1
|
Sergeeva OA, Mazur K, Kernder A, Haas HL, De Luca R. Tachykinins amplify the action of capsaicin on central histaminergic neurons. Peptides 2022; 150:170729. [PMID: 34958850 DOI: 10.1016/j.peptides.2021.170729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/27/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
Abstract
Substance P (SP), a product of the tachykinin 1 (Tac1) gene, is expressed in many hypothalamic neurons. Its wake-promoting potential could be mediated through histaminergic (HA) neurons of the tuberomamillary nucleus (TMN), where functional expression of neurokinin receptors (NKRs) waits to be characterized. As in the process of nociception in the peripheral nervous system (PNS) capsaicin-receptor (transient potential vanilloid 1: TRPV1) signalling is amplified by local release of histamine and SP, we tested the involvement of tachykinins in the capsaicin-induced long-lasting enhancement (LLEcaps) of HA neurons firing by investigating selective neurokinin receptor ligands in the hypothalamic mouse brain slice preparation using patch-clamp recordings in cell-attached mode combined with single-cell RT-PCR. We report that the majority of HA neurons respond to SP (EC50 3 nM), express the SP precursor tachykinin 1 (Tac1) gene and at least one of the neurokinin receptors. Responses to selective agonists of three known neurokinin receptors were sensitive to corresponding antagonists. LLEcaps was significantly impaired by the neurokinin receptor antagonists, indicating that in hypothalamus, as in the PNS, release of tachykinins downstream to TRPV1 activation is able to boost the release of histamine. The excitatory action of SP on histaminergic neurons adds another pathway to the noradrenergic and orexinergic ones to synergistically enhance cortical arousal. We show NK1R to play a prominent role on HA neurons and thus the control of wakefulness.
Collapse
Affiliation(s)
- O A Sergeeva
- Institute of Clinical Neuroscience and Medical Psychology (ICNMP), Group of Molecular Neurophysiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany; Institute of Neural and Sensory Physiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany.
| | - K Mazur
- Institute of Clinical Neuroscience and Medical Psychology (ICNMP), Group of Molecular Neurophysiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany
| | - A Kernder
- Institute of Neural and Sensory Physiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany
| | - H L Haas
- Institute of Neural and Sensory Physiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany
| | - R De Luca
- Institute of Neural and Sensory Physiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany
| |
Collapse
|
2
|
Chen T, Sun T, Bian Y, Pei Y, Feng F, Chi H, Li Y, Tang X, Sang S, Du C, Chen Y, Chen Y, Sun H. The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. J Med Chem 2022; 65:3685-3705. [DOI: 10.1021/acs.jmedchem.1c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yaoyao Bian
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Feng Feng
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Yuan Li
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceuticals Science College, Huaian 223005, People’s Republic of China
| | - Xu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Chenxi Du
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Ying Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
3
|
Recio R, Vengut-Climent E, Mouillac B, Orcel H, López-Lázaro M, Calderón-Montaño JM, Álvarez E, Khiar N, Fernández I. Design, synthesis and biological studies of a library of NK1-Receptor Ligands Based on a 5-arylthiosubstituted 2-amino-4,6-diaryl-3-cyano-4H-pyran core: Switch from antagonist to agonist effect by chemical modification. Eur J Med Chem 2017; 138:644-660. [PMID: 28710964 DOI: 10.1016/j.ejmech.2017.06.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/26/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
Abstract
A library of 5-arylthiosubstituted 2-amino-4,6-diaryl-3-cyano-4H-pyrans has been synthesized as a new family of non-peptide NK1 receptor ligands by a one-pot cascade process. Their biological effects via interaction with the NK1 receptor were experimentally determined as percentage of inhibition (for antagonists) and percentage of activation (for agonists), compared to the substance P (SP) effect, in IPone assay. A set of these amino compounds was found to inhibit the action of SP, and therefore can be considered as a new family of SP-antagonists. Interestingly, the acylation of the 2-amino position causes a switch from antagonist to agonist activity. The 5-phenylsulfonyl-2-amino derivative 17 showed the highest antagonist activity, while the 5-p-tolylsulfenyl-2-trifluoroacetamide derivative 20R showed the highest agonist effect. As expected, in the case of the 5-sulfinylderivatives, there was an enantiomeric discrimination in favor of one of the two enantiomers, specifically those with (SS,RC) configuration. The anticancer activity studies assessed by using human A-549 lung cancer cells and MRC-5 non-malignant lung fibroblasts, revealed a statistically significant selective cytotoxic effect of some of these 2-amino-4H-pyran derivatives toward the lung cancer cells. These studies demonstrated that the newly synthesized 4H-pyran derivatives can be used as a starting point for the synthesis of novel SP-antagonists with higher anticancer activity in the future.
Collapse
Affiliation(s)
- Rocío Recio
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Empar Vengut-Climent
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Miguel López-Lázaro
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, C/Américo Vespucio, 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | | | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, C/Américo Vespucio, 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - Noureddine Khiar
- Instituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, C/Américo Vespucio, 49, Isla de la Cartuja, 41092 Sevilla, Spain.
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
4
|
Lagard C, Chevillard L, Guillemyn K, Risède P, Laplanche JL, Spetea M, Ballet S, Mégarbane B. Bifunctional peptide-based opioid agonist/nociceptin antagonist ligand for dual treatment of nociceptive and neuropathic pain. Pain 2017; 158:505-515. [PMID: 28135212 PMCID: PMC5302413 DOI: 10.1097/j.pain.0000000000000790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 01/24/2023]
Abstract
Drugs able to treat both nociceptive and neuropathic pain effectively without major side effects are lacking. We developed a bifunctional peptide-based hybrid (KGNOP1) that structurally combines a mu-opioid receptor agonist (KGOP1) with antinociceptive activity and a weak nociceptin receptor antagonist (KGNOP3) with anti-neuropathic pain activity. We investigated KGNOP1-related behavioral effects after intravenous administration in rats by assessing thermal nociception, cold hyperalgesia in a model of neuropathic pain induced by chronic constriction injury of the sciatic nerve, and plethysmography parameters including inspiratory time (TI) and minute ventilation (VM) in comparison to the well-known opioid analgesics, tramadol and morphine. Time-course and dose-dependent effects were investigated for all behavioral parameters to determine the effective doses 50% (ED50). Pain-related effects on cold hyperalgesia were markedly increased by KGNOP1 as compared to KGNOP3 and tramadol (ED50: 0.0004, 0.32, and 12.1 μmol/kg, respectively), whereas effects on thermal nociception were significantly higher with KGNOP1 as compared to morphine (ED50: 0.41 and 14.7 μmol/kg, respectively). KGNOP1 and KGOP1 produced a larger increase in TI and deleterious decrease in VM in comparison to morphine and tramadol (ED50(TI): 0.63, 0.52, 12.2, and 50.9 μmol/kg; ED50(VM): 0.57, 0.66, 10.6, and 50.0 μmol/kg, respectively). Interestingly, the calculated ratios of anti-neuropathic pain/antinociceptive to respiratory effects revealed that KGNOP1 was safer than tramadol (ED50 ratio: 5.44 × 10 vs 0.24) and morphine (ED50 ratio: 0.72 vs 1.39). We conclude that KGNOP1 is able to treat both experimental neuropathic and nociceptive pain, more efficiently and safely than tramadol and morphine, respectively, and thus should be a candidate for future clinical developments.
Collapse
Affiliation(s)
- Camille Lagard
- Inserm, UMR-S 1144, Paris, France
- Paris-Descartes University, UMR-S 1144, Paris, France
- Paris-Diderot University, UMR-S 1144, Paris, France
| | - Lucie Chevillard
- Inserm, UMR-S 1144, Paris, France
- Paris-Descartes University, UMR-S 1144, Paris, France
- Paris-Diderot University, UMR-S 1144, Paris, France
| | - Karel Guillemyn
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Patricia Risède
- Inserm, UMR-S 1144, Paris, France
- Paris-Descartes University, UMR-S 1144, Paris, France
- Paris-Diderot University, UMR-S 1144, Paris, France
| | - Jean-Louis Laplanche
- Inserm, UMR-S 1144, Paris, France
- Paris-Descartes University, UMR-S 1144, Paris, France
- Paris-Diderot University, UMR-S 1144, Paris, France
- Assistance Publique—Hôpitaux de Paris, Lariboisière Hospital, Laboratory of Biochemistry and Molecular Biology, Paris, France
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Mégarbane
- Inserm, UMR-S 1144, Paris, France
- Paris-Descartes University, UMR-S 1144, Paris, France
- Paris-Diderot University, UMR-S 1144, Paris, France
- Assistance Publique—Hôpitaux de Paris, Lariboisière Hospital, Department of Medical and Toxicological Critical Care, Paris, France
| |
Collapse
|
5
|
Kullmann FA, Katofiasc M, Thor KB, Marson L. Pharmacodynamic evaluation of Lys 5, MeLeu 9, Nle 10-NKA (4-10) prokinetic effects on bladder and colon activity in acute spinal cord transected and spinally intact rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:163-173. [PMID: 27889808 PMCID: PMC5512890 DOI: 10.1007/s00210-016-1317-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to determine feasibility of a novel therapeutic approach to drug-induced voiding after spinal cord injury (SCI) using a well-characterized, peptide, neurokinin 2 receptor (NK2 receptor) agonist, Lys5, MeLeu9, Nle10-NKA(4-10) (LMN-NKA). Cystometry and colorectal pressure measurements were performed in urethane-anesthetized, intact, and acutely spinalized female rats. Bladder pressure and voiding were monitored in response to intravenous LMN-NKA given with the bladder filled to 70% capacity. LMN-NKA (0.1-300 μg/kg) produced dose-dependent, rapid (<60 s), short-duration (<15 min) increases in bladder pressure. In intact rats, doses above 0.3-1 μg/kg induced urine release (voiding efficiency of ~70% at ≥1 μg/kg). In spinalized rats, urine release required higher doses (≥10 μg/kg) and was less efficient (30-50%). LMN-NKA (0.1-100 μg/kg) also produced dose-dependent increases in colorectal pressure. No tachyphylaxis was observed, and the responses were blocked by an NK2 receptor antagonist (GR159897, 1 mg/kg i.v.). No obvious cardiorespiratory effects were noted. These results suggest that rapid-onset, short-duration, drug-induced voiding is possible in acute spinal and intact rats with intravenous administration of an NK2 receptor agonist. Future challenges remain in regard to finding alternative routes of administration that produce clinically significant voiding, multiple times per day, in animal models of chronic SCI.
