1
|
Khodir SA, Sweed E, Motawea SM, Al-Gholam MA, Elnaidany SS, Dayer MZS, Ameen O. Diacerein and myo-inositol alleviate letrozole-induced PCOS via modulation of HMGB1, SIRT1, and NF-kB: A comparative study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03497-7. [PMID: 39432066 DOI: 10.1007/s00210-024-03497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent cause of anovulatory infertility in women. Myo-inositol supplementation has displayed effectiveness in curing PCOS patients. Diacerein, an anti-inflammatory medication, has not been extensively studied in the context of reproductive disorders. This study aimed to compare the role of myo-inositol and diacerein in PCOS and the probable mechanisms mediating their actions. Forty adult female rats were divided equally into the following: control, PCOS, PCOS+Myo-inositol, and PCOS+Diacerein groups. Rats were subjected to arterial blood pressure (ABP), electromyography (EMG), and uterine reactivity measurements. Blood samples were collected for measuring hormonal assays, glycemic state, lipid profile, oxidative stress, and inflammatory markers. Ovaries and uteri were extracted for histological examination, including hematoxylin and eosin staining, Masson's trichrome staining, immunohistochemistry, and rt-PCR analysis of ovarian tissues. PCOS was associated with significant increases in ABP, uterine frequency and amplitude of contraction, luteinizing hormone, testosterone, lipid, glycemic and inflammatory markers, malondialdehyde, high-mobility group box 1 (HMGB1), nuclear factor kappa (NF-kB), ovarian fibrosis, and endometrial thickening. In contrast, there was a significant reduction in follicular stimulating hormone, reduced glutathione, and Sirtuin 1 (SIRT1) when compared with control group. Both myo-inositol and diacerein counteract PCOS changes; but diacerein's effects were superior to myo-inositol's for all parameters, except for lipid and glycemic markers. Diacerein possessed anti-inflammatory properties and showed significant efficacy in mitigating the endocrinal, metabolic, and ovarian structural alterations linked to PCOS. Its beneficial actions likely stem from reducing oxidative stress, dyslipidemia, and hyperglycemia, potentially through the modulation of HMGB1, SIRT1, and NF-kB pathways.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical Physiology, Menoufia National University, Menoufia, Egypt
| | - Eman Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt.
- Quality Assurance Unit, Menoufia National University, Menoufia, Egypt.
| | - Shaimaa Mohamed Motawea
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Marwa A Al-Gholam
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Sherin Sobhy Elnaidany
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | | | - Omnia Ameen
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| |
Collapse
|
2
|
Wang J, Gui R, Li Y, Li Z, Li Z, Liu S, Zhang M, Qian L, Fan X, Xiong Y. SFRP4 contributes to insulin resistance-induced polycystic ovary syndrome by triggering ovarian granulosa cell hyperandrogenism and apoptosis through the nuclear β-catenin/IL-6 signaling axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119822. [PMID: 39159685 DOI: 10.1016/j.bbamcr.2024.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic ovulation dysfunction and overproduction of androgens. Women with PCOS are commonly accompanied by insulin resistance (IR), which can impair insulin sensitivity and elevate blood glucose levels. IR promotes ovarian cysts, ovulatory dysfunction, and menstrual irregularities in women patients, leading to the pathogenesis of PCOS. Secreted frizzled-related protein 4 (SFRP4), a secreted glycoprotein, exhibits significantly elevated expression levels in obese individuals with IR and PCOS. Whereas, whether it plays a role in regulating IR-induced PCOS still has yet to be understood. In this study, we respectively established in vitro IR-induced hyperandrogenism in human ovarian granular cells and in vivo IR-induced PCOS models in mice to investigate the action mechanisms of SFRP4 in modulating IR-induced PCOS. Here, we revealed that SFRP4 expression levels in both mRNA and protein were remarkably upregulated in the IR-induced hyperandrogenism with elevated testosterone in the human ovarian granulosa cell line KGN. Under normal conditions without hyperandrogenism, overexpressing SFRP4 triggered the remarkable elevation of testosterone along with the increased nuclear translocation of β-catenin, cell apoptosis and proinflammatory cytokine IL-6. Furthermore, we found that phytopharmaceutical disruption of SFRP4 by genistein ameliorated IR-induced increase in testosterone in ovarian granular cells, and IR-induced PCOS in high-fat diet obese mice. Our study reveals that SFRP4 contributes to IR-induced PCOS by triggering ovarian granulosa cell hyperandrogenism and apoptosis through the nuclear β-catenin/IL-6 signaling axis. Elucidating the role of SFRP4 in PCOS may provide a novel therapeutic strategy for IR-related PCOS therapy.
Collapse
Affiliation(s)
- Jiangxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Runlin Gui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Shanshan Liu
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Miao Zhang
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Lu Qian
- Xi'an Mental Health Center, Xi'an, Shaanxi 710100, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China.
| |
Collapse
|
3
|
Aghajani T, Arefhosseini S, Ebrahimi‐Mameghani M, Safaralizadeh R. The effect of myo-inositol supplementation on AMPK/PI3K/AKT pathway and insulin resistance in patients with NAFLD. Food Sci Nutr 2024; 12:7177-7185. [PMID: 39479697 PMCID: PMC11521746 DOI: 10.1002/fsn3.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 11/02/2024] Open
Abstract
Insulin resistance (IR) is the pivotal pathological hit in non-alcoholic fatty liver disease (NAFLD). There is specific attention to combination/conjugated therapies for NAFLD management. As myo-inositol (MI) has been shown to improve IR in animal and human trials, this study aimed to investigate the influence of MI supplementation on glycemic response and IR through AMPK/PI3K/AKT signaling pathway in obese patients with NAFLD. This double-blinded placebo-controlled randomized clinical trial was conducted on 48 obese (BMI = 30-40 kg/m2) patients with NAFLD who were randomly assigned to receiving either MI (4 g/day) or placebo (maltodextrin 4 g/day) group for 8 weeks. Before and after the trial, weight, height, serum glycemic parameters (inc. fasting glucose and insulin) as well as IR indices were assessed. Moreover, the mRNA expression levels of AMPK, AKT, and PDK-1 in peripheral blood mononuclear cells (PBMCs) were determined. MI supplementation resulted in significant increases in the fold changes of AMPK, AKT, and PDK-1 genes (p = .019, p = .049, and p = .029, respectively). Indeed, IR improved in terms of all IR indices in MI group (p < .05) after adjusting for the confounders, apart from quantitative insulin sensitivity check index (QUICKI). The results showed that MI supplementation not only upregulated AMPK, AKT, and PDK-1 mRNA in PBMCs but also improved IR in obese patients with NAFLD.
