1
|
Janczarek M, Adamczyk P, Gromada A, Polakowski C, Wengerska K, Bieganowski A. Adaptation of Rhizobium leguminosarum sv. trifolii strains to low temperature stress in both free-living stage and during symbiosis with clover. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175554. [PMID: 39151610 DOI: 10.1016/j.scitotenv.2024.175554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. This process occurs within special new structures, called nodules, formed mainly on legume roots. Soil bacteria, commonly known as rhizobia, fix atmospheric dinitrogen, converting it into a form that can be assimilated by plants. Various environmental factors, including a low temperature, have an impact on the symbiotic efficiency. Nevertheless, the effect of temperature on the phenotypic and symbiotic traits of rhizobia has not been determined in detail to date. Therefore, in this study, the influence of temperature on different cell surface and symbiotic properties of rhizobia was estimated. In total, 31 Rhizobium leguminosarum sv. trifolii strains isolated from root nodules of red clover plants growing in the subpolar and temperate climate regions, which essentially differ in year and day temperature profiles, were chosen for this analysis. Our results showed that temperature has a significant effect on several surface properties of rhizobial cells, such as hydrophobicity, aggregation, and motility. Low temperature also stimulated EPS synthesis and biofilm formation in R. leguminosarum sv. trifolii. This extracellular polysaccharide is known to play an important protective role against different environmental stresses. The strains produced large amounts of EPS under tested temperature conditions that facilitated adherence of rhizobial cells to different surfaces. The high adaptability of these strains to cold stress was also confirmed during symbiosis. Irrespective of their climatic origin, the strains proved to be highly effective in attachment to legume roots and were efficient microsymbionts of clover plants. However, some diversity in the response to low temperature stress was found among the strains. Among them, M16 and R137 proved to be highly competitive and efficient in nodule occupancy and biomass production; thus, they can be potential yield-enhancing inoculants of legumes.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland.
| | - Paulina Adamczyk
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland.
| | - Anna Gromada
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland.
| | - Cezary Polakowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290 Lublin, Poland.
| | - Karolina Wengerska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 13 Akademicka Street, 20-950 Lublin, Poland.
| | - Andrzej Bieganowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290 Lublin, Poland.
| |
Collapse
|
2
|
Chakraborty N, Halder S, Keswani C, Vaca J, Ortiz A, Sansinenea E. New Aspects of the Effects of Climate Change on Interactions Between Plants and Microbiomes: A Review. J Basic Microbiol 2024; 64:e2400345. [PMID: 39205430 DOI: 10.1002/jobm.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
One of the most talked about issues of the 21st century is climate change, as it affects not just our health but also forestry, agriculture, biodiversity, the ecosystem, and the energy supply. Greenhouse gases are the primary cause of climate change, having dramatic effects on the environment. Climate change has an impact on the function and composition of the terrestrial microbial community both directly and indirectly. Changes in the prevailing climatic conditions brought about by climate change will lead to modifications in plant physiology, root exudation, signal alteration, and the quantity, makeup, and diversity of soil microbial communities. Microbiological activity is very crucial in organic production systems due to the organic origin of microorganisms. Microbes that benefit crop plants are known as plant growth-promoting microorganisms. Thus, the effects of climate change on the environment also have an impact on the abilities of beneficial bacteria to support plant growth, health, and root colonization. In this review, we have covered the effects of temperature, precipitation, drought, and CO2 on plant-microbe interactions, as well as some physiological implications of these changes. Additionally, this paper highlights the ways in which bacteria in plants' rhizosphere react to the dominant climatic conditions in the soil environment. The goal of this study is to analyze the effects of climate change on plant-microbe interactions.
Collapse
Affiliation(s)
- Nilanjan Chakraborty
- Department of Botany, Scottish Church College, University of Calcutta, Kolkata, India
| | - Sunanda Halder
- Department of Botany, Scottish Church College, University of Calcutta, Kolkata, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jessica Vaca
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
3
|
Kaur R, Gupta S, Tripathi V, Bharadwaj A. Unravelling the secrets of soil microbiome and climate change for sustainable agroecosystems. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01194-9. [PMID: 39249146 DOI: 10.1007/s12223-024-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, IAH, GLA University, Mathura, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Saurabh Gupta
- Department of Biotechnology, IAH, GLA University, Mathura, India.
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India.
| | - Alok Bharadwaj
- Department of Biotechnology, IAH, GLA University, Mathura, India
| |
Collapse
|
4
|
Lee S, Kim JA, Song J, Choe S, Jang G, Kim Y. Plant growth-promoting rhizobacterium Bacillus megaterium modulates the expression of antioxidant-related and drought-responsive genes to protect rice ( Oryza sativa L.) from drought. Front Microbiol 2024; 15:1430546. [PMID: 39234545 PMCID: PMC11371581 DOI: 10.3389/fmicb.2024.1430546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Global climate change poses a significant threat to plant growth and crop yield and is exacerbated by environmental factors, such as drought, salinity, greenhouse gasses, and extreme temperatures. Plant growth-promoting rhizobacteria (PGPR) help plants withstand drought. However, the mechanisms underlying PGPR-plant interactions remain unclear. Thus, this study aimed to isolate PGPR, Bacillus megaterium strains CACC109 and CACC119, from a ginseng field and investigate the mechanisms underlying PGPR-stimulated tolerance to drought stress by evaluating their plant growth-promoting activities and effects on rice growth and stress tolerance through in vitro assays, pot experiments, and physiological and molecular analyses. Compared with B. megaterium type strain ATCC14581, CACC109 and CACC119 exhibited higher survival rates under osmotic stress, indicating their potential to enhance drought tolerance. Additionally, CACC109 and CACC119 strains exhibited various plant growth-promoting activities, including phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, siderophore secretion, 1-aminocyclopropane-1-carboxylate deaminase activity, and exopolysaccharide production. After inoculation, CACC109 and CACC119 significantly improved the seed germination of rice (Oryza sativa L.) under osmotic stress and promoted root growth under stressed and non-stressed conditions. They also facilitated plant growth in pot experiments, as evidenced by increased shoot and root lengths, weights, and leaf widths. Furthermore, CACC109 and CACC119 improved plant physiological characteristics, such as chlorophyll levels, and production of osmolytes, such as proline. In particular, CACC109- and CACC119-treated rice plants showed better drought tolerance, as evidenced by their higher survival rates, greater chlorophyll contents, and lower water loss rates, compared with mock-treated rice plants. Application of CACC109 and CACC119 upregulated the expression of antioxidant-related genes (e.g., OsCAT, OsPOD, OsAPX, and OsSOD) and drought-responsive genes (e.g., OsWRKY47, OsZIP23, OsDREB2, OsNAC066, OsAREB1, and OsAREB2). In conclusion, CACC109 and CACC119 are promising biostimulants for enhancing plant growth and conferring resistance to abiotic stresses in crop production. Future studies should conduct field trials to validate these findings under real agricultural conditions, optimize inoculation methods for practical use, and further investigate the biochemical and physiological responses underlying the observed benefits.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Jung-Ae Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Jeongsup Song
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Seonbong Choe
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| |
Collapse
|
5
|
Bianchetti G, Clouet V, Legeai F, Baron C, Gazengel K, Vu BL, Baud S, To A, Manzanares-Dauleux MJ, Buitink J, Nesi N. Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14130. [PMID: 38842416 DOI: 10.1111/ppl.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 06/07/2024]
Abstract
In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.
Collapse
Affiliation(s)
- Grégoire Bianchetti
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Vanessa Clouet
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Cécile Baron
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Kévin Gazengel
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| | - Benoit Ly Vu
- IRHS, INRAE, Institut Agro Rennes-Angers, Université d'Angers, France
| | | | | | | | - Julia Buitink
- IRHS, INRAE, Institut Agro Rennes-Angers, Université d'Angers, France
| | - Nathalie Nesi
- IGEPP, INRAE, Institut Agro Rennes-Angers, Université de Rennes, Le Rheu, France
| |
Collapse
|
6
|
Abdel-Mawgoud M, Bouqellah NA, Korany SM, Reyad AM, Hassan AHA, Alsherif EA, AbdElgawad H. Arbuscular mycorrhizal fungi as an effective approach to enhance the growth and metabolism of soybean plants under thallium (TI) toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108077. [PMID: 37827045 DOI: 10.1016/j.plaphy.2023.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/17/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Thallium (TI) is a toxic metal that can trigger harmful impacts on growth and metabolism of plants. Utilizing arbuscular mycorrhizal fungi (AMF) proves to be an effective strategy for alleviating heavy metal toxicity in plants. To this end, AMF were applied to mitigate TI toxic effects on the growth, primary and secondary metabolism of soybean plants. Here, TI stress inhibited the growth and photosynthetic parameters of soybean plants. It also increased the oxidative damage as demonstrated by increased levels of oxidative markers, (MDA and lipoxygenase (LOX) activity). However, AMF could mitigate the reduction in growth and photosynthesis induced by TI, as well as the induction of oxidative damage. To overcome TI toxicity, AMF increased the levels and metabolism of osmolytes such as proline in soybean plants. This was in line with the increased activities of key enzymes that involved in proline biosynthesis (e.g., P5CS (pyrroline-5-carboxylate synthetase), P5CR (pyrroline-5-carboxylate reductase) and OAT (ornithine aminotransferase) under the AMF and/or TI treatments. Furthermore, soybean plants could benefit from the synergism between AMF and TI to enhance the contents of individual (e.g., spermine and spermidine) and total polyamines as well as their metabolic enzymes (e.g., arginine decarboxylase and ornithine decarboxylase). Overall, the combined application of AMF emerges as a viable approach for alleviating TI toxicity in soybean plants.
