1
|
Cristiano E, Ali H, Celentano E, Cappato R. Catheter ablation using pulsed-field energy: Do we finally have the magic wand to defeat atrial fibrillation? World J Cardiol 2024; 16:677-682. [PMID: 39734816 PMCID: PMC11669968 DOI: 10.4330/wjc.v16.i12.677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/28/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Clinical outcomes of catheter ablation remain suboptimal in patients with atrial fibrillation (AF), particularly in those with persistent AF, despite decades of research, clinical trials, and technological advancements. Recently, pulsed-field ablation (PFA), a promising non-thermal technology, has been introduced to improve procedural outcomes. Its unique feature of myocardial selectivity offers safety advantages by avoiding potential harm to vulnerable adjacent structures during AF ablation. However, despite the global enthusiasm within the electrophysiology community, recent data indicate that PFA is still far from being a "magic wand" for addressing such a complex and challenging arrhythmia as AF. More progress is needed in mapping processes rather than in ablation technology. This editorial reviews relevant available data and explores future research directions for PFA.
Collapse
Affiliation(s)
- Ernesto Cristiano
- Department of Cardiac Electrophysiology Complex Operational Unit, Humanitas Gavazzeni, Bergamo 24125, Lombardy, Italy
| | - Hussam Ali
- Arrhythmia and Electrophysiology Center, IRCCS MultiMedica, Sesto San Giovanni 20099, Milan, Italy.
| | - Eduardo Celentano
- Department of Cardiac Electrophysiology Complex Operational Unit, Humanitas Gavazzeni, Bergamo 24125, Lombardy, Italy
- Department of Cardiology, Erasmus University Medical Center, Rotterdam 3090, Netherlands
| | - Riccardo Cappato
- Arrhythmia and Electrophysiology Center, IRCCS MultiMedica, Sesto San Giovanni 20099, Milan, Italy
| |
Collapse
|
2
|
Rembiałkowska N, Kulbacka J. Advances in Pharmaceutical Science in Electrochemotherapy: A Tribute to Prof. Jolanta Saczko. Pharmaceuticals (Basel) 2024; 17:1718. [PMID: 39770560 PMCID: PMC11679509 DOI: 10.3390/ph17121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
This Special Issue is dedicated to the memory of Professor Jolanta Saczko (1964-2023), a remarkable leader whose guidance and dedication were instrumental in advancing electroporation-based research in Poland [...].
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
3
|
Mondal N, Dalal DC. A Model for Reversible Electroporation to Deliver Drugs into Diseased Tissues. J Membr Biol 2024; 257:365-376. [PMID: 39133275 DOI: 10.1007/s00232-024-00321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Drug delivery through electroporation could be highly beneficial for the treatment of different types of diseased tissues within the human body. In this work, a mathematical model of reversible tissue electroporation is presented for injecting drug into the diseased cells. The model emphasizes the tissue boundary where the drug is injected as a point source. In addition, the effect of drug loss at tissue boundaries through extracellular space is studied elaborately. Multiple pulses are applied to deliver a sufficient amount of drug into the targeted cells. The set of differential equations that model the physical circumstances are solved numerically. This model obtains a mass transfer coefficient (MTC), in terms of pore fraction coefficient and drug permeability that controls the drug transport from extracellular to intracellular space. The drug penetration throughout the tissue is captured for the application of different pulses. The boundary effects on drug concentration are highlighted in this study. The advocated model is able to perform homogeneous drug transport into the cells so that the affected tissue is treated completely. This model can be applied to optimize clinical experiments by avoiding the lengthy and costly in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Nilay Mondal
- Department of Mathematics, Faculty of Science and Technology, The ICFAI University Tripura, Kamalghat, Agartala, Tripura, 799210, India.
- Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - D C Dalal
- Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
4
|
Katov L, Teumer Y, Bothner C, Rottbauer W, Weinmann-Emhardt K. Comparative Analysis of Real-World Clinical Outcomes of a Novel Pulsed Field Ablation System for Pulmonary Vein Isolation: The Prospective CIRCLE-PVI Study. J Clin Med 2024; 13:7040. [PMID: 39685499 DOI: 10.3390/jcm13237040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Pulsed field ablation (PFA) represents a novel non-thermal approach for treating atrial fibrillation (AF) through pulmonary vein isolation (PVI). By utilizing irreversible electroporation, PFA creates lesions with minimal impact on adjacent tissues. This study investigates the procedural outcomes and safety of a novel circular PFA catheter in comparison to an established PFA system in a real-world clinical setting. Methods: This prospective, single-center study enrolled 125 consecutive patients with symptomatic paroxysmal or persistent AF undergoing first-time PVI with PFA at Ulm University Heart Center. Twenty-five patients underwent PFA PVI using a novel PFA system (PulseSelectTM, Medtronic, Dublin, Ireland) which incorporates a new circular catheter design and additional features such as ECG-triggered energy application and phrenic nerve capture testing. In comparison, 100 patients were treated using the established PFA system (FarapulseTM, Boston Scientific, Marlborough, MA, USA). Results: Acute PVI was achieved in 100% of the patients. Procedure duration, total left atrial (LA) time and fluoroscopy time remained comparable between both groups. The total number of energy deliveries was higher with the novel circular PFA catheter (34.0 vs. 32.0; p < 0.001). No procedure-related complications, including pericardial tamponade, phrenic nerve injury, atrial-esophageal fistula, vascular complications, embolisms, malignant cardiac arrhythmias, or coronary spasms were observed. Conclusions: The novel and the established PFA systems demonstrated comparable results in terms of procedure duration, fluoroscopy time, and LA time. In the hands of experienced operators, the novel circular PFA system enables an effective, consistent, and safe approach to successful PFA PVI.
Collapse
Affiliation(s)
- Lyuboslav Katov
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Yannick Teumer
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Carlo Bothner
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Wolfgang Rottbauer
- Department of Cardiology, Ulm University Heart Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | |
Collapse
|
5
|
Müller N, Gylstorff S, Walles H, Gerlach T, Belker O, Zanasi A, Punzet D, Kopp S. 3D-cell phantom-experimental setup to assess thermal effects and cell viability of lung tumor cells after electroporation. Sci Rep 2024; 14:27144. [PMID: 39511318 PMCID: PMC11543935 DOI: 10.1038/s41598-024-78339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Medical devices and technologies must undergo extensive testing and validation before being certified for public healthcare use, especially in oncology where a high research focus is on new advancements. Human 3D-tissue models can offer valuable insights into cancer behavior and treatment efficacy. This study developed a cell phantom setup using a rattail collagen-based hydrogel to facilitate reproducible investigations into ablation techniques, focusing on electroporation (EP) for lung tumor cells. The temperature rise due to the treatment is a critical aspect based on other studies that have discovered non-neglectable temperature values. A realistic physiological, biological phantom is crucial for electrode material development, non-thermal ablation control, tumor cell behavior study, and image-guided treatment simulation. The test system comprises a standardized 3D-printed setup, a cell-mimicking hydrogel model cultivated with NIH3T3 and HCC-827 cell lines. The treatment is evaluated with an AlamarBlue assay and the temperature is monitored with a sensor and a non-invasive MR-thermometry. Results showed the reliability of the selected monitoring methods and especially the temperature monitoring displayed interesting insights. The thermal effect due to EP cannot be neglected and it has to be discussed if this technique is non-thermal. The lesions in the phantom were able to show apoptotic and necrotic regions. The EP further led to a change in viability. These results suggest that the phantom can mimic the response of soft tissue and is a useful tool for studying cellular response and damage caused by EP or other treatment techniques.