Collapse
Affiliation(s)
- Taha Aghajani
- Department of Animal Biology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
| | - Sara Arefhosseini
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Mehrangiz Ebrahimi‐Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
| |
Collapse
|
4
|
Culler KL, Sinha A, Filipp M, Giro P, Allen NB, Taylor KD, Guo X, Thorp E, Freed BH, Greenland P, Post WS, Bertoni A, Herrington D, Gao C, Wang Y, Shah SJ, Patel RB. Metabolomic profiling identifies novel metabolites associated with cardiac dysfunction. Sci Rep 2024; 14:20694. [PMID: 39237673 PMCID: PMC11377834 DOI: 10.1038/s41598-024-71329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Metabolic comorbidities, such as obesity and diabetes, are associated with subclinical alterations in both cardiac structure/function and natriuretic peptides prior to the onset of heart failure (HF). Despite this, the exact metabolic pathways of cardiac dysfunction which precede HF are not well-defined. Among older individuals without HF in the Multi-Ethnic Study of Atherosclerosis (MESA), we evaluated the associations of 47 circulating metabolites measured by 1H-NMR with echocardiographic measures of cardiac structure and function. We then evaluated associations of significant metabolites with circulating N-terminal pro-B-type natriuretic peptide (NT-proBNP). In a separate cohort, we evaluated differences between top metabolites in patients with HF with preserved ejection fraction (HFpEF) and comorbidity-matched controls. Genetic variants associated with top metabolites (mQTLs) were then related to echocardiographic measures and NT-proBNP. Among 3440 individuals with metabolic and echocardiographic data in MESA (62 ± 10 years, 52% female, 38% White), 10 metabolites broadly reflective of glucose and amino acid metabolism were associated with at least 1 measure of cardiac structure or function. Of these 10 metabolites, 4 (myo-inositol, glucose, dimethylsulfone, carnitine) were associated with higher NT-proBNP and 2 (d-mannose, acetone) were associated with lower NT-proBNP. In a separate cohort, patients with HFpEF had higher circulating myo-inositol levels compared with comorbidity-matched controls. Genetic analyses revealed that 1 of 6 known myo-inositol mQTLs conferred risk of higher NT-proBNP. In conclusion, metabolomic profiling identifies several novel metabolites associated with cardiac dysfunction in a cohort at high risk for HF, revealing pathways potentially relevant to future HF risk.
Collapse
Affiliation(s)
- Kasen L Culler
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA
| | - Arjun Sinha
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA
| | - Mallory Filipp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pedro Giro
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA
| | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ed Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin H Freed
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wendy S Post
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alain Bertoni
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David Herrington
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Chen Gao
- Physiology and Pharmacology Department, University of Cincinnati, Cincinnati, OH, USA
| | - Yibin Wang
- Signature Research Program of Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA
| | - Ravi B Patel
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA.
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Trischler R, Rustler SM, Poehlein A, Daniel R, Breitenbach M, Helfrich EJN, Müller V. 3-Hydroxypropionate production from myo-inositol by the gut acetogen Blautia schinkii. Environ Microbiol 2024; 26:e16692. [PMID: 39206693 DOI: 10.1111/1462-2920.16692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Species of the genus Blautia are not only abundant in the human gut but also contribute to human well-being. Our study demonstrates that the gut acetogen Blautia schinkii can grow on myo-inositol. We identified the pathway of myo-inositol degradation through a combination of physiological and biochemical studies, genome-wide expression profiling and homology searches. Initially, myo-inositol is oxidized to 2-keto-myo-inositol. This compound is then metabolized by a series of enzymes - a dehydratase, hydrolase, isomerase and kinase - to form 2-deoxy-5-keto-d-gluconic acid 6-phosphate. This intermediate is split by an aldolase into malonate semialdehyde and dihydroxyacetone phosphate, which is an intermediate of the Embden-Meyerhof-Parnas pathway. This pathway leads to the production of pyruvate and, subsequently, acetate. Concurrently, malonate semialdehyde is reduced to 3-hydroxypropionate (3-HP). The genes responsible for myo-inositol degradation are clustered on the genome, except for the gene encoding the aldolase. We identified the putative aldolase Fba_3 and 3-HP dehydrogenase Adh1 encoding genes bioinformatically and verified them biochemically using enzyme assays with heterologously produced and purified protein. The major fermentation end products were 3-HP and acetate, produced in similar amounts. The production of the unusual fermentation end product 3-HP is significant not only for human health but also for the potential bioindustrial production of this highly desired compound.