Collapse
Affiliation(s)
- F Aura Kullmann
- Department of Medicine, Renal Division, University of Pittsburgh, 3500 Terrace St, Scaife A1220, Pittsburgh, PA, 15261, USA
| | - M Katofiasc
- Dignify Therapeutics LLC, 2 Davis Drive, PO Box 13169, Research Triangle Park, NC, 27709, USA
| | - K B Thor
- Dignify Therapeutics LLC, 2 Davis Drive, PO Box 13169, Research Triangle Park, NC, 27709, USA
| | - Lesley Marson
- Dignify Therapeutics LLC, 2 Davis Drive, PO Box 13169, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
6
|
Van der Poorten O, Knuhtsen A, Sejer Pedersen D, Ballet S, Tourwé D. Side Chain Cyclized Aromatic Amino Acids: Great Tools as Local Constraints in Peptide and Peptidomimetic Design. J Med Chem 2016; 59:10865-10890. [PMID: 27690430 DOI: 10.1021/acs.jmedchem.6b01029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected to the peptide backbone to provide control of χ1- and χ2-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors.
Collapse
Affiliation(s)
- Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Astrid Knuhtsen
- Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Wu Z, Graybill TL, Zeng X, Platchek M, Zhang J, Bodmer VQ, Wisnoski DD, Deng J, Coppo FT, Yao G, Tamburino A, Scavello G, Franklin GJ, Mataruse S, Bedard KL, Ding Y, Chai J, Summerfield J, Centrella PA, Messer JA, Pope AJ, Israel DI. Cell-Based Selection Expands the Utility of DNA-Encoded Small-Molecule Library Technology to Cell Surface Drug Targets: Identification of Novel Antagonists of the NK3 Tachykinin Receptor. ACS COMBINATORIAL SCIENCE 2015; 17:722-31. [PMID: 26562224 DOI: 10.1021/acscombsci.5b00124] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA-encoded small-molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, this technology has been used with soluble protein targets that are produced and used in a purified state. Here, we describe a cell-based method for identifying small-molecule ligands from DNA-encoded libraries against integral membrane protein targets. We use this method to identify novel, potent, and specific inhibitors of NK3, a member of the tachykinin family of G-protein coupled receptors (GPCRs). The method is simple and broadly applicable to other GPCRs and integral membrane proteins. We have extended the application of DNA-encoded library technology to membrane-associated targets and demonstrate the feasibility of selecting DNA-tagged, small-molecule ligands from complex combinatorial libraries against targets in a heterogeneous milieu, such as the surface of a cell.
Collapse
Affiliation(s)
- Zining Wu
- Molecular
Discovery Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Todd L. Graybill
- Molecular
Discovery Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Xin Zeng
- Molecular
Discovery Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Michael Platchek
- Molecular
Discovery Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Jean Zhang
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Vera Q. Bodmer
- Molecular
Discovery Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - David D. Wisnoski
- Molecular
Discovery Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Jianghe Deng
- Molecular
Discovery Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Frank T. Coppo
- Molecular
Discovery Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Gang Yao
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Alex Tamburino
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Genaro Scavello
- Molecular
Discovery Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - G. Joseph Franklin
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Sibongile Mataruse
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Katie L. Bedard
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Yun Ding
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Jing Chai
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Jennifer Summerfield
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Paolo A. Centrella
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Jeffrey A. Messer
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| | - Andrew J. Pope
- Molecular
Discovery Research, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - David I. Israel
- Molecular
Discovery Research, GlaxoSmithKline, Waltham, Massachusetts 02451, United States
| |
Collapse
|
8
|
Pintér E, Pozsgai G, Hajna Z, Helyes Z, Szolcsányi J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br J Clin Pharmacol 2015; 77:5-20. [PMID: 23432438 DOI: 10.1111/bcp.12097] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/08/2013] [Indexed: 12/19/2022] Open
Abstract
Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624, Pécs, Hungary
| | | | | | | | | |
Collapse
|
9
|
Guillemyn K, Kleczkowska P, Lesniak A, Dyniewicz J, Van der Poorten O, Van den Eynde I, Keresztes A, Varga E, Lai J, Porreca F, Chung NN, Lemieux C, Mika J, Rojewska E, Makuch W, Van Duppen J, Przewlocka B, Vanden Broeck J, Lipkowski AW, Schiller PW, Tourwé D, Ballet S. Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist - neurokinin-1 antagonist peptidomimetics. Eur J Med Chem 2014; 92:64-77. [PMID: 25544687 DOI: 10.1016/j.ejmech.2014.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/26/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
A reported mixed opioid agonist - neurokinin 1 receptor (NK1R) antagonist 4 (Dmt-D-Arg-Aba-Gly-(3',5'-(CF3)2)NMe-benzyl) was modified to identify important features in both pharmacophores. The new dual ligands were tested in vitro and subsequently two compounds (lead structure 4 and one of the new analogues 22, Dmt-D-Arg-Aba-β-Ala-NMe-Bn) were selected for in vivo behavioural assays, which were conducted in acute (tail-flick) and neuropathic pain models (cold plate and von Frey) in rats. Compared to the parent opioid compound 33 (without NK1R pharmacophore), hybrid 22 was more active in the neuropathic pain models. Attenuation of neuropathic pain emerged from NK1R antagonism as demonstrated by the pure NK1R antagonist 6. Surprisingly, despite a lower in vitro activity at NK1R in comparison with 4, compound 22 was more active in the neuropathic pain models. Although potent analgesic effects were observed for 4 and 22, upon chronic administration, both manifested a tolerance profile similar to that of morphine and cross tolerance with morphine in a neuropathic pain model in rat.
Collapse
Affiliation(s)
- Karel Guillemyn
- Laboratory of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Patrycia Kleczkowska
- Neuropeptide Laboratory, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, PL 02-106, Warsaw, Poland; Department of Pharmacodynamics, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland.
| | - Anna Lesniak
- Neuropeptide Laboratory, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, PL 02-106, Warsaw, Poland.
| | - Jolanta Dyniewicz
- Neuropeptide Laboratory, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, PL 02-106, Warsaw, Poland.
| | - Olivier Van der Poorten
- Laboratory of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Isabelle Van den Eynde
- Laboratory of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Attila Keresztes
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave, Tucson AZ, 85724-5050, USA.
| | - Eva Varga
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave, Tucson AZ, 85724-5050, USA.
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave, Tucson AZ, 85724-5050, USA.
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave, Tucson AZ, 85724-5050, USA.
| | - Nga N Chung
- Department of Chemical Biology and Peptide Research, Clinical Research Institute, 110 Avenue Des Pins Ouest, Montreal, QC, H2W1R7, Canada.
| | - Carole Lemieux
- Department of Chemical Biology and Peptide Research, Clinical Research Institute, 110 Avenue Des Pins Ouest, Montreal, QC, H2W1R7, Canada.
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343, Kraków, Poland.
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343, Kraków, Poland.
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343, Kraków, Poland.
| | - Joost Van Duppen
- Animal Physiology and Neurobiology Department, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium.
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343, Kraków, Poland.
| | - Jozef Vanden Broeck
- Animal Physiology and Neurobiology Department, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium.
| | - Andrzej W Lipkowski
- Neuropeptide Laboratory, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, PL 02-106, Warsaw, Poland.
| | - Peter W Schiller
- Department of Chemical Biology and Peptide Research, Clinical Research Institute, 110 Avenue Des Pins Ouest, Montreal, QC, H2W1R7, Canada.
| | - Dirk Tourwé
- Laboratory of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Steven Ballet
- Laboratory of Organic Chemistry, Departments of Chemistry and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
10
|
Fukuda A, Goto T, Kuroishi KN, Gunjigake KK, Kataoka S, Kobayashi S, Yamaguchi K. Hemokinin-1 competitively inhibits substance P-induced stimulation of osteoclast formation and function. Neuropeptides 2013; 47:251-9. [PMID: 23660339 DOI: 10.1016/j.npep.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/28/2013] [Accepted: 04/03/2013] [Indexed: 11/18/2022]
Abstract
Hemokinin-1 (HK-1) is a novel member of the tachykinin family that is encoded by preprotachykinin 4 (TAC4) and shares the neurokinin-1 receptor (NK1-R) with substance P (SP). Although HK-1 is thought to be an endogenous peripheral SP-like endocrine or paracrine molecule in locations where SP is not expressed, neither the distribution of HK-1 in the maxillofacial area nor the role HK-1 in bone tissue have been examined. In this study, we investigated the distribution of HK-1 in trigeminal ganglion (TG) and maxillary bone, and assessed the expression of HK-1 during osteoclast differentiation. In vivo, rat molars were loaded for 5 days using the Waldo method. In vitro, rat osteoclast-like cells were induced from bone marrow cells. HK-1 distribution and expression were examined by immunofluorescence staining and reverse transcription polymerase chain reaction (RT-PCR). In vivo, HK-1 was localized in rat TG neurons; however, the number of HK-1-positive neurons was less than that of SP-positive neurons. In the maxillary bone, nerve fibers, blood vessels, and osteocytes were immunopositive for HK-1. Furthermore, HK-1-positive immunoreactivity was found in osteoclasts on the pressure side. In vitro, PCR showed that TAC4 and NK1-R mRNA was expressed in osteoclasts as well as in bone marrow cells. Although SP (10⁻⁷ M) treatment led to an increased number of osteoclasts, HK-1 (10⁻⁷ M) treatment did not. The numbers of biotin-labeled HK-1 peptides bound osteoclasts significantly decreased upon incubation with unlabeled SP and biotin-labeled HK-1 compared with biotin-labeled HK-1 alone. These results suggest that HK-1 may not stimulate the differentiation and function of osteoclasts. SP-stimulated osteoclast formation is competitively regulated by peripheral HK-1 through NK1-Rs.
