1
|
Liu Y, Jia Y, Wu Y, Zhang H, Ren F, Zhou S. Review on mechanisms of hypoglycemic effects of compounds from highland barley and potential applications. Food Funct 2024. [PMID: 39495067 DOI: 10.1039/d4fo00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The rising prevalence of metabolic diseases, such as diabetes and obesity, presents a significant global health challenge. Dietary interventions, with their minimal side effects, hold great promise as effective strategies for blood sugar management. Highland barley (HB) boasts a comprehensive and unique nutritional composition, characterized by high protein, high fiber, high vitamins, low fat, low sugar, and diverse bioactive components. These attributes make it a promising candidate for alleviating high blood sugar. This review explores the mechanisms underlying the glucose-lowering properties of HB, emphasizing its nutritional profile and bioactive constituents. Additionally, it examines the impact of common HB processing techniques on its nutrient composition and highlights its applications in food products. By advancing the understanding of HB's value and mechanisms in diabetes prevention, this review aims to facilitate the development of HB-based foods suitable for diabetic patients.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Wang Y, Du G, Zhang Y, Yu H, Liu S, Wang Z, Ma X, Wei X, Wen B, Li Z, Fan S, Xin F. Distinct Adjacent Substrate Binding Pocket Regulates the Activity of a Decameric Feruloyl Esterase from Bacteroides thetaiotaomicron. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23554-23566. [PMID: 39370616 DOI: 10.1021/acs.jafc.4c06286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Understanding how the human gut microbiota contribute to the metabolism of dietary carbohydrates is of great interest, particularly those with ferulic acid (FA) decorations that have manifold health benefits. Here, we report the crystal structure of a decameric feruloyl esterase (BtFae) from Bacteroides thetaiotaomicron in complex with methyl ferulate (MFA), revealing that MFA is situated in a noncatalytic substrate binding pocket adjacent to the catalytic pocket. Molecular docking and mutagenesis studies further demonstrated that the adjacent pocket affects substrate binding in the active site and negatively regulates the BtFae activity on both synthetic and natural xylan substrates. Additionally, quantum mechanics (QM) calculations were employed to investigate the catalytic process of BtFae from substrate binding to product release, and identified TS_2 in the acylation step is rate-limiting. Collectively, this study unmasks a novel regulatory mechanism of FAE activity, which may contribute to further investigation of FA-conjugated polysaccharides metabolism in the human gut.
Collapse
Affiliation(s)
- Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Guoming Du
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haiyan Yu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhaoxing Wang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiaochen Ma
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Shilong Fan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| |
Collapse
|
3
|
Khatun MM, Bhuia MS, Chowdhury R, Sheikh S, Ajmee A, Mollah F, Al Hasan MS, Coutinho HDM, Islam MT. Potential utilization of ferulic acid and its derivatives in the management of metabolic diseases and disorders: An insight into mechanisms. Cell Signal 2024; 121:111291. [PMID: 38986730 DOI: 10.1016/j.cellsig.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Metabolic diseases are abnormal conditions that impair the normal metabolic process, which involves converting food into energy at a cellular level, and cause difficulties like obesity and diabetes. The study aimed to investigate how ferulic acid (FA) and its derivatives could prevent different metabolic diseases and disorders and to understand the specific molecular mechanisms responsible for their therapeutic effects. Information regarding FA associations with metabolic diseases and disorders was compiled from different scientific search engines, including Science Direct, Wiley Online, PubMed, Scopus, Web of Science, Springer Link, and Google Scholar. This review revealed that FA exerts protective effects against metabolic diseases such as diabetes, diabetic retinopathy, neuropathy, nephropathy, cardiomyopathy, obesity, and diabetic hypertension, with beneficial effects on pancreatic cancer. Findings also indicated that FA improves insulin secretion by increasing Ca2+ influx through the L-type Ca2+ channel, thus aiding in diabetes management. Furthermore, FA regulates the activity of inflammatory cytokines (TNF-α, IL-18, and IL-1β) and antioxidant enzymes (CAT, SOD, and GSH-Px) and reduces oxidative stress and inflammation, which are common features of metabolic diseases. FA also affects various signaling pathways, including the MAPK/NF-κB pathways, which play an important role in the progression of diabetic neuropathy and other metabolic disorders. Additionally, FA regulates apoptosis markers (Bcl-2, Bax, and caspase-3) and exerts its protective effects on cellular destruction. In conclusion, FA and its derivatives may act as potential medications for the management of metabolic diseases.
Collapse
Affiliation(s)
- Mst Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Afiya Ajmee
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Faysal Mollah
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE 63105-000, Brazil.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh; Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh.
| |
Collapse
|
4
|
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Antioxidant Properties, Metabolism, Application and Mechanism of Ferulic Acid in Medicine, Food, Cosmetics, Livestock and Poultry. Antioxidants (Basel) 2024; 13:853. [PMID: 39061921 PMCID: PMC11273498 DOI: 10.3390/antiox13070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Ferulic acid is a ubiquitous ingredient in cereals, vegetables, fruits and Chinese herbal medicines. Due to the ferulic phenolic nucleus coupled to an extended side chain, it readily forms a resonant-stable phenoxy radical, which explains its potent antioxidant potential. In addition, it also plays an important role in anti-cancer, pro-angiogenesis, anti-thrombosis, neuroprotection, food preservation, anti-aging, and improving the antioxidant performance of livestock and poultry. This review provides a comprehensive summary of the structure, mechanism of antioxidation, application status, molecular mechanism of pharmacological activity, existing problems, and application prospects of ferulic acid and its derivatives. The aim is to establish a theoretical foundation for the utilization of ferulic acid in medicine, food, cosmetics, livestock, and poultry.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Lou X, Li P, Luo X, Lei Z, Liu X, Liu Y, Gao L, Xu W, Liu X. Dietary patterns interfere with gut microbiota to combat obesity. Front Nutr 2024; 11:1387394. [PMID: 38953044 PMCID: PMC11215203 DOI: 10.3389/fnut.2024.1387394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity and obesity-related metabolic disorders are global epidemics that occur when there is chronic energy intake exceeding energy expenditure. Growing evidence suggests that healthy dietary patterns not only decrease the risk of obesity but also influence the composition and function of the gut microbiota. Numerous studies manifest that the development of obesity is associated with gut microbiota. One promising supplementation strategy is modulating gut microbiota composition by dietary patterns to combat obesity. In this review, we discuss the changes of gut microbiota in obesity and obesity-related metabolic disorders, with a particular emphasis on the impact of dietary components on gut microbiota and how common food patterns can intervene in gut microbiota to prevent obesity. While there is promise in intervening with the gut microbiota to combat obesity through the regulation of dietary patterns, numerous key questions remain unanswered. In this review, we critically review the associations between dietary patterns, gut microbes, and obesity, aiming to contribute to the further development and application of dietary patterns against obesity in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaomeng Liu
- Nutrition and Food Hygiene Laboratory, School of Public Health, Xinxiang Medical College, Xinxiang, China
| |
Collapse
|
6
|
Jafari M, Ghasemi-Soloklui AA, Kordrostami M. Enhancing nutritional status, growth, and fruit quality of dried figs using organic fertilizers in rain-fed orchards: A case study in Estahban, Iran. PLoS One 2024; 19:e0300615. [PMID: 38568985 PMCID: PMC10990164 DOI: 10.1371/journal.pone.0300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
The majority of Iranian fig production is exported, making it one of the world's most well-known healthy crops. Therefore, the main objective of the current experiment was to investigate the effects of various types of organic fertilizers, such as animal manure (cow and sheep), bird manure (partridge, turkey, quail, and chicken), and vermicompost, on the nutritional status of trees, vegetative and reproductive tree characteristics, fruit yield, and fruit quality traits in dried fig cultivar ("Sabz"). According to the findings, applying organic fertilizers, particularly turkey and quail, significantly improves vegetative and reproductive characteristics. However, other manures such as sheep, chicken, and vermicompost had a similar effect on the growth parameters of fig trees. Additionally, the findings indicated that except for potassium, use of all organic fertilizers had an impact on macro and microelements such as phosphorus, nitrogen, and sodium amount in fig tree leaves. Also, based on fruit color analysis in dried figs, the use of all organic fertilizers improved fruit color. Moreover, the analyses fruit biochemical showed that the use of some organic fertilizers improved that TSS and polyphenol compounds such as coumarin, vanillin, hesperidin gallic acid and trans frolic acid. In general, the results indicated that the addition of organic fertilizers, especially turkey manure, led to increased vegetative productivity and improvement in the fruit quality of the rain-fed fig orchard.
Collapse
Affiliation(s)
- Moslem Jafari
- Fig Research Station, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Estahban, Iran
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| |
Collapse
|
7
|
Jeong E, Baek Y, Kim HJ, Lee HG. Comparison of the anti-diabetic effects of various grain and legume extracts in high-fat diet and streptozotocin-nicotinamide-induced diabetic rats. Heliyon 2024; 10:e25279. [PMID: 38322911 PMCID: PMC10844043 DOI: 10.1016/j.heliyon.2024.e25279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
The anti-diabetic properties of whole groats and dietary fibers from various grains and legumes are well known. Nevertheless, studies on the anti-diabetic effects of their extracts are limited, and it is difficult to compare their efficacy. This study investigated the anti-diabetic potential of ethanol extracts from oats (OE), sorghum (SE), foxtail millet (FE), proso millet (PE), adzuki bean (AE), and black soybean (BE) in a high-fat diet and streptozotocin-nicotinamide-induced diabetic rat models. The extracts, obtained using 99.9 % ethanol, were orally administered to diabetic rats for four weeks. Various parameters were evaluated, including fasting blood glucose levels, glucose tolerance, insulin sensitivity, serum insulin levels, and pancreas histological analysis. OE and SE effectively reduced fasting blood glucose levels and the area under the curve (AUC) in the oral glucose tolerance test. Only OE significantly decreased the AUC in the insulin tolerance test and increased insulin concentration and homeostatic model assessment of the β-cell function index, indicating improved insulin sensitivity and β-cell function. Histological and immunohistochemical analysis of the pancreas supported these findings, demonstrating that OE protected against pancreatic cell damage. In contrast, FE, PE, AE, and BE did not have a significant effect on diabetes-related parameters. These findings identify OE as the most promising natural intervention for diabetes management.