Collapse
Affiliation(s)
- Raphael Trischler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Stefanie M Rustler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Anja Poehlein
- Georg August University Göttingen, Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Göttingen, Germany
| | - Rolf Daniel
- Georg August University Göttingen, Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Göttingen, Germany
| | - Milena Breitenbach
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Eric J N Helfrich
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Pouleur AC, Menghoum N, Cumps J, Marino A, Badii M, Lejeune S, Legault JT, Boucher G, Gruson D, Roy C, Battault S, Mahrouche L, Pedneault-Gagnon V, Charpentier D, Furtos A, Hussin J, Rhainds D, Tardif JC, Bertrand L, Rosiers CD, Horman S, Beauloye C. Plasma myo-inositol elevation in heart failure: clinical implications and prognostic significance. Results from the BElgian and CAnadian MEtabolomics in HFpEF (BECAME-HF) research project. EBioMedicine 2024; 107:105264. [PMID: 39121579 PMCID: PMC11363489 DOI: 10.1016/j.ebiom.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The metabolic environment plays a crucial role in the development of heart failure (HF). Our prior research demonstrated that myo-inositol, a metabolite transported by the sodium-myo-inositol co-transporter 1 (SMIT-1), can induce oxidative stress and may be detrimental to heart function. However, plasmatic myo-inositol concentration has not been comprehensively assessed in large cohorts of patients with heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). METHODS Plasmatic myo-inositol levels were measured using mass spectrometry and correlated with clinical characteristics in no HF subjects and patients with HFrEF and HFpEF from Belgian (male, no HF, 53%; HFrEF, 84% and HFpEF, 40%) and Canadian cohorts (male, no HF, 51%; HFrEF, 92% and HFpEF, 62%). FINDINGS Myo-inositol levels were significantly elevated in patients with HF, with a more pronounced increase observed in the HFpEF population of both cohorts. After adjusting for age, sex, body mass index, hypertension, diabetes, and atrial fibrillation, we observed that both HFpEF status and impaired kidney function were associated with elevated plasma myo-inositol. Unlike HFrEF, abnormally high myo-inositol (≥69.8 μM) was linked to unfavourable clinical outcomes (hazard ratio, 1.62; 95% confidence interval, [1.05-2.5]) in patients with HFpEF. These elevated levels were correlated with NTproBNP, troponin, and cardiac fibrosis in this subset of patients. INTERPRETATION Myo-inositol is a metabolite elevated in patients with HF and strongly correlated to kidney failure. In patients with HFpEF, high myo-inositol levels predict poor clinical outcomes and are linked to markers of cardiac adverse remodelling. This suggests that myo-inositol and its transporter SMIT1 may have a role in the pathophysiology of HFpEF. FUNDING BECAME-HF was supported by Collaborative Bilateral Research Program Québec - Wallonie-Brussels Federation.
Collapse
Affiliation(s)
- Anne-Catherine Pouleur
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nassiba Menghoum
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Julien Cumps
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Alice Marino
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maria Badii
- Department of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sibille Lejeune
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Gabrielle Boucher
- Research Centre, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Damien Gruson
- Department of Clinical Biology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Clotilde Roy
- Department of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sylvain Battault
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Louiza Mahrouche
- Department of Chemistry, Université de Montréal, Montréal, QC H3T IJ4, Canada
| | | | | | - Alexandra Furtos
- Department of Chemistry, Université de Montréal, Montréal, QC H3T IJ4, Canada
| | - Julie Hussin
- Research Centre, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - David Rhainds
- Research Centre, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Jean-Claude Tardif
- Research Centre, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Christine Des Rosiers
- Research Centre, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Department of Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
7
|
Koleva IZ, Tzachev CT. Efficient Improvement of Eugenol Water Solubility by Spray Drying Encapsulation in Soluplus ® and Lutrol F 127. Pharmaceuticals (Basel) 2024; 17:1156. [PMID: 39338319 PMCID: PMC11434763 DOI: 10.3390/ph17091156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Herein, we present an elegant and simple method for significant improvement of eugenol water solubility using the polymers Soluplus® and Lutrol F 127 as carriers and spray drying as an encapsulation method. The formulations were optimized by adding myo-inositol-a sweetening agent-and Aerosil® 200 (colloidal, fumed silica)-an anticaking agent. The highest encapsulation efficiency of 97.9-98.2% was found for the samples containing 5% eugenol with respect to the mass of Soluplus®. The encapsulation efficiencies of the spray-dried samples with 15% eugenol are around 90%. Although lowering the yield, the addition of Lutrol F 127 results in a more regular particle shape and enhanced powder flowability. The presence of Aerosil® 200 and myo-inositol also improves the rheological powder properties. The obtained formulations can be used in various dosage forms like powders, granules, capsules, creams, and gels.
Collapse
Affiliation(s)
- Iskra Z Koleva
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Christo T Tzachev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
8
|
Ung AT, Chen H. Biological Properties, Health Benefits and Semisynthetic Derivatives of Edible Astraeus Mushrooms (Diplocystidiaceae): A Comprehensive Review. Chem Biodivers 2024:e202401295. [PMID: 39177069 DOI: 10.1002/cbdv.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Edible Astraeus mushrooms are known for their nutritional and culinary benefits and potential therapeutic properties. However, more investigation and discussion are still needed to understand their mechanisms of action regarding observed biological activities and thorough chemical analysis of bioactive compounds. This review provides a comprehensive summary and discussion of the bioactive properties and mode of action of Astraeus extracts and their isolated compounds. It covers their reported antioxidant, anti-inflammatory, antidiabetic, anticancer, anti-tuberculosis, antimalarial, antiviral and antileishmanial activities, as well as their potential benefits on metabolic and cardiovascular health and immune function. The review highlights the significance of the biological potential of isolated compounds, such as sugar alcohols, polysaccharides, steroids, and lanostane triterpenoids. Moreover, the review identifies under-researched areas, such as the chemical analysis of Astraeus species, which holds immense research potential. Ultimately, the review aims to inspire further research on the nutraceuticals or therapeutics of these mushrooms.