Collapse
Affiliation(s)
- Mohamed Abdel-Mawgoud
- Department of Medicinal and Aromatic Plants, Desert Research Centre, Cairo, 11753, Egypt
| | - Nahla Alsayd Bouqellah
- Taibah University. Science College, Biology Department, 42317-8599, Almadina Almunawwarah, Saudi Arabia
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ahmed Mohamed Reyad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt; Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Abdelrahim H A Hassan
- School of Biotechnology, Nile University, Giza, 12588, Egypt; Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Emad A Alsherif
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Chieb M, Gachomo EW. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC PLANT BIOLOGY 2023; 23:407. [PMID: 37626328 PMCID: PMC10464363 DOI: 10.1186/s12870-023-04403-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Climate change has exacerbated the effects of abiotic stresses on plant growth and productivity. Drought is one of the most important abiotic stress factors that interfere with plant growth and development. Plant selection and breeding as well as genetic engineering methods used to improve crop drought tolerance are expensive and time consuming. Plants use a myriad of adaptative mechanisms to cope with the adverse effects of drought stress including the association with beneficial microorganisms such as plant growth promoting rhizobacteria (PGPR). Inoculation of plant roots with different PGPR species has been shown to promote drought tolerance through a variety of interconnected physiological, biochemical, molecular, nutritional, metabolic, and cellular processes, which include enhanced plant growth, root elongation, phytohormone production or inhibition, and production of volatile organic compounds. Therefore, plant colonization by PGPR is an eco-friendly agricultural method to improve plant growth and productivity. Notably, the processes regulated and enhanced by PGPR can promote plant growth as well as enhance drought tolerance. This review addresses the current knowledge on how drought stress affects plant growth and development and describes how PGPR can trigger plant drought stress responses at the physiological, morphological, and molecular levels.
Collapse
Affiliation(s)
- Maha Chieb
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
8
|
García JE, Ruiz M, Maroniche GA, Creus C, Puente M, Zawoznik MS, Groppa MD. Inoculation with Azospirillum argentinense Az19 improves the yield of maize subjected to water deficit at key stages of plant development. Rev Argent Microbiol 2023; 55:255-261. [PMID: 36925322 DOI: 10.1016/j.ram.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/02/2022] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
Water deficit constitutes a severe limitation to agricultural productivity. In the context of sustainable crop production, the potential of microbial biotechnology to increase plant drought tolerance and improve crop yields under adverse conditions is gaining relevance. This work aimed to compare the performance of Azospirillumargentinense strain Az19 to that of strain Az39, the most widely used for commercial inoculants, when inoculated in maize plants exposed to water deficit. For this purpose, greenhouse and field assays were conducted. In the greenhouse experiment, strain Az19 prevented the adverse effect of water deficit at V2 stage on maize growth. Moreover, the percentage of fertile plants and the ear weight decreased significantly under water deficits imposed at V2 and flowering in Az39-inoculated plants but not in Az19-inoculated plants. In the first field trial with the commercial maize hybrid DOW DS 515 PW, Az19-inoculated plants were those which better tolerated the water deficit imposed. In the second field trial, two maize genotypes with differential drought sensitivity (LP 29×LP 2542, sensitive; LP 882 (923)×LP 4703, tolerant) were tested. Higher tolerance to water deficit was detected in plants inoculated with A. argentinense Az19, with a noticeable effect on grain yield components in the sensitive genotype. Based on these results, we propose the use of A. argentinense Az19 for the formulation of more targeted Azospirillum-based inoculants, suitable for agroecological areas subjected to seasonal water deficits.
Collapse
Affiliation(s)
- Julia Elena García
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola, Argentina
| | - Mónica Ruiz
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental San Juan, Argentina
| | - Guillermo Andrés Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Cecilia Creus
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina
| | - Mariana Puente
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola, Argentina
| | - Myriam Sara Zawoznik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - María Daniela Groppa
- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
9
|
Cakaj A, Lisiak-Zielińska M, Hanć A, Małecka A, Borowiak K, Drapikowska M. Common weeds as heavy metal bioindicators: a new approach in biomonitoring. Sci Rep 2023; 13:6926. [PMID: 37117325 PMCID: PMC10147616 DOI: 10.1038/s41598-023-34019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023] Open
Abstract
Environmental pollution by heavy metals affects both urban and non-urban areas of Europe and the world. The use of bioindicator plants for the detection of these pollutants is a common practice. An important property of potential bioindicators is their easy availability and wide distribution range, which means that they can be practically used over a wide area. Therefore, common and widely distributed weeds: Trifolium pratense L., Rumex acetosa L., Amaranthus retroflexus L., Plantago lanceolata L., ornamental species Alcea rosea L., and Lolium multiflorum L. var. Ponto were selected as a potential bioindicators of heavy metals (Cd, Pb, Cu, Zn). Plants were exposed in the same soil conditions in three sample sites in the Poznań city. It was found that all species had heavy metal accumulation potential, especially A. rosea, P. lanceolata and L. multiflorum for Zn (BCF = 6.62; 5.17; 4.70) and A. rosea, P. lanceolata for Cd (BCF = 8.51; 6.94). Translocation of Cu and Zn was the most effective in T. pratense (TFCu = 2.55; TFZn = 2.67) and in A. retroflexus (TFCu = 1.50; TFZn = 2.23). Cd translocation was the most efficient in T. pratense (TFCd = 1.97), but PB was the most effective translocated in A. retroflexus (TFPb = 3.09).. Based on physiological response to stress, it was detected an increasing level of hydrogen peroxide (H2O2) in roots and leaves of all samples, with the highest in all organs of A. rosea. Enzymatic activity levels of CAT, APOX, and also the marker of polyunsaturated fatty acid peroxidation MDA, were higher after 6 weeks of exposure in comparison to control samples and varied in time of exposure and between species and exposure. After the experiment, in almost all samples we detected a reduction of chlorophyll content and relative water content, but in efficiency of photosynthesis parameters: net photosynthesis rate, intercellular CO2 concentration and stomatal conductance, we noted increased values, which proved the relatively good condition of the plants. The examined weeds are good bioindicators of heavy metal contamination, and their combined use makes it possible to comprehensively detection of environmental threats.
Collapse
Affiliation(s)
- A Cakaj
- Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94C, 60-649, Poznań, Poland
| | - M Lisiak-Zielińska
- Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94C, 60-649, Poznań, Poland
| | - A Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - A Małecka
- The Cancer Epidemiology and Prevention Unit, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland
| | - K Borowiak
- Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94C, 60-649, Poznań, Poland
| | - M Drapikowska
- Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Piątkowska 94C, 60-649, Poznań, Poland.
| |
Collapse
|
10
|
Blanco EL, Rada F, Paolini J. The role of a microbial consortium on gas exchange and water relations in Allium cepa L. under water and nutritional deficit conditions. Arch Microbiol 2023; 205:105. [PMID: 36877246 DOI: 10.1007/s00203-023-03449-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Synergistic studies of microorganisms in the last decade have been mostly directed towards their biofertilizing effects on growth and crop yield. Our research examines the role of a microbial consortium (MC) on physiological responses of Allium cepa hybrid F1 2000 under water and nutritional deficit in a semi-arid environment. An onion crop was established with normal irrigation (NIr) (100% ETc) and water deficit (WD) (67% ETc) and different fertilization treatments (MC with 0%, 50% and 100% NPK). Gas exchange (Stomatal conductance (Gs), transpiration (E) and CO2 assimilation rates (A)) and leaf water status were evaluated throughout its growth cycle. The MC + 50% NPK treatment with NIr maintained similar A rates to the production control. A. cepa decreased Gs by approximately 50% in the WD treatment. The highest water use efficiency (WUE) and an increase in the modulus of elasticity in response to water stress were obtained for the 100% NPK treatment under non-inoculated WD. The onion hybrid F1 2000 was tolerant to water stress and under non-limiting nutrient conditions, irrigation may be reduced. The MC facilitated the availability of nutrients under NIr allowing a 50% reduction in the application of high doses of fertilization without affecting yield, resulting in a suitable agroecological strategy for this crop.
