1
|
Soleymani S, Piri S, Aazami MA, Salehi B. Cerium oxide nanoparticles alleviate drought stress in apple seedlings by regulating ion homeostasis, antioxidant defense, gene expression, and phytohormone balance. Sci Rep 2025; 15:11805. [PMID: 40189632 PMCID: PMC11973181 DOI: 10.1038/s41598-025-96250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Drought stress is one of the most important environmental constraints that negatively affect the growth and production of crops worldwide. Recently, nanotechnology has been increasingly used to improve the tolerance of plants exposed to abiotic stresses such as drought. The present study was designed to investigate the moderating effect of cerium oxide nanoparticles (CeO2 NPs) on alleviating drought stress for the apple cv. 'Red Delicious' on M9 rootstock. Drought stress caused a significant increase in CAT, GPX, APX, and SOD enzyme activities compared to control plants. Drought decreased the content of macro and microelements, and the application of CeO2 NPs led to significant changes in the content of these elements in plants under drought stress. CeO2 NPs significantly reduced chlorophyll damage under high drought levels. In addition, they alleviated the damage caused by drought, which was shown by lower levels of MDA and EL. When these nanoparticles were used during drought stress, they greatly increased the production of abscisic acid and indole-3-acetic acid hormone. In response to drought stress, the expression of DREB1A and DREB1E genes increased. The use of CeO2 NPs in stressful and non-stressful conditions had a positive effect on improving the studied traits of the apple plants and enhancing nutrient levels. Taken together, the findings suggest that CeO2 NPs can be used as promising drought stress-reducing agents in apples. Therefore, understanding the mechanisms of abiotic stress in global horticulture and the role of nanoparticles is essential for developing improved, drought-tolerant crops and the adoption of measures to deal with changing climatic conditions.
Collapse
Affiliation(s)
- Sohrab Soleymani
- Department of Horticulture, Abhar Branch, Islamic Azad University, Abhar, Iran
| | - Saeed Piri
- Department of Horticulture, Abhar Branch, Islamic Azad University, Abhar, Iran.
| | - Mohammad Ali Aazami
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Behhrooz Salehi
- Department of Horticulture, Abhar Branch, Islamic Azad University, Abhar, Iran
| |
Collapse
|
2
|
Wu G, Wang Z, Li Y, Du P, Liu X, Hou J, Zhou W, Zhou Y. Identification of nuclear factor YA6 genes in sorghum and characterization of their involvement in drought tolerance. FRONTIERS IN PLANT SCIENCE 2025; 16:1524066. [PMID: 40177019 PMCID: PMC11961913 DOI: 10.3389/fpls.2025.1524066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025]
Abstract
Nuclear factor Y alpha proteins (NF-YAs) are conserved transcription factor proteins crucial to plant growth and development that exhibit specific responses to biotic and abiotic stresses. Using bioinformatics approaches to investigate the NF-YA family in sorghum (Sorghum bicolor), we identified nine SbNF-YA genes unevenly distributed on four of the 10 sorghum chromosomes. Despite variations in gene structure, all encode proteins have the characteristic CBFB_NFYA domain and other predicted motifs. The secondary structure of SbNF-YA members is predominantly composed of α-helices and random coils. A phylogenetic analysis of NF-YAs of sorghum and other plant species indicated that SbNF-YAs are closely related to NF-YAs from maize (Zea mays) and distantly related to those in Arabidopsis (Arabidopsis thaliana). A colinearity analysis determined that six of the nine SbNF-YA genes arose from segmental duplication events. Transcriptome and RT-qPCR analyses showed that the expression levels of eight of the SbNF-YA genes (SbNF-YA5 being the exception) are responsive to drought stress to varying degrees. Notably, SbNF-YA1, SbNF-YA4, SbNF-YA6, SbNF-YA8, and SbNF-YA9 expression was significantly upregulated under the stress conditions, suggesting that they participate in drought response. When heterologously expressed in Arabidopsis, SbNF-YA6 conferred greater tolerance of drought stress imposed by treatment with the osmolyte mannitol, with the transgenic Arabidopsis lines showing superior germination rates; longer roots; higher fresh weight; higher activities of the enzymes peroxidase, superoxide dismutase, and catalase; and higher soluble protein and proline contents, compared to the wild type. Additionally, the transgenic Arabidopsis lines accumulated lower levels of hydrogen peroxide, superoxide anion, and malondialdehyde. The expression levels of several drought-responsive genes were elevated in transgenic Arabidopsis seedlings relative to the wild type, indicating that the heterologous expression of SbNF-YA6 enhances the drought tolerance of Arabidopsis.
Collapse
Affiliation(s)
- GuoJiang Wu
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - ZhenGuo Wang
- Tongliao Academy of Agricultural Science, Tongliao, Inner Mongolia, China
| | - Yan Li
- Tongliao Academy of Agricultural Science, Tongliao, Inner Mongolia, China
| | - PinTing Du
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - XinYu Liu
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Jie Hou
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Wei Zhou
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - YaXing Zhou
- Key Laboratory of State Ethnic Affairs Commission of Ecological Agriculture in Horchin Sandy Land, College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
3
|
Mourad KA, Othman YIM, Kandeel DM, Abdelghany M. Assessing the drought tolerance of some sesame genotypes using agro-morphological, physiological, and drought tolerance indices. BMC PLANT BIOLOGY 2025; 25:352. [PMID: 40098085 PMCID: PMC11917027 DOI: 10.1186/s12870-025-06235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND One significant abiotic stressor that harms sesame productivity globally is drought. This investigation used six sesame genotypes to measure variance in many variables under irrigated and terminal drought stress environments. Growth characteristics (plant height, fruiting zone length, branches' number), yield-related parameters (capsules' number per plant, capsule's length, 1000 seeds' weight, seed yield per plant, and seed yield per feddan) and physiological characters (relative water content, chlorophyll A content, chlorophyll B content, chlorophyll A + B content, and proline concentration) of sesame were measured. Six drought indices (geometric mean productivity (GMP), mean productivity (MP), stress tolerance index (STI), tolerance index (TOL), stress susceptibility index (SSI) and, yield stability index (YSI)) were derived using seed yield per feddan. This study was aimed to investigate the effects of drought stress on the physiological and yield-related characteristics of the sesame genotypes and to find the qualities that were most helpful in selecting drought-resistant genotypes. RESULTS The analysis of variance revealed significant differences in genotypes and water depletion ratios, as well as their interactions, for all growth variables, except the interaction between genotypes and water depletion ratios for plant height and relative water content. Line 13 (H. 102) had the highest branches' number (6.85), capsules' number per plant (239.33) and capsule's length (3.35 cm) attributes under normal circumstances. Line 31 (H. 68) produced the maximum yield per plant (33.45 g) and feddan (679.83) and had the highest weight of 1000 seeds (3.9 g) under normal circumstances. Under the level (80% water depletion ratio), H. 68 had the highest amounts of chlorophyll A (5.73) and chlorophyll A + B (17.37) whereas H. 102 exhibited the highest concentration of chlorophyll B (5.73). The genotype H. 68 of sesame was found to have the greatest MP (650.35), GMP (649.32) and YI (1.16) indices followed by genotype H. 102. The Shandaweell 3 genotype resulted in the lowest SSI (36.92) and TOL (0.55) indices. Line 26 (H132) exhibited the highest average YSI values. CONCLUSIONS These data revealed that genotypes H. 102, H. 68 and Shandaweell 3 are the most drought-tolerant among the genotypes utilized in this study. These results may contribute to developing effective breeding techniques for drought-stressed sesame in the future.
Collapse
Affiliation(s)
- Kh A Mourad
- Oil Crops Dept., Field Crops Res. Inst., Agric. Res. Center, Giza, Egypt
| | | | - Doha M Kandeel
- Physiological Crops Dept., Field Crops Res. Inst., Agric. Res. Center, Giza, Egypt
| | - Mohamed Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| |
Collapse
|
4
|
Moraes BV, Coelho MIS, Silva PS, Araujo ASF, Bonifacio A, Pereira APA, de Medeiros EV, Araujo FF. Bacillus subtilis inoculated in organic compost could improve the root architecture and physiology of soybean under water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109540. [PMID: 39854788 DOI: 10.1016/j.plaphy.2025.109540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 01/26/2025]
Abstract
Bacillus subtilis is known to promote root growth and improve plant physiology, while organic compost enhances soil water retention. This study explored the combined effect of inoculating B. subtilis in organic compost on soybean growth under water deficit. The treatments included chemical fertilization, non-inoculated organic compost, and organic compost inoculated with B. subtilis which were assessed under well-watered and water-deficit conditions. The organic compost inoculated with B. subtilis increased root biomass, length, volume, and the number of root tips under well-watered conditions, although it reduced root diameter. Under water deficit, the organic compost inoculated with B. subtilis increased root tip number (∼150%), biomass (∼95%) and number (∼85%) of nodules. Water deficit negatively affected soybean physiology, reduced photosynthesis, transpiration, and stomatal conductance, while increased internal CO₂ concentration. However, the organic compost inoculated with B. subtilis mitigated these effects, enhancing photosynthesis (∼20%) and water use efficiency (∼25%). Under water deficit, this treatment also increased shoot biomass by 15% and the drought tolerance index by 51% compared to the control. The combination of B. subtilis and organic compost improved root architecture, nodulation, and drought tolerance. These results suggest that B. subtilis inoculated in the organic compost is a promising strategy for enhancing soybean productivity and resilience under water stress, offering a novel approach to mitigating drought effects in agriculture.
Collapse
Affiliation(s)
- Beatriz V Moraes
- Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil
| | - Milene I S Coelho
- Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil
| | - Patrick S Silva
- Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil
| | - Ademir S F Araujo
- Center of Agricultural Science, Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| | - Aurenivia Bonifacio
- Laboratory of Plant Physiology and Biochemistry, Center of Natural Science, UFPI, Teresina, PI, Brazil
| | - Arthur P A Pereira
- Soil Science Depertment, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Fabio F Araujo
- Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil
| |
Collapse
|
5
|
Wang Y, Long S, Zhang J, Wang P, Zhao L. Evaluation of Growth, Physiological, and Biochemical Responses of Different Medicago sativa L. Varieties Under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:639. [PMID: 40094522 PMCID: PMC11901701 DOI: 10.3390/plants14050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Alfalfa (Medicago sativa), an important leguminous forage crop, is valued for its high nutritional content, substantial yield, palatability, and broad adaptability. Drought is among the most significant environmental constraints on alfalfa growth, particularly in the karst regions of southwestern China. In this study, we conducted pot experiments to investigate the growth and physiological responses of seven alfalfa varieties introduced into the karst region of Guizhou under drought conditions. The results revealed that drought stress markedly reduced both plant height and aboveground biomass accumulation. Moreover, under drought stress, these alfalfa varieties exhibited increased root length, root surface area, and root tip number; elevated protective enzyme activities; and decreased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA), thereby maintaining relatively higher water content. Each of the seven varieties displayed distinct growth and physiological adaptation mechanisms under drought stress. Integrating principal component analysis and membership function analysis, we ranked the drought resistance of these alfalfa varieties from highest to lowest as follows: Crown > WL525 > Colosseo > Victoria > PANGO > Giant 801 > Dimitra. These findings provide valuable insights for introducing drought-resistant alfalfa varieties into karst regions of southwestern China and offer guidance for breeding and cultivation strategies across various environmental conditions.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.W.); (S.L.); (J.Z.)
| | - Sisi Long
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.W.); (S.L.); (J.Z.)
| | - Jiyuan Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.W.); (S.L.); (J.Z.)
