synuclein pre-formed fibrils priming. CONCLUSIONS Overall, our findings indicate that LRRK2 kinase activity is a key regulator of PKA signaling and suggest PDE4 as a putative LRRK2 effector in microglia. In addition, our observations suggest that LRRK2 G2019S may favor the transition of microglia toward an overactive state, which could widely contribute to the progression of the pathology in LRRK2-related PD.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Biology, University of Padova, Padua, Italy
- Present Address: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Daniela Mercatelli
- Department of Medical Sciences, National Institute for Neuroscience, University of Ferrara, Ferrara, Italy
| | - Michele Morari
- Department of Medical Sciences, National Institute for Neuroscience, University of Ferrara, Ferrara, Italy
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
31
|
Chen ML, Wu RM. LRRK 2 gene mutations in the pathophysiology of the ROCO domain and therapeutic targets for Parkinson's disease: a review. J Biomed Sci 2018; 25:52. [PMID: 29903014 PMCID: PMC6000924 DOI: 10.1186/s12929-018-0454-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/31/2018] [Indexed: 01/13/2023] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and manifests as resting tremor, rigidity, bradykinesia, and postural instability. Pathologically, PD is characterized by selective loss of dopaminergic neurons in the substantia nigra and the formation of intracellular inclusions containing α-synuclein and ubiquitin called Lewy bodies. Consequently, a remarkable deficiency of dopamine in the striatum causes progressive disability of motor function. The etiology of PD remains uncertain. Genetic variability in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of sporadic and familial PD. LRRK2 encodes a large protein containing three catalytic and four protein-protein interaction domains. Patients with LRRK2 mutations exhibit a clinical and pathological phenotype indistinguishable from sporadic PD. Recent studies have shown that pathological mutations of LRRK2 can reduce the rate of guanosine triphosphate (GTP) hydrolysis, increase kinase activity and GTP binding activity, and subsequently cause cell death. The process of cell death involves several signaling pathways, including the autophagic–lysosomal pathway, intracellular trafficking, mitochondrial dysfunction, and the ubiquitin–proteasome system. This review summarizes the cellular function and pathophysiology of LRRK2 ROCO domain mutations in PD and the perspective of therapeutic approaches.
Collapse
Affiliation(s)
- Meng-Ling Chen
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Da-an Dist, Taipei City, 10617, Taiwan.,Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, No. 7, Chung-Shan South Road, Zhongzheng Dist, Taipei City, 10002, Taiwan
| | - Ruey-Meei Wu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Da-an Dist, Taipei City, 10617, Taiwan. .,Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, No. 7, Chung-Shan South Road, Zhongzheng Dist, Taipei City, 10002, Taiwan.
| |
Collapse
|
32
|
Fujikake N, Shin M, Shimizu S. Association Between Autophagy and Neurodegenerative Diseases. Front Neurosci 2018; 12:255. [PMID: 29872373 PMCID: PMC5972210 DOI: 10.3389/fnins.2018.00255] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/03/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a phylogenetically conserved mechanism that controls the degradation of subcellular constituents, including misfolded proteins, and damaged organelles. The progression of many neurodegenerative diseases is thought to be driven by the aggregation of misfolded proteins; therefore, autophagic activity is thought to affect disease severity to some extent. In some neurodegenerative diseases, the suppression of autophagic activity accelerates disease progression. Given that the induction of autophagy can potentially mitigate disease severity, various autophagy-inducing compounds have been developed and their efficacy has been evaluated in several rodent models of neurodegenerative diseases.