Collapse
Affiliation(s)
- Erika Lorena Blanco
- Instituto de Ciencias Ambientales y Ecológicas (ICAE), Postgrado en Ecología Tropical, Facultad de Ciencias, Universidad de Los Andes (ULA), Mérida, Venezuela. .,Laboratorio de Fitobiotecnología, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes (ULA), Mérida, Venezuela. .,Laboratorio de Investigación en Biotecnología y Química de Polímeros (LIBQPOL), Decanato de Investigación, Universidad Nacional Experimental del Táchira (UNET), San Cristóbal, Venezuela.
| | - Fermín Rada
- Instituto de Ciencias Ambientales y Ecológicas (ICAE), Postgrado en Ecología Tropical, Facultad de Ciencias, Universidad de Los Andes (ULA), Mérida, Venezuela.,Laboratorio de Ecología y Fisiología Vegetal (EcoFiV), Universidad de los Andes (UniAndes), Bogotá, Colombia
| | - Jorge Paolini
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo 21825, Caracas, 1020, Venezuela
| |
Collapse
|
11
|
Aqeel M, Ran J, Hu W, Irshad MK, Dong L, Akram MA, Eldesoky GE, Aljuwayid AM, Chuah LF, Deng J. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions. CHEMOSPHERE 2023; 318:137924. [PMID: 36682633 DOI: 10.1016/j.chemosphere.2023.137924] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.
Collapse
Affiliation(s)
- Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Weigang Hu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, (38000), Pakistan
| | - Longwei Dong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
12
|
Lastochkina OV, Allagulova CR. The Mechanisms of the Growth Promotion and Protective Effects of Endophytic PGP Bacteria in Wheat Plants Under the Impact of Drought (Review). APPL BIOCHEM MICRO+ 2023; 59:14-32. [DOI: 10.1134/s0003683823010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 06/23/2023]
|
13
|
Shaffique S, Imran M, Kang SM, Khan MA, Asaf S, Kim WC, Lee IJ. Seed Bio-priming of wheat with a novel bacterial strain to modulate drought stress in Daegu, South Korea. FRONTIERS IN PLANT SCIENCE 2023; 14:1118941. [PMID: 37180396 PMCID: PMC10173886 DOI: 10.3389/fpls.2023.1118941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
Wheat is one of the major cereal crop grown food worldwide and, therefore, plays has a key role in alleviating the global hunger crisis. The effects of drought stress can reduces crop yields by up to 50% globally. The use of drought-tolerant bacteria for biopriming can improve crop yields by countering the negative effects of drought stress on crop plants. Seed biopriming can reinforce the cellular defense responses to stresses via the stress memory mechanism, that its activates the antioxidant system and induces phytohormone production. In the present study, bacterial strains were isolated from rhizospheric soil taken from around the Artemisia plant at Pohang Beach, located near Daegu, in the South Korea Republic of Korea. Seventy-three isolates were screened for their growth-promoting attributes and biochemical characteristics. Among them, the bacterial strain SH-8 was selected preferred based on its plant growth-promoting bacterial traits, which are as follows: abscisic acid (ABA) concentration = 1.08 ± 0.05 ng/mL, phosphate-solubilizing index = 4.14 ± 0.30, and sucrose production = 0.61 ± 0.13 mg/mL. The novel strain SH-8 demonstrated high tolerance oxidative stress. The antioxidant analysis also showed that SH-8 contained significantly higher levels of catalase (CAT), superoxide dismutase (SOD), and ascorbic peroxidase (APX). The present study also quantified and determined the effects of biopriming wheat (Triticum aestivum) seeds with the novel strain SH-8. SH-8 was highly effective in enhancing the drought tolerance of bioprimed seeds; their drought tolerance and germination potential (GP) were increased by up to 20% and 60%, respectively, compared with those in the control group. The lowest level of impact caused by drought stress and the highest germination potential, seed vigor index (SVI), and germination energy (GE) (90%, 2160, and 80%, respectively), were recorded for seeds bioprimed with with SH-8. These results show that SH-8 enhances drought stress tolerance by up to 20%. Our study suggests that the novel rhizospheric bacterium SH-8 (gene accession number OM535901) is a valuable biostimulant that improves drought stress tolerance in wheat plants and has the potential to be used as a biofertilizer under drought conditions.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Won-Chan Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- *Correspondence: Won-Chan Kim, ; In-Jung Lee,
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- *Correspondence: Won-Chan Kim, ; In-Jung Lee,
| |
Collapse
|
14
|
Saharan BS, Brar B, Duhan JS, Kumar R, Marwaha S, Rajput VD, Minkina T. Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants. Life (Basel) 2022; 12:1634. [PMID: 36295069 PMCID: PMC9605384 DOI: 10.3390/life12101634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 10/03/2023] Open
Abstract
Agriculture production faces many abiotic stresses, mainly drought, salinity, low and high temperature. These abiotic stresses inhibit plants' genetic potential, which is the cause of huge reduction in crop productivity, decrease potent yields for important crop plants by more than 50% and imbalance agriculture's sustainability. They lead to changes in the physio-morphological, molecular, and biochemical nature of the plants and change plants' regular metabolism, which makes them a leading cause of losses in crop productivity. These changes in plant systems also help to mitigate abiotic stress conditions. To initiate the signal during stress conditions, sensor molecules of the plant perceive the stress signal from the outside and commence a signaling cascade to send a message and stimulate nuclear transcription factors to provoke specific gene expression. To mitigate the abiotic stress, plants contain several methods of avoidance, adaption, and acclimation. In addition to these, to manage stress conditions, plants possess several tolerance mechanisms which involve ion transporters, osmoprotectants, proteins, and other factors associated with transcriptional control, and signaling cascades are stimulated to offset abiotic stress-associated biochemical and molecular changes. Plant growth and survival depends on the ability to respond to the stress stimulus, produce the signal, and start suitable biochemical and physiological changes. Various important factors, such as the biochemical, physiological, and molecular mechanisms of plants, including the use of microbiomes and nanotechnology to combat abiotic stresses, are highlighted in this article.
Collapse
Affiliation(s)
- Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Basanti Brar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | | | - Ravinder Kumar
- Department of Biotechnology, Ch. Devi Lal University, Sirsa 125055, India
| | - Sumnil Marwaha
- ICAR-National Research Centre on Camel, Bikaner 334001, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
15
|
Selim S, Akhtar N, Hagagy N, Alanazi A, Warrad M, El Azab E, Elamir MYM, Al-Sanea MM, Jaouni SKA, Abdel-Mawgoud M, Shah AA, Abdelgawad H. Selection of Newly Identified Growth-Promoting Archaea Haloferax Species With a Potential Action on Cobalt Resistance in Maize Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:872654. [PMID: 35665142 PMCID: PMC9161300 DOI: 10.3389/fpls.2022.872654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination with cobalt (Co) negatively impacts plant growth and production. To combat Co toxicity, plant growth-promoting microorganisms for improving plant growth are effectively applied. To this end, unclassified haloarchaeal species strain NRS_31 (OL912833), belonging to Haloferax genus, was isolated, identified for the first time, and applied to mitigate the Co phytotoxic effects on maize plants. This study found that high Co levels in soil lead to Co accumulation in maize leaves. Co accumulation in the leaves inhibited maize growth and photosynthetic efficiency, inducing oxidative damage in the tissue. Interestingly, pre-inoculation with haloarchaeal species significantly reduced Co uptake and mitigated the Co toxicity. Induced photosynthesis improved sugar metabolism, allocating more carbon to defend against Co stress. Concomitantly, the biosynthetic key enzymes involved in sucrose (sucrose-P-synthase and invertases) and proline (pyrroline-5- carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR)) biosynthesis significantly increased to maintain plant osmotic potential. In addition to their osmoregulation potential, soluble sugars and proline can contribute to maintaining ROS hemostasis. Maize leaves managed their oxidative homeostasis by increasing the production of antioxidant metabolites (such as phenolics and tocopherols) and increasing the activity of ROS-scavenging enzymes (such as POX, CAT, SOD, and enzymes involved in the AsA/GSH cycle). Inside the plant tissue, to overcome heavy Co toxicity, maize plants increased the synthesis of heavy metal-binding ligands (metallothionein, phytochelatins) and the metal detoxifying enzymes (glutathione S transferase). Overall, the improved ROS homeostasis, osmoregulation, and Co detoxification systems were the basis underlying Co oxidative stress, mitigating haloarchaeal treatment's impact.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Quriat, Saudi Arabia
| | - Eman El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Quriat, Saudi Arabia
| | | | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Soad K. Al Jaouni
- Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Hamada Abdelgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerpen, Belgium
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
Shaffique S, Khan MA, Imran M, Kang SM, Park YS, Wani SH, Lee IJ. Research Progress in the Field of Microbial Mitigation of Drought Stress in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:870626. [PMID: 35665140 PMCID: PMC9161204 DOI: 10.3389/fpls.2022.870626] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 05/26/2023]
Abstract
Plants defend themselves against ecological stresses including drought. Therefore, they adopt various strategies to cope with stress, such as seepage and drought tolerance mechanisms, which allow plant development under drought conditions. There is evidence that microbes play a role in plant drought tolerance. In this study, we presented a review of the literature describing the initiation of drought tolerance mediated by plant inoculation with fungi, bacteria, viruses, and several bacterial elements, as well as the plant transduction pathways identified via archetypal functional or morphological annotations and contemporary "omics" technologies. Overall, microbial associations play a potential role in mediating plant protection responses to drought, which is an important factor for agricultural manufacturing systems that are affected by fluctuating climate.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhamad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhamad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Yong-Sung Park
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops Khudwani, Sher-e-Kashmir University of Agriculture Sciences and Technology of Jammu, Srinagar, India
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
17
|
Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, Kumar M, Hasanuzzaman M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int J Mol Sci 2022; 23:3741. [PMID: 35409104 PMCID: PMC8998651 DOI: 10.3390/ijms23073741] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022] Open
Abstract
Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20-50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Smita Rai
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Ambreen Bano
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
18
|
Teo HM, A. A, A. WA, Bhubalan K, S. SNM, C. I. MS, Ng LC. Setting a Plausible Route for Saline Soil-Based Crop Cultivations by Application of Beneficial Halophyte-Associated Bacteria: A Review. Microorganisms 2022; 10:microorganisms10030657. [PMID: 35336232 PMCID: PMC8953261 DOI: 10.3390/microorganisms10030657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
The global scale of land salinization has always been a considerable concern for human livelihoods, mainly regarding the food-producing agricultural industries. The latest update suggested that the perpetual salinity problem claimed up to 900 million hectares of agricultural land worldwide, inducing salinity stress among salt-sensitive crops and ultimately reducing productivity and yield. Moreover, with the constant growth of the human population, sustainable solutions are vital to ensure food security and social welfare. Despite that, the current method of crop augmentations via selective breeding and genetic engineering only resulted in mild success. Therefore, using the biological approach of halotolerant plant growth-promoting bacteria (HT-PGPB) as bio-inoculants provides a promising crop enhancement strategy. HT-PGPB has been proven capable of forming a symbiotic relationship with the host plant by instilling induced salinity tolerance (IST) and multiple plant growth-promoting traits (PGP). Nevertheless, the mechanisms and prospects of HT-PGPB application of glycophytic rice crops remains incomprehensively reported. Thus, this review describes a plausible strategy of halophyte-associated HT-PGPB as the future catalyst for rice crop production in salt-dominated land and aims to meet the global Sustainable Development Goals (SDGs) of zero hunger.