Collapse
Affiliation(s)
- Eunwoo Jeong
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Hyun-Joo Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Suwon, 16429, South Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| |
Collapse
|
8
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
9
|
Ivić V, Zjalić M, Blažetić S, Fenrich M, Labak I, Scitovski R, Szűcs KF, Ducza E, Tábi T, Bagamery F, Szökő É, Vuković R, Rončević A, Mandić D, Debeljak Ž, Berecki M, Balog M, Seres-Bokor A, Sztojkov-Ivanov A, Hajagos-Tóth J, Gajović S, Imširović A, Bakula M, Mahiiovych S, Gaspar R, Vari SG, Heffer M. Elderly rats fed with a high-fat high-sucrose diet developed sex-dependent metabolic syndrome regardless of long-term metformin and liraglutide treatment. Front Endocrinol (Lausanne) 2023; 14:1181064. [PMID: 37929025 PMCID: PMC10623428 DOI: 10.3389/fendo.2023.1181064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Aim/Introduction The study aimed to determine the effectiveness of early antidiabetic therapy in reversing metabolic changes caused by high-fat and high-sucrose diet (HFHSD) in both sexes. Methods Elderly Sprague-Dawley rats, 45 weeks old, were randomized into four groups: a control group fed on the standard diet (STD), one group fed the HFHSD, and two groups fed the HFHSD along with long-term treatment of either metformin (HFHSD+M) or liraglutide (HFHSD+L). Antidiabetic treatment started 5 weeks after the introduction of the diet and lasted 13 weeks until the animals were 64 weeks old. Results Unexpectedly, HFHSD-fed animals did not gain weight but underwent significant metabolic changes. Both antidiabetic treatments produced sex-specific effects, but neither prevented the onset of prediabetes nor diabetes. Conclusion Liraglutide vested benefits to liver and skeletal muscle tissue in males but induced signs of insulin resistance in females.
Collapse
Affiliation(s)
- Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Matija Fenrich
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Irena Labak
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Rudolf Scitovski
- School of Applied Mathematics and Computer Science, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kálmán Ferenc Szűcs
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Fruzsina Bagamery
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Rosemary Vuković
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Alen Rončević
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Neurosurgery, Osijek University Hospital, Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Monika Berecki
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Judit Hajagos-Tóth
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Srećko Gajović
- Croatian Institute for Brain Research, and BIMIS - Biomedical Research Institute Šalata, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alen Imširović
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marina Bakula
- Department of Clinical Pathology and Forensic Medicine, Osijek University Hospital, Osijek, Croatia
| | - Solomiia Mahiiovych
- Department of Therapy № 1 and Medical Diagnostics, Hematology and Transfusiology, Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Sandor G. Vari
- Cedars-Sinai Medical Center, International Research and Innovation in Medicine Program, Los Angeles, CA, United States
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
10
|
Tian S, Chu Q, Ma S, Ma H, Song H. Dietary Fiber and Its Potential Role in Obesity: A Focus on Modulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14853-14869. [PMID: 37815013 DOI: 10.1021/acs.jafc.3c03923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Dietary fiber is a carbohydrate polymer with ten or more monomeric units that are resistant to digestion by human digestive enzymes, and it has gained widespread attention due to its significant role in health improvement through regulating gut microbiota. In this review, we summarized the interaction between dietary fiber, gut microbiota, and obesity, and the beneficial effects of dietary fiber on obesity through the modulation of microbiota, such as modifying selective microbial composition, producing starch-degrading enzymes, improving gut barrier function, reducing the inflammatory response, reducing trimethylamine N-oxide, and promoting the production of gut microbial metabolites (e.g., short chain fatty acids, bile acids, ferulic acid, and succinate). In addition, factors affecting the gut microbiota composition and metabolites by dietary fiber (length of the chain, monosaccharide composition, glycosidic bonds) were also concluded. Moreover, strategies for enhancing the biological activity of dietary fiber (fermentation technology, ultrasonic modification, nanotechnology, and microfluidization) were subsequently discussed. This review may provide clues for deeply exploring the structure-activity relationship between dietary fiber and antiobesity properties by targeting specific gut microbiota.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Huan Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
11
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar Drugs 2023; 21:462. [PMID: 37755075 PMCID: PMC10532649 DOI: 10.3390/md21090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to impaired insulin secretion, insulin resistance, or both. Oxidative stress and chronic low-grade inflammation play crucial roles in the pathophysiology of diabetes mellitus. There has been a growing interest in applying natural products to improve metabolic derangements without the side effects of anti-diabetic drugs. Microalgae biomass or extract and their bioactive compounds have been applied as nutraceuticals or additives in food products and health supplements. Several studies have demonstrated the therapeutic effects of microalgae and their bioactive compounds in improving insulin sensitivity attributed to their antioxidant, anti-inflammatory, and pancreatic β-cell protective properties. However, a review summarizing the progression in this topic is lacking despite the increasing number of studies reporting their anti-diabetic potential. In this review, we gathered the findings from in vitro, in vivo, and human studies to discuss the effects of microalgae and their bioactive compounds on diabetes mellitus and the mechanisms involved. Additionally, we discuss the limitations and future perspectives of developing microalgae-based compounds as a health supplement for diabetes mellitus. In conclusion, microalgae-based supplementation has the potential to improve diabetes mellitus and be applied in more clinical studies in the future.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
Raus de Baviera D, Ruiz-Canales A, Barrajón-Catalán E. Cistus albidus L.-Review of a Traditional Mediterranean Medicinal Plant with Pharmacological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2988. [PMID: 37631199 PMCID: PMC10458491 DOI: 10.3390/plants12162988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Cistus albidus L. (Cistaceae) is a medicinal plant that has been used therapeutically since ancient times in the Mediterranean basin for its important pharmacological properties. The ability of C. albidus to produce large quantities of a wide range of natural metabolites makes it an attractive source of raw material. The main constituents with bioactive functions that exert pharmacological effects are terpenes and polyphenols, with more than 200 identified compounds. The purpose of this review is to offer a detailed account of the botanical, ethnological, phytochemical, and pharmacological characteristics of C. albidus with the aim of encouraging additional pharmaceutical investigations into the potential therapeutic benefits of this medicinal plant. This review was carried out using organized searches of the available literature up to July 2023. A detailed analysis of C. albidus confirms its traditional use as a medicinal plant. The outcome of several studies suggests a deeper involvement of certain polyphenols and terpenes in multiple mechanisms such as inflammation and pain, with a potential application focus on neurodegenerative diseases and disorders. Other diseases such as prostate cancer and leukemia have already been researched with promising results for this plant, for which no intoxication has been reported in humans.
Collapse
Affiliation(s)
- Daniel Raus de Baviera
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Antonio Ruiz-Canales
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology, Miguel Hernández University, 03202 Elche, Spain
- Department of Pharmacy, Elche University Hospital-FISABIO, 03203 Elche, Spain
| |
Collapse
|
13
|
Golovinskaia O, Wang CK. The hypoglycemic potential of phenolics from functional foods and their mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Gao J, Zhang M, Zu X, Gu X, Hao E, Hou X, Bai G. Glucuronic acid metabolites of phenolic acids target AKT-PH domain to improve glucose metabolism. CHINESE HERBAL MEDICINES 2023; 15:398-406. [PMID: 37538860 PMCID: PMC10394347 DOI: 10.1016/j.chmed.2022.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Accepted: 11/03/2022] [Indexed: 08/05/2023] Open
Abstract
Objective Phenolic acids widely exist in the human diet and exert beneficial effects such as improving glucose metabolism. It is not clear whether phenolic acids or their metabolites play a major role in vivo. In this study, caffeic acid (CA) and ferulic acid (FA), the two most ingested phenolic acids, and their glucuronic acid metabolites, caffeic-4'-O-glucuronide (CA4G) and ferulic-4'-O-glucuronide (FA4G), were investigated. Methods Three insulin resistance models in vitro were established by using TNF-α, insulin and palmitic acid (PA) in HepG2 cells, respectively. We compared the effects of FA, FA4G, CA and CA4G on glucose metabolism in these models by measuring the glucose consumption levels. The potential targets and related pathways were predicted by network pharmacology. Fluorescence quenching measurement was used to analyze the binding between the compounds and the predicted target. To investigate the binding mode, molecular docking was performed. Then, we performed membrane recruitment assays of the AKT pleckstrin homology (PH) domain with the help of the PH-GFP plasmid. AKT enzymatic activity was determined to compare the effects between the metabolites with their parent compounds. Finally, the downstream signaling pathway of AKT was investigated by Western blot analysis. Results The results showed that CA4G and FA4G were more potent than their parent compounds in increasing glucose consumption. AKT was predicted to be the key target of CA4G and FA4G by network pharmacology analysis. The fluorescence quenching test confirmed the more potent binding to AKT of the two metabolites compared to their parent compounds. The molecular docking results indicated that the carbonyl group in the glucuronic acid structure of CA4G and FA4G might bind to the PH domain of AKT at the key Arg-25 site. CA4G and FA4G inhibited the translocation of the AKT PH domain to the membrane, while increasing the activity of AKT. Western blot analysis demonstrated that the metabolites could increase the phosphorylation of AKT and downstream glycogen synthase kinase 3β in the AKT signaling pathway to increase glucose consumption. Conclusion In conclusion, our results suggested that the metabolites of phenolic acids, which contain glucuronic acid, are the key active substances and that they activate AKT by targeting the PH domain, thus improving glucose metabolism.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Manqian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xingwang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xue Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
15
|
Novi S, Vestuto V, Campiglia P, Tecce N, Bertamino A, Tecce MF. Anti-Angiogenic Effects of Natural Compounds in Diet-Associated Hepatic Inflammation. Nutrients 2023; 15:2748. [PMID: 37375652 DOI: 10.3390/nu15122748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common causes of chronic liver disease and are increasingly emerging as a global health problem. Such disorders can lead to liver damage, resulting in the release of pro-inflammatory cytokines and the activation of infiltrating immune cells. These are some of the common features of ALD progression in ASH (alcoholic steatohepatitis) and NAFLD to NASH (non-alcoholic steatohepatitis). Hepatic steatosis, followed by fibrosis, lead to a continuous progression accompanied by angiogenesis. This process creates hypoxia, which activates vascular factors, initiating pathological angiogenesis and further fibrosis. This forms a vicious cycle of ongoing damage and progression. This condition further exacerbates liver injury and may contribute to the development of comorbidities, such as metabolic syndrome as well as hepatocellular carcinoma. Increasing evidence suggests that anti-angiogenic therapy may have beneficial effects on these hepatic disorders and their exacerbation. Therefore, there is a great interest to deepen the knowledge of the molecular mechanisms of natural anti-angiogenic products that could both prevent and control liver diseases. In this review, we focus on the role of major natural anti-angiogenic compounds against steatohepatitis and determine their potential therapeutic benefits in the treatment of liver inflammation caused by an imbalanced diet.