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China;
| | - Lili Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.W.); (S.L.); (J.Z.)
| |
Collapse
|
6
|
Hong MJ, Ko CS, Kim DY. Wheat E3 ligase TaPRP19 is involved in drought stress tolerance in transgenic Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:233-246. [PMID: 40070538 PMCID: PMC11890807 DOI: 10.1007/s12298-025-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/09/2024] [Accepted: 01/24/2025] [Indexed: 03/14/2025]
Abstract
TaPRP19, a wheat U-box E3 ligase gene, was isolated and characterized for its role in drought stress tolerance. The gene encodes a 531 amino acid protein with a U-box domain at the N-terminal and a WD40 domain at the C-terminal. Subcellular localization studies using TaPRP19-GFP fusion in Nicotiana benthamiana confirmed predominant nucleus localization. In vitro ubiquitination assays demonstrated that TaPRP19 possesses E3 ligase activity. RT-qPCR analysis revealed higher expression of TaPRP19 in wheat leaves, which increased under PEG, mannitol, and ABA treatments. Transgenic Arabidopsis lines overexpressing TaPRP19 exhibited improved seed germination rates and root elongation under mannitol and ABA stress, as well as enhanced survival rates under drought conditions compared to wild-type (WT) plants. Additionally, these transgenic lines showed upregulated expression of antioxidant-related and drought-marker genes, reduced ROS accumulation, and increased activities of antioxidant enzymes, suggesting enhanced oxidative stress mitigation. These findings highlight TaPRP19 as a potential target for developing drought-tolerant crops, providing insights into its functional mechanisms and paving the way for future genetic engineering applications in wheat and other crops. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01557-7.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup, 56212 Republic of Korea
| | - Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup, 56212 Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-Ro, Yesan-Eup, 32439 Republic of Korea
| |
Collapse
|
7
|
El-Shazoly RM, Othman AA, Zaheer MS, Al-Hossainy AF, Abdel-Wahab DA. Zinc oxide seed priming enhances drought tolerance in wheat seedlings by improving antioxidant activity and osmoprotection. Sci Rep 2025; 15:3863. [PMID: 39890839 PMCID: PMC11785979 DOI: 10.1038/s41598-025-86824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025] Open
Abstract
Drought can affect all growth stages and has a significant effect on seed germination, which affects all physiological and metabolic germination processes. It also leads to dehydration, which increases the oxidation of lipids and membranes and disrupts the functioning of biomolecules in plants. Zinc is an essential element for several enzymes involved in metabolism, cell elongation, preservation of the strength and integrity of cell membranes, seed development, and resistance to environmental stress. A pot experiment was conducted to determine how ZnO seed priming, either in the form of ZnO NPs (nanopriming) or ZnO bulk priming (60 mg L- 1), counteracts the negative impacts of drought at different levels (80% and 60% FC) on wheat (Triticum aestivum L.) seedlings at the seedling stage. A recent experiment revealed that seed priming agents significantly mitigate the negative effects of drought stress, especially at 60% FC, by positively influencing various parameters of wheat seedlings. Notably, the POD activity increased by 91.8% and 289.9% for the shoots, 218.6% and 261.6% for the roots, the phenolic content increased by 194.4% for the shoots and 1139.6% for the roots, the H2O2 scavenging percentage increased by 124.9% and 135.4% for the shoots and 147.6% for the roots, and the lipid peroxidation inhibition percentage increased by 320.6% and 433% for the shoots. Moreover, the utilization of seed priming agents had a profound effect on free amino acids (393.8%, 502.8% for roots) and soluble carbohydrates (183.4% for roots) compared with those in stressed seedlings without priming. Experimental and computational methods (time-dependent density functional theory (TD-DFT)) were employed to perform IR and XRD analyses of the isolated molecules of the ZnO NPs/Iso. In conclusion, the application of ZnO NPs or bulk ZnO was found to create effective mechanical and physiological barriers, as confirmed by the analysis of antioxidant enzyme activities, nonenzymatic components, free radical scavenging, and osmoprotectant constituents.
Collapse
Affiliation(s)
- Rasha M El-Shazoly
- Botany and Microbiology Department, Faculty of Science, New Valley University, Al-Kharja, New Valley, 72511, Egypt.
| | - A A Othman
- Physics Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Ahmed F Al-Hossainy
- Chemistry Department, Faculty of Science, New Valley University, Al-Wadi Al-Gadid, Al-Kharga, 72511, Egypt
- Chemistry Department, Faculty of Science, Northern Border University, 1321, Arar, Saudi Arabia
| | - Dalia A Abdel-Wahab
- Botany and Microbiology Department, Faculty of Science, New Valley University, Al-Kharja, New Valley, 72511, Egypt
| |
Collapse
|
8
|
Zhou X, El-Sappah AH, Khaskhoussi A, Huang Q, Atif AM, Elhamid MAA, Ihtisham M, El-Maati MFA, Soaud SA, Tahri W. Nanoparticles: a promising tool against environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1509047. [PMID: 39931338 PMCID: PMC11808028 DOI: 10.3389/fpls.2024.1509047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025]
Abstract
With a focus on plant tolerance to environmental challenges, nanotechnology has emerged as a potent instrument for assisting crops and boosting agricultural production in the face of a growing worldwide population. Nanoparticles (NPs) and plant systems may interact molecularly to change stress response, growth, and development. NPs may feed nutrients to plants, prevent plant diseases and pathogens, and detect and monitor trace components in soil by absorbing their signals. More excellent knowledge of the processes of NPs that help plants survive various stressors would aid in creating more long-term strategies to combat these challenges. Despite the many studies on NPs' use in agriculture, we reviewed the various types of NPs and their anticipated molecular and metabolic effects upon entering plant cells. In addition, we discussed different applications of NPs against all environmental stresses. Lastly, we introduced agricultural NPs' risks, difficulties, and prospects.
Collapse
Affiliation(s)
- Xu Zhou
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| | - Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amani Khaskhoussi
- Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Amr M. Atif
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad Ihtisham
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Mohamed F. Abo El-Maati
- Agriculture Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Salma A. Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Walid Tahri
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
9
|
Zargar TB, Sobh M, Basal O, Veres S. Genotype-dependent resilience mediated by melatonin in sweet corn. BMC PLANT BIOLOGY 2025; 25:29. [PMID: 39773623 PMCID: PMC11708109 DOI: 10.1186/s12870-024-05972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Water deficits, exacerbated by climate change and unpredictable weather, have become a significant global challenge to agricultural productivity. In this context, exogenous melatonin treatment is well documented as a stress alleviator; however, its effects on various biological processes, particularly in less-explored genotypes, remain understudied. This study aimed to enhance water deficit resilience in sweet corn by applying foliar melatonin to four genotypes-Messenger, Dessert, Royalty, and Tyson under two levels of water deprivation induced by polyethylene glycol at 8% and 12% concentrations in a hydroponic, controlled environment. RESULTS The melatonin treatments were assessed for their impact on various morphological, physiological, and biochemical parameters under both normal and water-deficit conditions. Under severe water deprivation (12% PEG), melatonin increased root length by 75%, peroxidase activity by 31% while reducing malondialdehyde content by 34% in genotype Dessert indicating enhanced antioxidant defense and reduced oxidative damage. Likewise in genotype Royalty, stomatal conductance increased by 68%, with increasing specific area by 125% on melatonin treatment under severe water deprivation. The treatment also improved chlorophyll-a content by 93% in Royalty and 37% in Tyson, while decrease in malondialdehyde levels by 42% in Tyson, indicating reduced oxidative damage under severe water deprivation. In addition, melatonin increased photosystem II efficiency (Fv/Fm) in all genotypes with 27% increase in Royalty and improved quantum yield across all genotypes, regardless of the water deficit level. CONCLUSION Overall, melatonin treatment showed genotype-specific and dose-dependent effects in mitigating water deficit effects, offering a promising strategy to improve crop resilience and productivity in limited water environments. These results suggest the practical application for integrating melatonin treatments into sustainable agricultural practices, such as improving water deficit tolerance in sweet corn and potentially other crops, to maintain productivity under adverse climatic conditions.
Collapse
Affiliation(s)
- Tahoora Batool Zargar
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Mawia Sobh
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Oqba Basal
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.
| | - Szilvia Veres
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Ravikiran KT, Thribhuvan R, Anilkumar C, Kallugudi J, Prakash NR, Adavi B S, Sunitha NC, Abhijith KP. Harnessing the power of genomics to develop climate-smart crop varieties: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123461. [PMID: 39622137 DOI: 10.1016/j.jenvman.2024.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
Abiotic stresses arising as consequences of climate change pose a serious threat to agricultural productivity on a global scale. Most cultivated crop varieties exhibit susceptibility to such environmental pressures as drought, salinity, and waterlogging. Addressing these abiotic stresses through agronomic means is not only financially burdensome but also often impractical, particularly in the case of abiotic stresses like heat stress. Cultivating resilient varieties that can withstand such pressures emerges as an economically feasible strategy to mitigate these challenges. Nevertheless, the development of stress-tolerant cultivars is hindered by the intricate nature of abiotic stress tolerance, often characterized by low heritability values. Compounding this complexity is the dynamic and multifaceted nature of these stresses, which impede conventional breeding efforts, rendering them painstakingly slow. The identification of molecular markers has emerged as a pivotal advancement in this arena. By pinpointing genomic regions associated with tolerance to abiotic stresses, these markers serve as effective tools for selection and trait introgression. In the post-genomic era, the proliferation of high-density SNP markers has revolutionized breeding strategies. Genomic selection, leveraging these markers, has become the method of choice for addressing polygenic traits with low heritability, such as abiotic stress tolerance. With the functional characterization of many genes being done, precise manipulation through genome editing techniques is gaining significant traction. This review delves into the application of molecular markers in breeding stress-tolerant crop varieties, alongside role of recent genomic techniques in enhancing abiotic stress tolerance. It also explores success stories and identifies potential targets for marker-assisted selection.