Collapse
|
33
|
Dilliott AA, Farhan SMK, Ghani M, Sato C, Liang E, Zhang M, McIntyre AD, Cao H, Racacho L, Robinson JF, Strong MJ, Masellis M, Bulman DE, Rogaeva E, Lang A, Tartaglia C, Finger E, Zinman L, Turnbull J, Freedman M, Swartz R, Black SE, Hegele RA. Targeted Next-generation Sequencing and Bioinformatics Pipeline to Evaluate Genetic Determinants of Constitutional Disease. J Vis Exp 2018. [PMID: 29683450 PMCID: PMC5933375 DOI: 10.3791/57266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing (NGS) is quickly revolutionizing how research into the genetic determinants of constitutional disease is performed. The technique is highly efficient with millions of sequencing reads being produced in a short time span and at relatively low cost. Specifically, targeted NGS is able to focus investigations to genomic regions of particular interest based on the disease of study. Not only does this further reduce costs and increase the speed of the process, but it lessens the computational burden that often accompanies NGS. Although targeted NGS is restricted to certain regions of the genome, preventing identification of potential novel loci of interest, it can be an excellent technique when faced with a phenotypically and genetically heterogeneous disease, for which there are previously known genetic associations. Because of the complex nature of the sequencing technique, it is important to closely adhere to protocols and methodologies in order to achieve sequencing reads of high coverage and quality. Further, once sequencing reads are obtained, a sophisticated bioinformatics workflow is utilized to accurately map reads to a reference genome, to call variants, and to ensure the variants pass quality metrics. Variants must also be annotated and curated based on their clinical significance, which can be standardized by applying the American College of Medical Genetics and Genomics Pathogenicity Guidelines. The methods presented herein will display the steps involved in generating and analyzing NGS data from a targeted sequencing panel, using the ONDRISeq neurodegenerative disease panel as a model, to identify variants that may be of clinical significance.
Collapse
Affiliation(s)
- Allison A Dilliott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Harvard Medical School, Massachusetts General Hospital, Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard
| | - Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto
| | - Eric Liang
- School of Medicine, Faculty of Health Sciences, Queen's University
| | - Ming Zhang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University
| | - Henian Cao
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University
| | - Lemuel Racacho
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa; CHEO Research Institute, Faculty of Medicine, University of Ottawa
| | - John F Robinson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University
| | - Michael J Strong
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University; Department of Clinical Neurological Sciences, Western University
| | - Mario Masellis
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Division of Neurology, Department of Medicine, University of Toronto
| | - Dennis E Bulman
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa; CHEO Research Institute, Faculty of Medicine, University of Ottawa
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto
| | - Anthony Lang
- Division of Neurology, Department of Medicine, University of Toronto; Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital
| | - Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto; Division of Neurology, Department of Medicine, University of Toronto
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University; Parkwood Institute, St. Joseph's Health Care
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto
| | - John Turnbull
- Department of Medicine, Division of Neurology, McMaster University
| | - Morris Freedman
- Division of Neurology, Department of Medicine, University of Toronto; Division of Neurology, Department of Medicine, Baycrest Health Sciences
| | - Rick Swartz
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto
| | - Sandra E Black
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Canadian Partnership for Stroke Recovery Sunnybrook Site, Sunnybrook Health Science Centre, University of Toronto
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University;
| |
Collapse
|
34
|
Perez Carrion M, Pischedda F, Biosa A, Russo I, Straniero L, Civiero L, Guida M, Gloeckner CJ, Ticozzi N, Tiloca C, Mariani C, Pezzoli G, Duga S, Pichler I, Pan L, Landers JE, Greggio E, Hess MW, Goldwurm S, Piccoli G. The LRRK2 Variant E193K Prevents Mitochondrial Fission Upon MPP+ Treatment by Altering LRRK2 Binding to DRP1. Front Mol Neurosci 2018. [PMID: 29541021 PMCID: PMC5835904 DOI: 10.3389/fnmol.2018.00064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains, including 13 putative armadillo-type repeats at the N-terminus. In this study, we analyzed the functional and molecular consequences of a novel variant, E193K, identified in an Italian family. E193K substitution does not influence LRRK2 kinase activity. Instead it affects LRRK2 biochemical properties, such as phosphorylation at Ser935 and affinity for 14-3-3ε. Primary fibroblasts obtained from an E193K carrier demonstrated increased cellular toxicity and abnormal mitochondrial fission upon 1-methyl-4-phenylpyridinium treatment. We found that E193K alters LRRK2 binding to DRP1, a crucial mediator of mitochondrial fission. Our data support a role for LRRK2 as a scaffolding protein influencing mitochondrial fission.