Collapse
Affiliation(s)
- Alison T Ung
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
9
|
Wu C, Yang F, Zhong H, Hong J, Lin H, Zong M, Ren H, Zhao S, Chen Y, Shi Z, Wang X, Shen J, Wang Q, Ni M, Chen B, Cai Z, Zhang M, Cao Z, Wu K, Gao A, Li J, Liu C, Xiao M, Li Y, Shi J, Zhang Y, Xu X, Gu W, Bi Y, Ning G, Wang W, Wang J, Liu R. Obesity-enriched gut microbe degrades myo-inositol and promotes lipid absorption. Cell Host Microbe 2024; 32:1301-1314.e9. [PMID: 38996548 DOI: 10.1016/j.chom.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
Numerous studies have reported critical roles for the gut microbiota in obesity. However, the specific microbes that causally contribute to obesity and the underlying mechanisms remain undetermined. Here, we conducted shotgun metagenomic sequencing in a Chinese cohort of 631 obese subjects and 374 normal-weight controls and identified a Megamonas-dominated, enterotype-like cluster enriched in obese subjects. Among this cohort, the presence of Megamonas and polygenic risk exhibited an additive impact on obesity. Megamonas rupellensis possessed genes for myo-inositol degradation, as demonstrated in vitro and in vivo, and the addition of myo-inositol effectively inhibited fatty acid absorption in intestinal organoids. Furthermore, mice colonized with M. rupellensis or E. coli heterologously expressing the myo-inositol-degrading iolG gene exhibited enhanced intestinal lipid absorption, thereby leading to obesity. Altogether, our findings uncover roles for M. rupellensis as a myo-inositol degrader that enhances lipid absorption and obesity, suggesting potential strategies for future obesity management.
Collapse
Affiliation(s)
- Chao Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangming Yang
- BGI Research, Shenzhen 518083, China; Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen 518083, China
| | - Huanzi Zhong
- BGI Research, Shenzhen 518083, China; Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen 518083, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huibin Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Zong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huahui Ren
- BGI Research, Shenzhen 518083, China; Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen 518083, China
| | - Shaoqian Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhun Shi
- BGI Research, Shenzhen 518083, China; Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen 518083, China
| | - Xingyu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Shen
- BGI Research, Shenzhen 518083, China
| | - Qiaoling Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengshan Ni
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Banru Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongle Cai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minchun Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwen Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Wu
- BGI Research, Shenzhen 518083, China; Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Li
- BGI Research, Shenzhen 518083, China
| | - Cong Liu
- BGI Research, Shenzhen 518083, China
| | | | - Yan Li
- BGI Research, Shenzhen 518083, China
| | - Juan Shi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Xu
- BGI Research, Shenzhen 518083, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Wang Z, Haslam DE, Sawicki CM, Rivas-Tumanyan S, Hu FB, Liang L, Wong DTW, Joshipura KJ, Bhupathiraju SN. Saliva, Plasma, and Multifluid Metabolomic Signatures of Periodontal Disease, Type 2 Diabetes Progression, and Markers of Glycemia and Dyslipidemia Among Puerto Rican Adults With Overweight and Obesity. J Am Heart Assoc 2024; 13:e033350. [PMID: 39023061 DOI: 10.1161/jaha.123.033350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Evidence from cohort studies indicates a bidirectional relationship between periodontal disease and type 2 diabetes (T2D), but the underlying mechanisms remain unknown. In this study, we aimed to (1) identify saliva, plasma, and multifluid metabolomic signatures associated with periodontal disease and (2) determine if these signatures predict T2D progression and cardiometabolic biomarkers at year 3. METHODS AND RESULTS We included participants from the SOALS (San Juan Overweight Adult Longitudinal Study) (n=911). Metabolites from saliva (k=635) and plasma (k=1051) were quantified using liquid chromatography-mass spectrometry. We applied elastic net regression with 10-fold cross-validation to identify baseline metabolomic signatures of periodontal disease. Multivariable Cox proportional hazards regression and linear regression were used to evaluate the association with T2D progression and biomarker concentrations. Metabolomic profiles included highly weighted metabolites related to lysine and pyrimidine metabolism. Periodontal disease or its 3 metabolomic signatures were not associated with T2D progression in 3 years. Prospectively, 1-SD increments in the multifluid and saliva metabolomic signatures were associated with higher low-density lipoprotein (multifluid: 12.9±5.70, P=0.02; saliva: 13.3±5.11, P=0.009). A 1-SD increment in the plasma metabolomic signature was also associated with Homeostatic Model Assessment for Insulin Resistance (2.67±1.14, P=0.02) and triglyceride (0.52±0.18, P=0.002). CONCLUSIONS Although metabolomic signatures of periodontal disease could not predict T2D progression, they were associated with low-density lipoprotein, triglyceride, and Homeostatic Model Assessment for Insulin Resistance levels at year 3.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston MA USA
| | - Danielle E Haslam
- Department of Nutrition Harvard T.H. Chan School of Public Health Boston MA USA
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| | - Caleigh M Sawicki
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston MA USA
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| | | | - Frank B Hu
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston MA USA
- Department of Nutrition Harvard T.H. Chan School of Public Health Boston MA USA
| | - Liming Liang
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston MA USA
- Department of Biostatistics Harvard T.H. Chan School of Public Health Boston MA USA
| | - David T W Wong
- School of Dentistry University of California, Los Angeles Los Angeles CA USA
| | - Kaumudi J Joshipura
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston MA USA
- Ahmedabad University School of Public Health Ahmedabad Gujarat India
| | - Shilpa N Bhupathiraju
- Department of Nutrition Harvard T.H. Chan School of Public Health Boston MA USA
- Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| |
Collapse
|
11
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
12
|
Xu X, Khunsriraksakul C, Eales JM, Rubin S, Scannali D, Saluja S, Talavera D, Markus H, Wang L, Drzal M, Maan A, Lay AC, Prestes PR, Regan J, Diwadkar AR, Denniff M, Rempega G, Ryszawy J, Król R, Dormer JP, Szulinska M, Walczak M, Antczak A, Matías-García PR, Waldenberger M, Woolf AS, Keavney B, Zukowska-Szczechowska E, Wystrychowski W, Zywiec J, Bogdanski P, Danser AHJ, Samani NJ, Guzik TJ, Morris AP, Liu DJ, Charchar FJ, Tomaszewski M. Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets. Nat Commun 2024; 15:2359. [PMID: 38504097 PMCID: PMC10950894 DOI: 10.1038/s41467-024-46132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | | | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sebastien Rubin
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Havell Markus
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Lida Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Maciej Drzal
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Akhlaq Maan
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Abigail C Lay
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Jeniece Regan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Avantika R Diwadkar
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Grzegorz Rempega
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Jakub Ryszawy
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John P Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, UK
| | - Monika Szulinska
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Marta Walczak
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Pamela R Matías-García
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK
| | | | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Zywiec
- Department of Internal Medicine, Diabetology and Nephrology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Bogdanski
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK.