Collapse
Affiliation(s)
- K T Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Institute of Jute and Allied Fibres, Barrakpore, West Bengal, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttak, Odisha, India; Department of Agronomy and Plant Genetics, University of Minnesota, MN, USA
| | - Jayanth Kallugudi
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh, India
| | - N R Prakash
- ICAR-CSSRI, Regional Research Station, Canning Town, West Bengal, India
| | - Sandeep Adavi B
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhatisgarh, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttak, Odisha, India
| | - Krishnan P Abhijith
- ICAR-Indian Agricultural Research Institute, Assam, Gogamukh, Dhemaji, Assam, India.
| |
Collapse
|
11
|
Bhatt U, Singh H, Kalaji HM, Strasser RJ, Soni V. Decoding the physicochemical basis of resurrection: the journey of lichen Flavoparmelia caperata through prolonged water scarcity to full rehydration. BMC PLANT BIOLOGY 2024; 24:1268. [PMID: 39730993 DOI: 10.1186/s12870-024-05751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/25/2024] [Indexed: 12/29/2024]
Abstract
Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases. The first phase, characterized by rapid rehydration, involves the conversion of non-functional reaction centers (RCs) into functional PSII RCs, and the accumulation of ROS along with the increment in SOD antioxidant enzyme. These coordinated mechanisms initiate the light reaction of photosynthesis by forming active light-harvesting complexes (LHCs). This adaptation ensures efficient recovery, as evidenced by specific energy fluxes (ABS/RC, TR/RC, ET/RC, and DI/RC), phenomenological fluxes (ABS/CS, TR/CS, ET/CS, and DI/CS), quantum efficiencies (ФP0, ФE0, and ФD0), primary and secondary photochemistry, photochemical and non-photochemical quenching, and performance index, highlighting the essential role of rapid water uptake in restoring turgor pressure for cell structure and function maintenance. The interconnected network of antioxidant defenses, including catalase (CAT) and peroxidase (POD), underscores the plant's ability to cope with oxidative stress during resilience. The acid phosphomonoesterase (PME) enzymatic activity corresponds to its role in releasing phosphate for essential cellular functions and post-rehydration thallus growth. The activity of CAT, GPOD, and PME signifies the gradual reactivation of lichen F. caperata. Moreover, the investigation into chlorophyll a fluorescence emphasizes the efficient reactivation of the photosynthetic process in F. caperata. In conclusion, lichen F. caperata demonstrates significant potential for desiccation tolerance through the rapid transformation of chloroplasts, chlorophylls, and PSII RCs from their inactive to active states upon rehydration. This research not only enhances our understanding of desiccation tolerance in resurrection plants but also highlights the importance of lichens, particularly F. caperata, as valuable models for studying plant resilience in challenging environments.
Collapse
Affiliation(s)
- Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Hardeep Singh
- Botany Section, Regional Ayurveda Research Institute, Jaral Pandoh, Mandi-175124, Himachal Pradesh, India
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw, Poland
- University of Life Sciences, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Reto J Strasser
- Plant Bioenergetics Laboratory, University of Geneva, Geneva, Switzerland
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
| |
Collapse
|
12
|
Harrison Day BL, Brodersen CR, Brodribb TJ. Weak link or strong foundation? Vulnerability of fine root networks and stems to xylem embolism. THE NEW PHYTOLOGIST 2024; 244:1288-1302. [PMID: 39267263 DOI: 10.1111/nph.20115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Resolving the position of roots in the whole-plant hierarchy of drought-induced xylem embolism resistance is fundamental for predicting when species become isolated from soil water resources. Published research generally suggests that roots are the most vulnerable organ of the plant vascular system, although estimates vary significantly. However, our knowledge of root embolism excludes the fine roots (< 2 mm diameter) that form the bulk of total absorptive surface area of the root network for water and nutrient uptake. We measured fine root and stem xylem vulnerability in 10 vascular plant species from the major land plant clades (five angiosperms, three conifers, a fern and lycophyte), using standardised in situ methods (Optical Methods and MicroCT). Mean fine root embolism resistance across the network matched or exceeded stems in all study species. In six of these species (one fern, one lycophyte, three conifers and one angiosperm), fine roots were significantly more embolism resistant than stems. No clear relationship was found between root xylem conduit diameter and vulnerability. These results provide insight into the resistance of the plant hydraulic pathway at the site of water and nutrient uptake, and challenge the long-standing assumption that fine roots are more vulnerable than stems.
Collapse
Affiliation(s)
- Beatrice L Harrison Day
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Craig R Brodersen
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
13
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
14
|
Ma L, Hu Z, Shen W, Zhang Y, Wang G, Chang B, Lu J, Cui Y, Xu H, Feng Y, Jin B, Zhang X, Wang L, Lin J. Three-dimensional reconstruction and multiomics analysis reveal a unique pattern of embryogenesis in Ginkgo biloba. PLANT PHYSIOLOGY 2024; 196:95-111. [PMID: 38630866 DOI: 10.1093/plphys/kiae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Ginkgo (Ginkgo biloba L.) is one of the earliest extant species in seed plant phylogeny. Embryo development patterns can provide fundamental evidence for the origin, evolution, and adaptation of seeds. However, the architectural and morphological dynamics during embryogenesis in G. biloba remain elusive. Herein, we obtained over 2,200 visual slices from 3 stages of embryo development using micro-computed tomography imaging with improved staining methods. Based on 3-dimensional (3D) spatiotemporal pattern analysis, we found that a shoot apical meristem with 7 highly differentiated leaf primordia, including apical and axillary leaf buds, is present in mature Ginkgo embryos. 3D rendering from the front, top, and side views showed 2 separate transport systems of tracheids located in the hypocotyl and cotyledon, representing a unique pattern of embryogenesis. Furthermore, the morphological dynamic analysis of secretory cavities indicated their strong association with cotyledons during development. In addition, we identified genes GbLBD25a (lateral organ boundaries domain 25a), GbCESA2a (cellulose synthase 2a), GbMYB74c (myeloblastosis 74c), GbPIN2 (PIN-FORMED 2) associated with vascular development regulation, and GbWRKY1 (WRKYGOK 1), GbbHLH12a (basic helix-loop-helix 12a), and GbJAZ4 (jasmonate zim-domain 4) potentially involved in the formation of secretory cavities. Moreover, we found that flavonoid accumulation in mature embryos could enhance postgerminative growth and seedling establishment in harsh environments. Our 3D spatial reconstruction technique combined with multiomics analysis opens avenues for investigating developmental architecture and molecular mechanisms during embryogenesis and lays the foundation for evolutionary studies of embryo development and maturation.
Collapse
Affiliation(s)
- Lingyu Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
- Research Institute of Wood Industry, Chinese Academy of Sciences, Beijing 100091, China
| | - Zijian Hu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Shen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yingying Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Guangchao Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Bang Chang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jinkai Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yaning Cui
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yun Feng
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Jin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xi Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
15
|
Haider S, Bibi K, Munyaneza V, Zhang H, Zhang W, Ali A, Ahmad IA, Mehran M, Xu F, Yang C, Yang J, Ding G. Drought-induced adaptive and ameliorative strategies in plants. CHEMOSPHERE 2024; 364:143134. [PMID: 39168385 DOI: 10.1016/j.chemosphere.2024.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Sharjeel Haider
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Khadija Bibi
- Department of Botany, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hao Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ayaz Ali
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Iftikhar Ali Ahmad
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resource and Environment, Huazhong Agricultural University, China
| | - Muhammad Mehran
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chunlei Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China.
| | - Jinpeng Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
16
|
Yuan H, Wang Q, Qi A, Li S, Hu Y, Hu Z, Guo L, Liang C, Li W, Liu C, Sun Y, Zou L, Peng L, Xiang D, Liu C, Huang J, Wan Y. Morphological, Physiological, and Photosynthetic Differences of Tartary Buckwheat Induced by Post-Anthesis Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:2161. [PMID: 39124279 PMCID: PMC11314225 DOI: 10.3390/plants13152161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) is a crop of significant interest due to its nutritional value and resilience to drought conditions. However, drought, particularly following flowering, is a major factor contributing to yield reduction. This research employed two distinct Tartary buckwheat genotypes to investigate the effects of post-anthesis drought on growth and physicochemical characteristics. The study aimed to elucidate the response of Tartary buckwheat to drought stress. The findings indicated that post-anthesis drought adversely impacted the growth, morphology, and biomass accumulation of Tartary buckwheat. Drought stress enhanced the maximum photosynthetic capacity (Fv/Fm) and light protection ability (NPQ) of the 'Xiqiao-2' genotype. In response to drought stress, 'Dingku-1' and 'Xiqiao-2' maintained osmotic balance by accumulating soluble sugars and proline, respectively. Notably, 'Xiqiao-2' exhibited elevated levels of flavonoids and polyphenols in its leaves, which helped mitigate oxidative damage caused by drought. Furthermore, rewatering after a brief drought period significantly improved plant height, stem diameter, and biomass accumulation in 'Dingku-1'. Overall, 'Xiqiao-2' demonstrated greater long-term tolerance to post-anthesis drought, while 'Dingku-1' was less adversely affected by short-term post-anthesis drought.
Collapse
Affiliation(s)
- Hang Yuan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
- Agronomy College, Jilin Agricultural University, Changchun 130118, China
- Baicheng Academy of Agricultural Sciences, No. 17, Sanhe Road, Taobei District, Baicheng 137000, China;
| | - Anyin Qi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Shuang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Yan Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Zhiming Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
- Sichuan Institute of Food Inspection, Chengdu 610097, China
| | - Laichun Guo
- Baicheng Academy of Agricultural Sciences, No. 17, Sanhe Road, Taobei District, Baicheng 137000, China;
| | - Chenggang Liang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China;
| | - Wurijimusi Li
- Hinggan League Institute of Agricultural and Animal Husbandry Sciences, Hinggan League 137400, China;
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
- College of Agronomy and Horticulture, Chengdu Agricultural College, Chengdu 611130, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Cheng Liu
- Chongqing Field Scientific Observation and Research Station for Authentic Traditional Chinese Medicine in the Tree Gorges Reservoir Area, College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jingwei Huang
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| |
Collapse
|
17
|
Jiang GF, Qin BT, Pang YK, Qin LL, Pereira L, Roddy AB. Limited effects of xylem anatomy on embolism resistance in cycad leaves. THE NEW PHYTOLOGIST 2024; 243:1329-1346. [PMID: 38898642 DOI: 10.1111/nph.19914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
Collapse
Affiliation(s)
- Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Bo-Tao Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Yu-Kun Pang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Lan-Li Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
- College of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
18
|
Kopecká R, Černý M. Xylem Sap Proteome Analysis Provides Insight into Root-Shoot Communication in Response to flg22. PLANTS (BASEL, SWITZERLAND) 2024; 13:1983. [PMID: 39065510 PMCID: PMC11281318 DOI: 10.3390/plants13141983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Xylem sap proteomics provides crucial insights into plant defense and root-to-shoot communication. This study highlights the sensitivity and reproducibility of xylem sap proteome analyses, using a single plant per sample to track over 3000 proteins in two model crop plants, Solanum tuberosum and Hordeum vulgare. By analyzing the flg22 response, we identified immune response components not detectable through root or shoot analyses. Notably, we discovered previously unknown elements of the plant immune system, including calcium/calmodulin-dependent kinases and G-type lectin receptor kinases. Despite similarities in the metabolic pathways identified in the xylem sap of both plants, the flg22 response differed significantly: S. tuberosum exhibited 78 differentially abundant proteins, whereas H. vulgare had over 450. However, an evolutionarily conserved overlap in the flg22 response proteins was evident, particularly in the CAZymes and lipid metabolism pathways, where lipid transfer proteins and lipases showed a similar response to flg22. Additionally, many proteins without conserved signal sequences for extracellular targeting were found, such as members of the HSP70 family. Interestingly, the HSP70 response to flg22 was specific to the xylem sap proteome, suggesting a unique regulatory role in the extracellular space similar to that reported in mammalians.