Collapse
Affiliation(s)
- Noah Müller
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Pfälzerstr.2, 39106, Magdeburg, Germany
| | - Severin Gylstorff
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, University Hospital Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Heike Walles
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Pfälzerstr.2, 39106, Magdeburg, Germany
| | - Thomas Gerlach
- Research Campus STIMULATE, Otto-von-Guericke University Magdeburg, Otto-Hahn-Straße 2, 39106, Magdeburg, Germany
| | - Othmar Belker
- Research Campus STIMULATE, Otto-von-Guericke University Magdeburg, Otto-Hahn-Straße 2, 39106, Magdeburg, Germany
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Alessandro Zanasi
- IGEA Zwgn. Deutschland, Feilitzschstraße 1, 80802, Munich, Germany
- Clinical Biophysics Laboratory, IGEA S.p.A, Via Parmenide 10a, Carpi, Italy
| | - Daniel Punzet
- Research Campus STIMULATE, Otto-von-Guericke University Magdeburg, Otto-Hahn-Straße 2, 39106, Magdeburg, Germany
| | - Sascha Kopp
- Core Facility Tissue Engineering, Otto-von-Guericke University Magdeburg, Pfälzerstr.2, 39106, Magdeburg, Germany.
| |
Collapse
|
6
|
Bai S, Luo H, Tong H, Wu Y, Yuan Y. Advances on transfer and maintenance of large DNA in bacteria, fungi, and mammalian cells. Biotechnol Adv 2024; 76:108421. [PMID: 39127411 DOI: 10.1016/j.biotechadv.2024.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/07/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Advances in synthetic biology allow the design and manipulation of DNA from the scale of genes to genomes, enabling the engineering of complex genetic information for application in biomanufacturing, biomedicine and other areas. The transfer and subsequent maintenance of large DNA are two core steps in large scale genome rewriting. Compared to small DNA, the high molecular weight and fragility of large DNA make its transfer and maintenance a challenging process. This review outlines the methods currently available for transferring and maintaining large DNA in bacteria, fungi, and mammalian cells. It highlights their mechanisms, capabilities and applications. The transfer methods are categorized into general methods (e.g., electroporation, conjugative transfer, induced cell fusion-mediated transfer, and chemical transformation) and specialized methods (e.g., natural transformation, mating-based transfer, virus-mediated transfection) based on their applicability to recipient cells. The maintenance methods are classified into genomic integration (e.g., CRISPR/Cas-assisted insertion) and episomal maintenance (e.g., artificial chromosomes). Additionally, this review identifies the major technological advantages and disadvantages of each method and discusses the development for large DNA transfer and maintenance technologies.
Collapse
Affiliation(s)
- Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Han Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanze Tong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China. @tju.edu.cn
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Sahu P, Camarillo IG, Dettin M, Zamuner A, Teresa Conconi M, Barozzi M, Giri P, Sundararajan R, Sieni E. Electroporation enhances cell death in 3D scaffold-based MDA-MB-231 cells treated with metformin. Bioelectrochemistry 2024; 159:108734. [PMID: 38762949 DOI: 10.1016/j.bioelechem.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer lacks estrogen, progesterone, and HER2 receptors and hence, is therapeutically challenging. Towards this, we studied an alternate therapy by repurposing metformin (FDA-approved type-2 diabetic drug with anticancer properties) in a 3D-scaffold culture, with electrical pulses. 3D cell culture was used to simulate the tumor microenvironment more closely and MDA-MB-231, human TNBC cells, treated with both 5 mM metformin (Met) and 8 electrical pulses at 2500 V/cm, 10 µs (EP1) and 800 V/cm, 100 µs (EP2) at 1 Hz were studied in 3D and 2D. They were characterized using cell viability, reactive oxygen species (ROS), glucose uptake, and lactate production assays at 24 h. Cell viability, as low as 20 % was obtained with EP1 + 5 mM Met. They exhibited 1.65-fold lower cell viability than 2D with EP1 + 5 mM Met. ROS levels indicated a 2-fold increase in oxidative stress for EP1 + 5 mM Met, while the glucose uptake was limited to only 9 %. No significant change in the lactate production indicated glycolytic arrest and a non-conducive environment for MDA-MB-231 growth. Our results indicate that 3D cell culture, with a more realistic tumor environment that enhances cell death using metformin and electrical pulses could be a promising approach for TNBC therapeutic intervention studies.