| |
Collapse
|
13
|
El-Shabasy RM, F Eissa T, Emam Y, Zayed A, Fayek N, Farag MA. Valorization potential of Egyptian mango kernel waste product as analyzed via GC/MS metabolites profiling from different cultivars and geographical origins. Sci Rep 2024; 14:2886. [PMID: 38311611 PMCID: PMC10838926 DOI: 10.1038/s41598-024-53379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Increasing attention has been given to mango (Mangifera indica) fruits owing to their characteristic taste, and rich nutritional value. Mango kernels are typically discarded as a major waste product in mango industry, though of potential economic value. The present study aims to outline the first comparison of different mango kernel cvs. originated from different localities alongside Egypt, e.g., Sharqia, Suez, Ismailia, and Giza. Gas chromatography-mass spectroscopy (GC-MS) post silylation analysis revealed that sugars were the major class being detected at 3.5-290.9 µg/mg, with some kernels originating from Sharqia province being the richest amongst other cvs. In consistency with sugar results, sugar alcohols predominated in Sharqia cvs. at 1.3-38.1 µg/mg represented by ribitol, iditol, pinitol, and myo-inositol. No major variation was observed in the fatty acids profile either based on cv. type or localities, with butyl caprylate as a major component in most cvs. identified for the first time in mango. Regarding phenolics, Sedeeq cv. represented the highest level at 18.3 µg/mg and showing distinct variation among cvs. posing phenolics as better classification markers than sugars. Multivariate data analyses (MVA) confirmed that the premium cvs "Aweis and Fons" were less enriched in sugars, i.e., fructose, talose, and glucose compared to the other cvs. Moreover, MVA of Zabdeya cv. collected from three localities revealed clear segregation to be chemically distinct. Sharqia originated mango kernels were rich in sugars (e.g., glucose and fructose), whilst sarcosine esters predominated in other origins.
Collapse
Affiliation(s)
- Rehan M El-Shabasy
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom, 32512, Egypt
| | - Tarek F Eissa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Yossef Emam
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Nesrin Fayek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
14
|
Katturajan R, Shivaji P, Nithiyanandam S, Parthasarathy M, Magesh S, Vashishth R, Radhakrishnan V, Prince SE. Antioxidant and Antidiabetic Potential of Ormocarpum cochinchinense (Lour.) Merr. Leaf: An Integrated In vitro and In silico Approach. Chem Biodivers 2024; 21:e202300960. [PMID: 38217335 DOI: 10.1002/cbdv.202300960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
Diabetes is a prevalent metabolic disorder associated with various complications. Inhibition of α-glucosidase and α-amylase enzymes is an effective strategy for managing non-insulin-dependent diabetes mellitus. This study aimed to investigate the antioxidant and antidiabetic potential of Ormocarpum cochinchinense leaf through in vitro and in silico approaches. The methanol extract exhibited the highest phenolic and flavonoid content over solvent extracts aqueous, acetone, hexane, and chloroform, the same has been correlating with strong antioxidant activity. Furthermore, the methanol extract demonstrated significant inhibitory effects on α-amylase and α-glucosidase enzymes, indicating its potential as an antidiabetic agent. Molecular docking analysis identified compounds, including myo-inositol, with favorable binding energies comparable to the standard drug metformin. The selected compounds displayed strong binding affinity towards α-amylase and α-glucosidase enzymes. Structural dynamics analysis revealed that myo-inositol formed a more stable complex with the enzymes. These findings suggest that O. cochinchinense leaf possesses antioxidant and antidiabetic properties, making it a potential source for developing therapeutic agents.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | - Priyadharshini Shivaji
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | - Sangeetha Nithiyanandam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | - Manisha Parthasarathy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | | | - Rahul Vashishth
- Department of Biosciences, School of Biosciences and Technology, VIT, Vellore, 632014
| | - Vidya Radhakrishnan
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| |
Collapse
|
15
|
Gypakis A, Adelt S, Lemoine H, Vogel G, Wasner HK. Activated Inositol Phosphate, Substrate for Synthesis of Prostaglandylinositol Cyclic Phosphate (Cyclic PIP)-The Key for the Effectiveness of Inositol-Feeding. Int J Mol Sci 2024; 25:1362. [PMID: 38338641 PMCID: PMC10855042 DOI: 10.3390/ijms25031362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
The natural cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP), is biosynthesized from prostaglandin E (PGE) and activated inositol phosphate (n-Ins-P), which is synthesized by a particulate rat-liver-enzyme from GTP and a precursor named inositol phosphate (pr-Ins-P), whose 5-ring phosphodiester structure is essential for n-Ins-P synthesis. Aortic myocytes, preincubated with [3H] myo-inositol, synthesize after angiotensin II stimulation (30 s) [3H] pr-Ins-P (65% yield), which is converted to [3H] n-Ins-P and [3H] cyclic PIP. Acid-treated (1 min) [3H] pr-Ins-P co-elutes with inositol (1,4)-bisphosphate in high performance ion chromatography, indicating that pr-Ins-P is inositol (1:2-cyclic,4)-bisphosphate. Incubation of [3H]-GTP with unlabeled pr-Ins-P gave [3H]-guanosine-labeled n-Ins-P. Cyclic PIP synthase binds the inositol (1:2-cyclic)-phosphate part of n-Ins-P to PGE and releases the [3H]-labeled guanosine as [3H]-GDP. Thus, n-Ins-P is most likely guanosine diphospho-4-inositol (1:2-cyclic)-phosphate. Inositol feeding helps patients with metabolic conditions related to insulin resistance, but explanations for this finding are missing. Cyclic PIP appears to be the key for explaining the curative effect of inositol supplementation: (1) inositol is a molecular constituent of cyclic PIP; (2) cyclic PIP triggers many of insulin's actions intracellularly; and (3) the synthesis of cyclic PIP is decreased in diabetes as shown in rodents.