Collapse
Affiliation(s)
- Aya Fukuda
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Kassick AJ, Jiang J, Bunda J, Wilson D, Bao J, Lu H, Lin P, Ball RG, Doss GA, Tong X, Tsao KLC, Wang H, Chicchi G, Karanam B, Tschirret-Guth R, Samuel K, Hora DF, Kumar S, Madeira M, Eng W, Hargreaves R, Purcell M, Gantert L, Cook J, DeVita RJ, Mills SG. 2-[(3aR,4R,5S,7aS)-5-{(1S)-1-[3,5-bis(trifluoromethyl)phenyl]-2-hydroxyethoxy}-4-(2-methylphenyl)octahydro-2H-isoindol-2-yl]-1,3-oxazol-4(5H)-one: a potent human NK1 receptor antagonist with multiple clearance pathways. J Med Chem 2013; 56:5940-8. [PMID: 23808489 DOI: 10.1021/jm400751p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroisoindoline 2 has been previously identified as a potent, brain-penetrant NK1 receptor antagonist with a long duration of action and improved profile of CYP3A4 inhibition and induction compared to aprepitant. However, compound 2 is predicted, based on data in preclinical species, to have a human half-life longer than 40 h and likely to have drug-drug-interactions (DDI), as 2 is a victim of CYP3A4 inhibition caused by its exclusive clearance pathway via CYP3A4 oxidation in humans. We now report 2-[(3aR,4R,5S,7aS)-5-{(1S)-1-[3,5-bis(trifluoromethyl)phenyl]-2-hydroxyethoxy}-4-(2-methylphenyl)octahydro-2H-isoindol-2-yl]-1,3-oxazol-4(5H)-one (3) as a next generation NK1 antagonist that possesses an additional clearance pathway through glucuronidation in addition to that via CYP3A4 oxidation. Compound 3 has a much lower propensity for drug-drug interactions and a reduced estimated human half-life consistent with once daily dosing. In preclinical species, compound 3 has demonstrated potency, brain penetration, and a safety profile similar to 2, as well as excellent pharmacokinetics.
Collapse
Affiliation(s)
- Andrew J Kassick
- Discovery Chemistry, ‡In Vitro Pharmacology, §Drug Metabolism, and ∥Laboratory Animal Resources, Merck Research Laboratories, Merck & Co. , Rahway, New Jersey 07065, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Borbély É, Hajna Z, Sándor K, Kereskai L, Tóth I, Pintér E, Nagy P, Szolcsányi J, Quinn J, Zimmer A, Stewart J, Paige C, Berger A, Helyes Z. Role of tachykinin 1 and 4 gene-derived neuropeptides and the neurokinin 1 receptor in adjuvant-induced chronic arthritis of the mouse. PLoS One 2013; 8:e61684. [PMID: 23626716 PMCID: PMC3634005 DOI: 10.1371/journal.pone.0061684] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/13/2013] [Indexed: 12/19/2022] Open
Abstract
Objective Substance P, encoded by the Tac1 gene, is involved in neurogenic inflammation and hyperalgesia via neurokinin 1 (NK1) receptor activation. Its non-neuronal counterpart, hemokinin-1, which is derived from the Tac4 gene, is also a potent NK1 agonist. Although hemokinin-1 has been described as a tachykinin of distinct origin and function compared to SP, its role in inflammatory and pain processes has not yet been elucidated in such detail. In this study, we analysed the involvement of tachykinins derived from the Tac1 and Tac4 genes, as well as the NK1 receptor in chronic arthritis of the mouse. Methods Complete Freund’s Adjuvant was injected intraplantarly and into the tail of Tac1−/−, Tac4−/−, Tacr1−/− (NK1 receptor deficient) and Tac1−/−/Tac4−/− mice. Paw volume was measured by plethysmometry and mechanosensitivity using dynamic plantar aesthesiometry over a time period of 21 days. Semiquantitative histopathological scoring and ELISA measurement of IL-1β concentrations of the tibiotarsal joints were performed. Results Mechanical hyperalgesia was significantly reduced from day 11 in Tac4−/− and Tacr1−/− animals, while paw swelling was not altered in any strain. Inflammatory histopathological alterations (synovial swelling, leukocyte infiltration, cartilage destruction, bone damage) and IL-1β concentration in the joint homogenates were significantly smaller in Tac4−/− and Tac1−/−/Tac4−/− mice. Conclusions Hemokinin-1, but not substance P increases inflammation and hyperalgesia in the late phase of adjuvant-induced arthritis. While NK1 receptors mediate its antihyperalgesic actions, the involvement of another receptor in histopathological changes and IL-1β production is suggested.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Edema/chemically induced
- Edema/genetics
- Edema/metabolism
- Edema/pathology
- Freund's Adjuvant
- Gene Expression Regulation
- Hyperalgesia/chemically induced
- Hyperalgesia/genetics
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Inflammation
- Interleukin-1beta/biosynthesis
- Joints/metabolism
- Joints/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Plethysmography
- Protein Precursors/deficiency
- Protein Precursors/genetics
- Receptors, Neurokinin-1/deficiency
- Receptors, Neurokinin-1/genetics
- Signal Transduction
- Substance P/deficiency
- Substance P/genetics
- Tachykinins/deficiency
- Tachykinins/genetics
- Tarsus, Animal/metabolism
- Tarsus, Animal/pathology
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Katalin Sándor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - István Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Péter Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - John Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine Liverpool University, Liverpool, United Kingdom
| | - Andreas Zimmer
- Laboratory of Molecular Neurobiology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - James Stewart
- School of Infection and Host Defense, University of Liverpool, Liverpool, United Kingdom
| | - Christopher Paige
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Alexandra Berger
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
- * E-mail:
| |
Collapse
|
13
|
Ogbonna AC, Clark AK, Gentry C, Hobbs C, Malcangio M. Pain-like behaviour and spinal changes in the monosodium iodoacetate model of osteoarthritis in C57Bl/6 mice. Eur J Pain 2012; 17:514-26. [PMID: 23169679 DOI: 10.1002/j.1532-2149.2012.00223.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a highly prevalent, age-related pain condition that poses a significant clinical problem. Here, in the monosodium iodoacetate (MIA) model of OA, we have characterized pain behaviours and associated changes at the first pain synapse in the dorsal horn of the spinal cord. METHODS Mice received intra-articular injections of 0.5, 0.75 and 1 mg MIA and mechanical paw withdrawal threshold was monitored for up to 4 weeks. An intrathecal injection of peptide antagonist calcitonin gene-related peptide (CGRP8-37 ) was given 3 weeks post MIA and paw withdrawal thresholds were measured after 1 and 3 h. Immunohistochemical analysis of the lumbar dorsal horn was carried out and activity-evoked CGRP release was measured from isolated lumbar dorsal horn slices - with dorsal roots attached. RESULTS By 2 weeks after intra-articular MIA injection, mechanical hypersensitivity was established in the ipsilateral hindpaw. There was no evidence of sensory neuron damage in lumbar dorsal root ganglia 7 days after 1 mg MIA. However, both dorsal horn neuron activation and microglial response (Fos and Iba-1 immunostaining) but not reactive astrocytes (glial fibrillary acidic protein) were observed. Evoked CGRP release was greater from dorsal horn slices of MIA-treated mice compared with control. Furthermore, intrathecal administration of peptide antagonist CGRP8-37 acutely attenuated established MIA-induced mechanical hypersensitivity. CONCLUSIONS Intra-articular MIA is associated with referred mechanical hypersensitivity and increased release of CGRP from primary afferent fibres in the dorsal horn where second-order neuron activation is associated with a microglial response. Antagonism of CGRP receptor activation provides a therapeutic avenue for the treatment of pain in OA.
Collapse
Affiliation(s)
- A C Ogbonna
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| | | | | | | | | |
Collapse
|
14
|
Caioli S, Curcio L, Pieri M, Antonini A, Marolda R, Severini C, Zona C. Substance P receptor activation induces downregulation of the AMPA receptor functionality in cortical neurons from a genetic model of Amyotrophic Lateral Sclerosis. Neurobiol Dis 2011; 44:92-101. [DOI: 10.1016/j.nbd.2011.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/01/2011] [Accepted: 06/16/2011] [Indexed: 12/13/2022] Open
|
15
|
Ballet S, Feytens D, Buysse K, Chung NN, Lemieux C, Tumati S, Keresztes A, Van Duppen J, Lai J, Varga E, Porreca F, Schiller PW, Vanden Broeck J, Tourwé D. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist. J Med Chem 2011; 54:2467-76. [PMID: 21413804 PMCID: PMC3096782 DOI: 10.1021/jm1016285] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.
Collapse
Affiliation(s)
- Steven Ballet
- Department of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tran AH, Berger A, Wu GE, Kee BL, Paige CJ. Early B-cell factor regulates the expression of Hemokinin-1 in the olfactory epithelium and differentiating B lymphocytes. J Neuroimmunol 2010; 232:41-50. [PMID: 20965576 DOI: 10.1016/j.jneuroim.2010.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/23/2010] [Accepted: 09/28/2010] [Indexed: 12/13/2022]
Abstract
Hemokinin-1, encoded by the TAC4 gene, is a tachykinin most closely related to substance P. Previous studies have shown that TAC4 distinguishes itself from other tachykinins by its predominantly non-neuronal expression profile, particularly in cells of the immune system. Here we report for the first time that the highest levels of TAC4 expression are found in the olfactory epithelium. Furthermore, we identify olfactory neuron-specific transcription factor (Olf-1), also known as early B-cell factor (EBF), as a novel regulator of TAC4 expression. EBF present in the olfactory epithelium and in B cells binds to two sites in the TAC4 promoter and modulates expression in developing B cells. Our findings suggest a role for TAC4 in cell differentiation, and represent a regulatory bridge between the nervous system and the immune system.