Collapse
Affiliation(s)
- Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Nicola Tecce
- Unit of Endocrinology, Department of Clinical Medicine and Surgery, Medical School of Naples, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
16
|
Hilary S, Mohamed O, Platat C, Qureshi MA, Kizhakkayil J, Al-Meqbaali F, Howarth FC. Supplemental ferulic acid does not affect metabolic markers and improves some oxidative damage parameters in diabetic rats. Heliyon 2023; 9:e17313. [PMID: 37383203 PMCID: PMC10293726 DOI: 10.1016/j.heliyon.2023.e17313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
This study investigated the differences in health outcomes associated with ferulic acid (FA) supplementation in animals before the induction of diabetes with streptozotocin (STZ) treatment and post-STZ treatment. 18 male Wistar rats were equally distributed into three groups: groups 1 and 2 received FA (50 mg/kg body weight) supplementation one week before STZ treatment (60 mg/kg body weight, intraperitoneal) and one week after STZ treatment, respectively; group 3 received STZ without FA supplementation. FA supplementation was continued for 12 weeks after STZ treatment. The results indicated no difference in glucose and lipid profile with FA supplementation. However, FA supplementation reduced lipid and protein oxidative damage in the heart, liver and pancreas and increased glutathione in the pancreas. The results indicate that while oxidative damages were positively affected by FA, it was not sufficient to improve metabolic markers of diabetes.
Collapse
Affiliation(s)
- Serene Hilary
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Ozaz Mohamed
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Carine Platat
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Muhammad A. Qureshi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Jaleel Kizhakkayil
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Fatima Al-Meqbaali
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Frank C. Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Saidi S, Remok F, Handaq N, Drioiche A, Gourich AA, Menyiy NE, Amalich S, Elouardi M, Touijer H, Bouhrim M, Bouissane L, Nafidi HA, Bin Jardan YA, Bourhia M, Zair T. Phytochemical Profile, Antioxidant, Antimicrobial, and Antidiabetic Activities of Ajuga iva (L.). Life (Basel) 2023; 13:life13051165. [PMID: 37240812 DOI: 10.3390/life13051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
In Morocco, many applications in ethnomedicine on Ajuga iva (L.) have been recognized as able to treat various pathologies such as diabetes, stress, and microbial infections. The objective of this work is to carry out phytochemical, biological, and pharmacological investigations on the extracts of Ajuga iva leaves in order to confirm its therapeutic effects. The phytochemical screening carried out on the different extracts of Ajuga iva showed its richness in primary (lipids and proteins) and secondary metabolites (flavonoids, tannins, reducing compounds, oses, and holoside. The best contents of polyphenols, flavonoids, and tannins evaluated by spectrophotometric methods were found in the hydroethanolic extract (69.850 ± 2.783 mg EAG/g DE, 17.127 ± 0.474 mg EQ/g DE, 5.566 ± 0.000 mg EQC/g DE), respectively. Analysis of the chemical composition of the aqueous extract by LC/UV/MS revealed 32 polyphenolic compounds including ferulic acid (19.06%), quercetin (10.19%), coumaric acid (9.63%), and apigenin-7-(2-O-apiosylglucoside) (6.8%). The antioxidant activity of Ajuga iva extracts was evaluated by three methods (DPPH*, FRAP, CAT). The hydroethanolic extract recorded the strongest reducing power: DPPH* (IC50 = 59.92 ± 0.7 µg/mL), FRAP (EC50 = 196.85 ± 1.54 (µg/mL), and CAT (199.21 ± 0.37 mg EAG/gE). A strong correlation between phenolic compounds and antioxidant activities was confirmed by the determination of Pearson's coefficient. The antimicrobial activity of Ajuga iva studied by the microtiter method revealed potent antifungal and antibacterial qualities against Candida parapsilosis and Staphylococcus aureus BLACT. An in vivo oral glucose tolerance test (OGTT) using normal rats revealed that the antihyperglycemic action of the aqueous extract significantly reduced postprandial hyperglycaemia at (30 min, p < 0.01) and area under the curve (AUC glucose), p < 0.01. Similarly, the aqueous extract, tested on pancreatic α-amylase enzyme activity in vitro and in vivo significantly inhibited pancreatic α-amylase activity with IC50 = 1.52 ± 0.03 mg/mL. In conclusion, the extract from Ajuga iva could be a good source of bioactive molecules, which exhibit potent antioxidant and antimicrobial activity, as well as strong antidiabetic activity, for applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Soukaina Saidi
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Science and Technologies, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Firdaous Remok
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Nadia Handaq
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
- Plant Valorization and Protection Research Team, Laboratory of Environmental Biology and Sustainable Development, Higher Normal School of Tetouan, Abdelmaek Essaadi University, Tetouan 93000, Morocco
| | - Aziz Drioiche
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Aman Allah Gourich
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology and Phytochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Smail Amalich
- Laboratory of Pharmacology and Phytochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohamed Elouardi
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Hanane Touijer
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Latifa Bouissane
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Science and Technologies, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Laayoune 70000, Morocco
| | - Touriya Zair
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| |
Collapse
|
18
|
Hyun YJ, Park SY, Kim JY. The effect of fermented rice germ extracts on the inhibition of glucose uptake in the gastrointestinal tract in vitro and in vivo. Food Sci Biotechnol 2023; 32:371-379. [PMID: 36778085 PMCID: PMC9905455 DOI: 10.1007/s10068-022-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
This study aimed to evaluate the effect of fermented rice germ extracts on the inhibition of glucose uptake in the gastrointestinal (GI) tract. Samples were prepared by extracting rice germ fermented with Lactobacillus plantarum with 30% ethanol (RG_30E) or 50% ethanol (RG_50E). Ferulic acid was determined as the active component in the samples. RG_30E significantly inhibited glucose uptake and mRNA expression of GLUT2 and SGLT1 to a larger extent than RG_50E in Caco-2 cells. A single oral administration was performed on C57BL/6 mice to confirm which substrate (glucose, sucrose, or maltose) the sample inhibited absorption of, improving postprandial blood glucose elevation. As a result, RG_30E resulted in significantly lower blood glucose levels and AUC after glucose and sucrose administration. Therefore, fermented rice germ extracted with 30% ethanol regulates glucose uptake through glucose transporters and can be expected to alleviate postprandial hyperglycemia in the GI tract. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01198-6.
Collapse
Affiliation(s)
- Ye Ji Hyun
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
19
|
Wang Y, Fan M, Qian H, Ying H, Li Y, Wang L. Whole grains-derived functional ingredients against hyperglycemia: targeting hepatic glucose metabolism. Crit Rev Food Sci Nutr 2023; 64:7268-7289. [PMID: 36847153 DOI: 10.1080/10408398.2023.2183382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycemia. However, concerns have been raised about the safety and efficacy of current hypoglycemic drugs due to undesirable side effects. Increasing studies have shown that whole grains (WG) consumption is inversely associated with the risk of T2DM and its subsequent complications. Thus, dietary strategies involving functional components from the WG provide an intriguing approach to restoring and maintaining glucose homeostasis. This review provides a comprehensive understanding of the major functional components derived from WG and their positive effects on glucose homeostasis, demonstrates the underlying molecular mechanisms targeting hepatic glucose metabolism, and discusses the unclear aspects according to the latest viewpoints and current research. Improved glycemic response and insulin resistance were observed after consumption of WG-derived bioactive ingredients, which are involved in the integrated, multi-factorial, multi-targeted regulation of hepatic glucose metabolism. Promotion of glucose uptake, glycolysis, and glycogen synthesis pathways, while inhibition of gluconeogenesis, contributes to amelioration of abnormal hepatic glucose metabolism and insulin resistance by bioactive components. Hence, the development of WG-based functional food ingredients with potent hypoglycemic properties is necessary to manage insulin resistance and T2DM.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Ying
- CAS Key laboratory of nutrition, metabolism and food safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Gaurav, Anwar N, Zahiruddin S, Ahmad S. TLC-bioautography-MS-based Identification of Antioxidant, α-Amylase and α-Glucosidase Inhibitory Compounds in a Polyherbal Formulation “Sugreen-120”. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221145064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Sugreen-120 is one of the famous Indian polyherbal formulations used for the treatment of diabetes. Due to a lack of scientific evidence, the present study is aimed at investigating the phytopharmacology of Sugreen-120 concerning its antioxidant and antidiabetic characteristics. Materials and Methods Total phenols and flavonoid content followed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity was estimated in Sugreen-120. α-Amylase and α-glucosidase inhibitory action of Sugreen-120 was estimated to evaluate its antidiabetic potential. Thin layer chromatography (TLC)-bioautography-MS analysis was performed to determine DPPH free radical, α-amylase and α-glucosidase inhibitory phytoconstituents in Sugreen-120. High performance thin layer chromatography (HPTLC)-based quantitative analysis of Sugreen-120 was performed for the simultaneous separation of caffeic acid and kaempferol. In silico docking analysis was performed to determine the effect of Sugreen-120 metabolites against α-amylase and α-glucosidase enzymes. Results The results showed that Sugreen-120 is enriched in total phenols and flavonoids and even has good potential to scavenge DPPH free radicals with an inhibitory concentration (IC50) value of 414.59 ± 4.925 µg/mL. In α-amylase and α-glucosidase inhibitory assays, the efficacy of Sugreen-120 was found in a dose-dependent manner and the IC50 values were found as 220.106 ± 1.375 and 441.44 ± 1.992 µg/mL, respectively. TLC-bioautographic analysis showed that 06 constituents were found active against DPPH free radical, 04 constituents active against α-amylase and 03 constituents active against α-glucosidase. A HPTLC quantitative study revealed the content of caffeic acid and kaempferol to be 5.233 ± 0.026 and 16.959 ± 0.036 µg/mg, respectively. In silico docking analysis showed that out of 5 identified metabolites, myricetin, ellagic acid, and kaempferol were found with significant interaction with α-amylase and α-glucosidase proteins. Hence, it can be concluded that Sugreen-120 exhibits not only an antidiabetic effect but also antioxidant potential. It can be a palliative choice and an alternative that can be used for the treatment of diabetes.