Collapse
Affiliation(s)
- Han Meng Teo
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Aziz A.
- Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Wahizatul A. A.
- Institute of Marine Biotechnology, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (W.A.A.); (K.B.)
| | - Kesaven Bhubalan
- Institute of Marine Biotechnology, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (W.A.A.); (K.B.)
| | - Siti Nordahliawate M. S.
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Muhamad Syazlie C. I.
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Lee Chuen Ng
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
- Correspondence:
| |
Collapse
|
19
|
Abd El-Mageed TA, Abd El-Mageed SA, El-Saadony MT, Abdelaziz S, Abdou NM. Plant Growth-Promoting Rhizobacteria Improve Growth, Morph-Physiological Responses, Water Productivity, and Yield of Rice Plants Under Full and Deficit Drip Irrigation. RICE (NEW YORK, N.Y.) 2022; 15:16. [PMID: 35288814 PMCID: PMC8921367 DOI: 10.1186/s12284-022-00564-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/01/2022] [Indexed: 05/26/2023]
Abstract
Inoculating rice plants by plant growth promoting rhizobacteria (PGPR) may be used as a practical and eco-friendly approach to sustain the growth and yield of drought stressed rice plants. The effect of rice inoculation using plant growth hormones was investigated under drip full irrigation (FI; 100% of evapotranspiration (ETc), and deficit irrigation (DI; 80% of ETc) on growth, physiological responses, yields and water productivities under saline soil (ECe = 6.87 dS m-1) for 2017 and 2018 seasons. Growth (i.e. shoot length and shoot dry weight), leaf photosynthetic pigments (chlorophyll 'a' and chlorophyll 'b' content), air-canopy temperature (Tc-Ta), membrane stability index (MSI%), and relative water content, (RWC%) chlorophyll fluorescence (Fv/Fm) stomatal conductance (gs), total phenols, peroxidase (PO), polyphenol oxidase (PPO), nitrogen contents and water productivities (grain water productivity; G-WP and straw water productivity; S-WP) were positively affected and significantly (p < 0.05) differed in two seasons in response to the applied PGPR treatments. The highest yields (3.35 and 6.7 t ha-1 for grain and straw yields) as the average for both years were recorded under full irrigation and plants inoculated by PGPR. The results indicated that under water scarcity, application of (I80 + PGPR) treatment was found to be favorable to save 20% of the applied irrigation water, to produce not only the same yields, approximately, but also to save more water as compared to I100%.
Collapse
Affiliation(s)
- Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| | | | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sayed Abdelaziz
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Nasr M Abdou
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
20
|
Powell A, Wilder SL, Housh AB, Scott S, Benoit M, Powell G, Waller S, Guthrie JM, Schueller MJ, Ferrieri RA. Examining effects of rhizobacteria in relieving abiotic crop stresses using carbon-11 radiotracing. PHYSIOLOGIA PLANTARUM 2022; 174:e13675. [PMID: 35316539 PMCID: PMC9310733 DOI: 10.1111/ppl.13675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 06/12/2023]
Abstract
In agriculture, plant growth promoting bacteria (PGPB) are increasingly used for reducing environmental stress-related crop losses through mutualistic actions of these microorganisms, activating physiological and biochemical responses, building tolerances within their hosts. Here we report the use of radioactive carbon-11 (t½ 20.4 min) to examine the metabolic and physiological responses of Zea mays to Azospirillum brasilense (HM053) inoculation while plants were subjected to salinity and low nitrogen stresses. Host metabolism of "new" carbon resources (as 11 C) and physiology including [11 C]-photosynthate translocation were measured in response to imposed growth conditions. Salinity stress caused shortened, dense root growth with a 6-fold increase in foliar [11 C]-raffinose, a potent osmolyte. ICP-MS analyses revealed increased foliar Na+ levels at the expense of K+ . HM053 inoculation relieved these effects, reinstating normal root growth, lowering [11 C]-raffinose levels while increasing [11 C]-sucrose and its translocation to the roots. Na+ levels remained elevated with inoculation, but K+ levels were boosted slightly. Low nitrogen stress yielded longer roots possessing high levels of anthocyanins. Metabolic analysis revealed significant shifts in "new" carbon partitioning into the amino acid pool under low nitrogen stress, with significant increases in foliar [11 C]-glutamate, [11 C]-aspartate, and [11 C]-asparagine, a noted osmoprotectant. 11 CO2 fixation and [11 C]-photosynthate translocation also decreased, limiting carbon supply to roots. However, starch levels in roots were reduced under nitrogen limitation, suggesting that carbon repartitioning could be a compensatory action to support root growth. Finally, inoculation with HM053 re-instated normal root growth, reduced anthocyanin, boosted root starch, and returned 11 C-allocation levels back to those of unstressed plants.
