1
|
Marchand G, Wingert L, Viegas C, Caetano L, Viegas S, Twaruzek M, Lacombe N, Lanoie D, Valois I, Gouin F, Soszczyńska E, Kosicki R, Dias M, Debia M. Assessment of waste workers occupational risk to microbial agents and cytotoxic effects of mixed contaminants present in the air of waste truck cabin and ventilation filters. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:145-162. [PMID: 38166349 DOI: 10.1080/10962247.2023.2299424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
Workers in the waste-processing industry are potentially exposed to high concentrations of biological contaminants, leading to respiratory and digestive problems and skin irritations. However, few data on the exposure of waste collection truck (WCT) drivers are available. The goal was to document the microbial risk of the waste collection truck (WCT) workers while in the vehicle cab. Long-period sampling using the truck air filters (CAF) and short time ambient air sampling in the cab were used. The potential release of microbial particles from CAFs was also investigated since it could contribute to the microbial load of the cabin air. A combination of analytical methods also helped assess the complex mixture of the biological agents. Aspergillus sections Fumigati and Flavi, E. coli, Enterobacter spp. and Legionella spp. were detected in the CAF of trucks collecting three types of waste. The highest levels of bacteria and fungi were found in the CAF from organic WCT. The highest endotoxin concentrations in CAF were 300 EU/cm2. Most of the CAF showed cytotoxic effects on both lung cells and hepatocytes. Only one mycotoxin was detected in a CAF. The maximal concentrations in the ambient WCT air varied according to the type of waste collected. The highest proportion (84%) of the air samples without cytotoxic effects on the lungs cells was for the recyclable material WCTs. The results revealed the potential microbial risk to workers from a complex mixture of bio-contaminants in the cabs of vehicles collecting all types of waste. The sustained cytotoxic effect indicates the potential adverse health-related impact of mixed contaminants (biological and non-biological) for the workers. Overall, this study highlights the benefits of using complementary sampling strategy and combined analytical methods for a the assessment of the microbial risk in work environments and the need to implement protective measures for the workers.Implications: Exposure to microbial agents is a well-known occupational hazard in the waste management sector. No previous study had evaluated the cytotoxicity of ambient air and ventilation filters to document worker exposure to a combination of contaminants during waste collection. This research confirms the usefulness of ventilation filters for long-term characterization of exposure to infectious agents, azole-resistant fungi, coliform bacteria and mycotoxin. Overall, this study highlights the importance of using several sampling and analysis methods for a comprehensive assessment of microbial risk in work environments, as well as the need to implement appropriate protective measures for collection workers.
Collapse
Affiliation(s)
- Genevieve Marchand
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Loïc Wingert
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Carla Viegas
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, In-stituto Politécnico de Lisboa, Lisboa, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Liliana Caetano
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, In-stituto Politécnico de Lisboa, Lisboa, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Magdalena Twaruzek
- Faculty of Biological Sciences, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Nancy Lacombe
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Delphine Lanoie
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Isabelle Valois
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
| | - Francois Gouin
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Ewelina Soszczyńska
- Faculty of Biological Sciences, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Robert Kosicki
- Faculty of Biological Sciences, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Marta Dias
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, In-stituto Politécnico de Lisboa, Lisboa, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
| |
Collapse
|
2
|
Viegas C, Eriksen E, Gomes B, Dias M, Cervantes R, Pena P, Carolino E, Twarużek M, Caetano LA, Viegas S, Graff P, Afanou AK, Straumfors A. Comprehensive assessment of occupational exposure to microbial contamination in waste sorting facilities from Norway. Front Public Health 2023; 11:1297725. [PMID: 38179569 PMCID: PMC10766354 DOI: 10.3389/fpubh.2023.1297725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction It is of upmost importance to contribute to fill the knowledge gap concerning the characterization of the occupational exposure to microbial agents in the waste sorting setting (automated and manual sorting). Methods This study intends to apply a comprehensive field sampling and laboratory protocol (culture based-methods and molecular tools), assess fungal azole resistance, as well as to elucidate on potential exposure related health effects (cytotoxicity analyses). Skin-biota samples (eSwabs) were performed on workers and controls to identify other exposure routes. Results In personal filter samples the guidelines in one automated industry surpassed the guidelines for fungi. Seasonal influence on viable microbial contamination including fungi with reduced susceptibility to the tested azoles was observed, besides the observed reduced susceptibility of pathogens of critical priority (Mucorales and Fusarium sp.). Aspergillus sections with potential toxigenic effect and with clinical relevance were also detected in all the sampling methods. Discussion The results regarding skin-biota in both controls´ and workers´ hands claim attention for the possible exposure due to hand to face/mouth contact. This study allowed concluding that working in automated and manual waste sorting plants imply high exposure to microbial agents.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Elke Eriksen
- National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Bianca Gomes
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CE3C – Center for Ecology, Evolution and Environmental Change, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Dias
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Renata Cervantes
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Pedro Pena
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza, Bydgoszcz, Poland
| | - Liliana Aranha Caetano
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed.uLisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Pål Graff
- National Institute of Occupational Health (STAMI), Oslo, Norway
| | | | - Anne Straumfors
- National Institute of Occupational Health (STAMI), Oslo, Norway
| |
Collapse
|
3
|
Eriksen E, Afanou AK, Straumfors A, Graff P. Bioaerosol-induced in vitro activation of toll-like receptors and inflammatory biomarker expression in waste workers. Int Arch Occup Environ Health 2023; 96:985-998. [PMID: 37243736 PMCID: PMC10361871 DOI: 10.1007/s00420-023-01984-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE Occupational exposure to bioaerosols during waste handling remains a health concern for exposed workers. However, exposure-related health effects and underlying immunological mechanisms are still poorly described. METHODS The present study assessed the inflammatory potential of work-air samples (n = 56) in vitro and investigated biomarker expression in exposed workers (n = 69) compared to unexposed controls (n = 25). These quantitative results were compared to self-reported health conditions. RESULTS Personal air samples provoked an activation of TLR2 and TLR4 HEK reporter cells in one-third of all samples, indicating that the work environment contained ligands capable of inducing an immune response in vitro. Monocyte levels, as well as plasma biomarker levels, such as IL-1Ra, IL-18 and TNFα were significantly higher in exposed workers, compared to the control group when confounding factors such as BMI, sex, age and smoking habits were accounted for. Furthermore, a significant exposure-related increase in midweek IL-8 levels was measured among exposed workers. Tendencies of increased prevalence of health effects of the respiratory tract were identified in exposed workers. CONCLUSION Inhalable dust provoked TLR activation in vitro, indicating that an exposure-related immune response may be expected in susceptible workers. However, despite significant differences in inflammatory plasma biomarker levels between exposed and unexposed workers, prevalence of self-reported health effects did not differ between the groups. This may be due to the healthy worker effect, or other factors such as adequate use of personal protective respiratory devices or adaptation to the work environment with reduced activation of the immune system.
Collapse
Affiliation(s)
- Elke Eriksen
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway.
| | - Anani Komlavi Afanou
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Anne Straumfors
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Pål Graff
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| |
Collapse
|
4
|
Eriksen E, Madsen AM, Afanou AK, Straumfors A, Eiler A, Graff P. Occupational exposure to inhalable pathogenic microorganisms in waste sorting. Int J Hyg Environ Health 2023; 253:114240. [PMID: 37633050 DOI: 10.1016/j.ijheh.2023.114240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
This study assessed microorganisms in personal inhalable work air samples aiming to identify potential human pathogens, and correlate exposure to adverse health outcomes in waste workers. Full-shift personal exposure was measured in six different waste sorting plants. Microbial concentrations in inhalable air samples were analysed using MALDI-TOF MS for cultivable, and next generation sequencing (NGS) for non-cultivable microorganisms. Concentrations of bacterial and fungal CFUs varied substantially within and between waste sorting plants, ranging from no identifiable organisms to a maximum concentration in the order of 105 CFU/m3. Bacillus and Staphylococcus were among the most abundant bacterial genera, whilst fungal genera were dominated by Aspergillus and Penicillium. Approximately 15% of all identified species were human pathogens classified in risk group 2, whereas 7% belonged to risk group 1. Furthermore, significant correlations between concentrations of fungi in risk group 1 and self-reported adverse symptoms, such as wheezing were identified in exposed workers. The combination of culture-based methods and NGS facilitated the investigation of infectious microbial species with potential pathophysiological properties as well as non-infectious biological agents in inhalable work air samples and thereby contributed to the risk assessment of occupational exposure in waste sorting.
Collapse
Affiliation(s)
- Elke Eriksen
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway; Section for Aquatic Biology and Toxicology, Department of Biosciences, Centre for Biogeochemistry in the Anthropocene, University of Oslo, 0316, Oslo, Norway.
| | - Anne Mette Madsen
- The National Research Center for Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Anani Komlavi Afanou
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Anne Straumfors
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Alexander Eiler
- Section for Aquatic Biology and Toxicology, Department of Biosciences, Centre for Biogeochemistry in the Anthropocene, University of Oslo, 0316, Oslo, Norway
| | - Pål Graff
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| |
Collapse
|
5
|
Divergent TLR2 and TLR4 Activation by Fungal Spores and Species Diversity in Dust from Waste Sorting Plants. Appl Environ Microbiol 2023; 89:e0173422. [PMID: 36856441 PMCID: PMC10056968 DOI: 10.1128/aem.01734-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
This manuscript presents the results of an exploratory study on the relationships between NF-κB response through Toll-like receptor (TLR) activation by dust characterized by fungal spore concentrations and species diversity. Personal total dust samples were collected from Norwegian waste sorting plants and then characterized for fungal spores and fungal species diversity, as well as for other bioaerosol components, including endotoxins and actinobacteria. The ability of the dust to induce an NF-κB response by activating TLR2 and TLR4 in vitro was evaluated, as well as the relationship between such responses and quantifiable bioaerosol components. The average concentrations of bioaerosols were 7.23 mg total dust m-3, 4.49 × 105 fungal spores m-3, 814 endotoxin units m-3, and 0.6 × 105 actinobacteria m-3. The mean diversity measurements were 326, 0.59, and 3.39 for fungal richness, evenness, and Shannon index, respectively. Overall, fungal operational taxonomic units (OTUs) belonging to the Ascomycota phylum were most abundant (55%), followed by Basidiomycota (33%) and Mucoromycota (3%). All samples induced significant NF-κB responses through TLR2 and TLR4 activation. While fungal spore levels were positively associated with TLR2 and TLR4 activation, there was a trend that fungal species richness was negatively associated with the activation of these receptors. This observation supports the existence of divergent immunological response relationships between TLR activation and fungal spore levels on one hand and between TLR activation and fungal species diversity on the other. Such relationships seem to be described for the first time for dust from waste facilities. IMPORTANCE This manuscript presents results on multifactorial characterization of bioaerosol exposure in Norwegian waste sorting plants and the potential of such airborne dust to induce NF-κB reactions through TLR2 and TLR4 activations in an in vitro reporter cell model system. Our data revealed that increasing fungal spore levels in the dust is associated with increased activation of TLR2 and TLR4, whereas increasing fungal OTU richness is associated with decreasing activation of these receptors. The NF-κB-induced responses by the collected dust represent, therefore, effective measures of potential key immunological effects induced by a complex mixture of hazardous components, including characterized factors such as endotoxins, fungal spores, bacteria, and many other uncharacterized components. The key immunological events reported here are suggested as holistic alternatives to today's bioaerosol exposure characterization approaches for epidemiological studies in the future.