Collapse
Affiliation(s)
- Gaurav
- Bioactive Natural Products Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nabeel Anwar
- Drugs Laboratories, Khasra, Hajipur, Meerut, Uttar Pradesh, India
| | - Sultan Zahiruddin
- Bioactive Natural Products Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Products Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
21
|
Salin Raj P, Nair A, Preetha Rani MR, Rajankutty K, Ranjith S, Raghu KG. Ferulic acid attenuates high glucose-induced MAM alterations via PACS2/IP3R2/FUNDC1/VDAC1 pathway activating proapoptotic proteins and ameliorates cardiomyopathy in diabetic rats. Int J Cardiol 2023; 372:101-109. [PMID: 36481261 DOI: 10.1016/j.ijcard.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes with no known biomarkers for early detection. Mitochondria-associated endoplasmic reticulum membranes (MAM) are less studied subcellular targets but an emerging area for exploration in metabolic disorders including DCM. We herein studied the role of MAMs and downstream mitochondrial functions in DCM. We also explored the efficacy of ferulic acid (FeA) against DCM via modulation of MAM and its associated signaling pathway. METHODS The H9c2 cardiomyoblast cells were incubated with high concentration (33 mM) of d-glucose for 48 h to create a high glucose ambience in vitro. The expression of various critical proteins of MAM, mitochondrial function, oxidative phosphorylation (OxPhos) and the genesis of apoptosis were examined. The rats fed with high fat/high fructose/streptozotocin (single dose, i.p.) were used as a diabetic model and analyzed the insulin resistance and markers of cardiac hypertrophy and apoptosis. RESULTS High glucose conditions caused the upregulation of MAM formation via PACS2, IP3R2, FUNDC1, and VDAC1 and decreased mitochondrial biogenesis, fusion and OxPhos. The upregulation of mitochondria-driven SMAC-HTRA2-ARTS-XIAP apoptosis and other cell death pathways indicate their critical roles in the genesis of DCM at the molecular level. The diabetic rats also showed cardiomyopathy with increased heart mass index, TNNI3K, troponin, etc. FeA effectively prevented the high glucose-induced MAM alterations and associated cellular anomalies both in vitro and in vivo. CONCLUSION High glucose-induced MAM distortion and subsequent mitochondrial dysfunctions act as the stem of cardiomyopathy. MAM could be explored as a potential target to treat diabetic cardiomyopathy. Also, the FeA could be an attractive nutraceutical agent for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- P Salin Raj
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Anupama Nair
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - M R Preetha Rani
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - K Rajankutty
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - S Ranjith
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
22
|
Ruamyod K, Watanapa WB, Kakhai C, Nambundit P, Treewaree S, Wongsanupa P. Ferulic acid enhances insulin secretion by potentiating L-type Ca 2+ channel activation. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:99-105. [PMID: 36481247 DOI: 10.1016/j.joim.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of ferulic acid, a natural compound, on pancreatic beta cell viability, Ca2+ channels, and insulin secretion. METHODS We studied the effects of ferulic acid on rat insulinoma cell line viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. The whole-cell patch-clamp technique and enzyme-linked immunosorbent assay were also used to examine the action of ferulic acid on Ca2+ channels and insulin secretion, respectively. RESULTS Ferulic acid did not affect cell viability during exposures up to 72 h. The electrophysiological study demonstrated that ferulic acid rapidly and concentration-dependently increased L-type Ca2+ channel current, shifting its activation curve in the hyperpolarizing direction with a decreased slope factor, while the voltage dependence of inactivation was not affected. On the other hand, ferulic acid have no effect on T-type Ca2+ channels. Furthermore, ferulic acid significantly increased insulin secretion, an effect inhibited by nifedipine and Ca2+-free extracellular fluid, confirming that ferulic acid-induced insulin secretion in these cells was mediated by augmenting Ca2+ influx through L-type Ca2+ channel. Our data also suggest that this may be a direct, nongenomic action. CONCLUSION This is the first electrophysiological demonstration that acute ferulic acid treatment could increase L-type Ca2+ channel current in pancreatic β cells by enhancing its voltage dependence of activation, leading to insulin secretion.
Collapse
Affiliation(s)
- Katesirin Ruamyod
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wattana B Watanapa
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Chanrit Kakhai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pimchanok Nambundit
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sukrit Treewaree
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Parin Wongsanupa
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
23
|
Ye L, Hu P, Feng LP, Huang LL, Wang Y, Yan X, Xiong J, Xia HL. Protective Effects of Ferulic Acid on Metabolic Syndrome: A Comprehensive Review. Molecules 2022; 28:molecules28010281. [PMID: 36615475 PMCID: PMC9821889 DOI: 10.3390/molecules28010281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex disease in which protein, fat, carbohydrates and other substances are metabolized in a disorderly way. Ferulic acid (FA) is a phenolic acid found in many vegetables, fruits, cereals and Chinese herbs that has a strong effect on ameliorating MetS. However, no review has summarized the mechanisms of FA in treating MetS. This review collected articles related to the effects of FA on ameliorating the common symptoms of MetS, such as diabetes, hyperlipidemia, hypertension and obesity, from different sources involving Web of Science, PubMed and Google Scholar, etc. This review summarizes the potential mechanisms of FA in improving various metabolic disorders according to the collected articles. FA ameliorates diabetes via the inhibition of the expressions of PEPCK, G6Pase and GP, the upregulation of the expressions of GK and GS, and the activation of the PI3K/Akt/GLUT4 signaling pathway. The decrease of blood pressure is related to the endothelial function of the aortas and RAAS. The improvement of the lipid spectrum is mediated via the suppression of the HMG-Co A reductase, by promoting the ACSL1 expression and by the regulation of the factors associated with lipid metabolism. Furthermore, FA inhibits obesity by upregulating the MEK/ERK pathway, the MAPK pathway and the AMPK signaling pathway and by inhibiting SREBP-1 expression. This review can be helpful for the development of FA as an appreciable agent for MetS treatment.
Collapse
Affiliation(s)
- Lei Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Pan Hu
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
- Correspondence: (P.H.); (H.-L.X.); Tel.: +86-182-2442-7340 (P.H.); +86-135-6889-9011 (H.-L.X.)
| | - Li-Ping Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Lu Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Yan
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
| | - Jing Xiong
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
| | - Hou-Lin Xia
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (P.H.); (H.-L.X.); Tel.: +86-182-2442-7340 (P.H.); +86-135-6889-9011 (H.-L.X.)
| |
Collapse
|
24
|
D-Ribose-Induced Glycation and Its Attenuation by the Aqueous Extract of Nigella sativa Seeds. Medicina (B Aires) 2022; 58:medicina58121816. [PMID: 36557018 PMCID: PMC9788360 DOI: 10.3390/medicina58121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives: Glycation and oxidative stress are the major contributing factors responsible for diabetes and its secondary complications. Aminoguanidine, a hydrazine derivative, is the only approved drug that reduces glycation with its known side effects. As a result, research into medicinal plants with antioxidant and antiglycation properties is beneficial in treating diabetes and its consequences. This investigation aimed to examine the efficacy of the aqueous extract of Nigella sativa seeds against the D-ribose-induced glycation system. Materials and Methods: The suppression of α-amylase and α-glucosidase enzymes were used to assess the antidiabetic capacity. UV-Visible, fluorescence, and FTIR spectroscopy were used to characterize the Nigella sativa seed extract and its efficacy in preventing glycation. The inhibition of albumin glycation, fluorescent advanced glycation end products (AGEs) formation, thiol oxidation, and amyloid formation were used to evaluate the extracts' antiglycation activity. In addition, the extent of glycoxidative DNA damage was analyzed using agarose gel electrophoresis. Results: The IC50 for the extract in the α-amylase and α-glucosidase enzyme inhibition assays were approximately 1.39 ± 0.016 and 1.01 ± 0.022 mg/mL, respectively. Throughout the investigation, it was found that the aqueous extract of Nigella sativa seeds (NSAE) inhibited the level of ketoamine, exerted a considerable drop in fluorescence intensity, and reduced carbonyl production and thiol modification when added to the D-ribose-induced glycation system. In addition, a reduction in the BSA-cross amyloid formation was seen in the Congo red, thioflavin T assay, and electrophoretic techniques. NSAE also exhibited a strong capability for DNA damage protection. Conclusion: It can be concluded that Nigella sativa could be used as a natural antidiabetic, antiglycation treatment and a cost-effective and environmentally friendly source of powerful bioactive chemicals.