Collapse
Affiliation(s)
- Avery Powell
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | - Stacy L. Wilder
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
| | - Alexandra B. Housh
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Chemistry DepartmentUniversity of MissouriColumbiaMissouriUSA
- Interdisciplinary Plant GroupUniversity of MissouriColumbiaMissouriUSA
| | - Stephanie Scott
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | - Mary Benoit
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Division of Plant Sciences and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Garren Powell
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | - Spenser Waller
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | - James M. Guthrie
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
| | - Michael J. Schueller
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Chemistry DepartmentUniversity of MissouriColumbiaMissouriUSA
| | - Richard A. Ferrieri
- Missouri Research Reactor CenterUniversity of MissouriColumbiaMissouriUSA
- Chemistry DepartmentUniversity of MissouriColumbiaMissouriUSA
- Interdisciplinary Plant GroupUniversity of MissouriColumbiaMissouriUSA
- Division of Plant Sciences and TechnologyUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
21
|
Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A. Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management. JOURNAL OF PLANT GROWTH REGULATION 2022. [PMID: 0 DOI: 10.1007/s00344-021-10338-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
22
|
Chen J, Sharifi R, Khan MSS, Islam F, Bhat JA, Kui L, Majeed A. Wheat Microbiome: Structure, Dynamics, and Role in Improving Performance Under Stress Environments. Front Microbiol 2022; 12:821546. [PMID: 35095825 PMCID: PMC8793483 DOI: 10.3389/fmicb.2021.821546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Wheat is an important cereal crop species consumed globally. The growing global population demands a rapid and sustainable growth of agricultural systems. The development of genetically efficient wheat varieties has solved the global demand for wheat to a greater extent. The use of chemical substances for pathogen control and chemical fertilizers for enhanced agronomic traits also proved advantageous but at the cost of environmental health. An efficient alternative environment-friendly strategy would be the use of beneficial microorganisms growing on plants, which have the potential of controlling plant pathogens as well as enhancing the host plant's water and mineral availability and absorption along with conferring tolerance to different stresses. Therefore, a thorough understanding of plant-microbe interaction, identification of beneficial microbes and their roles, and finally harnessing their beneficial functions to enhance sustainable agriculture without altering the environmental quality is appealing. The wheat microbiome shows prominent variations with the developmental stage, tissue type, environmental conditions, genotype, and age of the plant. A diverse array of bacterial and fungal classes, genera, and species was found to be associated with stems, leaves, roots, seeds, spikes, and rhizospheres, etc., which play a beneficial role in wheat. Harnessing the beneficial aspect of these microbes is a promising method for enhancing the performance of wheat under different environmental stresses. This review focuses on the microbiomes associated with wheat, their spatio-temporal dynamics, and their involvement in mitigating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | | | - Faisal Islam
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | | | - Ling Kui
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Aasim Majeed
- Plant Molecular Genetics Laboratory, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
23
|
Tulumello J, Chabert N, Rodriguez J, Long J, Nalin R, Achouak W, Heulin T. Rhizobium alamii improves water stress tolerance in a non-legume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148895. [PMID: 34346368 DOI: 10.1016/j.scitotenv.2021.148895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
With the increasing demand for alternative solutions to replace or optimize the use of synthetic fertilizers and pesticides, the inoculation of bacteria that can contribute to the growth and health of plants (PGPR) is essential. The properties classically sought in PGPR are the production of phytohormones and other growth-promoting molecules, and more rarely the production of exopolysaccharides. We compared the effect of two strains of exopolysaccharide-producing Rhizobium alamii on rapeseed grown in a calcareous silty-clay soil under water stress conditions or not. The effect of factors 'water stress' and 'inoculation' were evaluated on plant growth parameters and the diversity of microbiota associated to root and root-adhering soil compartments. Water stress resulted in a significant decrease in leaf area, shoot biomass and RAS/RT ratio (root-adhering soil/root tissues), as well as overall beta-diversity. Inoculation with R. alamii YAS34 and GBV030 under water-stress conditions produced the same shoot dry biomass compared to uninoculated treatment in absence of water stress, and both strains increased shoot biomass under water-stressed conditions (+7% and +15%, respectively). Only R. alamii GBV030 significantly increased shoot biomass under unstressed or water-stressed conditions compared to the non-inoculated control (+39% and +15%, respectively). Alpha-diversity of the root-associated microbiota after inoculation with R. alamii YAS34 was significantly reduced. Beta-diversity was significantly modified after inoculation with R. alamii GBV030 under unstressed conditions. LEfSe analysis identified characteristic bacterial families, Flavobacteriaceae and Comamonadaceae, in the RT and RAS compartments for the treatment inoculated by R. alamii GBV030 under unstressed conditions, as well as Halomonadaceae (RT) and several species belonging to Actinomycetales (RAS). We showed that R. alamii GBV030 had a PGPR effect on rapeseed growth, increasing its tolerance to water stress, probably involving its capacity to produce exopolysaccharides, and other plant growth-promoting (PGP) traits.
Collapse
Affiliation(s)
- Joris Tulumello
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France; BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Nicolas Chabert
- BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Julie Rodriguez
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France; BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Justine Long
- BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Renaud Nalin
- BioIntrant 139, Rue Philippe de Girard, Pertuis F-84120, France.
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France.
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Saint Paul-Lez-Durance F-13108, France.
| |
Collapse
|
24
|
Ahmed MM, Hagagy N, AbdElgawad H. Establishment of actinobacteria-Satureja hortensis interactions under future climate CO 2-enhanced crop productivity in drought environments of Saudi Arabia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62853-62867. [PMID: 34218379 DOI: 10.1007/s11356-021-14777-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Drought is a significant global constraint on agricultural production and food security. As a promising approach to improve plant growth and yield under challenging conditions, plant growth-promoting actinobacteria has attracted much interest. Further, elevated levels of atmospheric CO2 (eCO2) may promote the plant-actinobacteria interactions which could be effective to improve the plant growth for food production. Herein, we have investigated the impact of actinobacteria and/or CO2 on biomass production, photosynthesis, macronutrients, levels of organic acids, amino acids, and essential oils as well as antioxidant activities of Satureja hortensis under water-deficit conditions. Among different actinobacterial isolates evaluated for development of secondary metabolites and biological activities, Ac9 was highly capable of producing flavonoids, and it also showed high antioxidant and microbial activities. It markedly induced the plant growth, photosynthesis, and global metabolic improvement, under water-deficit conditions. Interestingly, treatment with Ac9 in combination with eCO2 substantially minimized drought stress-induced biomass and photosynthesis reductions in Satureja hortensis. Improved photosynthesis by Ac9 and/or eCO2 induced the primary and secondary metabolisms in drought-stressed plants. The levels of the majority of the detected organic acids, essential oil, and amino acids were further improved as a result of the synergistic action of Ac9 and eCO2, as compared to the individual treatments. Furthermore, Ac9 or eCO2 significantly improved the antioxidant activities in stressed plants; however, much more positive impact was obtained by their synchronous application. Thus, the current study suggests that actinobacterial treatment induces global metabolic changes in water-stressed Satureja hortensis, the effects that have been much more strengthened under eCO2.
Collapse
Affiliation(s)
- Marwa M Ahmed
- Electrical Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, 21921, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt.
| |
Collapse
|
25
|
Fiodor A, Singh S, Pranaw K. The Contrivance of Plant Growth Promoting Microbes to Mitigate Climate Change Impact in Agriculture. Microorganisms 2021; 9:1841. [PMID: 34576736 PMCID: PMC8472176 DOI: 10.3390/microorganisms9091841] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 01/07/2023] Open
Abstract
Combating the consequences of climate change is extremely important and critical in the context of feeding the world's population. Crop simulation models have been extensively studied recently to investigate the impact of climate change on agricultural productivity and food security. Drought and salinity are major environmental stresses that cause changes in the physiological, biochemical, and molecular processes in plants, resulting in significant crop productivity losses. Excessive use of chemicals has become a severe threat to human health and the environment. The use of beneficial microorganisms is an environmentally friendly method of increasing crop yield under environmental stress conditions. These microbes enhance plant growth through various mechanisms such as production of hormones, ACC deaminase, VOCs and EPS, and modulate hormone synthesis and other metabolites in plants. This review aims to decipher the effect of plant growth promoting bacteria (PGPB) on plant health under abiotic soil stresses associated with global climate change (viz., drought and salinity). The application of stress-resistant PGPB may not only help in the combating the effects of abiotic stressors, but also lead to mitigation of climate change. More thorough molecular level studies are needed in the future to assess their cumulative influence on plant development.
Collapse
Affiliation(s)
- Angelika Fiodor
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India;
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| |
Collapse
|
26
|
Ali S, Xie L. Plant Growth Promoting and Stress Mitigating Abilities of Soil Born Microorganisms. Recent Pat Food Nutr Agric 2021; 11:96-104. [PMID: 31113355 DOI: 10.2174/2212798410666190515115548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 02/16/2019] [Indexed: 12/16/2022]
Abstract
Abiotic stresses affect the plant growth in different ways and at different developmental stages that reduce the crop yields. The increasing world population continually demands more crop yields; therefore it is important to use low-cost technologies against abiotic stresses to increase crop productivity. Soil microorganisms survive in the soil associated with plants in extreme condition. It was demonstrated that these beneficial microorganisms promote plant growth and development under various stresses. The soil microbes interact with the plant through rhizospheric or endophytic association and promote the plant growth through different processes such as nutrients mobilization, disease suppression, and hormone secretions. The microorganisms colonized in the rhizospheric region and imparted the abiotic stress tolerance by producing 1-aminocyclopropane-1- carboxylate (ACC) deaminase, antioxidant, and volatile compounds, inducing the accumulation of osmolytes, production of exopolysaccharide, upregulation or downregulation of stress genes, phytohormones and change the root morphology. A large number of these rhizosphere microorganisms are now patented. In the present review, an attempt was made to throw light on the mechanism of micro-organism that operates during abiotic stresses and promotes plant survival and productivity.
Collapse
Affiliation(s)
- Shahid Ali
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Linan Xie
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| |
Collapse
|
27
|
Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00806-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Combined Use of Endophytic Bacteria and Pre-Sowing Treatment of Thiamine Mitigates the Adverse Effects of Drought Stress in Wheat (Triticum aestivum L.) Cultivars. SUSTAINABILITY 2021. [DOI: 10.3390/su13126582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
On a global scale, wheat (Triticum aestivum L.) is a widely cultivated crop among all cereals. Increasing pollution, population expansion, socio-economic development, ecological and industrial policies have induced changes in overall climatic attributes. The impact of these factors on agriculture dynamics has led to various biotic and abiotic stresses, i.e., significant decline in rainfall, directly affect sustainable agriculture. Increasing abiotic stresses have a direct negative effect on worldwide crop production. More promising and improved stress-tolerant strategies that can help to feed the increasing global population are required. A laboratory experiment was performed on two of the latest wheat (Triticum aestivum L.) genotypes (Akbar 2019 and Anaj 2017) from Punjab Pakistan, to determine the influence of seed priming with thiamine (vitamin B1) along with soil inoculation of Endophytic bacterial strains to mitigate the effects of drought stress at different degrees. Results revealed that thiamine helped in the remote germination; seeds of Anaj 2017 germinated within 16 hours while Akbar 2019 germinated after one day. Overall growth parameters of Anaj 2017 were negatively affected even under higher levels of drought stress, while Akbar 2019 proved to be a susceptible cultivar. A significant increase in RFW (54%), SFW (85%), RDW (69%), SDW (67%) and TChl (136%) validated the effectiveness of D-T3 compared to C-T0 in drought stress. Significant decrease in MDA, EL and H2O2 signified the imperative function of D-T3 over C-T0 under drought stress. In conclusion and recommendation, we declare that farmers can get better wheat growth under drought stress by application of D-T3 over C-T0.