Collapse
Affiliation(s)
- Anne H Tran
- Department of Stem Cell and Developmental Biology, Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| | | | | | | | | |
Collapse
|
17
|
Hopkins CR. ACS chemical neuroscience molecule spotlight on Saredutant. ACS Chem Neurosci 2010; 1:653-4. [PMID: 22776916 DOI: 10.1021/cn100061r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 11/29/2022] Open
Abstract
Saredutant (SR48968), a potentially novel treatment option for major depressive disorders (MDD) and generalized anxiety disorder (GAD), is a drug from Sanofi-Aventis currently in phase III clinical trials. MDD is a common mental disorder that affects 121 million people worldwide, nearly 4% of the adult population (www.who.int/mental_health/management/depression/definition/en/). MDD continues to be one of the leading causes of disability with more than three quarters of the diagnosed cases having effective treatments available (www.who.int/mental_health/management/depression/definition/en/). However, even though MDD affects a large portion of the population, effective treatment options with low incidence of adverse events remain a major concern for the pharmaceutical industry. Adverse events (GI side effects1, weight gain, somnolence/insomnia, etc. (Demyttenaere K. (2003) Risk factors and predictors of compliance in depressionEur. Neuropshychopharm.13S69-S75)) from the typical treatments remain the major reason for premature stopping or poor compliance of treatment. New treatments to the market must bear in mind these adverse events, and the pharmaceutical industry is currently looking for drugs with new mechanisms of action and those that are better tolerated.
Collapse
Affiliation(s)
- Corey R. Hopkins
- Vanderbilt University Medical Center, Department of Pharmacology and Vanderbilt Program in Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-6600
| |
Collapse
|
18
|
Ajioka H, Morita F, Akizawa Y, Yoshida K, Kitamura R, Takimoto H. [Pharmacological, pharmacokinetic, and clinical profile of palonosetron hydrochloride (ALOXI I.V. Injection 0.75 mg), a novel antiemetic 5-HT3-receptor antagonist]. Nihon Yakurigaku Zasshi 2010; 136:113-120. [PMID: 20702972 DOI: 10.1254/fpj.136.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
19
|
Waeber C, Hargreaves R. Current and emerging therapies for migraine prevention and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2010; 97:789-809. [PMID: 20816471 DOI: 10.1016/s0072-9752(10)97065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
20
|
Zhao YL, Tao Y, Fu CY, Kong ZQ, Chen Q, Wang R. Human hemokinin-1 and human hemokinin-1(4-11), mammalian tachykinin peptides, suppress proliferation and induce differentiation in HL-60 cells. Peptides 2009; 30:1514-22. [PMID: 19433125 DOI: 10.1016/j.peptides.2009.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 04/29/2009] [Accepted: 04/29/2009] [Indexed: 11/22/2022]
Abstract
Human hemokinin-1 (h HK-1) and its truncated form h HK-1(4-11) are mammalian tachykinin peptides encoded by the TAC4 gene identified in human, and the biological functions of these peptides have not been well investigated. The tachykinins have shown immuno-regulatory activities in humans. In the present study, we investigated the effects of h HK-1 and h HK-1(4-11) on the proliferation and differentiation of a human promyelocyte leukemia cell line, HL-60. It is noteworthy that h HK-1 (1-300muM) displayed inhibitory effects on the proliferation of HL-60 cells in a dose- and time-dependent manner. The effect of suppressing proliferation induced by these peptides was accompanied by an accumulation of cell cycle in the S phase. Moreover, this peptide induced differentiation of HL-60 cells by significantly increasing the NBT-reduction activity. The effects induced by h HK-1(4-11) on HL-60 cells were similar to that of h HK-1, indicating that it is the active fragment of h HK-1. However these effects induced by h HK-1 or h HK-1(4-11) were not antagonized by the NK(1) receptor antagonist SR140333 or the NK(2) receptor antagonist SR48968. All the results indicated that h HK-1 and h HK-1(4-11) were able to significantly inhibit proliferation and induce differentiation and S phase arrest of a human promyelocyte leukemia cell line HL-60, which may not be mediated through the activation of classical tachykinin NK(1) receptors and tachykinin NK(2) receptors. Our observations also implied that h HK-1 and h HK-1(4-11) could act as immunomodulatory factors in cancer chemotherapy.
Collapse
Affiliation(s)
- You-Li Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | |
Collapse
|
21
|
Mao J. Translational pain research: achievements and challenges. THE JOURNAL OF PAIN 2009; 10:1001-11. [PMID: 19628433 DOI: 10.1016/j.jpain.2009.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
UNLABELLED The achievements in both preclinical and clinical pain research over the past 4 decades have led to significant progress in clinical pain management. However, pain research still faces enormous challenges and there remain many obstacles in the treatment of clinical pain, particularly chronic pain. Translational pain research needs to involve a number of important areas including: 1) bridging the gap between pain research and clinical pain management; 2) developing objective pain-assessment tools; 3) analyzing current theories of pain mechanisms and their relevance to clinical pain; 4) exploring new tools for both preclinical and clinical pain research; and 5) coordinating research efforts among basic scientists, clinical investigators, and pain-medicine practitioners. These issues are discussed in this article in light of the achievements and challenges of translational pain research. PERSPECTIVE The subjective nature of clinical pain calls for innovative research approaches. As translational pain research emerges as an important field in pain medicine, it will play a unique role in improving clinical pain management through coordinated bidirectional research approaches between bedside and bench.
Collapse
Affiliation(s)
- Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
22
|
Tran AH, Berger A, Wu GE, Paige CJ. Regulatory mechanisms in the differential expression of Hemokinin-1. Neuropeptides 2009; 43:1-12. [PMID: 19081134 DOI: 10.1016/j.npep.2008.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 10/22/2008] [Accepted: 10/28/2008] [Indexed: 11/20/2022]
Abstract
Hemokinin-1, encoded by the TAC4 gene, is the most recent addition to the tachykinin family. Although most closely related to the neuropeptide Substance P, Hemokinin-1 distinguishes itself from other tachykinins by its predominantly non-neuronal expression pattern. Its expression in T and B lymphocytes, macrophages, and dendritic cells points to an important role for Hemokinin-1 in the immune system. To seek reasons for its preferential expression in the immune system and ultimately to provide clues to its function, we investigated the molecular mechanisms driving the differential expression pattern of this unique tachykinin. Our study provides the first analysis of the promoter region of the TAC4 gene, which reveals regulatory mechanism different from the Substance P promoter. We demonstrate for the first time that Hemokinin-1 initiates transcription from multiple start sites through a TATA-less promoter. Conservation of the 5' non-coding region indicates the importance of the upstream regulatory region in directing expression of Hemokinin-1 in specific cell types, during cell differentiation and activation. Furthermore, NFkappaB, a transcription factor important in the activation of immune cells was shown to be involved in promoting increased TAC4 transcription during PMA induction of a T cell line. Our studies reveal that Hemokinin-1 is regulated by a unique transcription regulation system that likely governs its differential expression pattern and suggests a role for Hemokinin-1 distinct from Substance P.
Collapse
Affiliation(s)
- Anne H Tran
- Department of Stem Cell and Developmental Biology, Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9.
| | | | | | | |
Collapse
|
23
|
Kong ZQ, Fu CY, Chen Q, Wang R. Cardiovascular responses to intravenous administration of human hemokinin-1 and its truncated form hemokinin-1(4-11) in anesthetized rats. Eur J Pharmacol 2008; 590:310-6. [PMID: 18582457 DOI: 10.1016/j.ejphar.2008.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 05/14/2008] [Accepted: 05/31/2008] [Indexed: 10/22/2022]
Abstract
Human hemokinin-1 and its carboxy-terminal fragment human hemokinin-1(4-11) have been recently identified as the members of the tachykinin family. The peripheral cardiovascular effects of these two tachykinin peptides were investigated in anesthetized rats. Lower doses of human hemokinin-1 (0.1-3 nmol/kg) injected intravenously (i.v.) induced depressor response, whereas higher doses (10 and 30 nmol/kg) caused biphasic (depressor and pressor) responses. The depressor response is primarily due to the action on endothelial tachykinin NK(1) receptor to release endothelium-derived relaxing factor (NO) and vagal reflex was absent in this modulation. The pressor response is mediated through the activation of tachykinin NK(1) receptor to release catecholamines from sympathetic ganglia and adrenal medulla. Moreover, human hemokinin-1 injected i.v. produced a dose-dependent tachycardia response along with blood pressure responses and the activation of sympathetic ganglia and adrenal medulla are involved in the tachycardia response. Human hemokinin-1(4-11) only lowered mean arterial pressure dose-dependently (0.1-30 nmol/kg) and the mechanisms involved in the depressor response are similar to that of human hemokinin-1. Additionally, human hemokinin-1(4-11) could also produce tachycardia response dose-dependently and the mechanisms involved in the tachycardia response are similar to that of human hemokinin-1 except that bilateral adrenalectomy could not affect the tachycardia markedly, indicating that the tachycardia induced by human hemokinin-1(4-11) is primarily due to the stimulation of sympathetic ganglia. In a word, to a certain extent, human hemokinin-1(4-11) is the active fragment of human hemokinin-1, however, the differences between human hemokinin-1 and hemokinin-1(4-11) involved in the effects of cardiovascular system suggest that the divergent amino acid residues at the N-terminus of human hemokinin-1 produced different activation properties for tachykinin NK(1) receptor.