Collapse
Affiliation(s)
- Maria Perez Carrion
- Dulbecco Telethon Institute, CIBIO, Università degli Studi di Trento, Trento, Italy
| | - Francesca Pischedda
- Dulbecco Telethon Institute, CIBIO, Università degli Studi di Trento, Trento, Italy
| | - Alice Biosa
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Isabella Russo
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | | | - Laura Civiero
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Marianna Guida
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christian J Gloeckner
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Nicola Ticozzi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, Milan, Italy
| | - Cinzia Tiloca
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, Milan, Italy
| | | | - Gianni Pezzoli
- Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy
| | - Stefano Duga
- Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Lifeng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, University of Massachusetts, Worcester, MA, United States
| | - Elisa Greggio
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Michael W Hess
- Division of Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | - Stefano Goldwurm
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, Milan, Italy.,Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Giovanni Piccoli
- Dulbecco Telethon Institute, CIBIO, Università degli Studi di Trento, Trento, Italy
| |
Collapse
|
35
|
Subramaniam SR, Federoff HJ. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Front Aging Neurosci 2017. [PMID: 28642697 PMCID: PMC5463358 DOI: 10.3389/fnagi.2017.00176] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Parkinson’s disease (PD) is a chronic and progressive disorder characterized neuropathologically by loss of dopamine neurons in the substantia nigra, intracellular proteinaceous inclusions, reduction of dopaminergic terminals in the striatum, and increased neuroinflammatory cells. The consequent reduction of dopamine in the basal ganglia results in the classical parkinsonian motor phenotype. A growing body of evidence suggest that neuroinflammation mediated by microglia, the resident macrophage-like immune cells in the brain, play a contributory role in PD pathogenesis. Microglia participate in both physiological and pathological conditions. In the former, microglia restore the integrity of the central nervous system and, in the latter, they promote disease progression. Microglia acquire different activation states to modulate these cellular functions. Upon activation to the M1 phenotype, microglia elaborate pro-inflammatory cytokines and neurotoxic molecules promoting inflammation and cytotoxic responses. In contrast, when adopting the M2 phenotype microglia secrete anti-inflammatory gene products and trophic factors that promote repair, regeneration, and restore homeostasis. Relatively little is known about the different microglial activation states in PD and a better understanding is essential for developing putative neuroprotective agents. Targeting microglial activation states by suppressing their deleterious pro-inflammatory neurotoxicity and/or simultaneously enhancing their beneficial anti-inflammatory protective functions appear as a valid therapeutic approach for PD treatment. In this review, we summarize microglial functions and, their dual neurotoxic and neuroprotective role in PD. We also review molecules that modulate microglial activation states as a therapeutic option for PD treatment.
Collapse
Affiliation(s)
| | - Howard J Federoff
- Department of Neurology, University of California, Irvine, Irvine, CAUnited States
| |
Collapse
|
36
|
Son MY, Sim H, Son YS, Jung KB, Lee MO, Oh JH, Chung SK, Jung CR, Kim J. Distinctive genomic signature of neural and intestinal organoids from familial Parkinson's disease patient-derived induced pluripotent stem cells. Neuropathol Appl Neurobiol 2017; 43:584-603. [PMID: 28235153 DOI: 10.1111/nan.12396] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/22/2017] [Accepted: 02/19/2017] [Indexed: 02/06/2023]
Abstract
AIMS The leucine-rich repeat kinase 2 (LRRK2) G2019S mutation is the most common genetic cause of Parkinson's disease (PD). There is compelling evidence that PD is not only a brain disease but also a gastrointestinal disorder; nonetheless, its pathogenesis remains unclear. We aimed to develop human neural and intestinal tissue models of PD patients harbouring an LRRK2 mutation to understand the link between LRRK2 and PD pathology by investigating the gene expression signature. METHODS We generated PD patient-specific induced pluripotent stem cells (iPSCs) carrying an LRRK2 G2019S mutation (LK2GS) and then differentiated into three-dimensional (3D) human neuroectodermal spheres (hNESs) and human intestinal organoids (hIOs). To unravel the gene and signalling networks associated with LK2GS, we analysed differentially expressed genes in the microarray data by functional clustering, gene ontology (GO) and pathway analyses. RESULTS The expression profiles of LK2GS were distinct from those of wild-type controls in hNESs and hIOs. The most represented GO biological process in hNESs and hIOs was synaptic transmission, specifically synaptic vesicle trafficking, some defects of which are known to be related to PD. The results were further validated in four independent PD-specific hNESs and hIOs by microarray and qRT-PCR analysis. CONCLUSION We provide the first evidence that LK2GS also causes significant changes in gene expression in the intestinal cells. These hNES and hIO models from the same genetic background of PD patients could be invaluable resources for understanding PD pathophysiology and for advancing the complexity of in vitro models with 3D expandable organoids.