Collapse
Affiliation(s)
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
19
|
D'Incà R, Mattioli R, Tomasella M, Tavazza R, Macone A, Incocciati A, Martignago D, Polticelli F, Fraudentali I, Cona A, Angelini R, Tavazza M, Nardini A, Tavladoraki P. A Solanum lycopersicum polyamine oxidase contributes to the control of plant growth, xylem differentiation, and drought stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:960-981. [PMID: 38761363 DOI: 10.1111/tpj.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.
Collapse
Affiliation(s)
- Riccardo D'Incà
- Department of Science, University Roma Tre, 00146, Rome, Italy
| | | | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Raffaela Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | | | - Fabio Polticelli
- Department of Science, University Roma Tre, 00146, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, 00146, Rome, Italy
| | | | - Alessandra Cona
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Riccardo Angelini
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Mario Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Paraskevi Tavladoraki
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| |
Collapse
|
20
|
Li WJ, Li HZ, Xu J, Gillings MR, Zhu YG. Sewage Sludge Promotes the Accumulation of Antibiotic Resistance Genes in Tomato Xylem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10796-10805. [PMID: 38853591 DOI: 10.1021/acs.est.4c02497] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Xylem serves as a conduit linking soil to the aboveground plant parts and facilitating the upward movement of microbes into leaves and fruits. Despite this potential, the composition of the xylem microbiome and its associated risks, including antibiotic resistance, are understudied. Here, we cultivated tomatoes and analyzed their xylem sap to assess the microbiome and antibiotic resistance profiles following treatment with sewage sludge. Our findings show that xylem microbes primarily originate from soil, albeit with reduced diversity in comparison to those of their soil microbiomes. Using single-cell Raman spectroscopy coupled with D2O labeling, we detected significantly higher metabolic activity in xylem microbes than in rhizosphere soil, with 87% of xylem microbes active compared to just 36% in the soil. Additionally, xylem was pinpointed as a reservoir for antibiotic resistance genes (ARGs), with their abundance being 2.4-6.9 times higher than in rhizosphere soil. Sludge addition dramatically increased the abundance of ARGs in xylem and also increased their mobility and host pathogenicity. Xylem represents a distinct ecological niche for microbes and is a significant reservoir for ARGs. These results could be used to manage the resistome in crops and improve food safety.
Collapse
Affiliation(s)
- Wen-Jing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiayang Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
West AG, Atkins K, van Blerk JJ, Skelton RP. Assessing vulnerability to embolism and hydraulic safety margins in reed-like Restionaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:633-646. [PMID: 38588329 DOI: 10.1111/plb.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
The African Restionaceae (Poales), the dominant graminoid layer in the megadiverse Cape Floristic Region of South Africa, are distributed across a wide range of moisture availability, yet currently there is very little known about the underlying hydraulics of this group. We tested two methods for measuring culm vulnerability to embolism, the optical and pneumatic methods, in three species of Cannomois ranging in habitat from semi-riparian (Cannomois virgata) to dryland (Cannomois parviflora and C. congesta). Estimates of culm xylem vulnerability were coupled with measures of turgor loss point (ΨTLP) and minimum field water potential (ΨMD) to assess hydraulic safety margins. The optical and pneumatic methods produced similar estimates of P50, but differed for P12 and P88. All three species were quite vulnerable to embolism, with P50 of -1.9 MPa (C. virgata), -2.3 MPa (C. congesta), and -2.4 MPa (C. parviflora). Estimates of P50, ΨTLP and ΨMD aligned with habitat moisture stress, with highest values found in the semi-riparian C. virgata. Consistent differences in P50, ΨMD and ΨTLP between species resulted in consistent hydraulic safety margins across species of 0.96 ± 0.1 MPa between ΨMD and P50, with onset of embolism occurring 0.43 ± 0.04 MPa after ΨTLP for all three species. Our study demonstrates that restio occupancy of dry environments involves more than the evolution of highly resistant xylem, suggesting that other aspects of water relations are key to understanding trait-environment relationships in this group.
Collapse
Affiliation(s)
- A G West
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - K Atkins
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - J J van Blerk
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - R P Skelton
- Fynbos Node, South African Environmental Observation Network, Newlands, South Africa
- Department of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
Bartusch K, Blanco-Touriñán N, Rodriguez-Villalón A, Truernit E. Monitoring Xylem Transport in Arabidopsis thaliana Seedlings Using Fluorescent Dyes. Methods Mol Biol 2024; 2722:3-15. [PMID: 37897596 DOI: 10.1007/978-1-0716-3477-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Fluorescent dyes are often used to observe transport mechanisms in plant vascular tissues. However, it has been technically challenging to apply fluorescent dyes on roots to monitor xylem transport in vivo. Here, we present a fast, noninvasive, and high-throughput protocol to monitor xylem transport in seedlings. Using the fluorescent dyes 5(6)-carboxyfluorescein diacetate (CFDA) and Rhodamine WT, we were able to observe xylem transport on a cellular level in Arabidopsis thaliana roots. We describe how to apply these dyes on primary roots of young seedlings, how to monitor root-to-shoot xylem transport, and how to measure xylem transport velocity in roots. Moreover, we show that our protocol can also be applied to lateral roots and grafted seedlings to assess xylem (re)connection. Altogether, these techniques are useful for investigating xylem functionality in diverse experimental setups.
Collapse
Affiliation(s)
- Kai Bartusch
- Group of Phloem Development and Function, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Noel Blanco-Touriñán
- Group of Plant Vascular Development, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Antia Rodriguez-Villalón
- Group of Plant Vascular Development, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Elisabeth Truernit
- Group of Phloem Development and Function, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
23
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
24
|
Javed T, Shabbir R, Hussain S, Naseer MA, Ejaz I, Ali MM, Ahmar S, Yousef AF. Nanotechnology for endorsing abiotic stresses: a review on the role of nanoparticles and nanocompositions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:831-849. [PMID: 36043237 DOI: 10.1071/fp22092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental stresses, including the salt and heavy metals contaminated sites, signify a threat to sustainable crop production. The existence of these stresses has increased in recent years due to human-induced climate change. In view of this, several remediation strategies including nanotechnology have been studied to find more effective approaches for sustaining the environment. Nanoparticles, due to unique physiochemical properties; i.e. high mobility, reactivity, high surface area, and particle morphology, have shown a promising solution to promote sustainable agriculture. Crop plants easily take up nanoparticles, which can penetrate into the cells to play essential roles in growth and metabolic events. In addition, different iron- and carbon-based nanocompositions enhance the removal of metals from the contaminated sites and water; these nanoparticles activate the functional groups that potentially target specific molecules of the metal pollutants to obtain efficient remediation. This review article emphasises the recent advancement in the application of nanotechnology for the remediation of contaminated soils with metal pollutants and mitigating different abiotic stresses. Different implementation barriers are also discussed. Furthermore, we reported the opportunities and research directions to promote sustainable development based on the application of nanotechnology.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; and Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sadam Hussain
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Irsa Ejaz
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Muhamamd Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Liu Y, Nadezhdina N, Hu W, Clothier B, Duan J, Li X, Xi B. Evaporation-driven internal hydraulic redistribution alleviates root drought stress: Mechanisms and modeling. PLANT PHYSIOLOGY 2023; 193:1058-1072. [PMID: 37350505 DOI: 10.1093/plphys/kiad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Many tree species have developed extensive root systems that allow them to survive in arid environments by obtaining water from a large soil volume. These root systems can transport and redistribute soil water during drought by hydraulic redistribution (HR). A recent study revealed the phenomenon of evaporation-driven hydraulic redistribution (EDHR), which is driven by evaporative demand (transpiration). In this study, we confirmed the occurrence of EDHR in Chinese white poplar (Populus tomentosa) through root sap flow measurements. We utilized microcomputed tomography technology to reconstruct the xylem network of woody lateral roots and proposed conceptual models to verify EDHR from a physical perspective. Our results indicated that EDHR is driven by the internal water potential gradient within the plant xylem network, which requires 3 conditions: high evaporative demand, soil water potential gradient, and special xylem structure of the root junction. The simulations demonstrated that during periods of extreme drought, EDHR could replenish water to dry roots and improve root water potential up to 38.9% to 41.6%. This highlights the crucial eco-physiological importance of EDHR in drought tolerance. Our proposed models provide insights into the complex structure of root junctions and their impact on water movement, thus enhancing our understanding of the relationship between xylem structure and plant hydraulics.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory for Silviculture and Forest Ecosystem in Arid- and Semi-Arid Region of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 10083, China
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China
| | - Nadezhda Nadezhdina
- Institute of Forest Botany, Dendrology and Geobiocenology, Mendel University in Brno, Zemedelska 3, Brno 61300, Czech Republic
| | - Wei Hu
- New Zealand Institute for Plant & Food Research Ltd., Private Bag 4707, Christchurch 8140, New Zealand
| | - Brent Clothier
- New Zealand Institute for Plant & Food Research Ltd., Fitzherbert Science Centre, Palmerston North 4442, New Zealand
| | - Jie Duan
- Laboratory for Silviculture and Forest Ecosystem in Arid- and Semi-Arid Region of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 10083, China
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Benye Xi
- Laboratory for Silviculture and Forest Ecosystem in Arid- and Semi-Arid Region of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 10083, China
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
26
|
Kumar M, Joseph G, Bhutia Y, Krishnaswamy J. Contrasting sap flow characteristics between pioneer and late-successional tree species in secondary tropical montane forests of Eastern Himalaya, India. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5273-5293. [PMID: 37290031 PMCID: PMC10498023 DOI: 10.1093/jxb/erad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
The interactive role of life-history traits and environmental factors on plant water relations is crucial for understanding the responses of species to climate change, but it remains poorly understood in secondary tropical montane forests (TMFs). In this study, we examined differences in sap flow between the pioneer species Symplocos racemosa and Eurya acuminata, and the late-successional species Castanopsis hystrix that co-occur in a biodiverse Eastern Himalayan secondary broadleaved TMF. The fast-growing pioneers had sap flux densities that were 1.6-2.1 times higher than the late-successional species, and exhibited characteristics of long-lived pioneer species. Significant radial and azimuthal variability in sap flow (V) between species was observed and could be attributed to the life-history trait and the access of the canopy to sunlight. Nocturnal V was 13.8% of the daily total and was attributable to stem recharge during the evening period (18.00-23.00 h) and to endogenous stomatal controls during the pre-dawn period (00.00-05.00 h). The shallow-rooted pioneer species both exhibited midday depression in V that was attributable to photosensitivity and diel moisture stress responses. In contrast, the deep-rooted late-successional species showed unaffected transpiration across the dry season, indicating their access to groundwater. Thus, our results suggest that secondary broadleaved TMFs, with a dominance of shallow-rooted pioneers, are more prone to the negative impacts of drier and warmer winters than primary forests, which are dominated by deep-rooted species. Our study provides an empirical understanding of how life-history traits coupled with microclimate can modulate plant water use in the widely distributed secondary TMFs in Eastern Himalaya, and highlights their vulnerability to warmer winters and reduced winter precipitation due to climate change.