Collapse
|
25
|
Antidiabetic Potential of Commonly Available Fruit Plants in Bangladesh: Updates on Prospective Phytochemicals and Their Reported MoAs. Molecules 2022; 27:molecules27248709. [PMID: 36557843 PMCID: PMC9782115 DOI: 10.3390/molecules27248709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a life-threatening disorder affecting people of all ages and adversely disrupts their daily functions. Despite the availability of numerous synthetic-antidiabetic medications and insulin, the demand for the development of novel antidiabetic medications is increasing due to the adverse effects and growth of resistance to commercial drugs in the long-term usage. Hence, antidiabetic phytochemicals isolated from fruit plants can be a very nifty option to develop life-saving novel antidiabetic therapeutics, employing several pathways and MoAs (mechanism of actions). This review focuses on the antidiabetic potential of commonly available Bangladeshi fruits and other plant parts, such as seeds, fruit peals, leaves, and roots, along with isolated phytochemicals from these phytosources based on lab findings and mechanism of actions. Several fruits, such as orange, lemon, amla, tamarind, and others, can produce remarkable antidiabetic actions and can be dietary alternatives to antidiabetic therapies. Besides, isolated phytochemicals from these plants, such as swertisin, quercetin, rutin, naringenin, and other prospective phytochemicals, also demonstrated their candidacy for further exploration to be established as antidiabetic leads. Thus, it can be considered that fruits are one of the most valuable gifts of plants packed with a wide spectrum of bioactive phytochemicals and are widely consumed as dietary items and medicinal therapies in different civilizations and cultures. This review will provide a better understanding of diabetes management by consuming fruits and other plant parts as well as deliver innovative hints for the researchers to develop novel drugs from these plant parts and/or their phytochemicals.
Collapse
|
26
|
Cepharanthine action in preventing obesity and hyperlipidemia in rats on a high-fat high sucrose diet. Saudi Pharm J 2022; 30:1683-1690. [PMID: 36601507 PMCID: PMC9805974 DOI: 10.1016/j.jsps.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/15/2022] [Indexed: 01/07/2023] Open
Abstract
Background It was demonstrated that cepharanthine (CEP), derived from Stephania cepharantha hayata, is a potent inhibitor of the ABCC10 transmembrane protein. It is approved to be a natural product or remedy. The present study focuses on investigating whether cepharanthine effectively reduces hyperlipidemia and obesity in an experimental hyperlipidemic rat model. Method Four groups of Wistar rats were assigned randomly to the following groups: a high-fat high sucrose diet (HFHS), normal-fat diet (NFD), HFHS plus cepraranthine (10 mg/kg) (HFHS-C), and a HFHS diet with atorvastatin (HFHS-A). The responses of rats were observed on the basis of serum and hepatic biochemical parameters, food intake, and body weight after CEP treatment, and assessing the histopathological modifications by the optical microscope in the liver and its cells. Results Significant improvement in the serum total cholesterol (TC), serum triglycerides (TG), and serum low-density lipoprotein (LDL) levels were observed following CEP treatment. We have also observed significant improvement in the structure of liver tissue and reduced-fat droplets in the cytoplasm. Moreover, CEP had a significant effect in preventing the gain in body weight of animals, and food intake was not significantly affected. Conclusion Our research results revealed that CEP significantly improved dyslipidemia and prevented the accumulation of fatty deposits in the rats' liver tissue fed an HFHS diet. In addition, CEP exerted an anti-obesity effect.
Collapse
|
27
|
Li Y, Sair AT, Zhao W, Li T, Liu RH. Ferulic Acid Mediates Metabolic Syndrome via the Regulation of Hepatic Glucose and Lipid Metabolisms and the Insulin/IGF-1 Receptor/PI3K/AKT Pathway in Palmitate-Treated HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14706-14717. [PMID: 36367981 DOI: 10.1021/acs.jafc.2c05676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferulic acid (FA) is one of the most abundant bound phenolics in whole grains, partly contributing to its preventive effects on metabolic syndrome (MetS). The study aims to investigate if FA mediates MetS through the regulation of hepatic metabolisms and the insulin receptor related pathways in the palmitate-treated HepG2 cells (MetS model). We found that FA (50, 100, and 200 μM) dramatically ameliorated the lipid accumulation in the MetS model. FA significantly decreased the activities of the gluconeogenic enzymes, G6Pase and PEPCK, downregulated the lipogenic enzyme FAS-1, and upregulated the lipolytic enzyme CPT-1 by regulating a series of transcriptional factors including HNF4α, FOXO-1, SREBP-1c, and PPAR-γ. Notably, we found that FA's ability to alleviate MetS is achieved by activating the insulin receptor/PI3K/AKT pathway. Our results validated the effects of FA on mediating the metabolic disorders of lipid and glucose pathways and unveiled its potential intracellular mechanisms for the prevention of MetS.
Collapse
Affiliation(s)
- Yitong Li
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Ali Tahir Sair
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Weiyang Zhao
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Tong Li
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Rui Hai Liu
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
28
|
Shanmuganathan E, Arawwawala LDAM, Wasana KGP, Attanayake AP. Selection and optimisation of extraction technique for the preparation of phenolic- and flavonoid-rich extract of leafy vegetable, Coccinia grandis (Linn.) Voigt. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coccinia grandis (L.) Voigt (family: Cucurbitaceae) is a popular leafy vegetable in Sri Lankan diet. C. grandis is high in phenolics and flavonoids. The present work attempted to determine a suitable extraction technique, and further optimise it to obtain phenolic- and flavonoid-rich extract from C. grandis leaves, with an aim at developing a nutraceutical targeting the dietary management of diabetes mellitus. Acetone extraction (AE), methanol extraction (ME), pre-warmed water extraction (PWE), electric shake extraction (ESE), reflux extraction (RE), ultrasonication with water (UEw), ultrasonication with ethanol (UEe), ultrasonic assisted-reflux extraction (URE), and reflux assisted-ultrasonic extraction (RUE) were chosen as the extraction techniques. URE was selected as a satisfactory extraction technique for further optimisation for the preparation of phenolic- and flavonoid-rich extract based on the contents of phenolics (32.97 ± 0.41 mg of equivalent gallic acid/g of extract) and flavonoids (4.50 ± 0.04 mg equivalent quercetin/g of extract). The highest yield of 32.8% was obtained by the URE technique. The optimal extraction conditions for URE were determined with an ultrasonic time of 19 min, refluxing time of 168 min, and liquid:solid ratio of 16.4 mL/g. This is the first attempt to investigate the selection and optimisation of an extraction technique for obtaining phenolic- and flavonoid-rich extract from C. grandis leaves. The present findings would be useful in the development of a commercially viable nutraceutical using a phenolic- and flavonoid-rich extract of C. grandis.
Collapse
|
29
|
Wang WK, Fan L, Ge F, Li Z, Zhu J, Yin K, Xia J, Xue M. Effects of Danggui Buxue decoction on host gut microbiota and metabolism in GK rats with type 2 diabetes. Front Microbiol 2022; 13:1029409. [PMID: 36353458 PMCID: PMC9638067 DOI: 10.3389/fmicb.2022.1029409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 03/06/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by persistent abnormally elevated blood sugar levels. T2DM affects millions of people and exerts a significant global public health burden. Danggui Buxue decoction (DBD), a classical Chinese herbal formula composed of Astragalus membranaceus (Huangqi) and Angelica sinensis (Danggui), has been widely used in the clinical treatment of diabetes and its complications. However, the effect of DBD on the gut microbiota of individuals with diabetes and its metabolism are still poorly understood. In this study, a T2DM model was established in Goto-Kakizaki (GK) rats, which were then treated with a clinical dose of DBD (4 g/kg) through tube feeding for 6 weeks. Next, we used 16S rRNA sequencing and untargeted metabolomics by liquid chromatography with mass spectrometry (LC-MS) to detect changes in the composition of the microbiota and cecal metabolic products. Our data show that DBD mediates the continuous increase in blood glucose in GK rats, improves insulin sensitivity, reduces expression of inflammatory mediators, and improves systemic oxidative stress. Moreover, DBD also improves microbial diversity (e.g., Romboutsia, Firmicutes, and Bacilli) in the intestines of rats with T2DM. Further, DBD intervention also regulates various metabolic pathways in the gut microbiota, including alanine, aspartate, and glutamate metabolism. In addition, arginine biosynthesis and the isoflavone biosynthesis may be a unique mechanism by which DBD exerts its effects. Taken together, we show that DBD is a promising therapeutic agent that can restore the imbalance found in the gut microbiota of T2DM rats. DBD may modify metabolites in the microbiota to realize its antidiabetic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Wen-Kai Wang
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Fan
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Ge
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihang Li
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingtian Zhu
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai Yin
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyan Xia
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Xue
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
30
|
Ojeda-Hernández DD, Canales-Aguirre AA, Matias-Guiu JA, Matias-Guiu J, Gómez-Pinedo U, Mateos-Díaz JC. Chitosan–Hydroxycinnamic Acids Conjugates: Emerging Biomaterials with Rising Applications in Biomedicine. Int J Mol Sci 2022; 23:ijms232012473. [PMID: 36293330 PMCID: PMC9604192 DOI: 10.3390/ijms232012473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past thirty years, research has shown the huge potential of chitosan in biomedical applications such as drug delivery, tissue engineering and regeneration, cancer therapy, and antimicrobial treatments, among others. One of the major advantages of this interesting polysaccharide is its modifiability, which facilitates its use in tailor-made applications. In this way, the molecular structure of chitosan has been conjugated with multiple molecules to modify its mechanical, biological, or chemical properties. Here, we review the conjugation of chitosan with some bioactive molecules: hydroxycinnamic acids (HCAs); since these derivatives have been probed to enhance some of the biological effects of chitosan and to fine-tune its characteristics for its application in the biomedical field. First, the main characteristics of chitosan and HCAs are presented; then, the currently employed conjugation strategies between chitosan and HCAs are described; and, finally, the studied biomedical applications of these derivatives are discussed to present their limitations and advantages, which could lead to proximal therapeutic uses.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro A. Canales-Aguirre
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Guadalajara 44270, Mexico
| | - Jordi A. Matias-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Matias-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (U.G.-P.); (J.C.M.-D.)