Collapse
|
6
|
Eriksen E, Afanou AK, Madsen AM, Straumfors A, Graff P. An assessment of occupational exposure to bioaerosols in automated versus manual waste sorting plants. ENVIRONMENTAL RESEARCH 2023; 218:115040. [PMID: 36521541 DOI: 10.1016/j.envres.2022.115040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Occupational exposure during waste sorting is associated with several health outcomes. This study obtained knowledge about the impact of work in fully automated waste sorting plants (AWSP; n = 3) vs manual waste sorting plants (MWSP; n = 3) on personal exposure (n = 71) to bioaerosols and exposure-related health effects. Personal full-shift air samples were collected using various filter-based active sampling devices that were placed in the workers' breathing zone. Personal exposure to inhalable and thoracic dust, endotoxin and microorganisms varied considerably between and within types of waste sorting plants (WSP). Workers at AWSP were on average exposed to 0.34 mg/m3 inhalable dust, 0.15 mg/m3 thoracic dust, and 51 EU/m3 endotoxins (geometric mean (GM) levels), whereas GM exposure levels at MWSP were 0.66 mg/m3 for inhalable dust, 0.44 mg/m3 for thoracic dust, and 32 EU/m3 for endotoxins. Exposure to submicronic fungal fragments did not differ between types of plants and ranged from levels below the detection limit (limit of detection, LOD) to levels in the order of 106 fragments/m3. Higher levels of fungal fragments and fungal spores were found at AWSP compared to MWSP with a GM of 2.1 × 105 spores/m3and with a GM of 1.2 × 105 spores/m3, respectively. Actinobacterial spores were found in samples from AWSP only, with exposure levels ranging from 1.9 × 104 to 1.1 × 107 spores/m3. Exposure to microbial DNA varied within and between WSP and was on average in the order of 104 copies/m3 for fungi and 105 copies/m3 for bacteria. Health symptoms, such as sneezing, congested nose and runny nose were significantly more common among exposed workers compared to the unexposed control group.
Collapse
Affiliation(s)
- Elke Eriksen
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway.
| | - Anani Komlavi Afanou
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Anne Mette Madsen
- The National Research Center for Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Anne Straumfors
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Pål Graff
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| |
Collapse
|
7
|
Kontro MH, Kirsi M, Laitinen SK. Exposure to bacterial and fungal bioaerosols in facilities processing biodegradable waste. Front Public Health 2022; 10:789861. [PMID: 36466510 PMCID: PMC9708704 DOI: 10.3389/fpubh.2022.789861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to determine the exposure of workers within biodegradable waste processing facilities to bacteria and fungi to identify any exposures of potential concern to health. Occupational measurements were performed in six composting and three bioenergy (bioethanol or methane/biogas) producing facilities. Bioaerosols were measured from breathing zones with Button aerosol or open face cassette filter samplers, and swab specimens were taken from the nasal mucous membranes of the workers. Aspergillus fumigatus, Bacillus cereus group, Campylobacter spp., Salmonella spp., Streptomyces spp., and Yersinia spp. were determined by real-time polymerase chain reaction (qPCR). A. fumigatus, and mesophilic and thermophilic actinobacteria were also cultivated from filters. Bacterial airborne endotoxins collected by IOM samplers were analyzed using a Limulus assay. Bioaerosol levels were high, especially in composting compared to bioenergy producing facilities. Endotoxin concentrations in composting often exceeded the occupational exposure value of 90 EU/m3, which may be harmful to the health. In addition to endotoxins, the concentrations of A. fumigatus (up to 2.4 × 105 copies/m3) and actinobacteria/Streptomyces spp. (up to 1.6 × 106 copies/m3) in the air of composting facilities were often high. Microbial and endotoxin concentrations were typically highest in waste reception and pre-treatment, equal or decreased during processing and handling of treated waste, and lowest in wheel loader cabins and control rooms/outdoors. Still, the parameters measured in wheel loader cabins were often higher than in the control sites, which suggests that the use of preventive measures could be improved. B. cereus group, Salmonella spp., and Yersinia spp. were rarely detected in bioaerosols or nasal swabs. Although Campylobacter spp. DNA was rarely detected in air, as a new finding, Campylobacter ureolyticus DNA was frequently detected in the nasal mucous membranes of workers, based on partial 16S rDNA sequencing. Moreover, especially A. fumigatus and C. ureolyticus spp. DNA concentrations in swabs after the work shift were significantly higher than before the shift, which indicates their inhalation or growth during the work shift. Microbial qPCR analysis of bioaerosols and swab samples of nasal mucosa allowed measuring exposure in various work operations and during the work shift, identifying problems for health risk assessment to improve working conditions, and evaluating the effectiveness of preventive measures and personal protection of workers.
Collapse
Affiliation(s)
- Merja H. Kontro
- Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Maija Kirsi
- Work Environment Laboratories, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Sirpa K. Laitinen
- Department of Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland,*Correspondence: Sirpa K. Laitinen
| |
Collapse
|
8
|
Field Survey on Generation Patterns of Airborne Fungi in a Livestock Manure Composting Plant in South Korea. Processes (Basel) 2022. [DOI: 10.3390/pr10112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Airborne fungi emitted from livestock manure composting plants are one of the major harmful factors causing respiratory disease for workers and nearby residents. Their generation of emissions is relatively high compared to other workplaces. This study investigated the emission characteristics of airborne fungi generated in livestock manure composting plants and utilized them as basic data to prevent workers’ health. The livestock manure composting plants selected for the survey in this study were according to the fermentation mode, including screw type, rotary type and natural dry type. The field evaluation period was from September 2019 to August 2020 and was surveyed monthly. The equipment for collecting airborne fungi was a six-stage cascade impactor. An analysis of the quantification and qualification of airborne fungi was conducted through a culture method and identification technique, respectively. The mean levels of airborne fungi in livestock manure composting plants were 1143 (±106)CFU m−3 for screw type, 552 (±146)CFU m−3 for rotary type and 434 (±73)CFU m−3 for natural dry type, respectively. Based on the results obtained from this study, the livestock manure composting plant operated by screw type showed the highest concentration of airborne fungi, followed by the rotary type and natural dry type. The monthly concentration of airborne fungi was the highest in June and the lowest in February, regardless of the livestock manure composting plant type. The concentration range of airborne fungi corresponding to the respiratory particle diameter was 40 to 60% relative to the concentration of all airborne fungi. The correlation relationship between airborne fungi and environmental factors (temperature, relative humidity, particulate matter and odor) was not found to be significant in livestock manure composting plants. The predominant genera of airborne fungi identified were Aspergillus spp., Cladosporium spp. and Penicillium spp.
Collapse
|
9
|
Hung CS, Yiin LM, Yen CF, Hsieh CJ, Hsieh JG, Tseng CC. Status of resource recycling stations in Taiwan and recycling work-related health effects. Tzu Chi Med J 2022; 35:38-43. [PMID: 36866342 PMCID: PMC9972934 DOI: 10.4103/tcmj.tcmj_111_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
Resource recycling has become an integral part of environmental protection efforts. At present, the development of Taiwan's resource recovery and related works are quite mature. However, laborers or volunteers working in resource recycling stations may be exposed to different types of hazards during the recycling process. These hazards can be divided into biological, chemical, and musculoskeletal problems. These hazards are usually related to the work environment and work habits; therefore, a related control strategy is needed. Tzu Chi's recycling business has been running for over 30 years. In addition to leading the trend of resource recycling in Taiwan, many elderly people have also participated in Tzu Chi recycling stations as volunteers. These older volunteers may be more sensitive to exposure to hazards, and thus the focus of this review is to illustrate the possible hazards and health impacts of resource recovery work and to recommend relevant interventions to improve occupational health during resource recovery work.
Collapse
Affiliation(s)
- Chung-Shan Hung
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan,Department of Aging and Community Health, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Lih-Ming Yiin
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Chia-Feng Yen
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Chia-Jung Hsieh
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Jyh-Gang Hsieh
- Department of Family Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Prof. Chun-Chieh Tseng, Department and Graduate Institute of Public Health, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| |
Collapse
|
10
|
Madsen AM, Raulf M, Duquenne P, Graff P, Cyprowski M, Beswick A, Laitinen S, Rasmussen PU, Hinker M, Kolk A, Górny RL, Oppliger A, Crook B. Review of biological risks associated with the collection of municipal wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148287. [PMID: 34139489 DOI: 10.1016/j.scitotenv.2021.148287] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
In many countries, the management of household waste has recently changed with an increased focus upon waste sorting resulting in lower collection frequency for some waste fractions. A consequence of this is the potential for increased growth of microorganisms in the waste before collection, which can lead to an increased exposure via inhalation for waste collection workers. Through a review of the literature, we aimed to evaluate risks caused by waste collecting workers' exposure to bioaerosols and to illuminate potential measures to reduce the exposure. Across countries and waste types, median exposure to fungi, bacteria, and endotoxin were typically around 104 colony forming units (cfu)/m3, 104 cfu/m3, and 10 EU/m3, respectively. However, some studies found 10-20+ times higher or lower median exposure levels. It was not clear how different types of waste influence the occupational exposure levels. Factors such as high loading, ventilation in and cleaning of drivers' cabs, increased collection frequency, waste in sealed sacks, and use of hand sanitizer reduce exposure. Incidences of gastrointestinal problems, irritation of the eye and skin and symptoms of organic dust toxic syndrome have been reported in workers engaged in waste collection. Several studies reported a correlation between bioaerosol exposure level and reduced lung function as either a short or a long term effect; exposure to fungi and endotoxin is often associated with an inflammatory response in exposed workers. However, a better understanding of the effect of specific microbial species on health outcomes is needed to proceed to more reliable risk assessments. Due to the increasing recycling effort and to the effects of global warming, exposure to biological agents in this working sector is expected to increase. Therefore, it is important to look ahead and plan future measures as well as improve methods to prevent long and short-term health effects.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum, Germany
| | - Philippe Duquenne
- The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), France
| | - Pål Graff
- National Institute of Occupational Health (STAMI), PoBox 5330, 0304, Oslo, Norway
| | - Marcin Cyprowski
- Central Institute for Labour Protection - National Research Institute, 16 Czerniakowska Street, 00-701 Warsaw, Poland
| | - Alan Beswick
- HSE Science and Research Centre, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | - Sirpa Laitinen
- Finnish Institute of Occupational Health, P.O. Box 40 FI-00032 Työterveyslaitos, Finland
| | - Pil Uthaug Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Manfred Hinker
- Allgemeine Unfallversicherungsanstalt, 1200 Wien, Adalbert-Stifter-Straße 65, Austria
| | - Annette Kolk
- Chemical and biological hazards Institute for Occupational Safety and Health of the German Social Accident Insurance (DGUV), Alte Heerstr. 111, 53757 Sankt Augustin, Germany
| | - Rafał L Górny
- Central Institute for Labour Protection - National Research Institute, 16 Czerniakowska Street, 00-701 Warsaw, Poland
| | - Anne Oppliger
- Unisanté, Department of occupational and environmental health, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Brian Crook
- HSE Science and Research Centre, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| |
Collapse
|
11
|
Parker JA, Boles C, Buerger AN, Fung ES, Maier A. Derivation of an occupational exposure limit for β-glucans. Regul Toxicol Pharmacol 2021; 123:104959. [PMID: 34019963 DOI: 10.1016/j.yrtph.2021.104959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
β-Glucans are abundant bacterial, yeast, and fungal cell wall polysaccharides that have been shown to activate the immune system. Establishment of an occupational exposure limit (OEL) for β-glucan exposure is critical to the protection of worker health, as these exposures have been linked to immunosuppressive and inflammatory reactions and possibly the development of respiratory diseases. Detectable concentrations of β-glucans have been identified in common occupational inhalation exposure scenarios, such as in the agricultural and waste management sectors. However, no published exposure benchmarks for inhalation of β-glucans are available for workers or the general population. Thus, a health-based OEL for inhalation exposure of workers to β-glucans was derived based on consideration of human and non-human effect data for this class of compounds and contemporary risk assessment methods. The weight of the evidence indicated that the available data in humans showed significant methodological limitations, such as lack of a representative study size, appropriate control population, and clear dose-response relationship. Thus, an OEL of 150 ng/m3 was derived for β-glucans based on the most relevant nonclinical study. This OEL provides an input to the occupational risk assessment process, allows for comparisons to worker exposure, and can guide risk management and exposure control decisions.