Collapse
|
29
|
Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 2021; 249:126771. [PMID: 33930840 DOI: 10.1016/j.micres.2021.126771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022]
Abstract
Drought stress is expected to increase in intensity, frequency, and duration in many parts of the world, with potential negative impacts on plant growth and productivity. The plants have evolved complex physiological and biochemical mechanisms to respond and adjust to water-deficient environments. The physiological and biochemical mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. Besides these adaptive and mitigating strategies, the plant growth-promoting rhizobacteria (PGPR) play a significant role in alleviating plant drought stress. These beneficial microorganisms colonize the endo-rhizosphere/rhizosphere of plants and enhance drought tolerance. The common mechanism by which these microorganisms improve drought tolerance included the production of volatile compounds, phytohormones, siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), accumulation of antioxidant, stress-induced metabolites such as osmotic solutes proline, alternation in leaf and root morphology and regulation of the stress-responsive genes. The PGPR is an easy and efficient alternative approach to genetic manipulation and crop enhancement practices because plant breeding and genetic modification are time-consuming and expensive processes for obtaining stress-tolerant varieties. In this review, we will elaborate on PGPR's mechanistic approaches in enhancing the plant stress tolerance to cope with the drought stress.
Collapse
Affiliation(s)
- Shahid Ali
- Plant Epigenetic and Development, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
30
|
Advances in Wheat Physiology in Response to Drought and the Role of Plant Growth Promoting Rhizobacteria to Trigger Drought Tolerance. Microorganisms 2021; 9:microorganisms9040687. [PMID: 33810405 PMCID: PMC8066330 DOI: 10.3390/microorganisms9040687] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
In the coming century, climate change and the increasing human population are likely leading agriculture to face multiple challenges. Agricultural production has to increase while preserving natural resources and protecting the environment. Drought is one of the major abiotic problems, which limits the growth and productivity of crops and impacts 1–3% of all land.To cope with unfavorable water-deficit conditions, plants use through sophisticated and complex mechanisms that help to perceive the stress signal and enable optimal crop yield are required. Among crop production, wheat is estimated to feed about one-fifth of humanity, but faces more and more drought stress periods, partially due to climate change. Plant growth promoting rhizobacteria are a promising and interesting way to develop productive and sustainable agriculture despite environmental stress. The current review focuses on drought stress effects on wheat and how plant growth-promoting rhizobacteria trigger drought stress tolerance of wheat by highlighting several mechanisms. These bacteria can lead to better growth and higher yield through the production of phytohormones, osmolytes, antioxidants, volatile compounds, exopolysaccharides and 1-aminocyclopropane-1-carboxylate deaminase. Based on the available literature, we provide a comprehensive review of mechanisms involved in drought resilience and how bacteria may alleviate this constraint
Collapse
|
31
|
Aasfar A, Bargaz A, Yaakoubi K, Hilali A, Bennis I, Zeroual Y, Meftah Kadmiri I. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front Microbiol 2021; 12:628379. [PMID: 33717018 PMCID: PMC7947814 DOI: 10.3389/fmicb.2021.628379] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Biological nitrogen fixation (BNF) refers to a microbial mediated process based upon an enzymatic "Nitrogenase" conversion of atmospheric nitrogen (N2) into ammonium readily absorbable by roots. N2-fixing microorganisms collectively termed as "diazotrophs" are able to fix biologically N2 in association with plant roots. Specifically, the symbiotic rhizobacteria induce structural and physiological modifications of bacterial cells and plant roots into specialized structures called nodules. Other N2-fixing bacteria are free-living fixers that are highly diverse and globally widespread in cropland. They represent key natural source of nitrogen (N) in natural and agricultural ecosystems lacking symbiotic N fixation (SNF). In this review, the importance of Azotobacter species was highlighted as both important free-living N2-fixing bacteria and potential bacterial biofertilizer with proven efficacy for plant nutrition and biological soil fertility. In addition, we described Azotobacter beneficial plant promoting traits (e.g., nutrient use efficiency, protection against phytopathogens, phytohormone biosynthesis, etc.). We shed light also on the agronomic features of Azotobacter that are likely an effective component of integrated plant nutrition strategy, which contributes positively to sustainable agricultural production. We pointed out Azotobacter based-biofertilizers, which possess unique characteristics such as cyst formation conferring resistance to environmental stresses. Such beneficial traits can be explored profoundly for the utmost aim to research and develop specific formulations based on inoculant Azotobacter cysts. Furthermore, Azotobacter species still need to be wisely exploited in order to address specific agricultural challenges (e.g., nutrient deficiencies, biotic and abiotic constraints) taking into consideration several variables including their biological functions, synergies and multi-trophic interactions, and biogeography and abundance distribution.
Collapse
Affiliation(s)
- Abderrahim Aasfar
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Centre, Rabat, Morocco.,Laboratory of Health Sciences and Technologies, High Institute of Health Sciences, Hassan 1st University, Settat, Morocco
| | - Adnane Bargaz
- AgroBioSciences-Microbiome, Laboratory of Plant-Microbe Interactions, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Kaoutar Yaakoubi
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Centre, Rabat, Morocco
| | - Abderraouf Hilali
- Laboratory of Health Sciences and Technologies, High Institute of Health Sciences, Hassan 1st University, Settat, Morocco
| | - Iman Bennis
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Centre, Rabat, Morocco
| | | | - Issam Meftah Kadmiri
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Centre, Rabat, Morocco.,AgroBioSciences-Microbiome, Laboratory of Plant-Microbe Interactions, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
32
|
Kajarekar KV, Parulekar Berde CV, Salvi SP, Berde VB. Alleviation of Diverse Abiotic Stress in Plants Through the Fungal Communities. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Sharma S, Chandra D, Sharma AK. Rhizosphere Plant–Microbe Interactions Under Abiotic Stress. RHIZOSPHERE BIOLOGY: INTERACTIONS BETWEEN MICROBES AND PLANTS 2021. [DOI: 10.1007/978-981-15-6125-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Keshavarz H. Study of water deficit conditions and beneficial microbes on the oil quality and agronomic traits of canola ( Brassica napus L.). GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.0572191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Water deficit stress is one of the major limiting factors that adversely affect plant growth and yield production. Some rhizosphere bacteria are known to promote plant growth in such stressful conditions. To study the response of quantifying canola growth, yield and yield components, to root colonization by two species of mycorrhizal fungi, a two-year field experiment was conducted at the research farm of Zanjan University. The main plot conditions were irrigation at 85% (S1), 70% (S2) and 55% (S3) of field capacity which were defined as no stress, mild and severe stress. The subplot treatments included three levels of mycorrhizal inoculation: non inoculation (control), G. Mosseae and G. Intraradices. The results showed that regardless of water deficit stress, colonized plants produced more biomass, seed and oil yield than non inoculated plants. Water deficit stress reduced the RWC and oil percentage of the seeds, although mycorrhizal improved these traits. Water deficit strikingly decreased the linoleic acid content in the seeds in contrast with increased stearic, oleic, arachidic and linolenic acids in the canola seeds. The presence of bacteria increased the seed oil percentage, oleic and linoleic contents. However, it decreased arachidic, particularly when the plants were subjected to water deficit stress.