| | - Juan Carlos Mateos-Díaz
- Department of Industrial Biotechnology, CIATEJ-CONACyT, Zapopan 45019, Mexico
- Correspondence: (U.G.-P.); (J.C.M.-D.)
| |
Collapse
|
31
|
Kambale EK, Quetin-Leclercq J, Memvanga PB, Beloqui A. An Overview of Herbal-Based Antidiabetic Drug Delivery Systems: Focus on Lipid- and Inorganic-Based Nanoformulations. Pharmaceutics 2022; 14:2135. [PMID: 36297570 PMCID: PMC9610297 DOI: 10.3390/pharmaceutics14102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetes is a metabolic pathology with chronic high blood glucose levels that occurs when the pancreas does not produce enough insulin or the body does not properly use the insulin it produces. Diabetes management is a puzzle and focuses on a healthy lifestyle, physical exercise, and medication. Thus far, the condition remains incurable; management just helps to control it. Its medical treatment is expensive and is to be followed for the long term, which is why people, especially from low-income countries, resort to herbal medicines. However, many active compounds isolated from plants (phytocompounds) are poorly bioavailable due to their low solubility, low permeability, or rapid elimination. To overcome these impediments and to alleviate the cost burden on disadvantaged populations, plant nanomedicines are being studied. Nanoparticulate formulations containing antidiabetic plant extracts or phytocompounds have shown promising results. We herein aimed to provide an overview of the use of lipid- and inorganic-based nanoparticulate delivery systems with plant extracts or phytocompounds for the treatment of diabetes while highlighting their advantages and limitations for clinical application. The findings from the reviewed works showed that these nanoparticulate formulations resulted in high antidiabetic activity at low doses compared to the corresponding plant extracts or phytocompounds alone. Moreover, it was shown that nanoparticulate systems address the poor bioavailability of herbal medicines, but the lack of enough preclinical and clinical pharmacokinetic and/or pharmacodynamic trials still delays their use in diabetic patients.
Collapse
Affiliation(s)
- Espoir K. Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
32
|
Li X, Wu J, Xu F, Chu C, Li X, Shi X, Zheng W, Wang Z, Jia Y, Xiao W. Use of Ferulic Acid in the Management of Diabetes Mellitus and Its Complications. Molecules 2022; 27:molecules27186010. [PMID: 36144745 PMCID: PMC9503003 DOI: 10.3390/molecules27186010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetes mellitus, a metabolic disease mainly characterized by hyperglycemia, is becoming a serious social health problem worldwide with growing prevalence. Many natural compounds have been found to be effective in the prevention and treatment of diabetes, with negligible toxic effects. Ferulic acid (FA), a phenolic compound commonly found in medicinal herbs and the daily diet, was proved to have several pharmacological effects such as antihyperglycemic, antihyperlipidemic and antioxidant actions, which are beneficial to the management of diabetes and its complications. Data from PubMed, EM-BASE, Web of Science and CNKI were searched with the keywords ferulic acid and diabetes mellitus. Finally, 28 articles were identified after literature screening, and the research progress of FA for the management of DM and its complications was summarized in the review, in order to provide references for further research and medical applications of FA.
Collapse
Affiliation(s)
- Xu Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Jingxian Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fanxing Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Chu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyi Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (Y.J.); (W.X.)
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
- Correspondence: (Y.J.); (W.X.)
| |
Collapse
|
33
|
Matowane GR, Ramorobi LM, Mashele SS, Bonnet SL, Noreljaleel AEM, Swain SS, Makhafola TJ, Chukwuma CI. Complexation potentiated promising anti-diabetic and anti-oxidative synergism between ZN(ii) and ferulic acid: A multimode study. Diabet Med 2022; 39:e14905. [PMID: 35748705 DOI: 10.1111/dme.14905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
Abstract
AIM This study was done to investigate the anti-diabetic and anti-oxidative synergism between zinc(II) and ferulic acid through complexation. METHODS Zinc sulphate was complexed with ferulic acid in a 1:2 molar ratio. The complex was characterized using Fourier-transform infrared spectroscopy, proton NMR and high-resolution mass spectroscopy techniques and evaluated for cellular toxicity. In silico, in vitro, cell-based and tissue experimental models were used to test the anti-diabetic and anti-oxidant activities of the complex relative to its precursors. RESULTS A zinc(II)-biferulate.2H2 O complex was formed. The in vitro radical scavenging, anti-lipid peroxidative and α-glucosidase and α-amylase inhibitory activity of the complex was 1.7-2.1 folds more potent than ferulic acid. Zn(II) complexation increased the anti-glycation activity of ferulic acid by 1.5 folds. The complex suppressed lipid peroxidation (IC50 = 48.6 and 331 μM) and GHS depletion (IC50 = 33.9 and 33.5 μM) in both Chang liver cells and isolated rat liver tissue. Its activity was 2.3-3.3 folds more potent than ferulic acid and statistically comparable to ascorbic acid. Zn(II) complexation afforded ferulic acid improved glucose uptake activity in L-6 myotube (EC50 = 11.7 vs. 45.7 μM) and isolated rat muscle tissue (EC50 = 501 and 1510 μM). Complexation increased muscle tissue zinc(II) uptake and hexokinase activity. Docking scores of the complex (-7.24 to -8.25 kcal/mol) and ferulic acid (-5.75 to 6.43 kcal/mol) suggest the complex had stronger interaction with protein targets related to diabetes, which may be attributed to the 2 ferulic acid moieties and Zn(II) in the complex. Moreover, muscle tissue showed increased phospho-Akt/pan-Akt ratio upon treatment with complex. The complex was not hepatotoxic and myotoxic at in vitro cellular level. CONCLUSION Zn(II) complexation may be promising therapeutic approach for improving the glycaemic control and anti-oxidative potential of natural phenolic acids.
Collapse
Affiliation(s)
- Godfrey R Matowane
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
| | - Limpho M Ramorobi
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
| | - Samson S Mashele
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
| | - Susanna L Bonnet
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Anwar E M Noreljaleel
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Shasank S Swain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Tshepiso J Makhafola
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
| | - Chika I Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, Free State, South Africa
| |
Collapse
|
34
|
Ferulic acid and vinpocetine intake improves memory function by enhancing insulin sensitivity and reducing neuroinflammation and oxidative stress in type 2 diabetic animals with induced Alzheimer's disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
35
|
Isolation and Characterisation of Hordatine-Rich Fractions from Brewer’s Spent Grain and Their Biological Activity on α-Glucosidase and Glycogen Phosphorylase α. SUSTAINABILITY 2022. [DOI: 10.3390/su14148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hordatines are a characteristic class of secondary metabolites found in barley which have been reported to be present in barley malt, beer and, recently, brewer´s spent grain (BSG). However, little is known about their biological activities such as antioxidative effects in beer or antifungal activity as their main task within the plants. We conducted an in vitro investigation of the activity of hordatines isolated from BSG towards enzymes of glucose metabolism. Hordatine-rich fractions from BSG were prepared by solid-liquid extraction (SLE) with 60% acetone followed by purification and fractionation. The fractions were characterised and investigated for their in vitro inhibitory potential on α-glucosidase and glycogen phosphorylase α (GPα). Both enzymes are relevant within the human glucose metabolism regarding the digestion of carbohydrates as well as the liberation of glucose from the liver. In total, 10 hordatine-rich fractions varying in the composition of different hordatines were separated and analysed by mass spectrometry. Hordatine A, B and C, as well as hydroxylated aglycons and many glycosides, were detected in the fractions. The total hordatine content was analysed by HPLC-DAD using a semi-quantitative approach and ranged from 60.7 ± 3.1 to 259.6 ± 6.1 µg p-coumaric acid equivalents/mg fraction. Regarding the biological activity of fractions, no inhibitory effect on GPα was observed, whereas an inhibitory effect on α-glucosidase was detected (IC50 values: 77.5 ± 6.5–194.1 ± 2.6 µg/mL). Overall, the results confirmed that hordatines are present in BSG in relatively high amounts and provided evidence that they are potent inhibitors of α-glucosidase. Further research is needed to confirm these results and identify the active hordatine structure.
Collapse
|
36
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
37
|
Goulas V, Banegas-Luna AJ, Constantinou A, Pérez-Sánchez H, Barbouti A. Computation Screening of Multi-Target Antidiabetic Properties of Phytochemicals in Common Edible Mediterranean Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1637. [PMID: 35807588 PMCID: PMC9269125 DOI: 10.3390/plants11131637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus is a metabolic disease and one of the leading causes of deaths worldwide. Numerous studies support that the Mediterranean diet has preventive and treatment effects on diabetes. These effects have been attributed to the special bioactive composition of Mediterranean foods. The objective of this work was to decipher the antidiabetic activity of Mediterranean edible plant materials using the DIA-DB inverse virtual screening web server. A literature review on the antidiabetic potential of Mediterranean plants was performed and twenty plants were selected for further examination. Subsequently, the most abundant flavonoids, phenolic acids, and terpenes in plant materials were studied to predict their antidiabetic activity. Results showed that flavonoids are the most active phytochemicals as they modulate the function of 17 protein-targets and present high structural similarity with antidiabetic drugs. Their antidiabetic effects are linked with three mechanisms of action, namely (i) regulation of insulin secretion/sensitivity, (ii) regulation of glucose metabolism, and (iii) regulation of lipid metabolism. Overall, the findings can be utilized to understand the antidiabetic activity of edible Mediterranean plants pinpointing the most active phytoconstituents.