Collapse
|
12
|
Viegas C, Dias M, Almeida B, Vicente E, Caetano LA, Carolino E, Alves C. Settleable Dust and Bioburden in Portuguese Dwellings. Microorganisms 2020; 8:microorganisms8111799. [PMID: 33207843 PMCID: PMC7698071 DOI: 10.3390/microorganisms8111799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022] Open
Abstract
Monitoring campaigns in several buildings have shown that occupants exposed to contaminated indoor air generally exhibit diverse health symptoms. This study intends to assess settleable dust loading rates and bioburden in Portuguese dwellings by passive sampling onto quartz fiber filters and electrostatic dust cloths (EDCs), respectively. Settled dust collected by EDCs was analyzed by culture-based methods (including azole-resistance screening) and qPCR, targeting four different toxigenic Aspergillus sections (Flavi, Fumigati, Circumdati, and Nidulantes). Dust loading rates and bioburden showed higher variability in the summer season. In both seasons, Penicillium sp. was the one with the highest prevalence (59.1% winter; 58.1% summer), followed by Aspergillus sp. in winter (13.0%). Fungal contamination increased in the winter period, while bacterial counts decreased. Aspergillus sections Circumdati and Nidulantes, detected in voriconazole supplemented media, and Aspergillus sections Fumigati and Nidulantes, detected by molecular tools, were found in the winter samples. This study reinforces the importance of applying: (a) Passive sampling methods in campaigns in dwellings; (b) two different culture media (MEA and DG18) to assess fungi; (c) in parallel, molecular tools targeting the most suitable indicators of fungal contamination; and (d) azole resistance screening to unveil azole resistance detection in fungal species.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (B.A.); (L.A.C.); (E.C.)
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisboa, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
- Correspondence:
| | - Marta Dias
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (B.A.); (L.A.C.); (E.C.)
| | - Beatriz Almeida
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (B.A.); (L.A.C.); (E.C.)
| | - Estela Vicente
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; (E.V.); (C.A.)
| | - Liliana Aranha Caetano
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (B.A.); (L.A.C.); (E.C.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.D.); (B.A.); (L.A.C.); (E.C.)
| | - Célia Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; (E.V.); (C.A.)
| |
Collapse
|
13
|
Viegas C, Dias M, Almeida B, Carolino E, Viegas S. Aspergillus spp. presence on mechanical protection gloves from the waste sorting industry. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:523-530. [PMID: 33206026 DOI: 10.1080/15459624.2020.1834113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The organic material present on waste sorting units serve as a substrate for different microorganisms, increasing workers' exposure to Aspergillus spp. This study intends to assess the Aspergillus spp. contamination on Mechanical Protection Gloves (MPG) from different workstations and understand the role of MPG in workers' exposure to these genera. Sixty-seven used MPG were collected from different workstations and extracts were seeded on malt extract agar (MEA) supplemented with chloramphenicol (0.05%) and dichloran glycerol (DG18). The same extracts were used for the molecular detection of fungal species/strains, with reported toxigenic potential, namely Aspergillus sections (Circumdati, Flavi, Fumigati, and Nidulantes). Among Aspergillus spp., the sections with the highest prevalence on MEA were Nigri (88.29%) and Fumigati (8.63%), whereas on DG18 were Nigri (31.79%) and Circumdati (30.77%). Aspergillus section Circumdati was detected in 22 MPG samples by RT-PCR (32.84%), Fumigati in 59 samples (88.06%), Nidulantes in 61 samples (91.05%), and Flavi in 6 samples (8.96%). It was showed that, even with daily replacement, MPG presented Aspergillus spp. contamination. Thus, a more regular replacement of MPG and the adoption of complementary hygienic procedures by workers are critical to guarantee workers' protection in this occupational environment.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| | - Marta Dias
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Beatriz Almeida
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| |
Collapse
|
14
|
Viegas C, Twarużek M, Dias M, Almeida B, Carolino E, Kosicki R, Soszczyńska E, Grajewski J, Caetano LA, Viegas S. Assessment of the microbial contamination of mechanical protection gloves used on waste sorting industry: A contribution for the risk characterization. ENVIRONMENTAL RESEARCH 2020; 189:109881. [PMID: 32979993 DOI: 10.1016/j.envres.2020.109881] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
In Portugal, mechanical protection gloves (MPG) are of mandatory use and during their use sweat is released and, consequently, the humidity of the material increases leading to conditions favorable to the growth of microorganisms. However, no studies have been conducted in MPG to assess the bioburden. This study intended to determine the bioburden present in MPG and their biological effects, and to discuss the possibility to use MPG as a passive method to assess occupational exposure to microbial contamination. Fungal burden was characterized through molecular tools for fungal toxigenic species, and antifungal resistance and mycotoxins profiles were determined. Cell viability was determined in swine kidney (SK) monolayer and hepatocellular carcinoma (Hep G2) cell lines. All MPG samples presented Gram-negative bacteria. The fungal contamination ranged from 0 CFU.m-2 in both MEA and DG18, to 5.09 × 106 and 2.75 × 106 and the most commonly fungi found was Aspergillus spp. (50.46%). Azole resistant Aspergillus sections were found in azole supplemented media. Aspergillus sections (Circumdati, Flavi, Fumigati and Versicolores) were detected by molecular tools in 66 out of 67 samples. The most reported mycotoxin was mycophenolic acid (89.6%). HepG2 cells appear to be more sensitive to MPG contamination, with high cytotoxicity (IC50 < 0.05 mm2/ml) observed for 18 out of 57 gloves. MPG can be used in passive sampling to assess occupational exposure to bioburden in waste sorting industries and contribute for risk characterization. Some contaminants of MPG had cytotoxic potential and affected the biology of hepatic cells more than renal cells.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| | - Marta Dias
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Beatriz Almeida
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Robert Kosicki
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Ewelina Soszczyńska
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Jan Grajewski
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal
| |
Collapse
|
15
|
Comparison of Two Models to Estimate Deposition of Fungi and Bacteria in the Human Respiratory Tract. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding the deposition of bioaerosols in the respiratory system may help determine the risk of disease; however, measuring deposition fraction in-situ is difficult. Computational models provide estimates of particle deposition fraction for given breathing and particle parameters; however, these models traditionally have not focused on bioaerosols. We calculated deposition fractions in an average-sized adult with a new bioaerosol-specific lung deposition model, BAIL, and with two multiple-path models for three different breathing scenarios: “default” (subject sitting upright and breathing nasally), “light exercise”, and “mouth breathing”. Within each scenario, breathing parameters and bioaerosol characteristics were kept the same across all three models. BAIL generally calculated a higher deposition fraction in the extrathoracic (ET) region and a lower deposition fraction in the alveolar region than the multiple-path models. Deposition fractions in the tracheobronchial region were similar among the three models; total deposition fraction patterns tended to be driven by the ET deposition fraction, with BAIL resulting in higher deposition in some scenarios. The difference between deposition fractions calculated by BAIL and other models depended on particle size, with BAIL generally indicating lower total deposition for bacteria-sized bioaerosols. We conclude that BAIL predicts somewhat lower deposition and, potentially, reduced risk of illness from smaller bioaerosols that cause illness due to deposition in the alveolar region. On the other hand, it suggests higher deposition in the ET region, especially for light exercise and mouth-breathing scenarios. Additional comparisons between the models for other breathing scenarios, people’s age, and different bioaerosol particles will help improve our understanding of bioaerosol deposition.