Collapse
Affiliation(s)
- Antonios Gypakis
- General Secretariat for Research and Innovation, GR-11527 Athens, Greece;
| | - Stephan Adelt
- Fachbereich C—Biochemie, Bergische University, 42119 Wuppertal, Germany;
| | - Horst Lemoine
- Institute for Laser-Medicine, Molecular Drug-Research Group, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Günter Vogel
- Fachbereich C—Biochemie, Bergische University, 42119 Wuppertal, Germany;
| | - Heinrich K. Wasner
- BioReg Biopharm, Technology Innovation Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Fong SL, Kim N, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of a frugivorous and an insectivorous bat kidney and pancreas. Nat Commun 2024; 15:12. [PMID: 38195585 PMCID: PMC10776631 DOI: 10.1038/s41467-023-44186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024] Open
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.
Collapse
Affiliation(s)
- Wei E Gordon
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biology, Menlo College, 1000 El Camino Real, Atherton, CA, 94027, USA
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hai P Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Rachael Bradley
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sarah L Fong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Alex Galazyuk
- Hearing Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Melissa R Ingala
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, 07940, USA
| | - Nancy B Simmons
- Division of Vertebrate Zoology, Department of Mammalogy, American Museum of Natural History, New York, NY, 10024, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lisa Noelle Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Martin Hemberg
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
17
|
Lopez-Pedrosa JM, Camprubi-Robles M, Guzman-Rolo G, Lopez-Gonzalez A, Garcia-Almeida JM, Sanz-Paris A, Rueda R. The Vicious Cycle of Type 2 Diabetes Mellitus and Skeletal Muscle Atrophy: Clinical, Biochemical, and Nutritional Bases. Nutrients 2024; 16:172. [PMID: 38202001 PMCID: PMC10780454 DOI: 10.3390/nu16010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Today, type 2 diabetes mellitus (T2DM) and skeletal muscle atrophy (SMA) have become increasingly common occurrences. Whether the onset of T2DM increases the risk of SMA or vice versa has long been under investigation. Both conditions are associated with negative changes in skeletal muscle health, which can, in turn, lead to impaired physical function, a lowered quality of life, and an increased risk of mortality. Poor nutrition can exacerbate both T2DM and SMA. T2DM and SMA are linked by a vicious cycle of events that reinforce and worsen each other. Muscle insulin resistance appears to be the pathophysiological link between T2DM and SMA. To explore this association, our review (i) compiles evidence on the clinical association between T2DM and SMA, (ii) reviews mechanisms underlying biochemical changes in the muscles of people with or at risk of T2DM and SMA, and (iii) examines how nutritional therapy and increased physical activity as muscle-targeted treatments benefit this population. Based on the evidence, we conclude that effective treatment of patients with T2DM-SMA depends on the restoration and maintenance of muscle mass. We thus propose that regular intake of key functional nutrients, along with guidance for physical activity, can help maintain euglycemia and improve muscle status in all patients with T2DM and SMA.
Collapse
Affiliation(s)
| | | | | | | | - Jose Manuel Garcia-Almeida
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain;
| | - Alejandro Sanz-Paris
- Nutrition Unit, Universitary Hospital Miguel Servet, Isabel the Catholic 1-3, 50009 Zaragoza, Spain;
| | - Ricardo Rueda
- Abbott Nutrition R&D, 18004 Granada, Spain; (M.C.-R.); (A.L.-G.); (R.R.)
| |
Collapse
|
18
|
Nani A, Bertuzzi F, Meneghini E, Mion E, Pintaudi B. Combined Inositols, α-Lactalbumin, Gymnema Sylvestre and Zinc Improve the Lipid Metabolic Profile of Patients with Type 2 Diabetes Mellitus: A Randomized Clinical Trial. J Clin Med 2023; 12:7650. [PMID: 38137721 PMCID: PMC10743679 DOI: 10.3390/jcm12247650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and lipid alterations. Besides pharmacological treatment, lifestyle modifications and nutraceuticals can be used to manage glucose and lipid profiles, which is crucial for preventing, or avoiding, serious consequences associated with the condition. This randomized controlled clinical trial on 75 patients with T2DM evaluated the effects of a combination of myo-inositol and d-chiro-inositol (40:1), α-lactalbumin, Gymnema sylvestre, and zinc on glucose and lipid profile. The intention-to-treat analysis displayed no significant differences in glucose parameters between the groups; however, the study group displayed reduced levels of total cholesterol (p = 0.01) and LDL (p = 0.03) after 3 months of supplementation. A subgroup analysis involving patients who did not modify their antidiabetic therapy, after 6 months displayed improved levels of total cholesterol (p = 0.03) and LDL (p = 0.04) in the study group versus placebo, along with a greater body weight reduction (p = 0.03) after 3 months. Furthermore, within the study group, levels of HDL (p = 0.03) and triglycerides (p = 0.04) improved after 3 months. These findings support supplementation with myo-inositol and d-chiro-inositol (40:1), α-lactalbumin, Gymnema sylvestre, and zinc as an adjuvant and safe strategy to manage the lipid profiles of patients with T2DM.