Collapse
Affiliation(s)
- Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus;
| | - Antonio J. Banegas-Luna
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, UCAM Universidad Católica de Murcia, 30107 Guadalupe, Spain; (A.J.B.-L.); (H.P.-S.)
| | - Athena Constantinou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus;
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, UCAM Universidad Católica de Murcia, 30107 Guadalupe, Spain; (A.J.B.-L.); (H.P.-S.)
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
38
|
Latifi E, Mohammadpour AA, Fathi Hafshejani B, Nourani H. Ferula assa-foetida oleo gum resin ethanolic extract alleviated the pancreatic changes and antioxidant status in streptozotocin-induced diabetic rats: A biochemical, histopathological, and ultrastructural study. J Food Biochem 2022; 46:e14191. [PMID: 35474229 DOI: 10.1111/jfbc.14191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/11/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023]
Abstract
The current research examines the effects of administration of 150 and 250 mg/kg body weight/day of ethanolic Ferula assa-foetida L. oleo gum resin extract (FAE) for 42 days in streptozotocin-induced diabetes in rats. On day 42, all rats were euthanized; HOMA-β, HOMA-IR, and QUICKI levels in pancreas were examined histopathologically and ultrastructurally . Low-dose FAE (150 mg/kg) treatment resulted in significant improvement in serum glucose, insulin and superoxide dismutase, glutathione, and catalase levels (p < .05). It also improved β-cell function, restored pancreatic β-cells, and reduced insulin resistance compared to the diabetic control rats. Necrotic and degenerative alterations in the islets, pyknotic β-cell nuclei, β-cell degranulation, reduced islet cellular density, and significant vacuolation were found in the islets of STZ-diabetic control group ratsby the histomorphological and ultrastructural examination. The pancreatic histomorphology of low dose of FAE-treated diabetic rats showed remarkable improvements in the islets, such as the β-cell number and the area of the pancreatic islets. PRACTICAL APPLICATIONS: The experiment revealed that Ferula assa-foetida L. may exert antihyperglycemic activity in STZ diabetes via β-cell regeneration and its high antioxidant capacity. This work elucidates the role of Ferula assa-foetida L. in diabetes management. Ferula assa-foetida L. gum extract improved the morphological changes of the diabetic pancreas and stimulated the regeneration of the β cells. The findings demonstrated positive results for the long-term cure of diabetes. Additionally, this study showed the potential of isolating nutraceuticals for the development of medications.
Collapse
Affiliation(s)
- Ebrahim Latifi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Ali Mohammadpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behrooz Fathi Hafshejani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hosein Nourani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
39
|
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M, Kumar S, Dubey AK, Singla S, Shen B. The Genus Alternanthera: Phytochemical and Ethnopharmacological Perspectives. Front Pharmacol 2022; 13:769111. [PMID: 35479320 PMCID: PMC9036189 DOI: 10.3389/fphar.2022.769111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Vivek Dhir
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| | - Deepak Kumar
- Department of Health and Family Welfare, Civil Hospital, Rampura Phul, India
| | - Simranjit Singh Bola
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Monika Bansal
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| |
Collapse
|
40
|
Effects of spent coffee grounds on production traits, haematological parameters, and antioxidant activity of blood and milk in dairy goats. Animal 2022; 16:100501. [DOI: 10.1016/j.animal.2022.100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
|
41
|
Gao J, Gu X, Zhang M, Zu X, Shen F, Hou X, Hao E, Bai G. Ferulic acid targets ACSL1 to ameliorate lipid metabolic disorders in db/db mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
42
|
Potential Role of Mitochondria as Modulators of Blood Platelet Activation and Reactivity in Diabetes and Effect of Metformin on Blood Platelet Bioenergetics and Platelet Activation. Int J Mol Sci 2022; 23:ijms23073666. [PMID: 35409027 PMCID: PMC8998700 DOI: 10.3390/ijms23073666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/27/2022] Open
Abstract
Blood platelet dysfunctions are strongly involved in the development of the micro- and macrovascular complications in diabetes mellitus (DM). However, the molecular causes of abnormal platelet activation in DM remain unclear. Experimental data suggests that platelet mitochondria can regulate the prothrombotic phenotype of platelets, and changes in these organelles may influence platelet activation and modify platelet responses to stimulation. The present study evaluates the impact of DM on mitochondrial respiratory parameters and blood platelet activation/reactivity in a rat model of experimental diabetes following 1, 2.5 and 5 months of streptozotocin (STZ)-induced diabetes. Moreover, a mild inhibition of the mitochondrial respiratory chain with the use of metformin under in vitro and in vivo conditions was tested as a method to reduce platelet activation and reactivity. The platelets were studied with a combination of flow cytometry and advanced respirometry. Our results indicate that prolonged exposure of blood platelets to high concentrations of glucose, as in diabetes, can result in elevated blood platelet mitochondrial respiration; this may be an effect of cell adaptation to the high availability of energy substrates. However, as these alterations occur later than the changes in platelet activation/reactivity, they may not constitute the major reason for abnormal platelet functioning in DM. Moreover, metformin was not able to inhibit platelet activation and reactivity under in vitro conditions despite causing a decrease in mitochondrial respiration. This indicates that the beneficial effect of metformin on the coagulation system observed in vivo can be related to other mechanisms than via the inhibition of platelet activation.
Collapse
|
43
|
The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020235. [PMID: 35213966 PMCID: PMC8879577 DOI: 10.3390/pharmaceutics14020235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in ameliorating type 2 diabetes mellitus symptoms. Furthermore, both diabetes and neurodegenerative conditions, such as AD, are characterized by chronic inflammatory responses accompanied by the presence of dysregulated inflammatory biomarkers. This review presents current evidence describing the role of various small bioactive molecules known to ameliorate amyloidosis and subsequent effects in prevention and development of diabetes and AD. It also highlights the potential efficacy of peptide–drug conjugates capable of targeting intracellular targets.
Collapse
|
44
|
Hajlaoui H, Arraouadi S, Mighri H, Ghannay S, Aouadi K, Adnan M, Elasbali AM, Noumi E, Snoussi M, Kadri A. HPLC-MS Profiling, Antioxidant, Antimicrobial, Antidiabetic, and Cytotoxicity Activities of Arthrocnemum indicum (Willd.) Moq. Extracts. PLANTS (BASEL, SWITZERLAND) 2022; 11:232. [PMID: 35050120 PMCID: PMC8778445 DOI: 10.3390/plants11020232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to evaluate for the first time the phytochemical constituents and biological properties of three (ethanol, acetone, and hexane) Arthrocnemum indicum (Willd.) Moq. (A. indicum) extracts. Quantitative analysis revealed the significantly (p < 0.05) dominance of ethanolic extract on total polyphenol (TPC; 303.67 ± 4.16 mg GAE/g DR) and flavonoid (TFC; 55.33 ± 2.52 mg CE/g DR) contents than the other extracts, also displaying high and equipotent condensed tannin (TCTC) contents as the acetone extract. The qualitative HPLC-MS analysis elucidates 19 and 18 compounds in ethanolic and acetonic extracts, respectively, belonging to the phenolics and flavonoids chemical classes. The extracts were also screened for their in vitro antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl, superoxide anion, and ferric ion (Fe3+) reducing antioxidant power (FRAP), demonstrating the potent antioxidant activity of ethanolic extract, due to its stronger scavenging DPPH• (IC50 = 7.17 ± 1.26 μg/mL) which is not significantly (p > 0.05) different from the positive control, BHT (IC50 = 10.70 ± 0.61 μg/mL), however moderate activity through FRAP and superoxide anion radicals have been observed. Four Gram-positive, four Gram-negative bacteria, and four pathogenic fungi were used for the antimicrobial activity. In addition, S. epidermidis, M. luteus, E. faecalis, C. glabrata, C. parapsilosis, C. krusei were found to be the most susceptible strains towards ethanolic extract. Cytotoxicity values against human colon adenocarcinoma cells (HT29) and human epidermoid cancer cells (Hep2), and one continuous cell lineage control (Vero) revealed that the HT29 cancer cell line was the most responsive to A. indicum shoot extract treatment and significantly (p < 0.05) different from the other cancer cells. Moreover, when tested for their antidiabetic inhibitory effect, ethanol extract recorded the highest antidiabetic effect with IC50 = 13.17 ± 1.04 mg/mL, which is 8.4-fold higher than acetone extract. Therefore, the present study provides new findings on the use of A. indicum shoot ethanolic extract to cure many incurable diseases.
Collapse
Affiliation(s)
- Hafedh Hajlaoui
- Research Unit Valorization and Optimization of Resource Exploitation (UR16ES04), Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, Campus University Agricultural City, Sidi Bouzid 9100, Tunisia
| | - Soumaya Arraouadi
- Regional Center of Agricultural Research (CRRA) Sidi Bouzid, Gafsa Road Km 6, PB 357, Sidi Bouzid 9100, Tunisia;
- Laboratory of Valorization of Unconventional Waters, INRGREF, University of Carthage, Road Hedi EL Karray, El Menzah IV, PB 10, Ariana 2080, Tunisia
| | - Hedi Mighri
- Range Ecology Laboratory, Arid Region Institute, University of Gabes, El-Jorf Road Km 22.5, Medenine 4119, Tunisia;
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.G.); (K.A.)
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.G.); (K.A.)