Collapse
|
35
|
Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, Farooq I, Bhatti F, Koser R, Rahman S, Jan AT. Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress. Front Microbiol 2020; 11:1952. [PMID: 32973708 PMCID: PMC7468593 DOI: 10.3389/fmicb.2020.01952] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022] Open
Abstract
Agriculture plays an important role in a country's economy. The sector is challenged by many stresses, which led to huge loss in plant productivity worldwide. The ever-increasing population, rapid urbanization with shrinking agricultural lands, dramatic change in climatic conditions, and extensive use of agrochemicals in agricultural practices that caused environmental disturbances confront mankind of escalating problems of food security and sustainability in agriculture. Escalating environmental problems and global hunger have led to the development and adoption of genetic engineering and other conventional plant breeding approaches in developing stress-tolerant varieties of crops. However, these approaches have drawn flaws in their adoption as the process of generating tolerant varieties takes months to years in bringing the technology from the lab to the field. Under such scenario, sustainable and climate-smart agricultural practices that avail bacterial usage open the avenues in fulfilling the incessant demand for food for the global population. Ensuring stability on economic fronts, bacteria minimizes plant salt uptake by trapping ions in their exopolysaccharide matrix besides checking the expression of Na+/H+ and high-affinity potassium transporters. Herein we describe information on salinity stress and its effect on plant health as well as strategies adopted by plant growth-promoting rhizobacteria (PGPR) in helping plants to overcome salinity stress and in mitigating loss in overall plant productivity. It is believed that acquisition of advanced knowledge of plant-beneficial PGPR will help in devising strategies for sustainable, environment-friendly, and climate-smart agricultural technologies for adoption in agriculture to overcome the constrained environmental conditions.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Mudasir Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Farhana Latief Dar
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Iqra Farooq
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Farha Bhatti
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Rubina Koser
- Department of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, India
| | - Arif Tasleem Jan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| |
Collapse
|
36
|
Verma KK, Song XP, Li DM, Singh M, Rajput VD, Malviya MK, Minkina T, Singh RK, Singh P, Li YR. Interactive Role of Silicon and Plant-Rhizobacteria Mitigating Abiotic Stresses: A New Approach for Sustainable Agriculture and Climate Change. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1055. [PMID: 32824916 PMCID: PMC7569970 DOI: 10.3390/plants9091055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022]
Abstract
Abiotic stresses are the major constraints in agricultural crop production across the globe. The use of some plant-microbe interactions are established as an environment friendly way of enhancing crop productivity, and improving plant development and tolerance to abiotic stresses by direct or indirect mechanisms. Silicon (Si) can also stimulate plant growth and mitigate environmental stresses, and it is not detrimental to plants and is devoid of environmental contamination even if applied in excess quantity. In the present review, we elaborate the interactive application of Si and plant growth promoting rhizobacteria (PGPRs) as an ecologically sound practice to increase the plant growth rate in unfavorable situations, in the presence of abiotic stresses. Experiments investigating the combined use of Si and PGPRs on plants to cope with abiotic stresses can be helpful in the future for agricultural sustainability.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (K.K.V.); (X.-P.S.); (D.-M.L.); (M.K.M.); (R.K.S.); (P.S.)
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (K.K.V.); (X.-P.S.); (D.-M.L.); (M.K.M.); (R.K.S.); (P.S.)
| | - Dong-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (K.K.V.); (X.-P.S.); (D.-M.L.); (M.K.M.); (R.K.S.); (P.S.)
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow 226007, India;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344006, Russia; (V.D.R.); (T.M.)
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (K.K.V.); (X.-P.S.); (D.-M.L.); (M.K.M.); (R.K.S.); (P.S.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344006, Russia; (V.D.R.); (T.M.)
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (K.K.V.); (X.-P.S.); (D.-M.L.); (M.K.M.); (R.K.S.); (P.S.)
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (K.K.V.); (X.-P.S.); (D.-M.L.); (M.K.M.); (R.K.S.); (P.S.)
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (K.K.V.); (X.-P.S.); (D.-M.L.); (M.K.M.); (R.K.S.); (P.S.)
| |
Collapse
|
37
|
Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, Zehra A, Marwal A, Upadhyay RS. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol 2020; 60:828-861. [PMID: 32815221 DOI: 10.1002/jobm.202000370] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are diverse groups of plant-associated microorganisms, which can reduce the severity or incidence of disease during antagonism among bacteria and soil-borne pathogens, as well as by influencing a systemic resistance to elicit defense response in host plants. An amalgamation of various strains of PGPR has improved the efficacy by enhancing the systemic resistance opposed to various pathogens affecting the crop. Many PGPR used with seed treatment causes structural improvement of the cell wall and physiological/biochemical changes leading to the synthesis of proteins, peptides, and chemicals occupied in plant defense mechanisms. The major determinants of PGPR-mediated induced systemic resistance (ISR) are lipopolysaccharides, lipopeptides, siderophores, pyocyanin, antibiotics 2,4-diacetylphoroglucinol, the volatile 2,3-butanediol, N-alkylated benzylamine, and iron-regulated compounds. Many PGPR inoculants have been commercialized and these inoculants consequently aid in the improvement of crop growth yield and provide effective reinforcement to the crop from disease, whereas other inoculants are used as biofertilizers for native as well as crops growing at diverse extreme habitat and exhibit multifunctional plant growth-promoting attributes. A number of applications of PGPR formulation are needed to maintain the resistance levels in crop plants. Several microarray-based studies have been done to identify the genes, which are associated with PGPR-induced systemic resistance. Identification of these genes associated with ISR-mediating disease suppression and biochemical changes in the crop plant is one of the essential steps in understanding the disease resistance mechanisms in crops. Therefore, in this review, we discuss the PGPR-mediated innovative methods, focusing on the mode of action of compounds authorized that may be significant in the development contributing to enhance plant growth, disease resistance, and serve as an efficient bioinoculants for sustainable agriculture. The review also highlights current research progress in this field with a special emphasis on challenges, limitations, and their environmental and economic advantages.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.,Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India.,Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yashoda Nandan Tripathi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan-Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ram Sanmukh Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
38
|
Arun K D, Sabarinathan KG, Gomathy M, Kannan R, Balachandar D. Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria. J Basic Microbiol 2020; 60:768-786. [PMID: 32667057 DOI: 10.1002/jobm.202000011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
Abstract
In the search of effective drought-alleviating and growth-promoting phyllosphere bacteria, a total of 44 bacterial isolates were isolated from the leaf surface of drought-tolerant rice varieties, Mattaikar, Nootripattu, Anna R(4), and PMK3, and screened for their abiotic stress tolerance by subjecting their growth medium to temperature, salinity, and osmotic stress. Only eight isolates were found to grow and proliferate under different abiotic stress conditions. These isolates were identified using 16S ribosomal DNA gene sequence and submitted to the NCBI database. All the bacterial isolates were identified as Bacillus sp., except PB24, which was identified as Staphylococcus sp., and these isolates were further screened for plant growth-promoting (PGP) traits such as IAA production, GA production, ACC deaminase activity, and exopolysaccharide production under three different osmotic stress conditions adjusted using polyethylene glycol (PEG 6000). Additionally, mineral solubilization was measured under the normal condition. Bacillus endophyticus PB3, Bacillus altitudinis PB46, and Bacillus megaterium PB50 were found to have multifarious PGP traits. Consecutively, the performance of an individual strain to improve the plant growth was investigated under the osmotic stress (25% PEG 6000) and nonstress condition by inoculating them into rice seeds using hydroponics culture. Furthermore, the drought-alleviating potency of bacterial strains was assessed in the rice plants using pot experiment (-1.2 MPa) through bacterial foliar application during the reproductive stage. Finally, as a result of seed inoculation and foliar spray, the application of B. megaterium PB50 significantly improved the plant growth under osmotic stress, protected plants from physical drought through stomatal closure, and improved carotenoid, total soluble sugars, and total protein content. Metabolites of PB50 were profiled under both stress and nonstress conditions using gas chromatography-mass spectroscopy.
Collapse
Affiliation(s)
- Devarajan Arun K
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Muthukrishnan Gomathy
- Department of Soil Science and Agricultural Chemistry, Agricultural College and Research Institute, Tuticorin, India
| | - Rengasamy Kannan
- Department of Plant Pathology, Agricultural College and Research Institute, Tuticorin, India
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
39
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
40
|
Rhizobacteriome: Promising Candidate for Conferring Drought Tolerance in Crops. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
GOSWAMI M, DEKA S. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. PEDOSPHERE 2020; 30:40-61. [PMID: 0 DOI: 10.1016/s1002-0160(19)60839-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
42
|
Breitkreuz C, Buscot F, Tarkka M, Reitz T. Shifts Between and Among Populations of Wheat Rhizosphere Pseudomonas, Streptomyces and Phyllobacterium Suggest Consistent Phosphate Mobilization at Different Wheat Growth Stages Under Abiotic Stress. Front Microbiol 2020; 10:3109. [PMID: 32038552 PMCID: PMC6987145 DOI: 10.3389/fmicb.2019.03109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
Climate change models predict more frequent and prolonged drought events in Central Europe, which will exert extraordinary pressure on agroecosystems. One of the consequences is drought-related nutrient limitations for crops negatively affecting agricultural productivity. These effects can be mitigated by beneficial plant growth promoting rhizobacteria. In this study, we investigated the potential of cultivable bacterial species for phosphate solubilization in the rhizosphere of winter wheat at two relevant growth stages - stem elongation and grain filling stages. Rhizosphere samples were collected in the Global Change Experimental Facility in Central Germany, which comprises plots with conventional and organic farming systems under ambient and future climate. Phosphate-solubilizing bacteria were selectively isolated on Pikovskaya medium, phylogenetically classified by 16S rRNA sequencing, and tested for in vitro mineral phosphate solubilization and drought tolerance using plate assays. The culture isolates were dominated by members of the genera Phyllobacterium, Pseudomonas and Streptomyces. Cultivation-derived species richness and abundance of dominant taxa, especially within the genera Phyllobacterium and Pseudomonas, as well as composition of Pseudomonas species were affected by wheat growth stage. Pseudomonas was found to be more abundant at stem elongation than at grain filling, while for Phyllobacterium the opposite pattern was observed. The abundance of Streptomyces isolates remained stable throughout the studied growth stages. The temporal shifts in the cultivable fraction of the community along with considerable P solubilization potentials of Phyllobacterium and Pseudomonas species suggest functional redundancy between and among genera at different wheat growth stages. Phosphate-solubilizing Phyllobacterium species were assigned to Phyllobacterium ifriqiyense and Phyllobacterium sophorae. It is the first time that phosphate solubilization potential is described for these species. Since Phyllobacterium species showed the highest drought tolerance along all isolates, they may play an increasingly important role in phosphate solubilization in a future dryer climate.