Collapse
Affiliation(s)
- Praveen Sahu
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G Camarillo
- Deptartment of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy; Department of Civil, Environmental, and Architectural Engineering, University of Padova, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Marco Barozzi
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy
| | - Pragatheiswar Giri
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy.
| |
Collapse
|
8
|
Tasu JP, Herpe G, Damion J, Richer JP, Debeane B, Vionnet M, Rouleau L, Carretier M, Ferru A, Ingrand P, Tougeron D. Irreversible electroporation to bring initially unresectable locally advanced pancreatic adenocarcinoma to surgery: the IRECAP phase II study. Eur Radiol 2024; 34:6885-6895. [PMID: 38494526 DOI: 10.1007/s00330-024-10613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES The aim of the IRECAP study was to evaluate the rate of locally advanced pancreas cancer patients (LAPC) who could undergo R0 or R1 surgery after irreversible electroporation (IRE). MATERIALS AND METHODS IRECAP study is a phase II, single-center, open-label, prospective, non-randomized trial registered at clinicaltrials.gov (NCT03105921). Patients with LAPC were first treated by 3-month neo-adjuvant chemotherapy in order to avoid inclusion of either patients with LAPC having become resectable after chemotherapy or patients with rapid disease progression. In cases of stable disease, IRE was performed percutaneously under CT guidance. Surgery was planned between 28 and 90 days after IRE. Tumor specimens were studied to evaluate the resection margins (R0/R1/R2). RESULTS Six men and 11 women were included (median age 61 years, range 37-77 years). No IRE-related death was observed. Ten patients (58%, 10/17) experienced 25 serious adverse events related to IRE. Four patients progressed between IRE and surgery and were excluded from surgery. Thirteen patients were finally operated, six withheld for pancreas resection, three for diffuse peritoneal carcinosis, two for massive vascular entrapment, and one for hepato-cellular carcinoma not diagnosed before surgery. Rate of R1-R0 was 35% (n = 6/17). Median overall survival was 31 months (95% CI; 4-undefined) for the six patients with R0/R1 resection and 21 months (95% CI; 4-25) for the 11 patients without resection or R2 resection (logrank p = 0.044). CONCLUSION After neoadjuvant chemotherapy, IRE could provide R0 or R1 resection in 35% of LAPC, which seems to be associated with higher OS. CLINICAL RELEVANCE STATEMENT After induction chemotherapy, stable locally advanced pancreatic cancers can be treated by irreversible electroporation, which could lead to a secondary 35% rate of R0 or R1 surgical resection which may be associated with a significantly higher overall survival. KEY POINTS • In cases of unresectable LAPC (locally advanced pancreatic cancer), percutaneous irreversible electroporation (pIRE) is feasible (100% success rate of the procedure), but is associated with a 58% rate of grade 3-4 adverse events. • In patients with unresectable LAPC, pIRE could lead 35% of patients to R0-R1 surgical resection. • From IRE, median overall survival was 31 months (95% CI; 4-undefined) for the patients with R0/R1 resection and 21 months (95% CI; 4-25) for the patients without resection or R2 resection (logrank p = 0.044).
Collapse
Affiliation(s)
- Jean-Pierre Tasu
- Department of Diagnosis and Interventional Radiology, University Hospital of Poitiers, 86021, Poitiers Cedex, France.
- LaTim, UBO and INSERM 1101, University of Brest, 29000, Brest, France.