- Faculty of Sciences of Monastir, Avenue of the Environment, University of Monastir, Monastir 5019, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (M.A.); (E.N.); (M.S.)
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (M.A.); (E.N.); (M.S.)
- Laboratory of Bioressources: Integrative Biology and Recovery, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (M.A.); (E.N.); (M.S.)
- Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Bio-Technology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia;
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|
45
|
Papuc C, Goran GV, Predescu CN, Tudoreanu L, Ștefan G. Plant polyphenols mechanisms of action on insulin resistance and against the loss of pancreatic beta cells. Crit Rev Food Sci Nutr 2022; 62:325-352. [PMID: 32901517 DOI: 10.1080/10408398.2020.1815644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus describes a group of metabolic disorders characterized by a prolonged period hyperglycemia with long-lasting detrimental effects on the cardiovascular and nervous systems, kidney, vision, and immunity. Many plant polyphenols are shown to have beneficial activity for the prevention and treatment of diabetes, by different mechanisms. This review article is focused on synthesizing the mechanisms by which polyphenols decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function. To achieve the objectives, this review summarizes the results of the researches realized in recent years in clinical trials and in various experimental models, on the effects of foods rich in polyphenols, polyphenolic extracts, and commercially polyphenols on insulin resistance and β-cells death. Dietary polyphenols are able to reduce insulin resistance alleviating the IRS-1/PI3-k/Akt signaling pathway, and to reduce the loss of pancreatic islet β-cell mass and function by several molecular mechanisms, such as protection of the surviving machinery of cells against the oxidative insult; increasing insulin secretion in pancreatic β-cells through activation of the FFAR1; cytoprotective effect on β-cells by activation of autophagy; protection of β-cells to act as activators for anti-apoptotic pathways and inhibitors for apoptotic pathway; stimulating of insulin release, presumably by transient ATP-sensitive K+ channel inhibition and whole-cell Ca2+ stimulation; involvement in insulin release that act on ionic currents and membrane potential as inhibitor of delayed-rectifier K+ current (IK(DR)) and activator of current. dietary polyphenols could be used as potential anti-diabetic agents to prevent and alleviate diabetes and its complications, but further studies are needed.
Collapse
Affiliation(s)
- Camelia Papuc
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Gheorghe V Goran
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Corina N Predescu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Liliana Tudoreanu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Georgeta Ștefan
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| |
Collapse
|
46
|
|
47
|
Turkez H, Arslan ME, Barboza JN, Kahraman CY, de Sousa DP, Mardinoğlu A. Therapeutic Potential of Ferulic Acid in Alzheimer's Disease. Curr Drug Deliv 2021; 19:860-873. [PMID: 34963433 DOI: 10.2174/1567201819666211228153801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is one of the most important neurodegenerative diseases and it covers 60% of whole dementia cases. AD is a constantly progressing neurodegenerative disease as a result of the production of β-amyloid (Aβ) protein and the accumulation of hyper-phosphorylated Tau protein; it causes breakages in the synaptic bonds and neuronal deaths to a large extent. Millions of people worldwide suffer from AD because there is no definitive drug for disease prevention, treatment or slowdown. Over the last decade, multiple target applications have been developed for AD treatments. These targets include Aβ accumulations, hyper-phosphorylated Tau proteins, mitochondrial dysfunction, and oxidative stress resulting in toxicity. Various natural or semisynthetic antioxidant formulations have been shown to protect brain cells from Aβ induced toxicity and provide promising potentials for AD treatment. Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants. FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc. Furthermore, FA exerted neuroprotection via preventing Aβ-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity. In this review, we present key biological roles of FA and several FA derivatives in Aβ-induced neurotoxicity, protection against free radical attacks, and enzyme inhibitions and describe them as possible therapeutic agents for the treatment of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25200, Erzurum, Turkey
| | - Joice Nascimento Barboza
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Damiao Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17121, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
48
|
Luetić M, Kretzschmar G, Grobe M, Jerčić L, Bota I, Ivić V, Balog M, Zjalić M, Vitlov Uljević M, Heffer M, Gaspar R, Tabi T, Vukojević K, Vari SG, Filipović N. Sex-specific effects of metformin and liraglutide on renal pathology and expression of connexin 45 and pannexin 1 following long-term high-fat high-sugar diet. Acta Histochem 2021; 123:151817. [PMID: 34808525 DOI: 10.1016/j.acthis.2021.151817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023]
Abstract
The comparative effects of the two commonly used antidiabetic drugs metformin and liraglutide on renal pathology and expression of connexin 45 (Cx45) and pannexin 1 (Panx1) in adult obese rats fed high-fat high-sugar diet (HFHSD) were studied. Considering recent data on the profound influence of sex on metformin and liraglutide effects, we compared the effects of both drugs between male and female animals. 44-week-old Sprague-Dawley rats were separated into 4 groups that were fed: standard diet, HFHSD, HFHSD treated with metformin (s.c., 50 mg/kg/day) and HFHSD treated with liraglutide (s.c., 0.3 mg/kg/day). Treatment with metformin or liraglutide lasted for 14 weeks. Histology and immunohistochemistry were performed to quantify renal pathological changes and Cx45 and Panx1 expression. HFHSD caused thickening of the Bowman's capsule (BC). Both metformin and liraglutide failed to ameliorate the BC thickening; metformin even worsened it. Effects on the tubulointerstitial fibrosis score, BC thickness and Cx45 and Panx1 expression were sex-dependent. We found a 50% increase in mitochondria in proximal tubules of metformin- and liraglutide-treated HFHSD-fed rats, but these effects were not dependent on the sex. This is a first study showing that the effects of metformin and liraglutide on kidney pathology in rats fed HFHSD are mostly sex-dependent and that these effects are not necessarily beneficial. Both drugs changed the Cx45 and Panx 1 expression; hence their effects could be related to amelioration of disruptions in intercellular communication.
Collapse
Affiliation(s)
- Martina Luetić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital Centre Split, Spinčićeva 1, Split 21000, Croatia
| | - Genia Kretzschmar
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Maximilian Grobe
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Leo Jerčić
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Ivana Bota
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Vedrana Ivić
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Marta Balog
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Milorad Zjalić
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Marija Vitlov Uljević
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Marija Heffer
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér. 12., H-6720 Szeged, Hungary
| | - Tamas Tabi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Katarina Vukojević
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia; University of Split School of Medicine, Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Sandor G Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Natalija Filipović
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia.
| |
Collapse
|
49
|
Stompor-Gorący M, Machaczka M. Recent Advances in Biological Activity, New Formulations and Prodrugs of Ferulic Acid. Int J Mol Sci 2021; 22:ijms222312889. [PMID: 34884693 PMCID: PMC8657461 DOI: 10.3390/ijms222312889] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 01/18/2023] Open
Abstract
Trans-ferulic acid (FA) is a derivative of 4-hydroxycinnamic acid, which is found in many food products, fruits and beverages. It has scientifically proven antioxidant, anti-inflammatory and antibacterial properties. However, its low ability to permeate through biological barriers (e.g., the blood-brain barrier, BBB), its low bioavailability and its fast elimination from the gastrointestinal tract after oral administration limit its clinical use, e.g., for the treatment of neurodegenerative diseases, such as Alzheimer's disease. Therefore, new nanotechnological approaches are developed in order to regulate intracellular transport of ferulic acid. The objective of this review is to summarize the last decade's research on biological properties of ferulic acid and innovative ways of its delivery, supporting pharmacological therapy.
Collapse
Affiliation(s)
- Monika Stompor-Gorący
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszow, Kopisto 2a, 35-959 Rzeszów, Poland;
- Correspondence:
| | - Maciej Machaczka
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszow, Kopisto 2a, 35-959 Rzeszów, Poland;
- Department of Clinical Science and Education, Division of Internal Medicine, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden
| |
Collapse
|
50
|
Lee H, Lee J. Anti-diabetic effect of hydroxybenzoic acid derivatives in free fatty acid-induced HepG2 cells via miR-1271/IRS1/PI3K/AKT/FOXO1 pathway. J Food Biochem 2021; 45:e13993. [PMID: 34730253 DOI: 10.1111/jfbc.13993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023]
Abstract
Type 2 diabetes is characterized by insulin resistance (IR) and increased hepatic glucose production. MicroRNAs (miRs) are considered regulators of glucose metabolism. This study evaluated anti-diabetic activity of hydroxybenzoic acid derivatives and determined the involvement of miR-1271. Among the hydroxybenzoic acid derivatives, gallic acid (GA) showed the best anti-diabetic activity. GA improved free fatty acid (FFA)-induced hepatic IR, increased glucose consumption, and decreased reactive oxygen species. GA inhibited the upregulation of miR-1271 induced by FFA and upregulated its targets such as p-IRS, p-PI3K, p-AKT, and p-FOXO1, accompanied by the regulation of glucose metabolism genes. The involvement of miR-1271 in the protective effect of GA against IR was further confirmed in the presence of miR-1271 mimic or miR-1271 inhibitor. Our results suggest that GA attenuates IR via the miR-1271/IRS/PI3K/AKT/FOXO1 pathway and thus might be considered for the management of IR. PRACTICAL APPLICATIONS: MicroRNAs can regulate insulin resistance by affecting protein expressions involved in insulin signaling. Experimental data suggest that some phytochemicals regulate the expression of various microRNAs. However, it is not clear whether phenolic acids play any role in the hepatic insulin signaling pathway through the regulation of microRNA expression. This study assessed the anti-diabetic activity of hydroxybenzoic acid derivatives through down-regulation of microRNA-1271 and its association with the IRS1/PI3K/AKT/FOXO1 pathways. This research will be able to offer basic information regarding a potential therapeutic strategy to control hepatic insulin resistance.
Collapse
Affiliation(s)
- Hana Lee
- Department of Food Science and Biotechnology, College of Agriculture, Life, & Environmental Sciences, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, College of Agriculture, Life, & Environmental Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|