Collapse
Affiliation(s)
- M-Y Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - H Sim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Y S Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - K B Jung
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - M-O Lee
- Immunotherapy Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - J-H Oh
- Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.,Department of human and environmental toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - S-K Chung
- Medical Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - C-R Jung
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - J Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
37
|
Artzi M, Even-Sapir E, Lerman Shacham H, Thaler A, Urterger AO, Bressman S, Marder K, Hendler T, Giladi N, Ben Bashat D, Mirelman A. DaT-SPECT assessment depicts dopamine depletion among asymptomatic G2019S LRRK2 mutation carriers. PLoS One 2017; 12:e0175424. [PMID: 28406934 PMCID: PMC5391020 DOI: 10.1371/journal.pone.0175424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Identification of early changes in Dopamine-Transporter (DaT) SPECT imaging expected in the prodromal phase of Parkinson’s disease (PD), are usually overlooked. Carriers of the G2019S LRRK2 mutation are known to be at high risk for developing PD, compared to non-carriers. In this work we aimed to study early changes in Dopamine uptake in non-manifesting PD carriers (NMC) of the G2019S LRRK2 mutation using quantitative DaT-SPECT analysis and to examine the potential for early prediction of PD. Eighty Ashkenazi-Jewish subjects were included in this study: eighteen patients with PD; thirty-one NMC and thirty-one non-manifesting non-carriers (NMNC). All subjects underwent a through clinical assessment including evaluation of motor, olfactory, affective and non-motor symptoms and DaT-SPECT imaging. A population based DaT-SPECT template was created based on the NMNC cohort, and data driven volumes-of-interest (VOIs) were defined. Comparisons between groups were performed based on VOIs and voxel-wise analysis. The striatum area of all three cohorts was segmented into four VOIs, corresponding to the right/left dorsal and ventral striatum. Significant differences in clinical measures were found between patients with PD and non-manifesting subjects with no differences between NMC and NMNC. Significantly lower uptake (p<0.001) was detected in the right and left dorsal striatum in the PD group (2.2±0.3, 2.3±0.4) compared to the NMC (4.2±0.6, 4.3±0.5) and NMNC (4.5±0.6, 4.6±0.6), and significantly (p = 0.05) lower uptake in the right dorsal striatum in the NMC group compared to NMNC. Converging results were obtained using voxel-wise analysis. Two NMC participants, who later phenoconverted into PD, demonstrated reduced uptake mainly in the dorsal striatum. No significant correlations were found between the DaT-SPECT uptake in the different VOIs and clinical and behavioral assessments in the non-manifesting groups. This study shows the clinical value of quantitative assessment of DaT-SPECT imaging and the potential for predicting PD by detection of dopamine depletion, already at the pre-symptomatic stage. Clinical registration numbers: NCT01089270 and NCT01089283.