Collapse
|
16
|
Viegas C, Dias M, Almeida B, Aranha Caetano L, Carolino E, Quintal Gomes A, Twarużek M, Kosicki R, Grajewski J, Marchand G, Viegas S. Are workers from waste sorting industry really protected by wearing Filtering Respiratory Protective Devices? The gap between the myth and reality. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:856-867. [PMID: 31835063 DOI: 10.1016/j.wasman.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 05/22/2023]
Abstract
One of the solutions for decreasing the workers' exposure to bioburden is the use of Filtering Respiratory Protective Devices (FRPD). As such it is important to determine whether these devices are fulfilling their protective role. This is the basis of the current study, aimed at characterizing bioburden retained by 120 FRPD (both in interior layers and in exhalation valves) through culture based-methods and molecular tools and also via analysis of antifungal resistance and mycotoxins profile. Our results show that Gram - Bacteria are present at a higher prevalence than total bacteria in both matrixes. Regarding fungal identification, Chrysonilia sitophila presented the highest prevalence on interior layers (55.1% on malt extract agar (MEA) supplemented with chloramphenicol (0.05%); 59.6% on dichloran-glycerol agar (DG18)), whereas on exhalation valves Aspergillus sp. presented the highest prevalence on MEA (6.8%) and C. sitophila on DG18 (36.3%). Among Aspergillus genera, section Fumigati was the one with the highest prevalence in both matrices. Aspergillus sp. was the most prevalent on exhalation valves (75.0% ITRA) in the screening of azole resistance. Fumigati section was the most abundant Aspergillus sp. detected on the interior layers (33.33%, 40 samples out of 120) and on the exhalation valves (1.66%, 2 samples out of 120). The interior layers and exhalation valves from workers with more waste contact showed an increased exposure to bioburden. This study showed that FRPD can have high levels of bioburden, toxigenic fungal strains and Aspergillus sections with reduced susceptibility to the tested azoles and can be used as a passive sampling method since it mimics the results obtained by active methods in previous studies. The gathered information will be useful to prioritize multiple interventions on workers' education or even on FRPD replacement frequency.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Centro de Investigação em Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| | - Marta Dias
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Beatriz Almeida
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Liliana Aranha Caetano
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Anita Quintal Gomes
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; University of Lisbon Institute of Molecular Medicine, Faculty of Medicine, Lisbon, Portugal
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Robert Kosicki
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Jan Grajewski
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Geneviève Marchand
- Institut de recherche Robert-Sauvé en santé et sécurité du travail, Montréal, Canada
| | - Susana Viegas
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Centro de Investigação em Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| |
Collapse
|
17
|
Sultan Z, Koh GCH, Chew FT, Ng V, Koh DSQ, Tham KW. Home and day-care microenvironment exposure to Blomia tropicalis allergens and their associations with salivary eosinophilic cationic protein (ECP) among preschool children in Singapore. INDOOR AIR 2019; 29:727-734. [PMID: 31242334 DOI: 10.1111/ina.12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/10/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
To date, exposure studies linking dust-mite allergens with asthma and allergic morbidities have typically relied on sampling from representative locations in the home for exposure assessment. We determine the effects of differing microenvironments allergen exposures on asthma and asthma severity among 25 case and 31 control preschool children in Singapore. Blo t 5 allergen levels in various niches from the children's home and day-care microenvironments as well as their Blo t 5 time-weighted concentrations were determined. Eosinophilic cationic protein (ECP) levels from the children's saliva as markers for airway inflammation were obtained. Salivary ECP levels were higher in children with asthma than those without and the strength of association increased with higher salivary ECP levels. Although there was no relationship between time-weighted Blo t 5 concentrations with salivary ECP levels among the controls, a positive statistically significant relationship was noted among cases, demonstrating the effects of cumulative exposure on asthma severity. Avoidance measures to reduce Blo t 5 allergen exposure should include all microenvironments that asthmatic children are exposed throughout the day.
Collapse
Affiliation(s)
- Zuraimi Sultan
- Berkeley Education Alliance for Research in Singapore (BEARS) Limited, Singapore
| | | | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Vivian Ng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - David Soo Quee Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Kwok Wai Tham
- Department of Building, National University of Singapore, Singapore
| |
Collapse
|
18
|
Mbareche H, Veillette M, Pilote J, Létourneau V, Duchaine C. Bioaerosols Play a Major Role in the Nasopharyngeal Microbiota Content in Agricultural Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081375. [PMID: 30995814 PMCID: PMC6518280 DOI: 10.3390/ijerph16081375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
Background: Bioaerosols are a major concern for public health and sampling for exposure assessment purposes is challenging. The nasopharyngeal region could be a potent carrier of long-term bioaerosol exposure agents. This study aimed to evaluate the correlation between nasopharyngeal bacterial flora of swine workers and the swine barns bioaerosol biodiversity. Methods: Air samples from eight swine barns as well as nasopharyngeal swabs from pig workers (n = 25) and from a non-exposed control group (n = 29) were sequenced using 16S rRNA gene high-throughput sequencing. Wastewater treatment plants were used as the industrial, low-dust, non-agricultural environment control to validate the microbial link between the bioaerosol content (air) and the nasopharynxes of workers. Results: A multivariate analysis showed air samples and nasopharyngeal flora of pig workers cluster together, compared to the non-exposed control group. The significance was confirmed with the PERMANOVA statistical test (p-value of 0.0001). Unlike the farm environment, nasopharynx samples from wastewater workers did not cluster with air samples from wastewater treatment plants. The difference in the microbial community of nasopharynx of swine workers and a control group suggest that swine workers are carriers of germs found in bioaerosols. Conclusion: Nasopharynx sampling and microbiota could be used as a proxy of air sampling for exposure assessment studies or for the determination of exposure markers in highly contaminated agricultural environments.
Collapse
Affiliation(s)
- Hamza Mbareche
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada.
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
| | - Jonathan Pilote
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada.
| | - Valérie Létourneau
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
19
|
Demange V, Barrera C, Laboissière A, Duquenne P, Simon X, Millon L, Reboux G, Grzebyk M. Effects of plant features on symptoms and airway inflammation in compost workers followed over 18 months. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2019; 75:191-200. [PMID: 30880640 DOI: 10.1080/19338244.2019.1584086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigated the plant features associated with increased irritation symptoms and levels of inflammation markers among compost workers (CWs). Ninety CWs were followed over 18 months, using questionnaires on respiratory symptoms, fractional exhaled nitric oxide measurements, spirometry, a methacholine bronchial challenge test, and quantification of specific immunoglobulins E (IgE) and G. CWs in plants processing the highest quantities of waste exhibited more airway irritation symptoms. So did the CWs in partially and fully indoor plants as compared to those in plants entirely outdoors. Working in sewage sludge versus green waste plants and having a high level of exposure were associated with higher levels of different IgE. The duration of employment decreased the FEV1 by 16 ml per year. Working in an indoor plant is linked to symptoms and inflammation markers in CWs.
Collapse
Affiliation(s)
- Valérie Demange
- Institut National de Recherche et de Sécurité au Travail (INRS), Vandoeuvre les Nancy, France
| | - Coralie Barrera
- UMR/CNRS 6249, Chrono-Environnement, University of Bourgogne-Franche-Comté Besançon, Besançon, France
- Department of Parasitology-Mycology, University Hospital of Besançon, Besançon, France
| | - Audrey Laboissière
- Department of Parasitology-Mycology, University Hospital of Besançon, Besançon, France
| | - Philippe Duquenne
- Institut National de Recherche et de Sécurité au Travail (INRS), Vandoeuvre les Nancy, France
| | - Xavier Simon
- Institut National de Recherche et de Sécurité au Travail (INRS), Vandoeuvre les Nancy, France
| | - Laurence Millon
- UMR/CNRS 6249, Chrono-Environnement, University of Bourgogne-Franche-Comté Besançon, Besançon, France
- Department of Parasitology-Mycology, University Hospital of Besançon, Besançon, France
| | - Gabriel Reboux
- UMR/CNRS 6249, Chrono-Environnement, University of Bourgogne-Franche-Comté Besançon, Besançon, France
- Department of Parasitology-Mycology, University Hospital of Besançon, Besançon, France
| | - Michel Grzebyk
- Institut National de Recherche et de Sécurité au Travail (INRS), Vandoeuvre les Nancy, France
| |
Collapse
|
20
|
Madsen AM, Frederiksen MW, Mahmoud Kurdi I, Sommer S, Flensmark E, Tendal K. Expanded cardboard waste sorting and occupational exposure to microbial species. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:345-356. [PMID: 31109535 DOI: 10.1016/j.wasman.2019.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Member states of the European Union have to maximize recycling. The current, Danish cardboard recycling system can be improved by increasing the kinds of cardboard products that can be recycled to include e.g. used beverage cartons and pizza boxes (i.e. an expanded cardboard fraction (ECF)). This study aims to obtain knowledge about exposure to airborne endotoxin and microorganisms at species level at different collection frequencies of ECF, and whether an increase in waste sorted fractions means that each waste fraction is collected less frequently. Bacterial and endotoxin concentrations were associated significantly with temperature inside the waste containers and endotoxin and fungal exposures with collection frequency. The concentration of fungi was highest at the truck back and for reduced collection frequencies. The geometric mean diameters of particles with bacteria were between 3.0 and 5.2 μm and with fungi between 3.8 μm and 6.0 μm. In total, 81 and 25 different bacterial and fungal species were found at the waste receiving plant, respectively. Work with ECF caused exposures to food-related microorganisms (e.g. Arthrobacter arilaitensis and Penicillium camemberti), potential pathogens (e.g. Bacillus cereus, Salmonella sp. and P. expansum), and commensal bacteria. Bacillus cereus and Salmonella were found in the particle size fraction often being swallowed. Workers collecting EFC will be at risk of being exposed to microbial species that normally are related to residual waste. It seems to be advisable with an EFC collection frequency shorter than eight weeks. However, introduction of new waste fractions has generally been associated with reduced collection frequencies.
Collapse
Affiliation(s)
- Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.
| | - Margit W Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Iman Mahmoud Kurdi
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Sussi Sommer
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Elisabeth Flensmark
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Kira Tendal
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
21
|
Zamfir M, Gerstner DG, Walser SM, Bünger J, Eikmann T, Heinze S, Kolk A, Nowak D, Raulf M, Sagunski H, Sedlmaier N, Suchenwirth R, Wiesmüller GA, Wollin KM, Tesseraux I, Herr CE. A systematic review of experimental animal studies on microbial bioaerosols: Dose-response data for the derivation of exposure limits. Int J Hyg Environ Health 2019; 222:249-259. [DOI: 10.1016/j.ijheh.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/09/2018] [Accepted: 11/18/2018] [Indexed: 12/23/2022]
|
22
|
Occupational exposure to bioburden in Portuguese bakeries: an approach to sampling viable microbial load. Arh Hig Rada Toksikol 2019; 69:250-257. [PMID: 30285943 DOI: 10.2478/aiht-2018-69-3116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/01/2018] [Indexed: 11/20/2022] Open
Abstract
In bakeries, a number of operations such as mixing are associated with exposure to air-suspended flour dust and related bioburden. The aim of this study was to find the best active sampling approach to the assessment of occupational exposure to bioburden in Portuguese bakeries based on the data obtained with the use of specific impaction and impinger devices. We used impaction to collect fungal particles from 100 L air samples onto malt extract agar (MEA) supplemented with chloramphenicol (0.05 %). For growing fungi we also used dichloran glycerol (DG18) agar-based media and for mesophilic bacteria we used tryptic soy agar (TSA) supplemented with nystatin (0.2 %). For Enterobacteriaceae we used violet red bile agar (VRBA). With impingers we also collected 300 L air samples at the 300 L/min airflow rate, inoculated onto the same culture media. The two methods, impaction and impinger, showed statistically significant differences in the following counts: fungal on MEA (z=-2.721, p=0.007), fungal on DG18 (z=-4.830, p=0.000), total bacteria (z=-5.435, p=0.000), and Gram-negative coliforms (z=-3.716, p=0.000). In all cases the impaction method detected significantly higher concentrations than the impinger method. Fungal and bacterial loads were higher in the production unit and lower in the shop. The fungal load obtained with impaction varied between 10 and 5140 CFU m-3, and total bacterial counts ranged between 10 and 4120 CFU m-3. This study has shown that the impaction method is the best active sampling approach to assessing viable bioburden in this specific occupational environment, but a multi-faceted approach to sampling and analyses combining methods and media enables a more refined risk characterisation and, consequently, better tailored risk control measures to reduce adverse health outcomes in workers.