Collapse
Affiliation(s)
- Manish Kumar
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore 560064, Karnataka, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Gladwin Joseph
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore 560064, Karnataka, India
- Conservation Biology Institute, Corvallis, Oregon 97333, USA
| | - Yangchenla Bhutia
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore 560064, Karnataka, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Sikkim State Council of Science & Technology, Gangtok 737102, Sikkim, India
| | - Jagdish Krishnaswamy
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore 560064, Karnataka, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- School of Environment and Sustainability, Indian Institute for Human Settlements, Bangalore 560080, Karnataka, India
| |
Collapse
|
27
|
Matilla AJ. The Interplay between Enucleated Sieve Elements and Companion Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3033. [PMID: 37687278 PMCID: PMC10489895 DOI: 10.3390/plants12173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
In order to adapt to sessile life and terrestrial environments, vascular plants have developed highly sophisticated cells to transport photosynthetic products and developmental signals. Of these, two distinct cell types (i.e., the sieve element (SE) and companion cell) are arranged in precise positions, thus ensuring effective transport. During SE differentiation, most of the cellular components are heavily modified or even eliminated. This peculiar differentiation implies the selective disintegration of the nucleus (i.e., enucleation) and the loss of cellular translational capacity. However, some cellular components necessary for transport (e.g., plasmalemma) are retained and specific phloem proteins (P-proteins) appear. Likewise, MYB (i.e., APL) and NAC (i.e., NAC45 and NAC86) transcription factors (TFs) and OCTOPUS proteins play a notable role in SE differentiation. The maturing SEs become heavily dependent on neighboring non-conducting companion cells, to which they are connected by plasmodesmata through which only 20-70 kDa compounds seem to be able to pass. The study of sieve tube proteins still has many gaps. However, the development of a protocol to isolate proteins that are free from any contaminating proteins has constituted an important advance. This review considers the very detailed current state of knowledge of both bound and soluble sap proteins, as well as the role played by the companion cells in their presence. Phloem proteins travel long distances by combining two modes: non-selective transport via bulk flow and selective regulated movement. One of the goals of this study is to discover how the protein content of the sieve tube is controlled. The majority of questions and approaches about the heterogeneity of phloem sap will be clarified once the morphology and physiology of the plasmodesmata have been investigated in depth. Finally, the retention of specific proteins inside an SE is an aspect that should not be forgotten.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971-Santiago de Compostela, Spain
| |
Collapse
|
28
|
Carluccio G, Greco D, Sabella E, Vergine M, De Bellis L, Luvisi A. Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance? Pathogens 2023; 12:825. [PMID: 37375515 DOI: 10.3390/pathogens12060825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The maintenance of an intact water column in the xylem lumen several meters above the ground is essential for woody plant viability. In fact, abiotic and biotic factors can lead to the formation of emboli in the xylem, interrupting sap flow and causing consequences on the health status of the plant. Anyway, the tendency of plants to develop emboli depends on the intrinsic features of the xylem, while the cyto-histological structure of the xylem plays a role in resistance to vascular pathogens, as in the case of the pathogenic bacterium Xylella fastidiosa. Analysis of the scientific literature suggests that on grapevine and olive, some xylem features can determine plant tolerance to vascular pathogens. However, the same trend was not reported in citrus, indicating that X. fastidiosa interactions with host plants differ by species. Unfortunately, studies in this area are still limited, with few explaining inter-cultivar insights. Thus, in a global context seriously threatened by X. fastidiosa, a deeper understanding of the relationship between the physical and mechanical characteristics of the xylem and resistance to stresses can be useful for selecting cultivars that may be more resistant to environmental changes, such as drought and vascular pathogens, as a way to preserve agricultural productions and ecosystems.
Collapse
Affiliation(s)
- Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
29
|
Sanders RD, Boss PK, Capone DL, Kidman CM, Maffei SM, Jeffery DW. Insights into the Uptake, Distribution, and Metabolism of 3-Isobutyl-2-hydroxypyrazine in Grapevine Using a Stable Isotope Tracer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6717-6726. [PMID: 37079554 DOI: 10.1021/acs.jafc.3c00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Methoxypyrazines (MPs) are potent aroma compounds that have been predominately studied in grape berries but can also be detected in other vine tissues. The synthesis of MPs in berries from hydroxypyrazines by VvOMT3 is well established, but the origin of MPs in vine tissues that have negligible VvOMT3 gene expression is unknown. This research gap was addressed through the application of stable isotope tracer 3-isobutyl-2-hydroxy-[2H2]-pyrazine (d2-IBHP) to the roots of Pinot Meunier L1 microvines and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) quantification of HPs from grapevine tissues following a novel solid-phase extraction method. Four weeks post-application, d2-IBHP and its O-methylated product 3-isobutyl-2-methoxy-[2H2]-pyrazine (d2-IBMP) were present in excised cane, berry, leaf, root, and rachis material. Translocation of d2-IBHP and d2-IBMP was investigated, but results were inconclusive. Nonetheless, knowledge that d2-IBHP, and potentially d2-IBMP, are translocated from roots to other vine organs, including the berries, could provide opportunities for controlling MP accumulation in grapevine tissues pertinent to winemaking.
Collapse
Affiliation(s)
- Ross D Sanders
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
- CSIRO Agriculture and Food, Waite Campus, Locked Bag No. 2, Glen Osmond, South Australia 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Paul K Boss
- CSIRO Agriculture and Food, Waite Campus, Locked Bag No. 2, Glen Osmond, South Australia 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Dimitra L Capone
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Catherine M Kidman
- Wynns Coonawarra Estate, Memorial Drive, Coonawarra, South Australia 5263, Australia
| | - Sue M Maffei
- CSIRO Agriculture and Food, Waite Campus, Locked Bag No. 2, Glen Osmond, South Australia 5064, Australia
| | - David W Jeffery
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
30
|
Losada JM, Blanco-Moure N, Fonollá A, Martínez-Ferrí E, Hormaza JI. Hydraulic trade-offs underlie enhanced performance of polyploid trees under soil water deficit. PLANT PHYSIOLOGY 2023:kiad204. [PMID: 37002827 DOI: 10.1093/plphys/kiad204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The relationships between aerial organ morpho-anatomy of woody polyploid plants with their functional hydraulics under water stress remain largely understudied. We evaluated growth-associated traits, aerial organ xylem anatomy, and physiological parameters of diploid, triploid, and tetraploid genotypes of atemoyas (Annona cherimola x Annona squamosa), which belong to the woody perennial genus Annona (Annonaceae), testing their performance under long-term soil water reduction. The contrasting phenotypes of vigorous triploids and dwarf tetraploids consistently showed stomatal size-density trade-off. The vessel elements in aerial organs were ∼1.5 times wider in polyploids compared with diploids, and triploids displayed the lowest vessel density. Plant hydraulic conductance was higher in well-irrigated diploids while their tolerance to drought was lower. The phenotypic disparity of atemoya polyploids associated with contrasting leaf and stem xylem porosity traits that coordinate to regulate water balances between the trees and the belowground and aboveground environments. Polyploid trees displayed better performance under soil water scarcity, presenting as more sustainable agricultural and forestry genotypes to cope with water stress.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| | - Nuria Blanco-Moure
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| | - Andrés Fonollá
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| | - Elsa Martínez-Ferrí
- Fruticultura Subtropical y Mediterránea, IFAPA, JA, Associated Unit to CSIC by IHSM and IAS. Department of Natural and Forest Resources (IFAPA). Cortijo de la Cruz, 29140, Málaga, Spain
| | - José I Hormaza
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| |
Collapse
|
31
|
Yousaf MI, Riaz MW, Shehzad A, Jamil S, Shahzad R, Kanwal S, Ghani A, Ali F, Abdullah M, Ashfaq M, Hussain Q. Responses of maize hybrids to water stress conditions at different developmental stages: accumulation of reactive oxygen species, activity of enzymatic antioxidants and degradation in kernel quality traits. PeerJ 2023; 11:e14983. [PMID: 36967996 PMCID: PMC10035423 DOI: 10.7717/peerj.14983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/10/2023] [Indexed: 03/22/2023] Open
Abstract
Sustainable maize production under changing climatic conditions, especially heat and water stress conditions is one of the key challenges that need to be addressed immediately. The current field study was designed to evaluate the impact of water stress on morpho-physiological, biochemical, reactive oxygen species, antioxidant activity and kernel quality traits at different plant growth stages in maize hybrids. Four indigenous i.e., YH-5427, YH-5482, YH-5395, JPL-1908, and one multinational maize hybrid i.e., NK-8441 (Syngenta Seeds) were used for the study. Four stress treatments (i) Control (ii) 3-week water stress at pre-flowering stage (iii) 3-week water stress at anthesis stage (iv) 3-week water stress at grain filling/post-anthesis stage. The presence of significant oxidative stress was revealed by the overproduction of reactive oxygen species (ROXs) i.e., H2O2 (1.9 to 5.8 µmole g−1 FW) and malondialdehyde (120.5 to 169.0 nmole g−1 FW) leading to severe negative impacts on kernel yield. Moreover, a severe reduction in photosynthetic ability (50.6%, from 34.0 to 16.8 µmole m−2 s−1), lower transpirational rate (31.3%, from 3.2 to 2.2 mmol m−2 s−1), alterations in plant anatomy, reduced pigments stability, and deterioration of kernel quality was attributed to water stress. Water stress affected all the three studied growth stages, the pre-flowering stage being the most vulnerable while the post-anthesis stage was the least affected stage to drought stress. Antioxidant activity was observed to increase under all stress conditions in all maize hybrids, however, the highest antioxidant activity was recorded at the anthesis stage and in maize hybrids YH-5427 i.e., T-SOD activity was increased by 61.3% from 37.5 U mg−1 pro to 60.5 U mg−1 pro while CAT activity was maximum under water stress conditions 8.3 U mg−1 pro as compared to 10.3 U mg−1 pro under control (19.3%). The overall performance of maize hybrid YH-5427 was much more promising than other hybrids, attributed to its higher photosynthetic activity, and better antioxidant defense mechanism. Therefore, this hybrid could be recommended for cultivation in drought-prone areas.