Collapse
Affiliation(s)
- Moran Artzi
- Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Einat Even-Sapir
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hedva Lerman Shacham
- Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avi Orr Urterger
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Susan Bressman
- Columbia University, Columbia University Medical Center, New-York, New York, United States of America
| | - Karen Marder
- Mount Sinai-Beth Israel Medical Center, New York, New York, United States of America
| | - Talma Hendler
- Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Psychology, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dafna Ben Bashat
- Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| | - Anat Mirelman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegenertion, Neurology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
38
|
Inda C, Bolaender A, Wang T, Gandu SR, Koren J. Stressing Out Hsp90 in Neurotoxic Proteinopathies. Curr Top Med Chem 2017; 16:2829-38. [PMID: 27072699 DOI: 10.2174/1568026616666160413141350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/05/2016] [Accepted: 01/17/2016] [Indexed: 12/12/2022]
Abstract
A toxic accumulation of proteins is the hallmark pathology of several neurodegenerative disorders. Protein accumulation is regularly prevented by the network of molecular chaperone proteins, including and especially Hsp90. For reasons not yet elucidated, Hsp90 and the molecular chaperones interact with, but do not degrade, these toxic proteins resulting in the pathogenic accumulation of proteins such as tau, in Alzheimer's Disease, and α-synuclein, in Parkinson's Disease. In this review, we describe the associations between Hsp90 and the pathogenic and driver proteins of several neurodegenerative disorders. We additionally describe how the inhibition of Hsp90 promotes the degradation of both mutant and pathogenic protein species in models of neurodegenerative diseases. We also examine the current state of Hsp90 inhibitors capable of crossing the blood-brain barrier; compounds which may be capable of slowing, preventing, and possible reversing neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - John Koren
- Program in Chemical Biology, Memorial Sloan-Kettering Cancer Center, New York, USA.
| |
Collapse
|
39
|
Language Deficits as a Preclinical Window into Parkinson's Disease: Evidence from Asymptomatic Parkin and Dardarin Mutation Carriers. J Int Neuropsychol Soc 2017; 23:150-158. [PMID: 28205494 DOI: 10.1017/s1355617716000710] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The worldwide spread of Parkinson's disease (PD) calls for sensitive and specific measures enabling its early (or, ideally, preclinical) detection. Here, we use language measures revealing deficits in PD to explore whether similar disturbances are present in asymptomatic individuals at risk for the disease. METHODS We administered executive, semantic, verb-production, and syntactic tasks to sporadic PD patients, genetic PD patients with PARK2 (parkin) or LRRK2 (dardarin) mutation, asymptomatic first-degree relatives of the latter with similar mutations, and socio-demographically matched controls. Moreover, to detect sui generis language disturbances, we ran analysis of covariance tests using executive functions as covariate. RESULTS The two clinical groups showed impairments in all measures, most of which survived covariation with executive functions. However, the key finding concerned asymptomatic mutation carriers. While these subjects showed intact executive, semantic, and action-verb production skills, they evinced deficits in a syntactic test with minimal working memory load. CONCLUSIONS We propose that this sui generis disturbance may constitute a prodromal sign anticipating eventual development of PD. Moreover, our results suggest that mutations on specific genes (PARK2 and LRRK2) compromising basal ganglia functioning may be subtly related to language-processing mechanisms. (JINS, 2017, 23, 150-158).
Collapse
|
40
|
Monfrini E, Di Fonzo A. Leucine-Rich Repeat Kinase (LRRK2) Genetics and Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2017; 14:3-30. [PMID: 28353276 DOI: 10.1007/978-3-319-49969-7_1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The discovery of LRRK2 mutations as a cause of Parkinson's disease (PD), including the sporadic late-onset form, established the decisive role of genetics in the field of PD research. Among LRRK2 mutations, the G2019S, mostly lying in a haplotype originating from a common Middle Eastern ancestor, has been identified in different populations worldwide. The G2385R and R1628P variants represent validated risk factors for PD in Asian populations. Here, we describe in detail the origin, the present worldwide epidemiology, and the penetrance of LRRK2 mutations. Furthermore, this chapter aims to characterize other definitely/probably pathogenic mutations and risk variants of LRRK2. Finally, we provide some general guidelines for a LRRK2 genetic testing and counseling. In summary, LRRK2 discovery revolutionized the understanding of PD etiology and laid the foundation for a promising future of genetics in PD research.