Collapse
|
23
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Kulesza RJ, Mukherjee PS, Torres-Jardón R, Rönkkö T, Doty RL. Alzheimer's disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤ 40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology. ENVIRONMENTAL RESEARCH 2018; 166:348-362. [PMID: 29935448 DOI: 10.1016/j.envres.2018.06.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 05/28/2023]
Abstract
There is growing evidence that air pollution is a risk factor for a number of neurodegenerative diseases, most notably Alzheimer's (AD) and Parkinson's (PD). It is generally assumed that the pathology of these diseases arises only later in life and commonly begins within olfactory eloquent pathways prior to the onset of the classical clinical symptoms. The present study demonstrates that chronic exposure to high levels of air pollution results in AD- and PD-related pathology within the olfactory bulbs of children and relatively young adults ages 11 months to 40 years. The olfactory bulbs (OBs) of 179 residents of highly polluted Metropolitan Mexico City (MMC) were evaluated for AD- and alpha-synuclein-related pathology. Even in toddlers, hyperphosphorylated tau (hTau) and Lewy neurites (LN) were identified in the OBs. By the second decade, 84% of the bulbs exhibited hTau (48/57), 68% LNs and vascular amyloid (39/57) and 36% (21/57) diffuse amyloid plaques. OB active endothelial phagocytosis of red blood cell fragments containing combustion-derived nanoparticles (CDNPs) and the neurovascular unit damage were associated with myelinated and unmyelinated axonal damage. OB hTau neurites were associated mostly with pretangle stages 1a and 1b in subjects ≤ 20 years of age, strongly suggesting olfactory deficits could potentially be an early guide of AD pretangle subcortical and cortical hTau. APOE4 versus APOE3 carriers were 6-13 times more likely to exhibit OB vascular amyloid, neuronal amyloid accumulation, alpha-synuclein aggregates, hTau neurofibrillary tangles, and neurites. Remarkably, APOE4 carriers were 4.57 times more likely than non-carriers to die by suicide. The present findings, along with previous data that over a third of clinically healthy MMC teens and young adults exhibit low scores on an odor identification test, support the concept that olfactory testing may aid in identifying young people at high risk for neurodegenerative diseases. Moreover, results strongly support early neuroprotective interventions in fine particulate matter (PM2.5) and CDNP's exposed individuals ≤ 20 years of age, and the critical need for air pollution control.
Collapse
Affiliation(s)
| | | | | | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04310, Mexico
| | - Topi Rönkkö
- Aerosol Physics, Faculty of Natural Sciences, Tampere University of Technology, FI-33101 Tampere, Finland
| | - Richard L Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 19104, USA
| |
Collapse
|
24
|
Stoleski S, Minov J, Karadzinska-Bislimovska J, Mijakoski D, Atanasovska A. Eosinophil Cationic Protein Concentrations among Crop and Dairy Farmers with Asthma. Open Access Maced J Med Sci 2018; 6:456-462. [PMID: 29610600 PMCID: PMC5874365 DOI: 10.3889/oamjms.2018.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To assess the mean serum eosinophil cationic protein (s-ECP) concentrations among crop and dairy farmers and office controls, and further examine its relation to exposure duration, smoking habit, as well as presence or absence of asthma. METHODS A cross-sectional survey was performed including examined group (EG), composed by agricultural workers (87 crop - EG1 and 83 dairy farmers - EG2), and control group (CG) composed by 80 office workers within the same enterprise. We have used a questionnaire to record the chronic respiratory symptoms, detailed work history, specific farming activities and tasks performed and smoking history. Evaluation of examined subjects also included lung function tests, diagnosis of asthma, and measurement of s-ECP as a marker of inflammation. RESULTS The main finding of the present study is that s-ECP concentrations were raised in subjects with asthma independent of the smoking habit. The mean s-ECP concentrations were higher in subjects of EG1 and EG2 compared with those in CG, but without reaching statistical significance. Mean s-ECP concentrations were significantly higher among subjects in EG1 exposed more than 20 years, while mean s-ECP concentrations were non-significantly higher in subjects of EG2 exposed more than 20 years, compared to those exposed less than 20 years. Mean s-ECP concentrations were higher among smokers within all three groups, but without reaching statistical significance between smokers and non-smokers. Mean s-ECP concentrations were significantly higher in subjects with asthma within EG1 (P = 0.049) and EG2 (P = 0.040), but also within those in CG (P = 0.046). CONCLUSION Data obtained suggest that airway inflammation is present in farmers with asthma, and s-ECP is an important biomarker in means of reflecting disease severity and prognosis among exposed workers.
Collapse
Affiliation(s)
- Saso Stoleski
- Institute for Occupational Health of Republic of Macedonia - Skopje, WHO Collaborating Center, Galen Collaborating Center, Skopje, Republic of Macedonia
| | - Jordan Minov
- Institute for Occupational Health of Republic of Macedonia - Skopje, WHO Collaborating Center, Galen Collaborating Center, Skopje, Republic of Macedonia
| | - Jovanka Karadzinska-Bislimovska
- Institute for Occupational Health of Republic of Macedonia - Skopje, WHO Collaborating Center, Galen Collaborating Center, Skopje, Republic of Macedonia
| | - Dragan Mijakoski
- Institute for Occupational Health of Republic of Macedonia - Skopje, WHO Collaborating Center, Galen Collaborating Center, Skopje, Republic of Macedonia
| | - Aneta Atanasovska
- Institute for Occupational Health of Republic of Macedonia - Skopje, WHO Collaborating Center, Galen Collaborating Center, Skopje, Republic of Macedonia
| |
Collapse
|
25
|
Viegas S, Osteresch B, Almeida A, Cramer B, Humpf HU, Viegas C. Enniatin B and ochratoxin A in the blood serum of workers from the waste management setting. Mycotoxin Res 2017; 34:85-90. [PMID: 29185179 DOI: 10.1007/s12550-017-0302-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023]
Abstract
The waste management occupational environment is recognized by the simultaneous presence of several substances and biologic agents. Therefore, workers are exposed simultaneously to multiple contaminants. Occupational exposure to aflatoxin B1 in one Portuguese waste sorting plant was already reported. However, besides this mycotoxin, data regarding fungal contamination showed that exposure to other mycotoxins could be expected. A study was developed to analyze if exposure to other mycotoxins besides aflatoxin B1 was occurring in the workers from the waste sorting plant previously assessed and to discuss how these findings need to be considered in the risk assessment process. In addition to aflatoxin B1 detected previously by ELISA, two additional mycotoxins and one mycotoxin degradation product were detected and quantified by a multi-mycotoxin HPLC-MS/MS approach: Enniatin B and ochratoxin A as well as 2'R-ochratoxin A. Besides the confirmation of co-exposure to several mycotoxins, results probably indicate different exposure routes for the mycotoxins reported.
Collapse
Affiliation(s)
- Susana Viegas
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096, Lisbon, Portugal. .,Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Avenida Pacre Cruz, 1600-560, Lisbon, Portugal.
| | - Bernd Osteresch
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Ana Almeida
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096, Lisbon, Portugal
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Carla Viegas
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096, Lisbon, Portugal.,Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Avenida Pacre Cruz, 1600-560, Lisbon, Portugal
| |
Collapse
|
26
|
Viegas C, Faria T, de Oliveira AC, Caetano LA, Carolino E, Quintal-Gomes A, Twarużek M, Kosicki R, Soszczyńska E, Viegas S. A new approach to assess occupational exposure to airborne fungal contamination and mycotoxins of forklift drivers in waste sorting facilities. Mycotoxin Res 2017; 33:285-295. [DOI: 10.1007/s12550-017-0288-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
27
|
Rendon RVC, Garcia BCB, Vital PG. Assessment of airborne bacteria in selected occupational environments in Quezon City, Philippines. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2017; 72:178-183. [PMID: 27219854 DOI: 10.1080/19338244.2016.1192981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Exposure to bioaerosols has been associated with health deterioration among workers in several occupational environments. This highlights the need to study the microbiological quality of air of workplaces as no such study has been conducted yet in the Philippines. To detect and characterize the culturable mesophilic airborne bacteria in selected occupational environments we used passive sedimentation technique. It was observed that the number of colony-forming units was highest in junk shop, followed by the light railway transit station and last the office. By contrast, the bacterial composition was similar in all sites: Gram-positive cocci > Gram-positive bacilli > Gram-negative bacteria. Staphylococcus aureus and Bacillus spp. were also detected in all sites. These findings suggest that the presence of airborne bacteria may be a potential health hazard in urban occupational environments in the Philippines.
Collapse
Affiliation(s)
- Rhoshela Vi C Rendon
- a Institute of Biology, College of Science, University of the Philippines Diliman , Quezon City , Philippines
| | - Bea Clarise B Garcia
- a Institute of Biology, College of Science, University of the Philippines Diliman , Quezon City , Philippines
- b Natural Sciences Research Institute, University of the Philippines Diliman , Quezon City , Philippines
| | - Pierangeli G Vital
- a Institute of Biology, College of Science, University of the Philippines Diliman , Quezon City , Philippines
- b Natural Sciences Research Institute, University of the Philippines Diliman , Quezon City , Philippines
| |
Collapse
|
28
|
Airway and Blood Inflammatory Markers in Waste Collectors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1021:1-14. [PMID: 28405893 DOI: 10.1007/5584_2017_25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Waste collectors are exposed to a heterogeneous mixture of bioaerosols able to induce health effects. The study aim was to evaluate inflammatory processes in blood and in the respiratory tract via analysis of atopy and club cell secretory protein 16 (CC16) in serum, exhaled nitric oxide (FeNO), and cellular and soluble mediators in nasal lavage fluid (NALF) and induced sputum (IS). Sixty nine current waste collectors (48% smokers) and 28 former waste collectors (25% smokers) were included in the cross-sectional study. In both groups, 63 and 64% of workers reported complaints of the eyes, nose and/or upper airways. Thirty two percent of the current and 25% of the former workers were classified as atopics. More atopics suffered from rhinitis and conjunctivitis than non-atopics (64% vs. 40% in current workers; 71% vs. 40% in former workers). CC16 values of present non-smokers were significantly higher compared to smokers. In total, FeNO values of 31 participants were lower than 10 ppb, 94% of them were smokers and 85% had respiratory symptoms of lower airways. Most of the IS biomarkers were significantly higher in smokers than in non-smokers. Non-smoking workers with respiratory symptoms of lower airways had slightly elevated mediator IS concentrations compared to asymptomatic non-smokers. We conclude that inflammatory changes in waste collectors are detectable in the content of IS biomarkers, exhaled NO, and serum CC16, which all are influenced by the smoking habit. No significant differences in biomarkers are detectable between current and former waste collectors.