Collapse
Affiliation(s)
- Zi-Qing Kong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | | | | | | |
Collapse
|
24
|
Fu CY, Kong ZQ, Long Y, Chen Q, Wang R. Cardiovascular responses to rat/mouse hemokinin-1, a mammalian tachykinin peptide: systemic study in anesthetized rats. Eur J Pharmacol 2007; 572:175-81. [PMID: 17628523 DOI: 10.1016/j.ejphar.2007.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 05/29/2007] [Accepted: 06/07/2007] [Indexed: 11/15/2022]
Abstract
Rat/mouse hemokinin-1 is a mammalian tachykinin peptide whose biological functions have not been well characterized. In the present study, an attempt has been made to investigate the effect and mechanism of action of rat/mouse hemokinin-1 on systemic arterial pressure after intravenous (i.v.) injections in anesthetized rats by comparing it with that of substance P. Our data showed that injection of rat/mouse hemokinin-1 (0.1, 0.3, 1, 3 and 10 nmol/kg) lowered systemic arterial pressure dose-dependently. This effect was significantly blocked by pretreatment with SR140333 (a selective tachykinin NK1 receptor antagonist) and the NO synthase inhibitor L-NAME (Nomega-nitro-L-arginine methyl ester hydrochloride), respectively, but was not affected by bilateral vagotomy or the muscarinic receptor blocker atropine. Compared to rat/mouse hemokinin-1, a dose of 3 nmol/kg of substance P caused biphasic changes in systemic arterial pressure (depressor and pressor responses). The results suggest that the mechanism of the depressor response caused by substance P was similar to rat/mouse hemokinin-1 in that it was inhibited by SR140333 and L-NAME, respectively, but that there was a component of the cardiovascular change induced by rat/mouse hemokinin-1 (but not substance P) that was attenuated by SR48968 (a selective tachykinin NK2 receptor antagonist). The depressor response induced by rat/mouse hemokinin-1 (i.v.) might be explained primarily by the action on endothelial tachykinin NK1 receptors to release endothelium-derived relaxing factor (NO) and this effect was not affected by vagal components. In addition, rat/mouse hemokinin-1 could not induce the pressor response through stimulation of sympathetic ganglion like substance P in anesthetized rats.
Collapse
Affiliation(s)
- Cai-Yun Fu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Torricelli M, Giovannelli A, Leucci E, Florio P, De Falco G, Torres PB, Reis FM, Leoncini L, Petraglia F. Placental neurokinin B mRNA expression increases at preterm labor. Placenta 2007; 28:1020-3. [PMID: 17561251 DOI: 10.1016/j.placenta.2007.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/19/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Neurokinin B (NKB) is a neuropeptide belonging to the family of tachykinins-related peptides that elicits contractility of human myometrial strips in vitro. The present study evaluates whether placental mRNA and peptide expression of NKB change in women at preterm labor. METHODS A group of 26 women with singleton pregnancies were enrolled in the study. Placental tissue specimens were collected from pregnant women delivering after elective cesarean section, after labor at term, or after preterm labor. Changes in placental NKB mRNA and protein expression were evaluated by real-time quantitative RT-PCR analysis and by immunofluorescence respectively. RESULTS Placental mRNA expression of NKB was significantly higher after term and preterm labor (P<0.001) than cesarean section, and highest after preterm labor. Immunofluorescent staining in placentas from preterm or term labor was more intense than after cesarean section (P<0.001). In particular, NKB protein expression was higher in placentas collected after preterm labor than those collected after term labor. DISCUSSION Neurokinin B mRNA and protein are highly expressed in placenta at term and preterm labor; thus, the involvement of this neuropeptide in the events cascade leading to parturition may be suggested.
Collapse
Affiliation(s)
- M Torricelli
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Nagano M, Saitow F, Haneda E, Konishi S, Hayashi M, Suzuki H. Distribution and pharmacological characterization of primate NK-1 and NK-3 tachykinin receptors in the central nervous system of the rhesus monkey. Br J Pharmacol 2006; 147:316-23. [PMID: 16331282 PMCID: PMC1751306 DOI: 10.1038/sj.bjp.0706561] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Much attention has focused on tachykinin receptors as therapeutic targets for neuropsychiatric disorders, although their expressional distributions in the primate central nervous system (CNS) remain unclear. We cloned the genes encoding the NK-1 and NK-3 tachykinin receptors (referred to as rmNK-1 and rmNK-3) from the rhesus monkey (Macaca mulatta) brain and examined their pharmacological profiles and regional distributions in the CNS. The deduced rmNK-1 amino-acid sequence differed by only two amino acids from the human NK-1 (hNK-1). The deduced rmNK-3 amino-acid sequence was two amino acids shorter than human NK-3 (hNK-3), with a seven-amino-acid difference in sequence. Ligand binding studies revealed that the affinity of rmNK-1 to substance P (SP) was comparable to that of hNK-1 in cell lines that expressed individual receptors stably. Nonpeptide antagonists had similar effects on the binding of rmNK-1 and hNK-1. Affinity of rmNK-3 for NKB was stronger than for SP and the IC50 value was comparable with that of hNK-3. Ca2+ imaging showed that activations of both rmNK-1 and rmNK-3 by specific ligands, SP and senktide, induced increased intracellular Ca2+ in cell lines that stably expressed individual primate tachykinin receptors. The amounts of rmNK-1 and rmNK-3 mRNAs were quantitatively determined in the monkey CNS. The expression of rmNK-1 was observed in all of the cortical and subcortical regions, including the hippocampus and the amygdala. The putamen contained the most NK-1 mRNA in the brain, with less rmNK-3 mRNA found in the cortex compared to rmNK-1 mRNA. In the monkey hippocampus and amygdala, rmNK-1 mRNA was present at markedly higher concentrations than rmNK-3 mRNA. The present results provide an insight into the distinct physiological nature and significance of the NK-1 and NK-3 tachykinin systems in the primate CNS. These findings are indispensable for establishing model systems in the search for a subtype-specific tachykinin receptor agonist and antagonist for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Masatoshi Nagano
- Department of Pharmacology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Fumihito Saitow
- Department of Pharmacology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Eisuke Haneda
- Department of Pharmacology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Shiro Konishi
- Waseda-Olympus Bioscience Research Institute, Waseda University, Singapore 138667, Singapore
| | - Motoharu Hayashi
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
- Author for correspondence:
| |
Collapse
|
28
|
Abstract
The tachykinins represent an important group of neuropeptides that are widely distributed both in the central and peripheral nervous system where they perform several functions connected with neuronal modulation, often in synergy with glutamate excitatory transmission. While a great deal of data is available on their distribution and many studies have been performed by molecular, biochemical, and immunohistochemical techniques, much less is known about their physiological role, in particular in the cerebellum. This review is an attempt to summarize the diverse evidence suggesting a role for tachykinins in cerebellar granule neurons.
Collapse
Affiliation(s)
- Cinzia Severini
- Institute of Neurobiology and Molecular Medicine, Rome, Italy
| | | |
Collapse
|
29
|
Miller D, Forrester K, Hart DA, Leonard C, Salo P, Bray RC. Endothelial dysfunction and decreased vascular responsiveness in the anterior cruciate ligament-deficient model of osteoarthritis. J Appl Physiol (1985) 2006; 102:1161-9. [PMID: 17082378 DOI: 10.1152/japplphysiol.00209.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic inflammation associated with osteoarthritis (OA) may alter normal vascular responses and contribute to joint degradation. Vascular responses to vasoactive mediators were evaluated in the medial collateral ligament (MCL) of the anterior cruciate ligament (ACL)-deficient knee. Chronic joint instability and progressive OA were induced in rabbit knees by surgical transection of the ACL. Under halothane anesthesia, laser speckle perfusion imaging (LSPI) was used to measure MCL blood flow in unoperated control (n = 12) and 6-wk ACL-transected knees (n = 12). ACh, bradykinin, histamine, substance P (SP), and prostaglandin E(2) (PGE(2)) were applied to the MCL vasculature in topical boluses of 100 microl (dose range 10(-14) to 10(-8) mol). In normal joints, ACh, bradykinin, histamine, and PGE(2) evoked a dilatory response. Substance P caused a biphasic response that was dilatory from 10(-14) to 10(-11) mol and constricting at higher doses. In ACL-deficient knees, ACh, bradykinin, histamine, and SP decreased perfusion, whereas PGE(2) had a biphasic response that decreased perfusion at 10(-14) to 10(-11) mol and was dilatory at higher concentrations. Sodium nitroprusside increased perfusion in resting and phenylephrine-precontracted vessels with no significant differences between ACL-transected and control knees. Femoral artery occlusion and release increased perfusion by 74.3 +/- 11.1% in control knees but only by 25.8 +/- 4.4% in ACL-deficient knees. The altered responsiveness of the MCL vasculature to these inflammatory mediators may indicate endothelial dysfunction in the MCL, which may contribute to the progression and severity of OA and to the adaptation of the joint in an altered mechanical environment.
Collapse
|
30
|
Pieri M, Severini C, Amadoro G, Carunchio I, Barbato C, Ciotti MT, Zona C. AMPA receptors are modulated by tachykinins in rat cerebellum neurons. J Neurophysiol 2005; 94:2484-90. [PMID: 16160091 DOI: 10.1152/jn.00436.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The peptides of the tachykinin family are widely distributed within the mammalian peripheral and central nervous systems and play a well-recognized role as neuromodulators, although their direct action on cerebellum granule cells have not yet been demonstrated. We have examined the effect of the best known members of the family, substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors from rat cerebellar granule cells in culture to assess the ability of these peptides to regulate the glutamatergic input. Both NKA and NKB, but not SP, produce a significant enhancement of ionic current through AMPA receptors activated by the agonist kainate in 53.5 and 46% of patched neurons, respectively. This effect was not observable in the presence of MEN 10,627 and Trp(7)betaAla(8), NKA and NKB competitive antagonist receptors, respectively, indicating that the current modulations were mediated by the respective receptors. NKB also produces a significant enhancement of ionic current through the AMPA receptors activated directly by its agonist AMPA and cyclothiazide, an allosteric modulator that selectively suppresses desensitization of AMPA receptors. The presence of NK3 receptors was demonstrated in these neurons by RT-PCR amplification of total RNA extracted from cerebellar granule cells, using NK3-specific primer pairs. Immunocytochemistry experiments, using a specific polyclonal antibody directed against NK3, also confirmed the presence of NK3 receptors and their co-localization with the GLUR2 AMPA subunit in about 54% of cerebellar granule neurons. This study adds the tachykinins to the list of neuromodulators capable of exerting a excitatory action on cerebellar granule cells.