Collapse
Affiliation(s)
- Muhammad Irfan Yousaf
- Cotton Research Station (CRS), Bahawalpur, Pakistan
- Maize and Millets Research Institute (MMRI), Yusafwala, Sahiwal, Pakistan
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, China
| | - Aamar Shehzad
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, AARI, Faisalabad, Pakistan
| | - Rahil Shahzad
- Agricultural Biotechnology Research Institute, AARI, Faisalabad, Pakistan
| | - Shamsa Kanwal
- Agricultural Biotechnology Research Institute, AARI, Faisalabad, Pakistan
| | - Aamir Ghani
- Maize and Millets Research Institute (MMRI), Yusafwala, Sahiwal, Pakistan
| | - Farman Ali
- Cotton Research Station (CRS), Bahawalpur, Pakistan
| | - Muhammad Abdullah
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | | | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
32
|
Kumar R, Hosseinzadehtaher M, Hein N, Shadmand M, Jagadish SVK, Ghanbarian B. Challenges and advances in measuring sap flow in agriculture and agroforestry: A review with focus on nuclear magnetic resonance. FRONTIERS IN PLANT SCIENCE 2022; 13:1036078. [PMID: 36426161 PMCID: PMC9679431 DOI: 10.3389/fpls.2022.1036078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Sap flow measurement is one of the most effective methods for quantifying plant water use.A better understanding of sap flow dynamics can aid in more efficient water and crop management, particularly under unpredictable rainfall patterns and water scarcity resulting from climate change. In addition to detecting infected plants, sap flow measurement helps select plant species that could better cope with hotter and drier conditions. There exist multiple methods to measure sap flow including heat balance, dyes and radiolabeled tracers. Heat sensor-based techniques are the most popular and commercially available to study plant hydraulics, even though most of them are invasive and associated with multiple kinds of errors. Heat-based methods are prone to errors due to misalignment of probes and wounding, despite all the advances in this technology. Among existing methods for measuring sap flow, nuclear magnetic resonance (NMR) is an appropriate non-invasive approach. However, there are challenges associated with applications of NMR to measure sap flow in trees or field crops, such as producing homogeneous magnetic field, bulkiness and poor portable nature of the instruments, and operational complexity. Nonetheless, various advances have been recently made that allow the manufacture of portable NMR tools for measuring sap flow in plants. The basic concept of the portal NMR tool is based on an external magnetic field to measure the sap flow and hence advances in magnet types and magnet arrangements (e.g., C-type, U-type, and Halbach magnets) are critical components of NMR-based sap flow measuring tools. Developing a non-invasive, portable and inexpensive NMR tool that can be easily used under field conditions would significantly improve our ability to monitor vegetation responses to environmental change.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Mohsen Hosseinzadehtaher
- Department of Electrical & Computer Engineering, University of Illinois, Chicago, IL, United States
| | - Nathan Hein
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Mohammad Shadmand
- Department of Electrical & Computer Engineering, University of Illinois, Chicago, IL, United States
| | | | - Behzad Ghanbarian
- Porous Media Research Lab, Department of Geology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
33
|
De La Fuente L, Merfa MV, Cobine PA, Coleman JJ. Pathogen Adaptation to the Xylem Environment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:163-186. [PMID: 35472277 DOI: 10.1146/annurev-phyto-021021-041716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A group of aggressive pathogens have evolved to colonize the plant xylem. In this vascular tissue, where water and nutrients are transported from the roots to the rest of the plant, pathogens must be able to thrive under acropetal xylem sap flow and scarcity of nutrients while having direct contact only with predominantly dead cells. Nevertheless, a few bacteria have adapted to exclusively live in the xylem, and various pathogens may colonize other plant niches without causing symptoms unless they reach the xylem. Once established, the pathogens modulate its physicochemical conditions to enhance their growth and virulence. Adaptation to the restrictive lifestyle of the xylem leads to genome reduction in xylem-restricted bacteria, as they have a higher proportion of pseudogenes in their genome. The basis of xylem adaptation is not completely understood; therefore, a need still exists for model systems to advance the knowledge on this topic.
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
34
|
Jiang (蒋国凤) GF, Li (李溯源) SY, Li (李艺蝉) YC, Roddy AB. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. PLANT PHYSIOLOGY 2022; 189:2159-2174. [PMID: 35640109 PMCID: PMC9342987 DOI: 10.1093/plphys/kiac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 05/30/2023]
Abstract
Mangroves are frequently inundated with saline water and have evolved different anatomical and physiological mechanisms to filter and, in some species, excrete excess salt from the water they take up. Because salts impose osmotic stress, interspecific differences in salt tolerance and salt management strategy may influence physiological responses to drought throughout the entire plant hydraulic pathway, from roots to leaves. Here, we characterized embolism vulnerability simultaneously in leaves, stems, and roots of seedlings of two mangrove species (Avicennia marina and Bruguiera gymnorrhiza) along with turgor-loss points in roots and leaves and xylem anatomical traits. In both species, the water potentials causing 50% of total embolism were less negative in roots and leaves than they were in stems, but the water potentials causing incipient embolism (5%) were similar in roots, stems, and leaves. Stomatal closure in leaves and turgor loss in both leaves and roots occurred at water potentials only slightly less negative than the water potentials causing 5% of total embolism. Xylem anatomical traits were unrelated to vulnerability to embolism. Vulnerability segmentation may be important in limiting embolism spread into stems from more vulnerable roots and leaves. Interspecific differences in salt tolerance affected hydraulic traits from roots to leaves: the salt-secretor A. marina lost turgor at more negative water potentials and had more embolism-resistant xylem than the salt-excluder B. gymnorrhiza. Characterizing physiological thresholds of roots may help to explain recent mangrove mortality after drought and extended saltwater inundation.
Collapse
Affiliation(s)
| | - Su-Yuan Li (李溯源)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yi-Chan Li (李艺蝉)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | | |
Collapse
|
35
|
El-Beltagi HS, Ismail SA, Ibrahim NM, Shehata WF, Alkhateeb AA, Ghazzawy HS, El-Mogy MM, Sayed EG. Unravelling the Effect of Triacontanol in Combating Drought Stress by Improving Growth, Productivity, and Physiological Performance in Strawberry Plants. PLANTS 2022; 11:plants11151913. [PMID: 35893617 PMCID: PMC9330780 DOI: 10.3390/plants11151913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/19/2022]
Abstract
To explore the effects of triacontanol (TR) on drought tolerance of strawberry plants (cv Fertona), two field experiments were carried out to study the effects of three supplementary foliar TR rates (0, 0.5, and 1 ppm) under the following three levels of water irrigation: 11 m3/hectare (40% of water holding capacity (WHC) severe as a drought treatment, 22 m3/hectare (80% of WHC) as moderate drought stress, and normal irrigation with 27 m3/hectare (100% of WHC) server as a control treatment. TR treatments were applied five times after 30 days from transplanting and with 15-day intervals. The results showed that drought stress (40% and 80%) markedly decreased the growth, fruit yield, and chlorophyll reading, as well as the gas exchange parameters (net photosynthetic rate, stomatal conductance, and transpiration rate). Meanwhile, drought stress at a high rate obviously increased antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT) contents in the leaves of the strawberry plants. The moderate and high drought stress rates enhanced some strawberry fruit quality parameters such as total soluble solids (TSS), vitamin C, and anthocyanin content compared to the control. Additionally, TR increased the activities of SOD, POX, and CAT. TR treatment significantly increased the chlorophyll contents, gas exchange parameters (photosynthetic rate and stomatal conductance), and water use efficiency (WUE). Plant height, fruit weight, and total biomass were increased also via TR application. Total yield per plant was increased 12.7% using 1 ppm of TR compared with the control. In conclusion, our results suggested that TR application could relieve the adverse effects of drought stress on the growth of strawberry plants by enhancing the antioxidant enzymes, photosynthesis rate, and WUE of the leaves.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (W.F.S.); (A.A.A.)
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (E.G.S.)
| | - Shadia A. Ismail
- Department of Potato and Vegetatively Propagated Crops, Horticulture Research Institute, Agriculture Research Center, Giza 12511, Egypt; (S.A.I.); (N.M.I.)
| | - Nadia M. Ibrahim
- Department of Potato and Vegetatively Propagated Crops, Horticulture Research Institute, Agriculture Research Center, Giza 12511, Egypt; (S.A.I.); (N.M.I.)
| | - Wael F. Shehata
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (W.F.S.); (A.A.A.)
- Plant Production Department, College of Environmental Agricultural Science, El-Arish University, El-Arish 45511, Egypt
| | - Abdulmalik A. Alkhateeb
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (W.F.S.); (A.A.A.)
| | - Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Central Laboratory for Date palm Research and Development, Agriculture Research Center, Giza 12511, Egypt
| | - Mohamed M. El-Mogy
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Eman G. Sayed
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Correspondence: (H.S.E.-B.); (E.G.S.)
| |
Collapse
|
36
|
Ao B, Han Y, Wang S, Wu F, Zhang J. Genome-Wide Analysis and Profile of UDP-Glycosyltransferases Family in Alfalfa (Medicago sativa L.) under Drought Stress. Int J Mol Sci 2022; 23:ijms23137243. [PMID: 35806246 PMCID: PMC9266349 DOI: 10.3390/ijms23137243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Drought stress is one of the major constraints that decreases global crop productivity. Alfalfa, planted mainly in arid and semi-arid areas, is of crucial importance in sustaining the agricultural system. The family 1 UDP-glycosyltransferases (UGT) is indispensable because it takes part in the regulation of plant growth and stress resistance. However, a comprehensive insight into the participation of the UGT family in adaptation of alfalfa to drought environments is lacking. In the present study, a genome-wide analysis and profiling of the UGT in alfalfa were carried out. A total of 409 UGT genes in alfalfa (MsUGT) were identified and they are clustered into 13 groups. The expression pattern of MsUGT genes were analyzed by RNA-seq data in six tissues and under different stresses. The quantitative real-time PCR verification genes suggested the distinct role of the MsUGT genes under different drought stresses and abscisic acid (ABA) treatment. Furthermore, the function of MsUGT003 and MsUGT024, which were upregulated under drought stress and ABA treatment, were characterized by heterologous expression in yeast. Taken together, this study comprehensively analyzed the UGT gene family in alfalfa for the first time and provided useful information for improving drought tolerance and in molecular breeding of alfalfa.
Collapse
|
37
|
Miranda MT, Espinoza-Núñez E, Silva SF, Pereira L, Hayashi AH, Boscariol-Camargo RL, Carvalho SA, Machado EC, Ribeiro RV. Water stress signaling and hydraulic traits in three congeneric citrus species under water deficit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111255. [PMID: 35487664 DOI: 10.1016/j.plantsci.2022.111255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Morpho-physiological strategies to deal with water deficit vary among citrus species and the chemical signaling through ABA and anatomical, hydraulic, and physiological traits were evaluated in saplings of Rangpur lime, Swingle citrumelo and Valencia sweet orange. Trunk and roots of Swingle citrumelo presented lower vessel diameter and higher vessel frequency as compared to the other species. However, relative water content at the turgor loss point (RWCTLP), the osmotic potential at full turgor (Ψ0), the osmotic potential at the turgor loss point (ΨTLP), bulk modulus of elasticity (ε) and the xylem water potential when hydraulic conductivity is reduced by 50% (Ψ50) and 88% (Ψ88) indicated similar hydraulic traits among citrus species, with Rangpur lime showing the highest hydraulic safety margin. Roots of Rangpur lime and Swingle citrumelo were more water conductive than ones of Valencia sweet orange, which was linked to higher stomatal conductance. Chemical signaling through ABA prevented shoot dehydration in Rangpur lime under water deficit, with this species showing a more conservative stomatal behavior, sensing, and responding rapidly to low soil moisture. Taken together, our results suggest that Rangpur lime - the drought tolerant species - has an improved control of leaf water status due to chemical signaling and effective stomatal regulation for reducing water loss as well as decreased root hydraulic conductivity for saving water resources under limiting conditions.