Collapse
|
29
|
Kozajda A, Jeżak K, Cyprowski M, Szadkowska-Stańczyk I. Inhalable dust, endotoxins and (1-3)-β-d-glucans as indicators of exposure in waste sorting plant environment. AEROBIOLOGIA 2017; 33:481-491. [PMID: 29167599 PMCID: PMC5674112 DOI: 10.1007/s10453-017-9484-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/18/2017] [Indexed: 05/19/2023]
Abstract
The aim of the study was to assess the levels of inhalable dust, endotoxins and (1-3)-β-d-glucans as agents harmful to the respiratory tract of workers of municipal waste sorting plants and interaction between these agents based on the measurements taken in two plants with different processing capacities. The study was conducted in summer season in two waste sorting plants (WSPs) differing in processing capacity. Samples of bioaerosol for inhalable dust (gravimetric method), endotoxins (LAL test in kinetic, chromogenic version) and (1-3)-β-d-glucans (Glucatell test in kinetic version) were collected from 42 sorting workers using individual aspirators with glass fiber filters during the work shift. Average geometric concentrations (geometric standard deviation; min-max) of inhalable dust, endotoxins and (1-3)-β-d-glucans were: WSP1: 1.7 mg m-3 (2.2; 0.6-6.9 mg m-3); 15.9 ng m-3 (2.1; 5.4-78.9 ng m-3), 55.1 ng m-3 (1.8; 20.7-188.6 ng m-3) and WSP2: 0.8 mg m-3 (2.2; 0.2-3.8 mg m-3), 9.8 ng m-3 (2.4; 1.6-29.7 ng m-3), 45.0 ng m-3 (3.2, 5.7-212.9 ng m-3), respectively. A significantly higher concentration of inhalable dust was recorded in WSP1 with bigger processing capacity compared to WSP2 (less processing capacity). Significant (p < 0.05) and very high correlations (Spearman rank R > 0.7) were found between the concentrations of all analyzed harmful agents. Processing capacity of waste sorting plants differentially affects the concentrations of inhalable dust, whereas concentrations of endotoxins and glucans are less clearly affected. This suggests that relative concentrations of endotoxin and glucan are depending on the waste sorting capacity.
Collapse
Affiliation(s)
- Anna Kozajda
- Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348 Lodz, Poland
| | - Karolina Jeżak
- Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348 Lodz, Poland
| | - Marcin Cyprowski
- Nofer Institute of Occupational Medicine, 8 Teresy Str, 91-348 Lodz, Poland
- Laboratory of Biohazards, Central Institute for Labour Protection – National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | | |
Collapse
|
30
|
Bian X, Lan Y, Wang B, Zhang YS, Liu B, Yang P, Zhang W, Qiao L. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification. Anal Chem 2016; 88:11504-11512. [DOI: 10.1021/acs.analchem.6b02708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaojun Bian
- College
of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Ying Lan
- College
of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Bing Wang
- College
of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Yu Shrike Zhang
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Baohong Liu
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Pengyuan Yang
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Weijia Zhang
- College
of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Liang Qiao
- Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| |
Collapse
|
31
|
Straumfors A, Heldal KK, Eduard W, Wouters IM, Ellingsen DG, Skogstad M. Cross-shift study of exposure-response relationships between bioaerosol exposure and respiratory effects in the Norwegian grain and animal feed production industry. Occup Environ Med 2016; 73:685-93. [PMID: 27473330 PMCID: PMC5036228 DOI: 10.1136/oemed-2015-103438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/12/2016] [Indexed: 01/07/2023]
Abstract
Objective We have studied cross-shift respiratory responses of several individual bioaerosol components of the dust in the grain and feed industry in Norway. Methods Cross-shift changes in lung function and nasal congestion, as well as in respiratory and systemic symptoms of 56 exposed workers and 36 referents, were recorded on the same day as full-shift exposure to the inhalable aerosol fraction was assessed. Exposure–response associations were investigated by regression analysis. Results The workers were exposed on average to 1.0 mg/m3 of grain dust, 440 EU/m3 of endotoxin, 6 µg/m3 of β-1,3-glucans, 17×104/m3 of bacteria and 4×104/m3 of fungal spores during work. The exposure was associated with higher prevalence of self-reported eye and airway symptoms, which were related to the individual microbial components in a complex manner. Fatigue and nose symptoms were strongest associated with fungal spores, cough with or without phlegm was associated with grain dust and fungal spores equally strong and wheeze/tight chest/dyspnoea was strongest associated with grain dust. Bioaerosol exposure did not lead to cross-shift lung function decline, but several microbial components had influence on nose congestion. Conclusions Exposure to fungal spores and dust showed stronger associations with respiratory symptoms and fatigue than endotoxin exposure. The associations with dust suggest that there are other components in dust than the ones studied that induce these effects.
Collapse
Affiliation(s)
- Anne Straumfors
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Kari Kulvik Heldal
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Wijnand Eduard
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Inge M Wouters
- Faculty of Veterinary Medicine, Institute of Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Dag G Ellingsen
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Marit Skogstad
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
32
|
Sturm R. Bioaerosols in the lungs of subjects with different ages-part 1: deposition modeling. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:211. [PMID: 27386485 DOI: 10.21037/atm.2016.05.62] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND In this contribution the inhalation and deposition of bioaerosols including particles with various shapes and sizes were investigated for probands with different ages (1, 5, 15 and 20 y). The study should help to increase our knowledge with regard to the behavior of variably shaped and sized particles in lungs being subject to different developmental stages. METHODS Simulation of particle transport and deposition in single structures of the respiratory tract was conducted by using a stochastic model of the tracheobronchial tree and well-validated analytical and empirical deposition formulae. Possible effects of particle geometry on deposition were taken into consideration by application of the aerodynamic diameter concept. Age-dependent lung morphometry and breathing parameters were computed by using appropriate scaling factors. RESULTS Theoretical simulations came to the result that bioparticle deposition in infants and children clearly differs from that in adolescents and adults insofar as the amount of deposited mass exhibits a positive correlation with age. Nose breathing results in higher extrathoracic deposition rates than mouth breathing and, as a consequence of that, lower particle amounts are enabled to enter the lung structures after passing the nasal airways. Under sitting breathing conditions highest alveolar deposition rates were calculated for particles adopting aerodynamic diameters of 10 nm and 4 µm, respectively. CONCLUSIONS The study comes to the conclusion that bioparticles have a lower chance to reach the alveoli in infants' and children's lungs, but show a higher alveolar deposition probability in the lungs of adolescents and adults. Despite of this circumstance also young subjects may increasingly suffer from biogenic particle burden, when they are subject to a long-term exposure to certain bioaerosols.
Collapse
Affiliation(s)
- Robert Sturm
- Department of Materials Science and Physics, Division of Physics and Biophysics, University of Salzburg, Salzburg, Austria
| |
Collapse
|
33
|
Evaluation of exposure-response relationships for health effects of microbial bioaerosols - A systematic review. Int J Hyg Environ Health 2015; 218:577-89. [PMID: 26272513 DOI: 10.1016/j.ijheh.2015.07.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022]
Abstract
Studies suggest adverse health effects following exposure to bioaerosols in the environment and in particular at workplaces. However, there is still a lack of health-related exposure limits based on toxicological or epidemiological studies from environmental health or from the working environment. The aim of this study was to derive health-based exposure limits for bioaerosols that can protect the general population as group "at risk" via environmental exposure using analysis of peer-reviewed studies related to occupational medicine, indoor air and environmental health. The derivation of exposure limits should be conducted by the members of a bioaerosol expert panel according to established toxicological criteria. A systematic review was performed in Medline (PubMed) including studies containing both data on exposure measurements and observed health outcomes. In addition, literature recommended by the experts was considered. A comprehensive search strategy was generated and resulted in a total of n=1569 studies in combination with the literature recommendations. Subsequently, abstracts were screened using defined exclusion criteria yielding a final number of n=44 studies. A standardized extraction sheet was used to combine data on health effects and exposure to different bioaerosols. After full-text screening and extraction according to the defined exclusion criteria n=20 studies were selected all related to occupational exposures comprising the working areas wood processing, farming, waste processing and others. These studies were analyzed in collaboration with the bioaerosol expert network in terms of suitability for derivation of health-related exposure limits. The bioaerosol expert network concluded that none of the analyzed studies provided suitable dose-response relationships for derivation of exposure limits. The main reasons were: (1) lack of studies with valid dose-response data; (2) diversity of employed measuring methods for microorganisms and bioaerosol-emitting facilities; (3) heterogeneity of health effects; (4) insufficient exposure assessment. However, several indicator parameters and exposure concentrations could be identified for different bioaerosol-emitting facilities. Nevertheless, health-related exposure limits are urgently needed especially in approval procedures of facilities like composting plants or livestock farms emitting bioaerosols in the neighbourhood of residents. In the regulatory toxicology framework, it is common to use animal experimental studies for derivation of general exposure limits if appropriate environmental epidemiological studies on harmful substances are lacking. This might be another possibility to obtain health-related exposure limits for specific bioaerosol parameters. Furthermore, we recommend to use suitable measurable outcome parameters related to bioaerosols; to measure bioaerosols according to a protocol representative for exposure pattern and duration at the particular work place; to develop standardized detection methods for indicator parameters; to combine different detection methods to compensate for the limitations of each method; to apply new analysis methods to identify the real risk potential.
Collapse
|
34
|
Viegas C, Faria T, dos Santos M, Carolino E, Gomes AQ, Sabino R, Viegas S. Fungal burden in waste industry: an occupational risk to be solved. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:199. [PMID: 25796518 DOI: 10.1007/s10661-015-4412-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
High loads of fungi have been reported in different types of waste management plants. This study intends to assess fungal contamination in one waste-sorting plant before and after cleaning procedures in order to analyze their effectiveness. Air samples of 50 L were collected through an impaction method, while surface samples, taken at the same time, were collected by the swabbing method and subject to further macro- and microscopic observations. In addition, we collected air samples of 250 L using the impinger Coriolis μ air sampler (Bertin Technologies) at 300 L/min airflow rate in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely Aspergillus fumigatus and Aspergillus flavus complexes, as well as Stachybotrys chartarum species. Fungal quantification in the air ranged from 180 to 5,280 CFU m(-3) before cleaning and from 220 to 2,460 CFU m(-3) after cleaning procedures. Surfaces presented results that ranged from 29×10(4) to 109×10(4) CFU m(-2) before cleaning and from 11×10(4) to 89×10(4) CFU m(-2) after cleaning. Statistically significant differences regarding fungal load were not detected between before and after cleaning procedures. Toxigenic strains from A. flavus complex and S. chartarum were not detected by qPCR. Conversely, the A. fumigatus species was successfully detected by qPCR and interestingly it was amplified in two samples where no detection by conventional methods was observed. Overall, these results reveal the inefficacy of the cleaning procedures and that it is important to determine fungal burden in order to carry out risk assessment.