Collapse
Affiliation(s)
- Alessandro Nani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | | | - Elena Meneghini
- Department of Diabetology, Niguarda Hospital, 20162 Milan, Italy
| | - Elena Mion
- Department of Diabetology, Niguarda Hospital, 20162 Milan, Italy
| | - Basilio Pintaudi
- Department of Diabetology, Niguarda Hospital, 20162 Milan, Italy
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| |
Collapse
|
19
|
Fatima K, Jamil Z, Faheem S, Adnan A, Javaid SS, Naeem H, Mohiuddin N, Sajid A, Ochani S. Effects of myo-inositol vs. metformin on hormonal and metabolic parameters in women with PCOS: a meta-analysis. Ir J Med Sci 2023; 192:2801-2808. [PMID: 37148410 DOI: 10.1007/s11845-023-03388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Polycystic Ovary Syndrome is the most prevalent hormonal disorder in females. Over the years, metformin (MET) has become the first-line choice of treatment; however, due to its gastrointestinal side effects, a more recent drug, myo-inositol (MI), has been introduced. We aim to conduct a systematic review and meta-analysis to compare the effects of MET and MI on hormonal and metabolic parameters. MATERIALS AND METHODS Authors extensively searched PubMed, Scopus, Cochrane Library, Google Scholar, and Web of Science for randomized clinical trials (RCTs) until August 2021. Eight (n = 8) articles were included, with a total sample size of 1088, of which 460 patients received MET, 436 received MI, and 192 received a combination of both. Standard mean differences (SMDs) and Confidence Intervals (CIs) were used for data synthesis, and forest plots were made using Review Manager 5.4 for Statistical Analysis using the random-effect model. RESULTS The meta-analysis indicates that there is no significant difference between MET and MI in terms of their effects on BMI (SMD = 0.16, 95% CI: - 0.11 to 0.43, p = 0.24), fasting insulin (SMD = 0.00, 95% CI: - 0.26 to 0.27, p = 0.97), fasting blood sugar (SMD = 0.11, 95% CI: - 0.31to 0.53, p = 0.60), HOMA index (SMD = 0.09, 95% CI: - 0.20 to 0.39, p = 0.50), and LH/FSH (SMD = 0.20, 95% CI: - 0.24 to 0.64, p = 0.37). BMI, fasting blood sugar, and LH/FSH ratio reported moderate heterogeneity because of the varying number of study participants. CONCLUSION Our meta-analysis comparing hormonal and metabolic parameters between MET and MI did not show much significant difference, indicating both drugs are equally beneficial in improving metabolic and hormonal parameters in patients with PCOS.
Collapse
Affiliation(s)
- Kaneez Fatima
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Zainab Jamil
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Samar Faheem
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Alishba Adnan
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Syed Sarmad Javaid
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Hafsa Naeem
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Neha Mohiuddin
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Anosha Sajid
- Department of Medicine, Dow University Of Health Sciences, Karachi, Pakistan
| | - Sidhant Ochani
- Department of Medicine, Khairpur Medical College, Khairpur Mir's, Sindh, 66020, Pakistan.
| |
Collapse
|
20
|
Xie YH, Wang L, Li ML, Gong ZC, Du J. Role of myo-inositol in acute kidney injury induced by cisplatin. Toxicology 2023; 499:153653. [PMID: 37863467 DOI: 10.1016/j.tox.2023.153653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
There is an increasing evidence suggesting that myo-inositol (MI) may be a renoprotective factor. Our previous study revealed that decreased MI concentrations and increased excretion are often observed in animal models of renal injury and in patients with nephropathy. However, the role of MI supplementation in renal injury remains unclear. In this study, we aimed to explore the role of MI in cisplatin-induced acute kidney injury (AKI). We established a model of acute kidney injury caused by cisplatin (CDDP). Male Kunming mice were randomly divided into six groups: Sham (normal saline), CDDP (15 mg/kg), + MI (150 mg/kg), + MI (300 mg/kg), + MI (600 mg/kg) and MI (600 mg/kg). Human renal tubular epithelial cell line HK-2 cells were likewise separated into six groups at random: Control (normal saline), CDDP (20 µM), + MI (200 µM), + MI (400 µM), + MI (800 µM) and MI (800 µM). After the model was established, renal function indexes were subsequently detected, and experiments such as pathological staining analysis and protein expression analysis were performed. Our results showed that cisplatin administration led to AKI and apoptosis in mice and HK-2 cells, accompanied by markedly increased levels of MIOX, kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), whereas exogenous MI significantly attenuated kidney injury and HK-2 cell damage induced by cisplatin both in vivo and in vitro by inhibiting excessive apoptosis. Overall, our findings demonstrate that exogenous MI can reduce excessive apoptosis, thus playing a protective role in cisplatin-induced AKI, indicating that exogenous MI may be used as an adjunctive treatment modality in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Yu-Hong Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Liang Li
- Department of Urology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Osman R, Lee S, Almubarak A, Han JI, Yu IJ, Jeon Y. Antioxidant Effects of Myo-Inositol Improve the Function and Fertility of Cryopreserved Boar Semen. Antioxidants (Basel) 2023; 12:1673. [PMID: 37759976 PMCID: PMC10525680 DOI: 10.3390/antiox12091673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
During cryopreservation, sperm undergoes structural and molecular changes such as ice crystal formation, DNA fragmentation, and reactive oxygen species (ROS) production, leading to decreased sperm quality after thawing. Antioxidants play a crucial role in preventing these damages, both in vivo and in vitro. One potent antioxidant is myo-inositol, known for its protective effects on sperm against ROS. This study aimed to investigate the protective effect of myo-inositol on cryopreserved boar semen. The semen was diluted, cooled, and cryopreserved using a BF5 extender. It was then divided into five groups: control and different concentrations of myo-inositol (0.5, 1, 1.5, and 2 mg/mL). The post-thaw evaluation included assessments of motility, viability, acrosome integrity, mitochondrial membrane potential (MMP), caspase activity, gene expression, ROS levels, apoptosis, and IVF with treated semen. Results showed that myo-inositol at 0.5 mg/mL improved motility, acrosome integrity, and fertilization ability. It also reduced the expression of pro-apoptotic genes and increased SMCP expression. Lower concentrations also demonstrated improved viability and reduced apoptosis and ROS levels. In conclusion, myo-inositol treatment during cryopreservation improved sperm quality, reduced apoptosis and ROS levels, and enhanced fertility rates in boar semen.