Collapse
Affiliation(s)
- Marcela T Miranda
- Agronomic Institute (IAC), Center R&D in Ecophysiology and Biophysics, Laboratory of Plant Physiology "Coaracy M. Franco", P.O. Box 28, Campinas 13012-970, SP, Brazil; University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil
| | - Erick Espinoza-Núñez
- Agronomic Institute (IAC), Center R&D in Ecophysiology and Biophysics, Laboratory of Plant Physiology "Coaracy M. Franco", P.O. Box 28, Campinas 13012-970, SP, Brazil; Universidad Nacional Agraria La Molina (UNALM), Department of Horticulture, La Molina, Lima, Peru
| | - Simone F Silva
- University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil
| | - Luciano Pereira
- University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil; Ulm University, Institute of Systematic Botany and Ecology, Ulm, Germany
| | - Adriana H Hayashi
- Instituto de Botânica, Núcleo de Pesquisa em Anatomia, São Paulo, SP, Brazil
| | | | - Sérgio A Carvalho
- Agronomic Institute (IAC), Center of Citriculture Sylvio Moreira, Cordeirópolis, SP, Brazil
| | - Eduardo C Machado
- Agronomic Institute (IAC), Center R&D in Ecophysiology and Biophysics, Laboratory of Plant Physiology "Coaracy M. Franco", P.O. Box 28, Campinas 13012-970, SP, Brazil
| | - Rafael V Ribeiro
- University of Campinas (UNICAMP), Department of Plant Biology, Laboratory of Crop Physiology, P.O. Box 6109, Campinas 13083-970, SP, Brazil.
| |
Collapse
|
38
|
Priming with Small Molecule-Based Biostimulants to Improve Abiotic Stress Tolerance in Arabidopsis thaliana. PLANTS 2022; 11:plants11101287. [PMID: 35631712 PMCID: PMC9144751 DOI: 10.3390/plants11101287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022]
Abstract
Biostimulants became a hotspot in the fight to alleviate the consequences of abiotic stresses in crops. Due to their complex nature, it is challenging to obtain stable and reproducible final products and more challenging to define their mechanism of action. As an alternative, small molecule-based biostimulants, such as polyamines have promoted plant growth and improved stress tolerance. However, profound research about their mechanisms of action is still missing. To go further, we tested the effect of putrescine (Put) and its precursor ornithine (Orn) and degradation product 1,3-diaminopropane (DAP) at two different concentrations (0.1 and 1 mM) as a seed priming on in vitro Arabidopsis seedlings grown under optimal growth conditions, osmotic or salt stress. None of the primings affected the growth of the seedlings in optimal conditions but altered the metabolism of the plants. Under stress conditions, almost all primed plants grew better and improved their greenness. Only Orn-primed plants showed different plant responses. Interestingly, the metabolic analysis revealed the implication of the N- acetylornithine and Orn and polyamine conjugation as the leading player regulating growth and development under control and stress conditions. We corroborated polyamines as very powerful small molecule-based biostimulants to alleviate the adverse abiotic stress effects.
Collapse
|
39
|
Priatama RA, Heo J, Kim SH, Rajendran S, Yoon S, Jeong DH, Choo YK, Bae JH, Kim CM, Lee YH, Demura T, Lee YK, Choi EY, Han CD, Park SJ. Narrow lpa1 Metaxylems Enhance Drought Tolerance and Optimize Water Use for Grain Filling in Dwarf Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:894545. [PMID: 35620680 PMCID: PMC9127761 DOI: 10.3389/fpls.2022.894545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 05/31/2023]
Abstract
Rice cultivation needs extensive amounts of water. Moreover, increased frequency of droughts and water scarcity has become a global concern for rice cultivation. Hence, optimization of water use is crucial for sustainable agriculture. Here, we characterized Loose Plant Architecture 1 (LPA1) in vasculature development, water transport, drought resistance, and grain yield. We performed genetic combination of lpa1 with semi-dwarf mutant to offer the optimum rice architecture for more efficient water use. LPA1 expressed in pre-vascular cells of leaf primordia regulates genes associated with carbohydrate metabolism and cell enlargement. Thus, it plays a role in metaxylem enlargement of the aerial organs. Narrow metaxylem of lpa1 exhibit leaves curling on sunny day and convey drought tolerance but reduce grain yield in mature plants. However, the genetic combination of lpa1 with semi-dwarf mutant (dep1-ko or d2) offer optimal water supply and drought resistance without impacting grain-filling rates. Our results show that water use, and transports can be genetically controlled by optimizing metaxylem vessel size and plant height, which may be utilized for enhancing drought tolerance and offers the potential solution to face the more frequent harsh climate condition in the future.
Collapse
Affiliation(s)
- Ryza A. Priatama
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, South Korea
| | - Jung Heo
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, South Korea
| | - Sung Hoon Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, South Korea
| | - Sujeevan Rajendran
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, South Korea
| | - Seoa Yoon
- Department of Horticulture Industry, Wonkwang University, Iksan, South Korea
| | - Dong-Hoon Jeong
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Young-Kug Choo
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, South Korea
| | - Jong Hyang Bae
- Department of Horticulture Industry, Wonkwang University, Iksan, South Korea
| | - Chul Min Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, South Korea
| | - Yeon Hee Lee
- National Institute of Agricultural Biotechnology, Suwon, South Korea
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Young Koung Lee
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, South Korea
| | - Eun-Young Choi
- Department of Agricultural Science, Korea National Open University, Seoul, South Korea
| | - Chang-deok Han
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Soon Ju Park
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, South Korea
| |
Collapse
|
40
|
Xie H, Bai G, Lu P, Li H, Fei M, Xiao BG, Chen XJ, Tong ZJ, Wang ZY, Yang DH. Exogenous citric acid enhances drought tolerance in tobacco (Nicotiana tabacum). PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:333-343. [PMID: 34879179 DOI: 10.1111/plb.13371] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Organic acids play a pivotal role in improving plant response to long-term drought stress. External application of organic acids has been reported to improve drought resistance in several species. However, whether organic acids have similar effects in tobacco remains unknown. A screening study of the protective function of organic acids in tobacco and understanding the underlying molecular mechanism would be useful in developing a strategy for drought tolerance. Several physiological and molecular adaptations to drought including abscisic acid, stomatal closure, reactive oxygen species homeostasis, amino acid accumulation, and drought-responsive gene expression were observed by exogenous citric acid in tobacco plants. Exogenous application of 50 mm citric acid to tobacco plants resulted in higher chlorophyll content, net photosynthesis, relative water content, abscisic acid content and lower stomatal conductance, transpiration and water loss under drought conditions. Moreover, reactive oxygen species homeostasis was better maintained through increasing activity of antioxidant enzymes and decreasing hydrogen peroxide content after citric acid pretreatment under drought. Amino acids involved in the TCA cycle accumulated after external application of citric acid under drought stress. Furthermore, several drought stress-responsive genes also dramatically changed after application of citric acid. These data support the idea that external application of citric acid enhances drought resistance by affecting physiological and molecular regulation in tobacco. This study provides clear insights into mechanistic details of regulation of amino acid and stress-responsive gene expression by citric acid in tobacco in response to drought, which is promising for minimizing growth inhibition in agricultural fields.
Collapse
Affiliation(s)
- H Xie
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - G Bai
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - P Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - H Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - M Fei
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - B-G Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - X-J Chen
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Z-J Tong
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Z-Y Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Zhanjiang, China
| | - D-H Yang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|
41
|
Kandhol N, Jain M, Tripathi DK. Nanoparticles as potential hallmarks of drought stress tolerance in plants. PHYSIOLOGIA PLANTARUM 2022; 174:e13665. [PMID: 35279848 DOI: 10.1111/ppl.13665] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
Plants are inevitably exposed to drought stress limiting their growth and causing yield loss, thus inciting food crises across the world. Nanoparticles (NPs) are regarded as effective and promising tools for modulation of crop yield to overcome current and future constraints in sustainable agricultural production by upgrading the plant tolerance mechanism under abiotic stress conditions, including drought. NPs exhibit alleviating effects against drought stress via induction of physiological and biochemical readjustments accompanied by modulation of gene expression involved in drought response/tolerance. NPs ameliorate drought-induced reduction in carbon assimilation via increasing the photosynthetic activity. The improved root growth, upregulation of aquaporins, modification of intracellular water metabolism, accumulation of compatible solutes and ion homeostasis are the major mechanisms used by NPs to mitigate the osmotic stress caused by water deficit. NPs reduce water loss from leaves through stomatal closure due to fostered abscisic acid (ABA) accumulation and ameliorate oxidative stress damage by reducing reactive oxygen species and activating the antioxidant defense system. This review provides an evolutionary foundation regarding drought stress in plant life and summarizes the interactions between NPs and plants under drought. The subsequent impact of NPs on plant development and productivity and recent nanobiotechnological approaches to improve drought stress resilience are presented. On the whole, this review highlights the significance of NPs in dealing with the global problem of water scarcity faced by farmers.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
42
|
Gojon A, Nussaume L, Luu DT, Murchie EH, Baekelandt A, Rodrigues Saltenis VL, Cohan J, Desnos T, Inzé D, Ferguson JN, Guiderdonni E, Krapp A, Klein Lankhorst R, Maurel C, Rouached H, Parry MAJ, Pribil M, Scharff LB, Nacry P. Approaches and determinants to sustainably improve crop production. Food Energy Secur 2022. [DOI: 10.1002/fes3.369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Alain Gojon
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Laurent Nussaume
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Doan T. Luu
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Erik H. Murchie
- School of Biosciences University of Nottingham Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | | | | | - Thierry Desnos
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - John N. Ferguson
- School of Biosciences University of Nottingham Loughborough UK
- Department of Plant Sciences University of Cambridge Cambridge UK
| | | | - Anne Krapp
- Institut Jean‐Pierre Bourgin INRAE AgroParisTech Université Paris‐Saclay Versailles France
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Hatem Rouached
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
- Department of Plant, Soil, and Microbial Sciences Michigan State University East Lansing Michigan USA
| | | | - Mathias Pribil
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Philippe Nacry
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| |
Collapse
|
43
|
Jiménez-Mejía R, Medina-Estrada RI, Carballar-Hernández S, Orozco-Mosqueda MDC, Santoyo G, Loeza-Lara PD. Teamwork to Survive in Hostile Soils: Use of Plant Growth-Promoting Bacteria to Ameliorate Soil Salinity Stress in Crops. Microorganisms 2022; 10:150. [PMID: 35056599 PMCID: PMC8781547 DOI: 10.3390/microorganisms10010150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Plants and their microbiomes, including plant growth-promoting bacteria (PGPB), can work as a team to reduce the adverse effects of different types of stress, including drought, heat, cold, and heavy metals stresses, as well as salinity in soils. These abiotic stresses are reviewed here, with an emphasis on salinity and its negative consequences on crops, due to their wide presence in cultivable soils around the world. Likewise, the factors that stimulate the salinity of soils and their impact on microbial diversity and plant physiology were also analyzed. In addition, the saline soils that exist in Mexico were analyzed as a case study. We also made some proposals for a more extensive use of bacterial bioinoculants in agriculture, particularly in developing countries. Finally, PGPB are highly relevant and extremely helpful in counteracting the toxic effects of soil salinity and improving crop growth and production; therefore, their use should be intensively promoted.