Collapse
Affiliation(s)
- Carla Viegas
- Environment and Health RG, Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Lisbon, Portugal,
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang CH, Chen BT, Han BC, Liu ACY, Hung PC, Chen CY, Chao HJ. Field evaluation of personal sampling methods for multiple bioaerosols. PLoS One 2015; 10:e0120308. [PMID: 25799419 PMCID: PMC4370695 DOI: 10.1371/journal.pone.0120308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/08/2015] [Indexed: 11/22/2022] Open
Abstract
Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.
Collapse
Affiliation(s)
- Chi-Hsun Wang
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Bean T. Chen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Bor-Cheng Han
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | | | - Po-Chen Hung
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan
| | - Chih-Yong Chen
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan
| | - Hsing Jasmine Chao
- School of Public Health, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Pearson C, Littlewood E, Douglas P, Robertson S, Gant TW, Hansell AL. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: a systematic review of occupational and community studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:43-69. [PMID: 25825807 PMCID: PMC4409048 DOI: 10.1080/10937404.2015.1009961] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The number of composting sites in Europe is rapidly increasing, due to efforts to reduce the fraction of waste destined for landfill, but evidence on possible health impacts is limited. This article systematically reviews studies related to bioaerosol exposures within and near composting facilities and associated health effects in both community and occupational health settings. Six electronic databases and bibliographies from January 1960 to July 2014 were searched for studies reporting on health outcomes and/or bioaerosol emissions related to composting sites. Risk of bias was assessed using a customized score. Five hundred and thirty-six papers were identified and reviewed, and 66 articles met the inclusion criteria (48 exposure studies, 9 health studies, 9 health and exposure studies). Exposure information was limited, with most measurements taken in occupational settings and for limited time periods. Bioaerosol concentrations were highest on-site during agitation activities (turning, shredding, and screening). Six studies detected concentrations of either Aspergillus fumigatus or total bacteria above the English Environment Agency's recommended threshold levels beyond 250 m from the site. Occupational studies of compost workers suggested elevated risks of respiratory illnesses with higher bioaerosol exposures. Elevated airway irritation was reported in residents near composting sites, but this may have been affected by reporting bias. The evidence base on health effects of bioaerosol emissions from composting facilities is still limited, although there is sufficient evidence to support a precautionary approach for regulatory purposes. While data to date are suggestive of possible respiratory effects, further study is needed to confirm this and to explore other health outcomes.
Collapse
Affiliation(s)
- Clare Pearson
- Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health & NIHR HPRU in Health Impact of Environmental Hazards, Imperial College London, London, United Kingdom
| | - Emma Littlewood
- Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health & NIHR HPRU in Health Impact of Environmental Hazards, Imperial College London, London, United Kingdom
| | - Philippa Douglas
- Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health & NIHR HPRU in Health Impact of Environmental Hazards, Imperial College London, London, United Kingdom
| | - Sarah Robertson
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Timothy W. Gant
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Anna L. Hansell
- Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health & NIHR HPRU in Health Impact of Environmental Hazards, Imperial College London, London, United Kingdom
- Public Health and Primary Care, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
37
|
Pinto MJDV, Veiga JM, Fernandes P, Ramos C, Gonçalves S, Velho MMLV, Guerreiro JS. Airborne microorganisms associated with packaging glass sorting facilities. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:685-696. [PMID: 26039746 DOI: 10.1080/15287394.2015.1021942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, efforts have been undertaken to reduce the volume of residual waste through sorting and recycling. The waste management and recycling sector is thriving and the number of workers there is increasing. In this context, prior knowledge of the risks to which workers may be exposed is of crucial importance, and preventive measures need to be put in place to accurately identify and quantify those risks. This study aimed to assess occupational risk of exposure to biological agents (viable bacteria and fungi) in a Portuguese waste packaging glass sorting plant. Air samples were collected from selected locations in waste sorting cabins (critical area, CA), administrative services (noncritical area, NCA) and outdoors (control point, CP). Duplicate air samples were collected through an impaction method. The investigation was carried out over an 8-mo period with two collection periods, autumn/winter (AW) and spring/summer (SS), in order to access the influence of any seasonal variation. In the 36 air samples collected, 319 bacterial and 196 mold identifications were performed. Air samples revealed existence of high environmental contamination by bacteria (1.6 × 10(4) colony forming units [cfu]/m(3)) and fungi (1.5 × 10(4) cfu/m(3)). The predominant bacterial genus was Staphylococcus (coagulase negative) with values ranging from 29.6 to 60% of the total count of bacteria. Genera Bacillus, Micrococcus, and Staphylococcus (coagulase negative) were also present at all sampling sites, regardless of the season. However, the counts of these genera, in the CA, were higher in warmer seasons. The genus Penicillium was the most frequent genus present with an approximate value of 95% of total fungal count in the CA. Seasonal variation was a significant factor for total bacteria and fungi, except for NCA versus CP. Overall, the highest levels of bacterial and fungal species (10(4) cfu/m(3)) were found in the waste sorting cabin (CA). These results highlight the importance of proper design and risk evaluation when planning a new waste facility, such that working conditions minimize proliferation of biological agents in the workplace.
Collapse
|
38
|
Occupational exposure to particulate matter in 2 Portuguese waste-sorting units. Int J Occup Med Environ Health 2014; 27:854-62. [DOI: 10.2478/s13382-014-0310-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/05/2014] [Indexed: 11/20/2022] Open
|
39
|
Viegas S, Veiga L, Figueiredo P, Almeida A, Carolino E, Viegas C. Assessment of workers' exposure to aflatoxin B1 in a Portuguese waste industry. ACTA ACUST UNITED AC 2014; 59:173-81. [PMID: 25324565 DOI: 10.1093/annhyg/meu082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aflatoxin B1 (AFB1) is considered by different International Agencies as a genotoxic and potent hepatocarcinogen. However, despite the fact that the fungi producing this compound are detected in some work environments, AFB1 is rarely monitored in occupational settings. The aim of the present investigation was to assess exposure to AFB1 of workers from one Portuguese waste company located in the outskirt of Lisbon. Occupational exposure assessment to AFB1 was done with a biomarker of internal dose that measures AFB1 in the serum by enzyme-linked immunosorbent assay. Forty-one workers from the waste company were enrolled in this study (26 from sorting; 9 from composting; 6 from incineration). A control group (n = 30) was also considered in order to know the AFB1 background levels for the Portuguese population. All the workers showed detectable levels of AFB1 with values ranging from 2.5ng ml(-1) to 25.9ng ml(-1) with a median value of 9.9±5.4ng ml(-1). All of the controls showed values below the method's detection limit. Results obtained showed much higher (8-fold higher) values when compared with other Portuguese settings already studied, such as poultry and swine production. Besides this mycotoxin, other mycotoxins are probably present in this occupational setting and this aspect should be taken into consideration for the risk assessment process due to possible synergistic reactions. The data obtained suggests that exposure to AFB1 occurs in a waste management setting and claims attention for the need of appliance of preventive and protective safety measures.
Collapse
Affiliation(s)
- Susana Viegas
- 1.Environment and Health RG, Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisbon, Portugal 2.Center for Malaria & Tropical Diseases (CMDT), Public Health and Policy, Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Avenida Padre Cruz, 1600-560 Lisboa, Portugal
| | - Luisa Veiga
- 3.Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Lisbon, Portugal
| | - Paula Figueiredo
- 3.Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Lisbon, Portugal
| | - Ana Almeida
- 3.Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Lisbon, Portugal
| | - Elisabete Carolino
- 1.Environment and Health RG, Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisbon, Portugal
| | - Carla Viegas
- 1.Environment and Health RG, Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisbon, Portugal
| |
Collapse
|
40
|
Park D, Ryu S, Kim S, Byun H, Yoon C, Lee K. Airborne bacteria and fungi associated with waste-handling work. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2013; 19:311-8. [DOI: 10.1179/2049396713y.0000000036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Odewabi AO, Ogundahunsi OA, Ekor M. Effect of exposure to solid wastes in relation to employment duration on some important markers of health and disease in waste management workers of Ogun State in southwest Nigeria. Hum Exp Toxicol 2013; 32:1231-44. [PMID: 23703821 DOI: 10.1177/0960327113488612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Waste management workers (WMWs) around the world are at risk of work-related health disorders. The influence of employment duration on individuals occupationally exposed to solid waste was investigated in this study. The study comprised (n = 280) 180 WMWs and 100 controls. Employment duration was obtained from questionnaire survey and categorized into three groups: group I (0.5-2 years), group II (>2-4 years) and group III (>4-6 years). Blood sample (10 ml) was collected from the antecubital vein of subjects for analysis. WMWs exhibited significantly (p < 0.001) elevated inflammatory markers (erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and ceruloplasmin (Cp)) relative to control. While Cp increased, ESR and CRP decreased with increasing WMWs' employment duration. Alteration in oxidant/antioxidant markers was characterized by significant (p < 0.001) decrease in ferric-reducing ability of plasma (FRAP) and catalase activity together with marked (p < 0.01) elevation of thiobarbituric acid reactive substances (TBARS) and uric acid (UA). TBARS, UA and FRAP increased while catalase decreased with WMWs' employment duration. In addition, WMWs exhibited significantly (p < 0.01) elevated immunoglobulin A (IgA) and IgG, which also increased and decreased, respectively, with job duration. The significantly (p < 0.01) decreased haemoglobin and haematocrit levels as well as the significantly (p < 0.001) elevated total leukocytes in WMWs increased with employment duration. Alanine aminotransferase increased and albumin decreased significantly (p < 0.05) in WMWs, and these changes also increased and decreased, respectively, with job duration. Data suggest that levels of alteration of important systemic markers of health/disease are related to WMWs' employment or exposure duration.
Collapse
Affiliation(s)
- Adesina O Odewabi
- 1Department of Chemical Pathology, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| | | | | |
Collapse
|
42
|
Prospective Outcome Assessment of Occupational Rhinitis After Removal From Exposure. J Occup Environ Med 2013; 55:579-85. [DOI: 10.1097/jom.0b013e318289ee17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Lehtinen J, Tolvanen O, Nivukoski U, Veijanen A, Hänninen K. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland. WASTE MANAGEMENT (NEW YORK, N.Y.) 2013; 33:964-973. [PMID: 23270688 DOI: 10.1016/j.wasman.2012.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/06/2012] [Accepted: 11/21/2012] [Indexed: 05/27/2023]
Abstract
Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvinkää and at the optic separation plant in Hämeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes. In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m(3) which clearly exceeded the threshold value of 90 EU/m(3). In the wheel loader cabin the endotoxin concentrations were below 1 EU/m(3). High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m(3), a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The most problematic factor was endotoxins whose average measured concentrations was 4853 EU/m(3).