Collapse
Affiliation(s)
- Edoardo Monfrini
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
41
|
Kasten M, Marras C, Klein C. Nonmotor Signs in Genetic Forms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:129-178. [DOI: 10.1016/bs.irn.2017.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Speidel A, Felk S, Reinhardt P, Sterneckert J, Gillardon F. Leucine-Rich Repeat Kinase 2 Influences Fate Decision of Human Monocytes Differentiated from Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0165949. [PMID: 27812199 PMCID: PMC5094768 DOI: 10.1371/journal.pone.0165949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are strongly associated with familial Parkinson’s disease (PD). High expression levels in immune cells suggest a role of LRRK2 in regulating the immune system. In this study, we investigated the effect of the LRRK2 (G2019S) mutation in monocytes, using a human stem cell-derived model expressing LRRK2 at endogenous levels. We discovered alterations in the differentiation pattern of LRRK2 mutant, compared to non-mutant isogenic controls, leading to accelerated monocyte production and a reduction in the non-classical CD14+CD16+ monocyte subpopulation in the LRRK2 mutant cells. LPS-treatment of the iPSC-derived monocytes significantly increased the release of pro-inflammatory cytokines, demonstrating a functional response without revealing any significant differences between the genotypes. Assessment of the migrational capacity of the differentiated monocytes revealed moderate deficits in LRRK2 mutant cells, compared to their respective controls. Our findings indicate a pivotal role of LRRK2 in hematopoietic fate decision, endorsing the involvement of the immune system in the development of PD.
Collapse
Affiliation(s)
- Anna Speidel
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sandra Felk
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Peter Reinhardt
- CRTD / DFG-Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Jared Sterneckert
- CRTD / DFG-Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Frank Gillardon
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- * E-mail:
| |
Collapse
|
43
|
Russo I, Berti G, Plotegher N, Bernardo G, Filograna R, Bubacco L, Greggio E. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. J Neuroinflammation 2015; 12:230. [PMID: 26646749 PMCID: PMC4673731 DOI: 10.1186/s12974-015-0449-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Background Over-activated microglia and chronic neuroinflammation contribute to dopaminergic neuron degeneration and progression of Parkinson’s disease (PD). Leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in autosomal dominantly inherited and sporadic PD cases, is highly expressed in immune cells, in which it regulates inflammation through a yet unclear mechanism. Methods Here, using pharmacological inhibition and cultured Lrrk2−/− primary microglia cells, we validated LRRK2 as a positive modulator of inflammation and we investigated its specific function in microglia cells. Results Inhibition or genetic deletion of LRRK2 causes reduction of interleukin-1β and cyclooxygenase-2 expression upon lipopolysaccharide-mediated inflammation. LRRK2 also takes part of the signaling trigged by α-synuclein fibrils, which culminates in induction of inflammatory mediators. At the molecular level, loss of LRRK2 or inhibition of its kinase activity results in increased phosphorylation of nuclear factor kappa-B (NF-κB) inhibitory subunit p50 at S337, a protein kinase A (PKA)-specific phosphorylation site, with consequent accumulation of p50 in the nucleus. Conclusions Taken together, these findings point to a role of LRRK2 in microglia activation and sustainment of neuroinflammation and in controlling of NF-κB p50 inhibitory signaling. Understanding the molecular pathways coordinated by LRRK2 in activated microglia cells after pathological stimuli such us fibrillar α-synuclein holds the potential to provide novel targets for PD therapeutics.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Giulia Berti
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.,Current address: Department of Cell and Developmental Biology, University College London, London, UK
| | - Greta Bernardo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Roberta Filograna
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.,Current address: Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Luigi Bubacco
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
44
|
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder in the aged population and thought to involve many genetic loci. While a number of individual single nucleotide polymorphisms (SNPs) have been linked with PD, many remain to be found and no known markers or combinations of them have a useful predictive value for sporadic PD cases. The collective effects of genome wide minor alleles of common SNPs, or the minor allele content (MAC) in an individual, have recently been shown to be linked with quantitative variations of numerous complex traits in model organisms with higher MAC more likely linked with lower fitness. Here we found that PD cases had higher MAC than matched controls. A set of 37564 SNPs with MA (MAF < 0.4) more common in cases (P < 0.05) was found to have the best predictive accuracy. A weighted risk score calculated by using this set can predict 2% of PD cases (100% specificity), which is comparable to using familial PD genes to identify familial PD cases. These results suggest a novel genetic component in PD and provide a useful genetic method to identify a small fraction of PD cases.