| | - Guillaume Herpe
- Department of Diagnosis and Interventional Radiology, University Hospital of Poitiers, 86021, Poitiers Cedex, France
| | - Jérôme Damion
- Department of Pancreatic Surgery, University Hospital of Poitiers, 86021, Poitiers Cedex, France
| | - Jean-Pierre Richer
- Department of Pancreatic Surgery, University Hospital of Poitiers, 86021, Poitiers Cedex, France
| | - Bertrand Debeane
- Department of Anesthesiology, University Hospital of Poitiers, 86021, Poitiers Cedex, France
| | - Mathilde Vionnet
- Department of Diagnosis and Interventional Radiology, University Hospital of Poitiers, 86021, Poitiers Cedex, France
| | - Laetitia Rouleau
- Department of Anesthesiology, University Hospital of Poitiers, 86021, Poitiers Cedex, France
| | - Michel Carretier
- Department of Pancreatic Surgery, University Hospital of Poitiers, 86021, Poitiers Cedex, France
| | - Aurélie Ferru
- Department of Abdominal Oncology, University Hospital of Poitiers, 86021, Poitiers Cedex, France
| | - Pierre Ingrand
- Department of Biostastistic and Epidemiology, University of Poitiers, 86000, Poitiers, France
| | - David Tougeron
- Department of Abdominal Oncology, University Hospital of Poitiers, 86021, Poitiers Cedex, France
| |
Collapse
|
9
|
Lindelauf KHK, Baragona M, Lemainque T, Maessen RTH, Ritter A. Electrochemotherapy and Calcium Electroporation on Hepatocellular Carcinoma Cells: An In-Vitro Investigation. Cardiovasc Intervent Radiol 2024; 47:1384-1391. [PMID: 39227427 PMCID: PMC11486824 DOI: 10.1007/s00270-024-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Electrochemotherapy, clinically established for treating (sub)cutaneous tumors, has been standardized in the framework of the European Standard Operating Procedure on Electrochemotherapy (ESOPE). Due to common side effects of chemotherapeutic drugs, recent advances focus on non-cytotoxic agents, like calcium, to induce cell death (calcium electroporation). Therefore, this study aims to determine the efficacy of electrochemotherapy with bleomycin or cisplatin, or calcium electroporation on human hepatocellular carcinoma cells (HepG2) in vitro using the ESOPE protocol. METHODS HepG2 cell viability was measured with a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay after electrochemotherapy with the chemotherapeutic drugs bleomycin or cisplatin (0-20 µM), or after calcium electroporation (0-20 mM), to determine its efficacy on HepG2 cells in vitro using the ESOPE protocol (8 rectangular pulses, 1000 V/cm, 100 µs) compared to non-electroporated drug treatment. RESULTS Cell viability was significantly lower in electroporated samples, compared to their non-electroporated controls (27-75% difference). Electrochemotherapy with bleomycin and calcium electroporation, reached (almost) complete cell death (- 1 ± 3% and 2.5 ± 2%), in the lowest concentration of 2.5 µM and 2.5 mM, respectively. Electrochemotherapy with 2.5 µM cisplatin, significantly decreased cell viability to only 68% (± 7%). CONCLUSION Electrochemotherapy with bleomycin or cisplatin, or calcium electroporation were more effective in reducing the HepG2 cell viability in vitro using the ESOPE protocol compared to the non-electroporated drug treatments alone. When comparing electrochemotherapy, HepG2 cells are more sensitive to bleomycin than cisplatin, in similar concentrations. Calcium electroporation has the same effectiveness as electrochemotherapy with bleomycin, but calcium potentially has a better safety profile and several treatment advantages.
Collapse
Affiliation(s)
- K H K Lindelauf
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany.
- Philips Research, Eindhoven, The Netherlands.
| | - M Baragona
- Philips Research, Eindhoven, The Netherlands
| | - T Lemainque
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - A Ritter
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
10
|
Carta-Bergaz A, Ríos-Muñoz GR, Ávila P, Atienza F, González-Torrecilla E, Arenal Á. Pulsed Field Ablation of Atrial Fibrillation: A Novel Technology for Safer and Faster Ablation. Biomedicines 2024; 12:2232. [PMID: 39457545 PMCID: PMC11504058 DOI: 10.3390/biomedicines12102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, is associated with increased morbidity, mortality, and healthcare costs. Evidence indicates that rhythm control offers superior cardiovascular outcomes compared to rate control, especially when initiated early after the diagnosis of AF. Catheter ablation remains the single best therapy for AF; however, it is not free from severe complications and only a small percentage of AF patients in the Western world ultimately receive ablation. Ensuring that AF ablation is safe, effective, and efficient is essential to make it accessible to all patients. With the limitations of traditional thermal ablative energies, pulsed field ablation (PFA) has emerged as a novel non-thermal energy source. PFA targets irreversible electroporation of cardiomyocytes to achieve cell death without damaging adjacent structures. Through its capability to create rapid, selective lesions in myocytes, PFA presents a promising alternative, offering enhanced safety, reduced procedural times, and comparable, if not superior, efficacy to thermal energies. The surge of new evidence makes it challenging to stay updated and understand the possibilities and challenges of PFA. This review aims to summarize the most significant advantages of PFA and how this has translated to the clinical arena, where four different catheters have received CE-market approval for AF ablation. Further research is needed to explore whether adding new ablation targets, previously avoided due to risks associated with thermal energies, to pulmonary vein isolation can improve the efficacy of AF ablation. It also remains to see whether a class effect exists or if different PFA technologies can yield distinct clinical outcomes given that the optimization of PFA parameters has largely been empirical.