Collapse
MESH Headings
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Animals
- Animals, Newborn
- Blotting, Northern/methods
- Cells, Cultured
- Cerebellum/cytology
- Drug Interactions
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Fluorescent Antibody Technique/methods
- Gene Expression Regulation/drug effects
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Neurons/drug effects
- Neurons/metabolism
- Patch-Clamp Techniques/methods
- Peptides, Cyclic/pharmacology
- Protein Subunits/physiology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred WF
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Neurokinin-3/genetics
- Receptors, Neurokinin-3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Tachykinins/agonists
- Tachykinins/antagonists & inhibitors
- Tachykinins/pharmacology
Collapse
Affiliation(s)
- Massimo Pieri
- Department of Neuroscience, University of Rome Tor Vergata, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Eslick GD, Coulshed DS, Talley NJ. Diagnosis and treatment of noncardiac chest pain. ACTA ACUST UNITED AC 2005; 2:463-72. [PMID: 16224478 DOI: 10.1038/ncpgasthep0284] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 08/11/2005] [Indexed: 12/15/2022]
Abstract
Chest pain is common: one in four of the population have an episode annually. Of those who present to hospital, nearly two-thirds have noncardiac chest pain. More than half of these cases might have gastroesophageal reflux disease. Opinion differs over what is the most appropriate application of current investigatory methods. Evidence suggests that, once cardiac disease is ruled unlikely, empiric use of a proton pump inhibitor is an option; if acid suppression fails, detailed investigations as clinically indicated can be considered. A range of esophageal investigations is available, including 24-hour or 48-hour esophageal pH testing and esophageal manometry, as well as provocative tests, but there is no consensus as to which methods are the most useful. Psychiatric evaluation is not routine, but psychiatric or psychological disorders are common. Musculoskeletal disorders are also common, but are frequently overlooked. It is possible to subject patients to a comprehensive set of investigations before empiric therapy, but recent studies have failed to demonstrate an improved outcome using this exhaustive approach. A new tactic is required, with less attention spent on absolute diagnostic accuracy and more emphasis on optimizing the long-term clinical outcome in patients with noncardiac chest pain. It is possible that the targeted use of multiple drug trials in a policy of 'therapy as investigation' might be a superior methodology.
Collapse
Affiliation(s)
- Guy D Eslick
- School of Public Health, The University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
32
|
Abstract
There is an expanding repertoire of mammalian tachykinins produced by a variety of tachykinin genes, gene splicing events and peptide processing. Novel tachykinin-binding molecules/receptors are proposed, but only, three tachykinin receptors are identified with certainty. The question remains - do more tachykinin receptors exist or is there just the need to reappraise our understanding of the known receptors? The tachykinin NK1 receptor, the preferred receptor for both substance P and the peripheral SP-like endokinins, exists in several tissue-specific conformations and isoforms and may provide some clues. This review addresses recent advances in this exciting field and raises challenging new concepts.
Collapse
Affiliation(s)
- Nigel M Page
- School of Animal and Microbial Sciences, The University of Reading, Reading, RG6 6AJ, UK.
| |
Collapse
|
33
|
Li SJ, Zhao SH, Tuggle CK. Somatic cell hybrid and RH mapping of thetachykinin 3gene to porcine chromosome 5. Anim Genet 2005; 36:90-1. [PMID: 15670142 DOI: 10.1111/j.1365-2052.2004.01227.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- S-J Li
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA
| | | | | |
Collapse
|
34
|
Abstract
There is a high incidence of life event stress, depression, and associated symptoms in individuals with HIV infection/AIDS. Psychological and psychiatric symptomatology in individuals with HIV and AIDS may be related to the progression of AIDS disease. The association between depression, anxiety, and stress with HIV disease progression suggests that neurobiologic and neurophysiologic factors have an important role in modulating HIV. The immune effects caused by changes in behavioral state or brain activity are affected, at least in part, through the neuroendocrine-immune pathways. Life stress and depression may be associated with altered blood levels of CNS-released neuropeptides, including substance P (SP). SP is a powerful immunomodulator which is a critical link between the nervous and immune system. We have investigated the role of the neuropeptide SP and its preferred receptor, neurokinin-1, in HIV infection and AIDS. There are compelling data from our laboratories, as well as the findings in the literature, which demonstrate that SP may play an important role in the pathophysiology of neuropsychiatric disorders, including stress and depression in HIV-infected individuals and in the immunopathogenesis of HIV disease. Modulation of SP activity and SP receptor may offer a novel approach to the treatment of psychiatric disorders and to the design of new anti-HIV therapy.
Collapse
Affiliation(s)
- Wen-Zhe Ho
- Division of Allergy and Immunology, Joseph Stokes Jr. Research Institute at Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
35
|
Abstract
UNLABELLED In this review, the various biochemical tests that have been proposed for the prediction of preeclampsia are described and evaluated. Placenta hormone markers do not predict future disease. They denounce the early placental changes that are part of the evolving disease and only predict the imminent of preeclamptic syndrome. This explains why tests are better predictors when preeclampsia supervenes shortly, and why screening in the first trimester is unlikely to work as well as in the second trimester. The use of multiple markers in the screening should reflect different aspects of the disease process and could increase the specificity and sensitivity of the screening and work on different etiologic factors. The possible use of second-trimester biochemical screening to predict the risk of preeclampsia remains to be investigated in the high-risk population. TARGET AUDIENCE Obstetricians & Gynecologists, Family Physicians LEARNING OBJECTIVES After completion of this article, the reader should be able to list the various theories on the etiology of preeclampsia, to relate the various risk factors for the development of preeclampsia, and to describe the various screening tests for preeclampsia.
Collapse
Affiliation(s)
- Khalid Farag
- Department of Obstetrics and Gynaecology, Barnsley District General Hospital, Barnsley, UK
| | | | | |
Collapse
|
36
|
Huang SC, Undem B, Korlipara V. Design and synthesis of substituted N-methylbenzamide analogues derived from SR 48,968 as neurokinin-2 receptor antagonists. Bioorg Med Chem Lett 2004; 14:4779-82. [PMID: 15324907 DOI: 10.1016/j.bmcl.2004.06.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/16/2004] [Indexed: 11/17/2022]
Abstract
A series of N-methylbenzamide analogues (2-18) that is structurally derived from SR 48,968, a potent neurokinin-2 (NK(2)) receptor antagonist (pK(b)9.1), has been obtained using asymmetric synthesis. Isothiocyanato-N-methylbenzamide (10-12) and bromoacetamido-N-methylbenzamide derivatives (16-18) have been designed to serve as potential electrophilic affinity labels. Nitro-N-methylbenzamide (4-6) and acetamido-N-methylbenzamide (13-15) were designed to serve as the nonelectrophilic controls for these ligands. Functional assay results using guinea pig trachea indicate that electrophilic N-methylbenzamide analogues exhibit potent but surmountable NK(2) receptor antagonist activity. Several members of this series (2, 3, 7-9) exhibit potent NK(2) receptor antagonist potencies with pK(b) values in the range of 9.1-9.7. para-Fluoro substituted analogue 3 was found to be highly potent with a pK(b) of 9.7.
Collapse
Affiliation(s)
- Shih-Chung Huang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY 11439, USA
| | | | | |
Collapse
|
37
|
Sawicki G, Dakour J, Morrish DW. Functional proteomics of neurokinin B in the placenta indicates a novel role in regulating cytotrophoblast antioxidant defences. Proteomics 2004; 3:2044-51. [PMID: 14625867 DOI: 10.1002/pmic.200300537] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurokinin B (NKB) has recently been demonstrated to be secreted from the placenta in abnormally high amounts in preeclampsia (PE) and to cause hypertension in rats, suggesting it may be a mediator of some pathophysiological features of PE. It is also known that NKB receptors exist in the placenta. To determine the effect of high levels of NKB on the placenta, we have performed proteomics on five separate preparations of cultured purified human term cytotrophoblast cells. The results showed a statistically significant decrease in 20 proteins, of which five were unknown proteins. Proteins important in antioxidant defenses that decreased were thioredoxin, cyclophilin A, cytokeratin 1, and peroxiredoxin 5. Two proteins that inhibit intravascular anticoagulation, cytokeratin 1 and annexin 11 were also decreased. Pathways involving pro-inflammatory cytokine activation of NF-kappa B are opposed by Raf kinase inhibitor protein, which was also decreased. Cofilin 1, a protein involved in defense against bacteria, was also decreased. Among other proteins that were suppressed by NKB were proteasome proteins, desmoplakin, and calgizzarin. Western blots confirmed the decrease in cytokeratin 1 and cyclophilin A protein after NKB exposure. In PE, there is reduced antioxidant activity and increased intravascular coagulation. The findings that high levels of NKB, similar to those observed in PE, can impair these two classes of activity support the hypothesis that high NKB levels may contribute to the pathogenesis of PE.
Collapse
Affiliation(s)
- Grzegorz Sawicki
- Department of Pharmacology, Cardiovascular Research Group, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
38
|
Gerspacher M, Lewis C, Ball HA, Howes C, Subramanian N, Ryffel K, Fozard JR. Stereoselective preparation of N-[(R,R)-(E)-1-(3,4-dichlorobenzyl)-3- (2-oxoazepan-3-yl)carbamoyl]allyl-N-methyl-3,5-bis(trifluoromethyl)benzamide, a potent and orally active dual neurokinin NK(1)/NK(2) receptor antagonist. J Med Chem 2003; 46:3508-13. [PMID: 12877589 DOI: 10.1021/jm030786m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a program aimed at the development of neurokinin antagonists, N-[(R,R)-(E)-1-(3,4-dichlorobenzyl)-3-(2-oxoazepan-3-yl)carbamoyl]allyl-N-methyl-3,5-bis(trifluoromethyl)benzamide (1, DNK333) has been discovered as a potent and balanced neurokinin (tachykinin) NK(1)/NK(2) receptor antagonist. Enantiomerically pure (>99.5% ee) 1 can be prepared in 6 + 1 synthetic steps starting from commercially available optically active BOC-d-3,4-dichlorophenylalanine in an overall yield of ca. 25-30%. 1 showed potent affinities to cloned human NK(1) (pK(i) = 8.38) and NK(2) (pK(i) = 8.02) receptors. When 1 was compared to the other possible three diastereoisomers, it could be demonstrated that only the R,R-isomer (1) exhibits potent and balanced affinity for the cloned human NK(1) and NK(2) receptors. 1 exhibited favorable pharmacokinetic properties in guinea pigs following oral administration and demonstrated in vivo activity in pharmacological models of substance P- and neurokinin A (NKA)-induced bronchoconstriction in guinea pigs after intravenous and in squirrel monkeys after oral application.