Collapse
|
45
|
Stojkovska I, Wagner BM, Morrison BE. Parkinson's disease and enhanced inflammatory response. Exp Biol Med (Maywood) 2015; 240:1387-95. [PMID: 25769314 DOI: 10.1177/1535370215576313] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/21/2015] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the first and second most prevalent motor and neurodegenerative disease, respectively. The clinical symptoms of PD result from a loss of midbrain dopaminergic (DA) neurons. However, the molecular cause of DA neuron loss remains elusive. Mounting evidence implicates enhanced inflammatory response in the development and progression of PD pathology. This review examines current research connecting PD and inflammatory response.
Collapse
Affiliation(s)
- Iva Stojkovska
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - Brandon M Wagner
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - Brad E Morrison
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| |
Collapse
|
46
|
Chien HF, Figueiredo TR, Hollaender MA, Tofoli F, Takada LT, Pereira LDV, Barbosa ER. Frequency of the LRRK2 G2019S mutation in late-onset sporadic patients with Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:356-9. [PMID: 24863511 DOI: 10.1590/0004-282x20140019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/22/2014] [Indexed: 11/22/2022]
Abstract
UNLABELLED Mutations in the LRRK2 gene, predominantly G2019S, have been reported in individuals with autosomal dominant inheritance and sporadic Parkinson's disease (PD). The G2019S mutation has an age-dependent penetrance and evidence shows common ancestry. The clinical manifestations are indistinguishable from idiopathic PD. Its prevalence varies according to the population studied ranging from less than 0.1% in Asians to 41% in North African Arabs. This study aimed to identify G2019S mutation in Brazilian idiopathic PD patients. METHOD We sampled 100 PD patients and 100 age- and gender-matched controls. Genetical analysis was accomplished by polymerase chain reaction (PCR). RESULTS No G2019S mutations were found in both patients with sporadic PD and controls. CONCLUSIONS Our results may be explained by the relatively small sample size.
Collapse
Affiliation(s)
- Hsin Fen Chien
- Departamento de Neurologia, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | | | | | - Fabiano Tofoli
- Laboratório de Genética Molecular, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Leonel Takao Takada
- Departamento de Neurologia, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Lygia da Veiga Pereira
- Laboratório de Genética Molecular, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
47
|
Rudenko IN, Cookson MR. Heterogeneity of leucine-rich repeat kinase 2 mutations: genetics, mechanisms and therapeutic implications. Neurotherapeutics 2014; 11:738-50. [PMID: 24957201 PMCID: PMC4391379 DOI: 10.1007/s13311-014-0284-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Variation within and around the leucine-rich repeat kinase 2 (LRRK2) gene is associated with familial and sporadic Parkinson's disease (PD). Here, we discuss the prevalence of LRRK2 substitutions in different populations and their association with PD, as well as molecular and cellular mechanisms of pathologically relevant LRRK2 mutations. Kinase activation was proposed as a universal molecular mechanism for all pathogenic LRRK2 mutations, but later reports revealed heterogeneity in the effect of mutations on different activities of LRRK2. One mutation (G2019S) increases kinase activity, whereas mutations in the Ras of complex proteins (ROC)-C-terminus of ROC (COR) bidomain impair the GTPase function of LRRK2. Some risk factor variants, including G2385R in the WD40 domain, actually decrease the kinase activity of LRRK2. We suggest a model where LRRK2 mutations exert different molecular mechanisms but interfere with normal cellular function of LRRK2 at different levels of the same downstream pathway. Finally, we discuss the current state of therapeutic approaches for LRRK2-related PD.