Collapse
Affiliation(s)
- Alejandro Carta-Bergaz
- Department of Cardiology, Gregorio Marañón Health Research Institute (IiSGM), Calle Dr. Esquerdo 47, 28007 Madrid, Spain; (G.R.R.-M.); (P.Á.); (F.A.); (E.G.-T.); (Á.A.)
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Gonzalo R. Ríos-Muñoz
- Department of Cardiology, Gregorio Marañón Health Research Institute (IiSGM), Calle Dr. Esquerdo 47, 28007 Madrid, Spain; (G.R.R.-M.); (P.Á.); (F.A.); (E.G.-T.); (Á.A.)
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Escuela Politécnica Superior, Avda de la Universidad 30, 28911 Madrid, Spain
| | - Pablo Ávila
- Department of Cardiology, Gregorio Marañón Health Research Institute (IiSGM), Calle Dr. Esquerdo 47, 28007 Madrid, Spain; (G.R.R.-M.); (P.Á.); (F.A.); (E.G.-T.); (Á.A.)
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Felipe Atienza
- Department of Cardiology, Gregorio Marañón Health Research Institute (IiSGM), Calle Dr. Esquerdo 47, 28007 Madrid, Spain; (G.R.R.-M.); (P.Á.); (F.A.); (E.G.-T.); (Á.A.)
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
- Medicine School, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Esteban González-Torrecilla
- Department of Cardiology, Gregorio Marañón Health Research Institute (IiSGM), Calle Dr. Esquerdo 47, 28007 Madrid, Spain; (G.R.R.-M.); (P.Á.); (F.A.); (E.G.-T.); (Á.A.)
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
- Medicine School, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ángel Arenal
- Department of Cardiology, Gregorio Marañón Health Research Institute (IiSGM), Calle Dr. Esquerdo 47, 28007 Madrid, Spain; (G.R.R.-M.); (P.Á.); (F.A.); (E.G.-T.); (Á.A.)
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBERCV), Instituto de Salud Carlos III, Calle Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
11
|
Lekešytė B, Mickevičiūtė E, Malakauskaitė P, Szewczyk A, Radzevičiūtė-Valčiukė E, Malyško-Ptašinskė V, Želvys A, German N, Ramanavičienė A, Kulbacka J, Novickij J, Novickij V. Application of Gold Nanoparticles for Improvement of Electroporation-Assisted Drug Delivery and Bleomycin Electrochemotherapy. Pharmaceutics 2024; 16:1278. [PMID: 39458609 PMCID: PMC11510895 DOI: 10.3390/pharmaceutics16101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Electrochemotherapy (ECT) is a safe and efficient method of targeted drug delivery using pulsed electric fields (PEF), one that is based on the phenomenon of electroporation. However, the problems of electric field homogeneity within a tumor can cause a diminishing of the treatment efficacy, resulting only in partial response to the procedure. This work used gold nano-particles for electric field amplification, introducing the capability to improve available elec-trochemotherapy methods and solve problems associated with field non-homogeneity. Methods: We characterized the potential use of gold nanoparticles of 13 nm diameter (AuNPs: 13 nm) in combination with microsecond (0.6-1.5 kV/cm × 100 μs × 8 (1 Hz)) and nanosecond (6 kV/cm × 300-700 ns × 100 (1, 10, 100 kHz and 1 MHz)) electric field pulses. Finally, we tested the most prominent protocols (microsecond and nanosecond) in the context of bleomycin-based electrochemotherapy (4T1 mammary cancer cell line). Results: In the nano-pulse range, the synergistic effects (improved permeabilization and electrotransfer) were profound, with increased pulse burst frequency. Addi-tionally, AuNPs not only reduced the permeabilization thresholds but also affected pore resealing. It was shown that a saturated cytotoxic response with AuNPs can be triggered at significantly lower electric fields and that the AuNPs themselves are non-toxic for the cells either separately or in combination with bleomycin. Conclusions: The used electric fields are considered sub-threshold and/or not applicable for electrochemotherapy, however, when combined with AuNPs results in successful ECT, indicating the methodology's prospective applicability as an anticancer treatment method.