Collapse
Affiliation(s)
- Marc Gerspacher
- Pharma Research, Novartis Pharma AG, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
39
|
Sakamoto R, Osada H, Iitsuka Y, Masuda K, Kaku K, Seki K, Sekiya S. Profile of neurokinin B concentrations in maternal and cord blood in normal pregnancy. Clin Endocrinol (Oxf) 2003; 58:597-600. [PMID: 12699441 DOI: 10.1046/j.1365-2265.2003.01758.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Neurokinin B (NKB) is a neuropeptide with a vasopressor effect belonging to the tachykinin family. This neuropeptide has attracted attention since recent reports indicated that it is also secreted in the placenta and is probably a cause of pre-eclampsia. To provide a basis for elucidation of the relationship between pre-eclampsia and NKB, this study aimed to clarify the trend of changes in blood NKB levels during normal pregnancy by measuring NKB concentrations in maternal blood during various gestational periods and in umbilical blood. METHODS Fifty-nine normal pregnant women, 12 normal puerperal women and 24 nonpregnant women were studied. The normal pregnant women comprised of 24 at 8-20 weeks' gestation (early), 11 at 28-34 weeks (middle) and 24 at 35-40 weeks (late). Plasma was separated from peripheral blood samples, umbilical venous blood samples (n = 24) and umbilical arterial blood samples (n = 9). Peptide fractions were extracted from each plasma sample and NKB concentrations were measured by the radioimmunoassay method. RESULTS The NKB concentration in early pregnancy was not significantly different from that in the nonpregnant state. During pregnancy, the blood NKB concentration increased with advance in gestational week, and a correlation was demonstrated by a linear regression equation. The concentration during puerperium was significantly lower than that in late pregnancy. The umbilical blood concentration was significantly higher than the maternal blood concentration in late pregnancy. There was no significant difference between umbilical venous and arterial blood. CONCLUSION This study demonstrated that NKB secreted from the placenta during pregnancy enters both the maternal and fetal circulation. These results suggest that NKB may modulate fetoplacental haemodynamics through a paracrine mechanism.
Collapse
Affiliation(s)
- Rie Sakamoto
- Department of Obstetrics and Gynecology, Chiba University Hospital, Chiba University School of Medicine, Chiba-shi, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Ulfers AL, Piserchio A, Mierke DF. Extracellular domains of the neurokinin-1 receptor: structural characterization and interactions with substance P. Biopolymers 2003; 66:339-49. [PMID: 12539262 DOI: 10.1002/bip.10312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The technical difficulties associated with the structure determination of membrane proteins have limited the structural information available for the ligand binding to G-protein coupled receptors (GPCRs). Here, we describe a reductionist approach to GPCR structure determination in which the extracellular domains of the receptor are examined by high-resolution NMR in the presence of a membrane mimetic. The resulting structural features are then incorporated into a molecular model of the receptor, utilizing the x-ray structure of rhodopsin to generate the topological orientation of the transmembrane helices. The results of our study of the neurokinin-1 receptor (NK-1R) and its interactions with substance P (SP) are detailed here. The structure of the N-terminus, NK-1R(1-39), and of the third extracellular loop, NK-1R(264-290), in the presence of dodecylphosphocholine micelles is described. Our findings provide a structural basis for the interpretation of the results from other methods including mutagenesis, fluorescence, and photoaffinity labeling experiments, resulting in an experimentally based, high-resolution model of SP binding to NK-1R.
Collapse
Affiliation(s)
- Amy L Ulfers
- Department of Molecular Pharmacology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
41
|
Stacey AE, Woodhall GL, Jones RSG. Activation of neurokinin-1 receptors promotes GABA release at synapses in the rat entorhinal cortex. Neuroscience 2003; 115:575-86. [PMID: 12421623 DOI: 10.1016/s0306-4522(02)00412-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously shown that activation of neurokinin-1 receptors reduces acutely provoked epileptiform activity in rat entorhinal cortex in vitro, and suggested that this may result from an increase in GABA release from inhibitory interneurones. In the present study we have made whole cell patch clamp recordings of spontaneous GABA-mediated inhibitory postsynaptic currents as an indicator of GABA release in slices of rat entorhinal cortex, and determined the effects of neurokinin receptor activation on this release. The neurokinin-1 receptor agonists septide and GR73632 provoked a robust increase in the frequency of GABA-mediated currents, and an increase in mean amplitude. The effects were mimicked by substance P, and blocked by a neurokinin-1 receptor antagonist. High concentrations of neurokinin A had similar effects, which were also blocked by the neurokinin-1 receptor antagonist, but agonists at neurokinin-2 or neurokinin-3 receptors were ineffective. The increases in amplitude and frequency of events provoked by septide were prevented by prior blockade of action potential-dependent release with tetrodotoxin. In current clamp recordings from putative interneurones, GR73632 evoked depolarisation and a prolonged discharge of action potentials. Finally, recordings from pyramidal neurones and oriens-alveus interneurones in CA1 of the hippocampus showed that application of GR73632 caused an increase in frequency and amplitude of GABA-mediated inhibitory postsynaptic currents in the former and persistent firing of action potentials in the latter. The results demonstrate that neurokinin-1 receptor activation promotes the release of GABA at synapses on principal neurones in both entorhinal cortex and hippocampus. The abolition of this effect by tetrodotoxin and the excitatory responses seen in interneurones clearly suggest that the neurokinin-1 receptor is localised on the soma-dendritic domain of the inhibitory neurones. Thus, substance P inputs to inhibitory neurones may have a widespread influence on cortical network excitability and could play a role in epileptogenesis and its control.
Collapse
Affiliation(s)
- A E Stacey
- Department of Physiology and MRC Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, University Walk, UK
| | | | | |
Collapse
|
42
|
Wareing M, Bhatti H, O'hara M, Kenny L, Warren AY, Taggart MJ, Baker PN. Vasoactive effects of neurokinin B on human blood vessels. Am J Obstet Gynecol 2003; 188:196-202. [PMID: 12548217 DOI: 10.1067/mob.2003.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Preeclampsia (PE) is a multisystem disease unique to human pregnancy. Abnormal placentation results in placental hypoperfusion leading to the secretion of a factor(s) by the placenta. Our aim was to investigate whether neurokinin B (NKB) is the circulating factor associated with PE. STUDY DESIGN Vascular effects of NKB were assessed in blood vessels dissected from myometrial and omental biopsy specimens obtained at caesarean section from normal pregnant women (n = 26) or in mesenteric blood vessels obtained from nonpregnant female Wistar rats (n = 4). RESULTS Incubation with NKB did not alter endothelial-dependent relaxation of omental or myometrial arteries. NKB produced a dose-dependent relaxation in preconstricted omental arteries and veins. NKB did not affect vasoactive responsiveness of rat mesenteric arteries. CONCLUSION We conclude from these observations that NKB is not the circulating factor associated with increased vascular resistance in PE.
Collapse
Affiliation(s)
- Mark Wareing
- Maternal and Fetal Health Research Centre, St Mary's Hospital, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Ho WZ, Evans DL, Douglas SD. Substance P and Human Immunodeficiency Virus Infection: Psychoneuroimmunology. CNS Spectr 2002; 7:867-874. [PMID: 12766696 DOI: 10.1017/s1092852900022483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Effects on the immune system caused by changes in behavioral state or brain activity are mediated, at least in part, through neuroendocrine-immune pathways. Life stress and depression may be associated with altered blood levels of central nervous system-released neuropeptides, including substance P (SP). SP acts as a neuroregulator or neurotransmitter in the conduction of nociceptive stimuli, and is a modulator of neuroimmunoregulation. This review summarizes current knowledge regarding the role of the neuropeptide, SP, in psychoneuroimmunology, in particular as it relates to human immunodeficiency virus infection and acquired immunodeficiency disease syndrome. The association between depression, anxiety, and stress in HIV-disease progression suggests that neurobiologic and neurophysiologic factors play a role in modulating HIV infection and responses to antiretroviral therapy. Individuals with HIV or AIDS may experience stressful life circumstances that can result in increased symptoms of anxiety, stress, and/or depression. Furthermore, psychological and psychiatric symptoms, which occur in individuals with HIV and AIDS, may be related to the progression of AIDS disease. This review presents evidence from the literature, as well as findings from basic investigations conducted in the authors' laboratories, demonstrating that SP may play an important role in HIV pathophysiology. SP can impact the susceptibility of immune cells to HIV infection and modulate immune cell functions in ways that may affect the course of HIV in infected individuals. Moreover, modulation of SP activity and SP receptor is being explored for its potential as a novel therapeutic approach to the treatment of some psychological and psychiatric disorders and to the design of new anti-HIV therapy.