Collapse
Affiliation(s)
- Jenni Lehtinen
- University of Jyväskylä, Department of Biological and Environmental Science, Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|
44
|
Sturm R. Modeling the deposition of bioaerosols with variable size and shape in the human respiratory tract – A review. J Adv Res 2012. [DOI: 10.1016/j.jare.2011.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Hansen VM, Meyling NV, Winding A, Eilenberg J, Madsen AM. Factors affecting vegetable growers' exposure to fungal bioaerosols and airborne dust. THE ANNALS OF OCCUPATIONAL HYGIENE 2012; 56:170-81. [PMID: 22003240 PMCID: PMC3277710 DOI: 10.1093/annhyg/mer090] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/15/2011] [Indexed: 11/24/2022]
Abstract
We have quantified vegetable growers' exposure to fungal bioaerosol components including (1→3)-β-d-glucan (β-glucan), total fungal spores, and culturable fungal units. Furthermore, we have evaluated factors that might affect vegetable growers' exposure to fungal bioaerosols and airborne dust. Investigated environments included greenhouses producing cucumbers and tomatoes, open fields producing cabbage, broccoli, and celery, and packing facilities. Measurements were performed at different times during the growth season and during execution of different work tasks. Bioaerosols were collected with personal and stationary filter samplers. Selected fungal species (Beauveria spp., Trichoderma spp., Penicillium olsonii, and Penicillium brevicompactum) were identified using different polymerase chain reaction-based methods and sequencing. We found that the factors (i) work task, (ii) crop, including growth stage of handled plant material, and (iii) open field versus greenhouse significantly affected the workers' exposure to bioaerosols. Packing of vegetables and working in open fields caused significantly lower exposure to bioaerosols, e.g. mesophilic fungi and dust, than harvesting in greenhouses and clearing of senescent greenhouse plants. Also removing strings in cucumber greenhouses caused a lower exposure to bioaerosols than harvest of cucumbers while removal of old plants caused the highest exposure. In general, the exposure was higher in greenhouses than in open fields. The exposures to β-glucan during harvest and clearing of senescent greenhouse plants were very high (median values ranging between 50 and 1500 ng m(-3)) compared to exposures reported from other occupational environments. In conclusion, vegetable growers' exposure to bioaerosols was related to the environment, in which they worked, the investigated work tasks, and the vegetable crop.
Collapse
Affiliation(s)
- Vinni M. Hansen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Nicolai Vitt Meyling
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Anne Winding
- Department of Environmental Chemistry and Microbiology, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Jørgen Eilenberg
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
46
|
Park DU, Ryu SH, Kim SB, Yoon CS. An assessment of dust, endotoxin, and microorganism exposure during waste collection and sorting. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2011; 61:461-8. [PMID: 21516941 DOI: 10.3155/1047-3289.61.4.461] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This study was conducted to assess inhalation exposure to dust, endotoxin, and microorganisms (including viable bacteria, Gram-negative bacteria [GNB], and fungi) during waste collection and sorting; to identify factors affecting this exposure; and to estimate the gastrointestinal exposure to microorganisms. A total of 48 or 49 workers involved in collecting and sorting waste from households or the street were studied. Each worker carried two personal samplers in which filters were placed in the breathing zone for estimation of inhalation exposure. To assess the possibility of gastrointestinal exposure, microorganisms on the workers' faces were collected before and after work and compared with those collected from office workers. Inhalation exposure levels were categorized according to job title, waste type handled, and working conditions and were compared using analysis of variance. Multiple regression models were developed to identify those factors that substantially affected inhalation exposure. The average exposure level to total dust was 0.9 mg/m3 (range = 0.05 to 4.51 mg/m3), and the average exposure to endotoxin was 1123 EU/m3. The average respective exposure levels to bacteria, GNB, and fungi each exceeded 10(4) colony forming units (CFU)/m3. The multiple regression models found several factors that significantly explained the variation in levels of inhalation exposure to endotoxin and microorganisms; namely, sex (dust, bacteria, and GNB), job title (GNB and fungi), collection day (dust, bacteria, and GNB), temperature (endotoxin and GNB), humidity (endotoxin and fungi), and region (endotoxin) were significantly associated with exposure to these agents. In addition, the workers' faces were highly contaminated with microorganisms. In conclusion, inhalation exposure to endotoxin and microorganisms was high during waste collection and sorting, which may place workers at risk of developing various health problems, including respiratory complaints.
Collapse
Affiliation(s)
- Dong-Uk Park
- Department of Environmental Health, Korea National Open University, Seoul, South Korea.
| | | | | | | |
Collapse
|
47
|
Kuijer PPFM, Sluiter JK, Frings-Dresen MHW. Health and safety in waste collection: Towards evidence-based worker health surveillance. Am J Ind Med 2010; 53:1040-64. [PMID: 20568268 DOI: 10.1002/ajim.20870] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Waste collectors around the world are at risk for work-related disorders and injuries. The aim of this study was to assess work demands, acute physiologic responses, illnesses, and injuries as a starting point for worker health surveillance (WHS). METHODS A systematic search was performed in PubMed and Embase on work demands, acute bodily responses, health, and injuries. A quality assessment and evidence synthesis was performed. RESULTS From a total of 379 retrieved studies, 50 studies fulfilled the inclusion criteria. Waste collecting varied from informal manual gathering to semi-automated systems. Most studies ("number of studies") on work demands and/or acute bodily responses addressed bioaerosols (14). Studies of health effects addressed respiratory complaints (8), and those on injuries addressed acute musculoskeletal disorders (3). Strong evidence is available that exposure to bioaerosols exceeds recommendations. Moderate evidence is available for an increased risk of respiratory complaints and musculoskeletal injuries, with significant odds ratios reported varying between 1.9-4.1 and 1.5-3.3, respectively. Limited evidence exists for gastrointestinal disorders and hearing loss. CONCLUSIONS WHS in waste collection is warranted for early detection of respiratory, gastrointestinal, and musculoskeletal disorders, and hearing loss.
Collapse
Affiliation(s)
- P Paul F M Kuijer
- Coronel Institute of Occupational Health, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
48
|
Athanasiou M, Makrynos G, Dounias G. Respiratory health of municipal solid waste workers. Occup Med (Lond) 2010; 60:618-23. [PMID: 20819804 DOI: 10.1093/occmed/kqq127] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is an increasing evidence that the incidence of work-related pulmonary problems is greater in waste collectors than in the general workforce. AIMS To evaluate the respiratory health of municipal solid waste workers (MSWWs). METHODS One hundred and eighty-four municipal employees of Keratsini (104 MSWWs and 80 controls) participated in a cross-sectional study. All participants were asked to fill in a slightly modified version of the Medical Research Council questionnaire. Lung function was evaluated by spirometry. RESULTS Spirometry revealed reduced mean forced vital capacity (FVC) and forced expiratory volume in 1 s (as a percentage of predicted values) in MSWWs compared with controls. After adjustment for smoking status, only the decline in FVC was statistically significant (P < 0.05). Prevalence of all respiratory symptoms was higher in MSWWs than in controls. After adjustment for confounding factors, the difference reached statistical significance (P < 0.05) for morning cough, cough on exertion and sore throat. CONCLUSIONS The results of this cross-sectional study indicate a higher prevalence of respiratory symptoms and a greater decrease in lung function in MSWWs. A number of limitations such as the relatively small size of population and the 'healthy worker' effect should be taken into account.
Collapse
Affiliation(s)
- M Athanasiou
- Department of Occupational and Industrial Hygiene, National School of Public Health, 196 Alexandras Avenue, Athens 11521, Greece.
| | | | | |
Collapse
|
49
|
Exposure to bioaerosols during the growth season of tomatoes in an organic greenhouse using Supresivit (Trichoderma harzianum) and Mycostop (Streptomyces griseoviridis). Appl Environ Microbiol 2010; 76:5874-81. [PMID: 20622135 DOI: 10.1128/aem.00446-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In working environments, especially in confined spaces like greenhouses, elevated concentrations of airborne microorganisms may become a problem for workers' health. Additionally, the use of microbial pest control agents (MPCAs) may increase exposure to microorganisms. The aim of this study was to investigate tomato growers' exposure to naturally occurring bioaerosol components [dust, bacteria, fungi, actinomycetes, (1-->3)-beta-D-glucans, and endotoxin] and MPCAs applied by drip irrigation. Airborne dust was collected with filter samplers and analyzed for microorganisms by plate counts and total counts using a microscope. Analysis of (1-->3)-beta-D-glucan and endotoxin content was performed by kinetic, chromatic Limulus amoebocyte lysate tests. The fungal strain (Trichoderma harzianum) from the biocontrol product Supresivit was identified by PCR analysis. Measurements were performed on the day of drip irrigation and 1 week, 1 month, and 3 months after the irrigation. T. harzianum from Supresivit could be detected only on the day of treatment. Streptomyces griseoviridis, an applied MPCA, was not detected in the air during this investigation. We found that bioaerosol exposure increases during the growth season and that exposure to fungi, bacteria, and endotoxin can reach levels during the harvest period that may cause respiratory symptoms in growers. The collected data indicate that MPCAs applied by drip irrigation do not become airborne later in the season.
Collapse
|
50
|
Huttunen K, Kaarakainen P, Meklin T, Nevalainen A, Hirvonen MR. Immunotoxicological properties of airborne particles at landfill, urban and rural sites and their relation to microbial concentrations. ACTA ACUST UNITED AC 2010; 12:1368-74. [PMID: 20431840 DOI: 10.1039/c002579h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the immunotoxicological activity of airborne particles in three different environments during 11 months. Specifically, we analyzed the relation of the immunotoxicological activity to microbial concentrations. During the study period, samples from a landfill, an urban and a rural site were collected on filters once a month. The immunotoxicological characteristics of collected particle samples were studied by exposing mouse macrophages (RAW264.7), and measuring the viability and production of inflammatory mediators i.e. nitric oxide (NO), tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 after 24 hours. In addition, the results were compared to corresponding microbial concentrations measured with quantitative polymerase chain reaction (qPCR) in the same sites. The particles collected from the landfill caused significantly more toxicity and inflammatory responses than the particles from other sites. The immunotoxicological activity of the samples changed according to the season, being the lowest in all study sites in the winter. In the rural and urban sites the responses peaked during the spring, whereas at the landfill the highest responses were detected towards the fall. All immunotoxic responses correlated strongly with airborne microbial concentrations at the landfill, whereas on the other sites the correlations were weaker. These results indicate that the overall immunotoxicological activity of the particles is increased in waste handling area with a heavy microbial load. The activity of the samples collected from different sites changes according to the season being at their lowest at wintertime. At the waste center, the immunotoxicological responses are related with concentrations of microbes, whereas at rural area and city center other factors seem to govern the toxicity of the sample.
Collapse
Affiliation(s)
- Kati Huttunen
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701, Kuopio, Finland.
| | | | | | | | | |
Collapse
|