Collapse
Affiliation(s)
- Rafael Jiménez-Mejía
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Ricardo I. Medina-Estrada
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Santos Carballar-Hernández
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Uruapan 60170, Mexico;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58030, Mexico;
| | - Pedro D. Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| |
Collapse
|
44
|
Wang Z, Ding X, Li Y, Xie J. The compensation effect between safety and efficiency in xylem and role in photosynthesis of gymnosperms. PHYSIOLOGIA PLANTARUM 2022; 174:e13617. [PMID: 35199364 DOI: 10.1111/ppl.13617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The classical theory of safety-efficiency trade-off is a common theme in plant sciences. Despite safety and efficiency partly compensating for each other physiologically (namely, there is a compensation effect, CE, among traits from the "whole" organism perspective), they are always mathematically described as a trade-off against one another. However, the compensation effect has never been defined and quantified, let alone its role in the xylem water transport and subsequently photosynthesis. Here, we developed an alternative theory to define the CE as a positive relationship between safety and efficiency, and further define a new trade-off index, SETO, that is expressed as CE multiplied by a trade-off factor (differing from the classical average trade-off value). Then, we tested SETO- and CE-photosynthetic rate relationships across different levels based on a common garden experiment using nine conifers and published data for gymnosperms. The results demonstrated that the compensation effect in xylem functions was the dominant force in facilitating photosynthetic rates from species- to phylum-scale. By integrating the compensation effect into the xylem hydraulic functional strategy, our study clearly indicated that the compensation effect is the evolutionary basis for the coordination of xylem hydraulic and photosynthesis physiology.
Collapse
Affiliation(s)
- Zhongyuan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiaoran Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China
| | - Jiangbo Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
45
|
Ganthaler A, Bär A, Dämon B, Losso A, Nardini A, Dullin C, Tromba G, von Arx G, Mayr S. Alpine dwarf shrubs show high proportions of nonfunctional xylem: Visualization and quantification of species-specific patterns. PLANT, CELL & ENVIRONMENT 2022; 45:55-68. [PMID: 34783044 DOI: 10.1111/pce.14226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Xylem conductive capacity is a key determinant of plant hydraulic function and intimately linked to photosynthesis and productivity, but can be impeded by temporary or permanent conduit dysfunctions. Here we show that persistent xylem dysfunctions in unstressed plants are frequent in Alpine dwarf shrubs and occur in various but species-specific cross-sectional patterns. Combined synchrotron micro-computed tomography (micro-CT) imaging, xylem staining, and flow measurements in saturated samples of six widespread Ericaceae species evidence a high proportion (19%-50%) of hydraulically nonfunctional xylem areas in the absence of drought stress, with regular distribution of dysfunctions between or within growth rings. Dysfunctions were only partly reversible and reduced the specific hydraulic conductivity to 1.38 to 3.57 ×10-4 m2 s-1 MPa-1 . Decommission of inner growth rings was clearly related to stem age and a higher vulnerability to cavitation of older rings, while the high proportion of nonfunctional conduits in each annual ring needs further investigations. The lower the xylem fraction contributing to the transport function, the higher was the hydraulic efficiency of conducting xylem areas. Improved understanding of the functional lifespan of xylem elements and the prevalence and nature of dysfunctions is critical to correctly assess structure-function relationships and whole-plant hydraulic strategies.
Collapse
Affiliation(s)
- Andrea Ganthaler
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Birgit Dämon
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Christian Dullin
- Elettra-Sincrotrone Trieste, Basovizza, Italy
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
- Diagnostic and Interventional Radiology, University Hospital, Heidelberg, Germany
| | | | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
McMann N, Peichel A, Savage JA. Early spring flowers rely on xylem hydration but are not limited by stem xylem conductivity. THE NEW PHYTOLOGIST 2022; 233:838-850. [PMID: 34618926 DOI: 10.1111/nph.17782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Many woody plants produce large floral displays early in the spring when xylem transport can be variable and often reduced. To determine whether stem hydraulics impact floral water use, we quantified floral transpiration and tested whether it was correlated with stem xylem conductivity in five temperate woody species that flower before producing leaves. We measured inflorescence gas exchange, examined the relationship between diffusive conductance and inflorescence morphology, and estimated the amount of water supplied to an inflorescence by the phloem. We also tested for correlation between transpiration and native stem xylem conductivity for branches with leaves and branches with flowers. The flowers of our study species obtain most of their water from the xylem. Diffusive conductance was higher in small inflorescences, but water content and daily transpiration rates were greater for larger inflorescences. We found no correlation between floral transpiration per branch and stem xylem conductivity within species. The data suggest that inflorescence water loss during anthesis is not limited by the xylem in our study species. We highlight the impact of floral morphology on hydraulic traits and encourage exploration into temporal shifts in floral hydration.
Collapse
Affiliation(s)
- Natalie McMann
- Department of Biology, University of Minnesota Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Alexander Peichel
- Department of Biology, University of Minnesota Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Jessica A Savage
- Department of Biology, University of Minnesota Duluth, 207 Swenson Science Building, 1035 Kirby Drive, Duluth, MN, 55812, USA
| |
Collapse
|
47
|
Słupianek A, Dolzblasz A, Sokołowska K. Xylem Parenchyma-Role and Relevance in Wood Functioning in Trees. PLANTS (BASEL, SWITZERLAND) 2021; 10:1247. [PMID: 34205276 PMCID: PMC8235782 DOI: 10.3390/plants10061247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Woody plants are characterised by a highly complex vascular system, wherein the secondary xylem (wood) is responsible for the axial transport of water and various substances. Previous studies have focused on the dead conductive elements in this heterogeneous tissue. However, the living xylem parenchyma cells, which constitute a significant functional fraction of the wood tissue, have been strongly neglected in studies on tree biology. Although there has recently been increased research interest in xylem parenchyma cells, the mechanisms that operate in these cells are poorly understood. Therefore, the present review focuses on selected roles of xylem parenchyma and its relevance in wood functioning. In addition, to elucidate the importance of xylem parenchyma, we have compiled evidence supporting the hypothesis on the significance of parenchyma cells in tree functioning and identified the key unaddressed questions in the field.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland; (A.D.); (K.S.)
| | | | | |
Collapse
|
48
|
Wason J, Bouda M, Lee EF, McElrone AJ, Phillips RJ, Shackel KA, Matthews MA, Brodersen C. Xylem network connectivity and embolism spread in grapevine(Vitis vinifera L.). PLANT PHYSIOLOGY 2021; 186:373-387. [PMID: 33576825 PMCID: PMC8154096 DOI: 10.1093/plphys/kiab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/17/2021] [Indexed: 05/20/2023]
Abstract
Xylem networks are vulnerable to the formation and spread of gas embolisms that reduce water transport. Embolisms spread through interconduit pits, but the three-dimensional (3D) complexity and scale of xylem networks means that the functional implications of intervessel connections are not well understood. Here, xylem networks of grapevine (Vitis vinifera L.) were reconstructed from 3D high-resolution X-ray micro-computed tomography (microCT) images. Xylem network performance was then modeled to simulate loss of hydraulic conductivity under increasingly negative xylem sap pressure simulating drought stress conditions. We also considered the sensitivity of xylem network performance to changes in key network parameters. We found that the mean pit area per intervessel connection was constant across 10 networks from three, 1.5-m stem segments, but short (0.5 cm) segments fail to capture complete network connectivity. Simulations showed that network organization imparted additional resistance to embolism spread beyond the air-seeding threshold of pit membranes. Xylem network vulnerability to embolism spread was most sensitive to variation in the number and location of vessels that were initially embolized and pit membrane vulnerability. Our results show that xylem network organization can increase stem resistance to embolism spread by 40% (0.66 MPa) and challenge the notion that a single embolism can spread rapidly throughout an entire xylem network.
Collapse
Affiliation(s)
- Jay Wason
- School of Forest Resources, University of Maine, Orono, Maine 04469
- School of the Environment, Yale University, New Haven, CT 06520
| | - Martin Bouda
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Eric F Lee
- Department of Engineering Sciences, Clackamas Community College, Oregon City, Oregon 97045
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California Davis, Davis, California
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, California
| | - Ronald J Phillips
- Department of Chemical Engineering, University of California Davis, Davis, California
| | - Kenneth A Shackel
- Department of Plant Science, University of California Davis, Davis, California
| | - Mark A Matthews
- Department of Viticulture and Enology, University of California Davis, Davis, California
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT 06520
- Author for communication:
| |
Collapse
|
49
|
Zhang X, Man Y, Zhuang X, Shen J, Zhang Y, Cui Y, Yu M, Xing J, Wang G, Lian N, Hu Z, Ma L, Shen W, Yang S, Xu H, Bian J, Jing Y, Li X, Li R, Mao T, Jiao Y, Sodmergen, Ren H, Lin J. Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1392-1422. [PMID: 33974222 DOI: 10.1007/s11427-020-1910-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
In multicellular and even single-celled organisms, individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation. Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes. Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project. In plant science, network analysis has similarly been applied to study the connectivity of plant components at the molecular, subcellular, cellular, organic, and organism levels. Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype. In this review, we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities. We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants. Finally, we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jingjing Xing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457004, China
| | - Guangchao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zijian Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lingyu Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Weiwei Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shunyao Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiahui Bian
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, 100101, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
50
|
Olson ME, Anfodillo T, Gleason SM, McCulloh KA. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. THE NEW PHYTOLOGIST 2021; 229:1877-1893. [PMID: 32984967 DOI: 10.1111/nph.16961] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
In the stems of terrestrial vascular plants studied to date, the diameter of xylem water-conducting conduits D widens predictably with distance from the stem tip L approximating D ∝ Lb , with b ≈ 0.2. Because conduit diameter is central for conductance, it is essential to understand the cause of this remarkably pervasive pattern. We give reason to suspect that tip-to-base conduit widening is an adaptation, favored by natural selection because widening helps minimize the increase in hydraulic resistance that would otherwise occur as an individual stem grows longer and conductive path length increases. Evidence consistent with adaptation includes optimality models that predict the 0.2 exponent. The fact that this prediction can be made with a simple model of a single capillary, omitting much biological detail, itself makes numerous important predictions, e.g. that pit resistance must scale isometrically with conduit resistance. The idea that tip-to-base conduit widening has a nonadaptive cause, with temperature, drought, or turgor limiting the conduit diameters that plants are able to produce, is less consistent with the data than an adaptive explanation. We identify empirical priorities for testing the cause of tip-to-base conduit widening and underscore the need to study plant hydraulic systems leaf to root as integrated wholes.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD), 35020, Italy
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | | |
Collapse
|