Collapse
Affiliation(s)
- Wen-Zhe Ho
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
44
|
Stacey AE, Woodhall GL, Jones RSG. Neurokinin-receptor-mediated depolarization of cortical neurons elicits an increase in glutamate release at excitatory synapses. Eur J Neurosci 2002; 16:1896-906. [PMID: 12453053 DOI: 10.1046/j.1460-9568.2002.02266.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using whole-cell patch-clamp recordings of spontaneous synaptic activity, we have previously shown that activation of neurokinin-1 (NK1) but not NK3 receptors leads to increased GABA release onto principal cells in the rat entorhinal cortex. In the present study, we examine the effect of activation of these receptors on spontaneous excitatory synaptic responses mediated by glutamate. Both neurokinin B (NKB) and the specific NK3 receptor agonist, senktide, increased the spontaneous release of glutamate, and a similar effect was also seen with substance P (SP) and other NK1 receptor agonists. The increased release induced by either SP or senktide was absent in the presence of tetrodotoxin, demonstrating that it was likely to occur via activation of presynaptic excitatory neurons. Current-clamp recordings confirmed that principal neurons were depolarized by both NK3 and NK1 agonists. However, the response to the former but not the latter persisted in tetrodotoxin, allowing us to conclude that NK3 receptor activation provoked glutamate release via recurrent collaterals between principal neurons, whereas the NK1 receptors may be localized to excitatory interneurons. Finally, the increased release induced by senktide, but not SP, was reduced by an antagonist of group III metabotropic glutamate receptors. Thus, glutamate release from recurrent collaterals is facilitated by a presynaptic group III autoreceptor [Evans, D.I.P., Jones, R.S.G. & Woodhall, G.L. (2000) J. Neurophysiol.,83, 2519-2525], whereas the terminals of neurons responsible for the NK1-receptor induced glutamate release may not bear these receptors. These results have implications for control of activity and epileptogenesis in cortical networks.
Collapse
Affiliation(s)
- Anne E Stacey
- Department of Physiology and MRC Centre for Synaptic Plasticity, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
45
|
Mah R, Gerspacher M, von Sprecher A, Stutz S, Tschinke V, Anderson GP, Bertrand C, Subramanian N, Ball HA. Biphenyl derivatives as novel dual NK(1)/NK(2)-receptor antagonists. Bioorg Med Chem Lett 2002; 12:2065-8. [PMID: 12127505 DOI: 10.1016/s0960-894x(02)00382-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In a continuation of our efforts to simplify the structure of our neurokinin antagonists, a series of substituted biphenyl derivatives has been prepared. Several compounds exhibit potent affinities for both the NK(1) receptor (<10nM) and for the NK(2) receptor (<50 nM). Details on the design, synthesis, biological activities, SAR and conformational analysis of this new class of dual NK(1)/NK(2) receptor antagonists are presented.
Collapse
Affiliation(s)
- Robert Mah
- Pharma Research, Novartis Pharma AG, CH-4002, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gerspacher M, La Vecchia L, Mah R, von Sprecher A, Anderson GP, Subramanian N, Hauser K, Bammerlin H, Kimmel S, Pawelzik V, Ryffel K, Ball HA. Dual neurokinin NK(1)/NK(2) antagonists: N-[(R,R)-(E)-1-arylmethyl-3-(2-oxo-azepan-3-yl)carbamoyl]allyl-N-methyl-3,5-bis(trifluoromethyl)benzamides and 3-[N'-3,5-bis(trifluoromethyl)benzoyl-N-arylmethyl-N'-methylhydrazino]-N-[(R)-2-oxo-azepan-3-yl]propionamides. Bioorg Med Chem Lett 2001; 11:3081-4. [PMID: 11714615 DOI: 10.1016/s0960-894x(01)00631-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on the structure of N-[(R,R)-(E)-1-(4-chlorobenzyl)-3-(2-oxoazepan-3-yl)carbamoyl]allyl-N-methyl-3,5-bis(trifluoromethyl)benzamide (1), attempts to improve the NK(2) affinity have resulted in the discovery of N-[(R,R)-(E)-1-(3,4-dichlorobenzyl)-3-(2-oxoazepan-3-yl)carbamoyl]allyl-N-methyl-3,5-bis(trifluoromethyl)benzamide (9, DNK333) exhibiting a 5-fold improved affinity to the NK(2) receptor in comparison to 1. Simplification of the structure via elimination of a chiral centre led to 3-[N'-3,5-bis(trifluoromethyl)benzoyl-N-(3,4-dichlorobenzyl)-N'-methylhydrazino]-N-[(R)-2-oxo-azepan-3-yl]propionamide (22), a potent and fairly balanced NK(1)/NK(2) antagonist.
Collapse
Affiliation(s)
- M Gerspacher
- Pharma Research, Novartis Pharma AG, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yoshikawa T, Yoshida N, Oka M. Central antiemetic effects of AS-8112, a dopamine D2, D3, and 5-HT(3) receptor antagonist, in ferrets. Eur J Pharmacol 2001; 431:361-4. [PMID: 11730730 DOI: 10.1016/s0014-2999(01)01459-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The involvement of a central mechanism in the antiemetic effect of AS-8112 ((R)-5-bromo-N-(1-ethyl-4-methylhexahydro-1H-1,4-diazepin-6-yl)-2-methoxy-6-methylamino-3-pyridinecarboxamide x 2 fumarate), a novel and potent dopamine D2, D3, and 5-HT(3) receptor antagonist, was investigated in ferrets. Intracerebroventricularly administered AS-8112 dose dependently inhibited R(+)-7-OH-DPAT (R(+)-7-hydroxy-2-(N,N-di-n-propylamino) tetraline)-induced emesis (ID(50); 0.11 microg/kg, i.c.v.). In addition, AS-8112 (10 microg/kg, i.c.v.) significantly inhibited emesis induced by cisplatin. Ondansetron (10 microg/kg, i.c.v.) also inhibited cisplatin-induced emesis, but did not inhibit R(+)-7-OH-DPAT-induced emesis. S(-)-eticlopride (10 microg/kg, i.c.v.) did not inhibit emesis induced by cisplatin. However, racemic CP-99,994 ((+/-)-(2S, 3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine) (10 microg/kg, i.c.v.) inhibited both cisplatin- and R(+)-7-OH-DPAT-induced emesis. These results suggest that the antiemetic effects of AS-8112 are centrally mediated via dopamine D3 and 5-HT(3) receptors in ferrets.
Collapse
Affiliation(s)
- T Yoshikawa
- Department of Pharmacology I, Discovery Research Laboratories, Dainippon Pharmaceutical Co., Ltd., 33-94 Enoki-cho, Suita, Osaka, 564-0053, Japan.
| | | | | |
Collapse
|
48
|
Page NM, Woods RJ, Lowry PJ. A regulatory role for neurokinin B in placental physiology and pre-eclampsia. REGULATORY PEPTIDES 2001; 98:97-104. [PMID: 11231038 DOI: 10.1016/s0167-0115(00)00239-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tachykinin dogma has assumed, so far, that neurokinin B (NKB) is a neuropeptide that is not produced in any peripheral tissue even though its endogenous receptor, NK3, has been found in a number of locations throughout the human body. We have found an abundant source of peripheral NKB in the human and rat placenta. In this review we describe the discovery of NKB in the placenta and examine its possible role in placental physiology and pre-eclampsia (PE). Excessive secretion of placental NKB into the maternal circulation during the third trimester of pregnancy has been found in women suffering from PE. This may provide the key to the cause of the multiple and complex symptoms associated with this potentially life-threatening illness. We also reveal the structural organisation of the human NKB gene for the first time as well as discussing putative mechanisms for its control.
Collapse
Affiliation(s)
- N M Page
- School of Animal and Microbial Sciences, The University of Reading, RG6 6AJ, Reading, UK
| | | | | |
Collapse
|
49
|
Koutcherov Y, Ashwell KW, Paxinos G. The distribution of the neurokinin B receptor in the human and rat hypothalamus. Neuroreport 2000; 11:3127-31. [PMID: 11043536 DOI: 10.1097/00001756-200009280-00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neurokinin B receptor (NK3) is an element of the hypothalamic neuronal circuitry regulating blood pressure in rats. The present study used immunohistochemistry to reveal the distribution of NK3 in the human hypothalamus. The strongest NK3-like immunoreactivity in the human hypothalamus was found in neurons of the paraventricular nucleus, specifically in the parvicellular and posterior paraventricular subnuclei. Another prominent population of NK3-positive cells in the human hypothalamus was found in the perifornical nucleus. The present study also showed two previously unreported populations of NK3-positive neurons in the rat periventricular nucleus and medial magnocellular paraventricular subnucleus. It is concluded that there is a large degree of similarity in the distribution of NK3 in the human and rat hypothalamus.
Collapse
Affiliation(s)
- Y Koutcherov
- School of Psychology, The University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
50
|
Page NM, Woods RJ, Gardiner SM, Lomthaisong K, Gladwell RT, Butlin DJ, Manyonda IT, Lowry PJ. Excessive placental secretion of neurokinin B during the third trimester causes pre-eclampsia. Nature 2000; 405:797-800. [PMID: 10866201 DOI: 10.1038/35015579] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pre-eclampsia is a principal cause of maternal morbidity and mortality, affecting 5-10% of first pregnancies worldwide. Manifestations include increased blood pressure, proteinuria, coagulopathy and peripheral and cerebral oedema. Although the aetiology and pathogenesis remain to be elucidated, the placenta is undoubtedly involved, as termination of pregnancy eradicates the disease. Here we have cloned a complementary DNA from human placental messenger RNA encoding a precursor protein of 121 amino acids which gives rise to a mature peptide identical to the neuropeptide neurokinin B (NKB) of other mammalian species. In female rats, concentrations of NKB several-fold above that of an animal 20 days into pregnancy caused substantial pressor activity. In human pregnancy, the expression of NKB was confined to the outer syncytiotrophoblast of the placenta, significant concentrations of NKB could be detected in plasma as early as week 9, and plasma concentrations of NKB were grossly elevated in pregnancy-induced hypertension and pre-eclampsia. We conclude that elevated levels of NKB in early pregnancy may be an indicator of hypertension and pre-eclampsia, and that treatment with certain neurokinin receptor antagonists may be useful in alleviating the symptoms.
Collapse
Affiliation(s)
- N M Page
- School of Animal and Microbial Sciences, The University of Reading, UK
| | | | | | | | | | | | | | | |
Collapse
|