Collapse
Affiliation(s)
- Claudia Breitkreuz
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Halle/Saale, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Halle/Saale, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika Tarkka
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Halle/Saale, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Thomas Reitz
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Halle/Saale, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN. Diversity, Plant Growth Promoting Attributes, and Agricultural Applications of Rhizospheric Microbes. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2020. [DOI: 10.1007/978-3-030-38453-1_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Abd El-Daim IA, Bejai S, Meijer J. Bacillus velezensis 5113 Induced Metabolic and Molecular Reprogramming during Abiotic Stress Tolerance in Wheat. Sci Rep 2019; 9:16282. [PMID: 31704956 PMCID: PMC6841942 DOI: 10.1038/s41598-019-52567-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Abiotic stresses are main limiting factors for agricultural production around the world. Plant growth promoting rhizobacteria (PGPR) have been shown to improve abiotic stress tolerance in several plants. However, the molecular and physiological changes connected with PGPR priming of stress management are poorly understood. The present investigation aimed to explore major metabolic and molecular changes connected with the ability of Bacillus velezensis 5113 to mediate abiotic stress tolerance in wheat. Seedlings treated with Bacillus were exposed to heat, cold/freezing or drought stress. Bacillus improved wheat survival in all stress conditions. SPAD readings showed higher chlorophyll content in 5113-treated stressed seedlings. Metabolite profiling using NMR and ESI-MS provided evidences for metabolic reprograming in 5113-treated seedlings and showed that several common stress metabolites were significantly accumulated in stressed wheat. Two-dimensional gel electrophoresis of wheat leaves resolved more than 300 proteins of which several were differentially expressed between different treatments and that cold stress had a stronger impact on the protein pattern compared to heat and drought. Peptides maps or sequences were used for database searches which identified several homologs. The present study suggests that 5113 treatment provides systemic effects that involve metabolic and regulatory functions supporting both growth and stress management.
Collapse
Affiliation(s)
- Islam A Abd El-Daim
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE75007, Uppsala, Sweden. .,Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Centre, Giza, Egypt. .,Institute of Biology, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, UK.
| | - Sarosh Bejai
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE75007, Uppsala, Sweden
| | - Johan Meijer
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE75007, Uppsala, Sweden.
| |
Collapse
|
45
|
Bhise KK, Dandge PB. Mitigation of salinity stress in plants using plant growth promoting bacteria. Symbiosis 2019. [DOI: 10.1007/s13199-019-00638-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Kumar A, Patel JS, Meena VS, Srivastava R. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101271] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Ghosh D, Gupta A, Mohapatra S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World J Microbiol Biotechnol 2019; 35:90. [PMID: 31147784 DOI: 10.1007/s11274-019-2659-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/15/2019] [Indexed: 01/10/2023]
Abstract
The ability of plant growth promoting rhizobacteria (PGPR) for imparting abiotic stress tolerance to plants has been widely explored in recent years; however, the diversity and potential of these microbes have not been maximally exploited. In this study, we characterized four bacterial strains, namely, Pseudomonas aeruginosa PM389, Pseudomonas aeruginosa ZNP1, Bacillus endophyticus J13 and Bacillus tequilensis J12, for potential plant growth promoting (PGP) traits under osmotic-stress, induced by 25% polyethylene glycol (PEG) in the growth medium. Growth curve analysis was performed in LB medium with or without PEG, in order to understand the growth patterns of these bacteria under osmotic-stress. All strains were able to grow and proliferate under osmotic-stress, although their growth rate was slower than that under non-stressed conditions (LB without PEG). Bacterial secretions were analyzed for the presence of exopolysaccharides and phytohormones and it was observed that all four strains released these compounds into the media, both, under stressed and non-stressed conditions. In the Pseudomonas strains, osmotic stress caused a decrease in the levels of auxin (IAA) and cytokinin (tZ), but an increase in the levels of gibberellic acid. The Bacillus strains on the other hand showed a stress-induced increase in the levels of all three phytohormones. P. aeruginosa ZNP1 and B. endophyticus J13 exhibited increased EPS production under osmotic-stress. While osmotic stress caused a decrease in the levels of EPS in P. aeruginosa PM389, B. tequilensis J12 showed no change in EPS quantities released into the media under osmotic stress when compared to non-stressed conditions. Upon inoculating Arabidopsis thaliana seedlings with these strains individually, it was observed that all four strains were able to ameliorate the adverse effects of osmotic-stress (induced by 25% PEG in MS-Agar medium) in the plants, as evidenced by their enhanced fresh weight, dry weight and plant water content, as opposed to osmotic-stressed, non-inoculated plants.
Collapse
Affiliation(s)
- Daipayan Ghosh
- Department of Biological Sciences, Birla Institute of Technology and Science (Pilani), Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Anshika Gupta
- Department of Biological Sciences, Birla Institute of Technology and Science (Pilani), Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science (Pilani), Hyderabad Campus, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
48
|
Acuña-Rodríguez IS, Hansen H, Gallardo-Cerda J, Atala C, Molina-Montenegro MA. Antarctic Extremophiles: Biotechnological Alternative to Crop Productivity in Saline Soils. Front Bioeng Biotechnol 2019; 7:22. [PMID: 30838204 PMCID: PMC6389620 DOI: 10.3389/fbioe.2019.00022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
Salinization of soils is one of the main sources of soil degradation worldwide, particularly in arid and semiarid ecosystems. High salinity results in osmotic stress and it can negatively impact plant grow and survival. Some plant species, however, can tolerate salinity by accumulating osmolytes like proline and maintaining low Na+ concentrations inside the cells. Another mechanism of saline stress tolerance is the association with symbiotic microorganism, an alternative that can be used as a biotechnological tool in susceptible crops. From the immense diversity of plant symbionts, those found in extreme environments such as Antarctica seems to be the ones with most potential since they (and their host) evolved in harsh and stressful conditions. We evaluated the effect of the inoculation with a consortium of plant growth-promoting rhizobacteria (PGPB) and endosymbiotic fungi isolated from an Antarctic plant on saline stress tolerance in different crops. To test this we established 4 treatments: (i) uninoculated plants with no saline stress, (ii) uninoculated plants subjected to saline stress (200 mM NaCl), (iii) plants inoculated with the microorganism consortium with no saline stress, and (iv) inoculated plants subjected to saline stress. First, we assessed the effect of symbiont consortium on survival of four different crops (cayenne, lettuce, onion, and tomato) in order to obtain a more generalized response of this biological interaction. Second, in order to deeply the mechanisms involved in salt tolerance, in lettuce plants we measured the ecophysiological performance (Fv/Fm) and lipid peroxidation to estimate the impact of saline stress on plants. We also measured proline accumulation and NHX1 antiporter gene expression (involved in Na+ detoxification) to search for possible mechanism of stress tolerance. Additionally, root, shoot, and total biomass was also obtained as an indicator of productivity. Overall, plants inoculated with microorganisms from Antarctica increased the fitness related traits in several crops. In fact, three of four crops selected to assess the general response increased its survival under salt conditions compared with those uninoculated plants. On the other hand, saline stress negatively impacted all measured trait, but inoculated plants were significantly less affected. In control osmotic conditions, there were no differences in proline accumulation and lipid peroxidation between inoculation treatments. Interestingly, even in control salinity, Fv/Fm was higher in inoculated plants after 30 and 60 days. Under osmotic stress, Fv/Fm, proline accumulation and NHX1 expression was significantly higher and lipid peroxidation lower in inoculated plants compared to uninoculated individuals. Moreover, inoculated plants exposed to saline stress had a similar final biomass (whole plant) compared to individuals under no stress. We conclude that Antarctic extremophiles can effectively reduce the physiological impact of saline stress in a salt-susceptible crops and also highlight extreme environments such as Antarctica as a key source of microorganism with high biotechnological potential.
Collapse
Affiliation(s)
- Ian S. Acuña-Rodríguez
- Center for Molecular and Functional Ecology (CEMFE), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Hermann Hansen
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Jorge Gallardo-Cerda
- Center for Molecular and Functional Ecology (CEMFE), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Cristian Atala
- Laboratorio de Anatomía y Ecología Funcional de Plantas (AEF), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Marco A. Molina-Montenegro
- Center for Molecular and Functional Ecology (CEMFE), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
49
|
Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2019. [DOI: 10.1007/978-3-030-30926-8_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Lastochkina O, Aliniaeifard S, Seifikalhor M, Yuldashev R, Pusenkova L, Garipova S. Plant Growth-Promoting Bacteria: Biotic Strategy to Cope with Abiotic Stresses in Wheat. WHEAT PRODUCTION IN CHANGING ENVIRONMENTS 2019:579-614. [DOI: 10.1007/978-981-13-6883-7_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
|