Collapse
Affiliation(s)
- Rana Osman
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Seongju Lee
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Areeg Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Hilat Kuku, Khartoum North 11111, Sudan
| | - Jae-Ik Han
- Laboratory of Wildlife Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| |
Collapse
|
22
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of frugivory adaptations in the bat kidney and pancreas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528204. [PMID: 36824791 PMCID: PMC9949079 DOI: 10.1101/2023.02.12.528204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we used integrative single-cell sequencing on insectivorous and frugivorous bat kidneys and pancreases and identified key cell population, gene expression and regulatory element differences associated with frugivorous adaptation that also relate to human disease, particularly diabetes. We found an increase in collecting duct cells and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the frugivore kidney. In the frugivorous pancreas, we observed an increase in endocrine and a decrease in exocrine cells and differences in genes and regulatory elements involved in insulin regulation. Combined, our work provides novel insights into frugivorous adaptation that also could be leveraged for therapeutic purposes.
Collapse
|
23
|
Arefhosseini S, Roshanravan N, Tutunchi H, Rostami S, Khoshbaten M, Ebrahimi-Mameghani M. Myo-inositol supplementation improves cardiometabolic factors, anthropometric measures, and liver function in obese patients with non-alcoholic fatty liver disease. Front Nutr 2023; 10:1092544. [PMID: 36824177 PMCID: PMC9941177 DOI: 10.3389/fnut.2023.1092544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) as the hepatic manifestation of metabolic syndrome is closely associated with type 2 diabetes mellitus. Myo-inositol (MI)-a 6-C sugar alcohol-with insulin-mimetic, anti-diabetic, lipid-lowering, and anti-inflammatory properties has exerted favorable effects on insulin resistance-related disorders and metabolic disease, while recent animal studies revealed its positive effects on liver function. This study aimed to investigate the effects of MI supplementation on cardiometabolic factors, anthropometric measures, and liver function in obese patients with NAFLD. Methods This double-blinded placebo-controlled randomized clinical trial was carried out on 48 obese patients with NAFLD who were randomly assigned to either MI (4g/day) or placebo (maltodextrin 4g/day) along with dietary recommendations for 8 weeks. Glycemic indices, lipid profile, liver enzymes anthropometric measures, and blood pressure were evaluated pre- and post-intervention. Dietary intakes were assessed using a 3-day 24 h recall and analyzed by Nutritionist IV software. Insulin resistance was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR), and beta-cell function (HOMA-B) was also estimated. Results Anthropometric measures decreased significantly in both groups, while the reduction in weight (p = 0.049) and systolic blood pressure (p = 0.006) in the MI group was significantly greater than in the placebo group after adjusting for baseline values and energy intake. Although energy and macronutrient intakes decreased significantly in both groups, between-group differences were not significant after adjusting for the potential confounders. MI supplementation led to a significant reduction in serum fasting insulin (p = 0.008) and HOMA-IR (p = 0.046). There were significant improvements in lipid profile, liver enzymes, and aspartate aminotransferase/alanine aminotransferase ratio as well as serum ferritin level in the MI group, compared to the placebo group at the endpoint. By MI supplementation for eight weeks, 1 in 3 patients reduced one- grade in the severity of NAFLD. Conclusion MI supplementation could significantly improve IR, lipid profile, and liver function in patients with NAFLD. Further clinical trials with larger sample sizes, longer duration, different MI doses, and other inositol derivatives are recommended.
Collapse
Affiliation(s)
- Sara Arefhosseini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayyeh Rostami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manuchehr Khoshbaten
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,*Correspondence: Mehrangiz Ebrahimi-Mameghani ✉
| |
Collapse
|
24
|
Weston E, Pangilinan F, Eaton S, Orford M, Leung KY, Copp AJ, Mills JL, Molloy AM, Brody LC, Greene NDE. Investigating Genetic Determinants of Plasma Inositol Status in Adult Humans. J Nutr 2022; 152:2333-2342. [PMID: 36774100 PMCID: PMC9644178 DOI: 10.1093/jn/nxac204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Myo-inositol (MI) is incorporated into numerous biomolecules, including phosphoinositides and inositol phosphates. Disturbance of inositol availability or metabolism is associated with various disorders, including neurological conditions and cancers, whereas supplemental MI has therapeutic potential in conditions such as depression, polycystic ovary syndrome, and congenital anomalies. Inositol status can be influenced by diet, synthesis, transport, utilization, and catabolism. OBJECTIVES We aimed to investigate potential genetic regulation of circulating MI status and to evaluate correlation of MI concentration with other metabolites. METHODS GC-MS was used to determine plasma MI concentration of >2000 healthy, young adults (aged 18-28 y) from the Trinity Student Study. Genotyping data were used to test association of plasma MI with single nucleotide polymorphisms (SNPs) in candidate genes, encoding inositol transporters and synthesizing enzymes, and test for genome-wide association. We evaluated potential correlation of plasma MI with d-chiro-inositol (DCI), glucose, and other metabolites by Spearman rank correlation. RESULTS Mean plasma MI showed a small but significant difference between males and females (28.5 and 26.9 μM, respectively). Candidate gene analysis revealed several nominally significant associations with plasma MI, most notably for SLC5A11 (solute carrier family 5 member 11), encoding a sodium-coupled inositol transporter, also known as SMIT2 (sodium-dependent myo-inositol transporter 2). However, these did not survive correction for multiple testing. Subsequent testing for genome-wide association with plasma MI did not identify associations of genome-wide significance (P < 5 × 10-8). However, 8 SNPs exceeded the threshold for suggestive significant association with plasma MI concentration (P < 1 × 10-5), 3 of which were located within or close to genes: MTDH (metadherin), LAPTM4B (lysosomal protein transmembrane 4 β), and ZP2 (zona pellucida 2). We found significant positive correlation of plasma MI concentration with concentration of dci and several other biochemicals including glucose, methionine, betaine, sarcosine, and tryptophan. CONCLUSIONS Our findings suggest potential for modulation of plasma MI in young adults by variation in SLC5A11, which is worthy of further investigation.
Collapse
Affiliation(s)
- Eleanor Weston
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Faith Pangilinan
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Eaton
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Michael Orford
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Kit-Yi Leung
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - James L Mills
- Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne M Molloy
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Lawrence C Brody
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|