Collapse
Affiliation(s)
- Iakov N. Rudenko
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
48
|
Sheerin UM, Houlden H, Wood NW. Advances in the Genetics of Parkinson's Disease: A Guide for the Clinician. Mov Disord Clin Pract 2014; 1:3-13. [PMID: 30363913 DOI: 10.1002/mdc3.12000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/13/2022] Open
Abstract
Over the last 16 years, insights in clinical and genetic characteristics of Parkinson's disease (PD) have increased substantially. We summarize the clinical, genetic, and pathological findings of autosomal dominant PD linked to mutations in SNCA, leucine-rich repeat kinase 2, vacuolar protein sorting-35, and eukaryotic translation initiation factor 4 gamma 1 and autosomal recessive PD linked to parkin,PINK1, and DJ-1, as well as autosomal recessive complicated parkinsonian syndromes caused by mutations in ATP13A2,FBXO7,PLA2G6,SYNJ1, and DNAJC6. We also review the advances in high- and low-risk genetic susceptibility factors and present multisystem disorders that may present with parkinsonism as the major clinical feature and provide recommendations for prioritization of genetic testing. Finally, we consider the challenges of future genetic research in PD.
Collapse
Affiliation(s)
- Una-Marie Sheerin
- Department of Molecular Neuroscience UCL Institute of Neurology University College London London United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience UCL Institute of Neurology University College London London United Kingdom
| | - Nicholas W Wood
- UCL Department of Molecular Neuroscience and UCL Genetics Institute University College London London United Kingdom
| |
Collapse
|
49
|
LRRK2 and neuroinflammation: partners in crime in Parkinson's disease? J Neuroinflammation 2014; 11:52. [PMID: 24655756 PMCID: PMC3994422 DOI: 10.1186/1742-2094-11-52] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/25/2014] [Indexed: 02/07/2023] Open
Abstract
It is now well established that chronic inflammation is a prominent feature of several neurodegenerative disorders including Parkinson’s disease (PD). Growing evidence indicates that neuroinflammation can contribute greatly to dopaminergic neuron degeneration and progression of the disease. Recent literature highlights that leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in both autosomal-dominantly inherited and sporadic PD cases, modulates inflammation in response to different pathological stimuli. In this review, we outline the state of the art of LRRK2 functions in microglia cells and in neuroinflammation. Furthermore, we discuss the potential role of LRRK2 in cytoskeleton remodeling and vesicle trafficking in microglia cells under physiological and pathological conditions. We also hypothesize that LRRK2 mutations might sensitize microglia cells toward a pro-inflammatory state, which in turn results in exacerbated inflammation with consequent neurodegeneration.
Collapse
|
50
|
Sheta EA, Appel SH, Goldknopf IL. 2D gel blood serum biomarkers reveal differential clinical proteomics of the neurodegenerative diseases. Expert Rev Proteomics 2014; 3:45-62. [PMID: 16445350 DOI: 10.1586/14789450.3.1.45] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review addresses the challenges of neuroproteomics and recent progress in biomarkers and tests for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The review will discuss how the application of quantitative 2D gel electrophoresis, combined with appropriate single-variable and multivariate biostatistics, allows for selection of disease-specific serum biomarkers. It will also address how the use of large cohorts of specifically targeted patient blood serum samples and complimentary age-matched controls, in parallel with the use of selected panels of these biomarkers, are being applied to the development of blood tests to specifically address unmet pressing needs in the differential diagnosis of these diseases, and to provide potential avenues for mechanism-based drug targeting and treatment monitoring. While exploring recent findings in this area, the review discusses differences in critical pathways of immune/inflammation and amyloid formation between Parkinson's disease and amyotrophic lateral sclerosis, as well as discernable synergistic relationships between these pathways that are revealed by this approach. The potential for pathway measurement in blood tests for differential diagnosis, disease burden and therapeutic monitoring is also outlined.
Collapse
Affiliation(s)
- Essam A Sheta
- Power3 Medical Products, Inc., The Woodlands, TX 77381, USA.
| | | | | |
Collapse
|