Collapse
Affiliation(s)
- Barbora Lekešytė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Eglė Mickevičiūtė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Paulina Malakauskaitė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Anna Szewczyk
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Pharmaceutics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Natalija German
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
| | - Almira Ramanavičienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Pharmaceutics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| |
Collapse
|
12
|
Červinková K, Vahalová P, Poplová M, Zakar T, Havelka D, Paidar M, Kolivoška V, Cifra M. Modulation of pulsed electric field induced oxidative processes in protein solutions by pro- and antioxidants sensed by biochemiluminescence. Sci Rep 2024; 14:22649. [PMID: 39349538 PMCID: PMC11442601 DOI: 10.1038/s41598-024-71626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024] Open
Abstract
Technologies based on pulsed electric field (PEF) are increasingly pervasive in medical and industrial applications. However, the detailed understanding of how PEF acts on biosamples including proteins at the molecular level is missing. There are indications that PEF might act on biomolecules via electrogenerated reactive oxygen species (ROS). However, it is unclear how this action is modulated by the pro- and antioxidants, which are naturally present components of biosamples. This knowledge gap is often due to insufficient sensitivity of the conventionally utilized detection assays. To overcome this limitation, here we employed an endogenous (bio)chemiluminescence sensing platform, which enables sensitive detection of PEF-generated ROS and oxidative processes in proteins, to inspect effects of pro-and antioxidants. Taking bovine serum albumin (BSA) as a model protein, we found that the chemiluminescence signal arising from its solution is greatly enhanced in the presence ofH 2 O 2 as a prooxidant, especially during PEF treatment. In contrast, the chemiluminescence signal decreases in the presence of antioxidant enzymes (catalase, superoxide dismutase), indicating the involvement of bothH 2 O 2 and electrogenerated superoxide anion in oxidation-reporting chemiluminescence signal before, during, and after PEF treatment. We also performed additional biochemical and biophysical assays, which confirmed that BSA underwent structural changes afterH 2 O 2 treatment, with PEF having only a minor effect. We proposed a scheme describing the reactions leading from interfacial charge transfer at the anode by which ROS are generated to the actual photon emission. Results of our work help to elucidate the mechanisms of action of PEF on proteins via electrogenerated reactive oxygen species and open up new avenues for the application of PEF technology. The developed chemiluminescence technique enables label-free, in-situ and non-destructive sensing of interactions between ROS and proteins. The technique may be applied to study oxidative damage of other classes of biomolecules such as lipids, nucleic acids or carbohydrates.
Collapse
Affiliation(s)
- Kateřina Červinková
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Michaela Poplová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Tomáš Zakar
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Daniel Havelka
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Martin Paidar
- Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 160 28, Prague, Czechia
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18200, Prague, Czechia.
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia.
| |
Collapse
|
13
|
Zhao Z, Yang Y, Sheng T, Bao Y, Yu R, Yu X, Jia S, Wu Q, Zhu C, Shen X, Zhang W, Lu Z, Ji K, Chen X, Jiang X, Zhang Y, Gu Z, Yu J. Platelet-Drug Conjugates Engineered via One-step Fusion Approach for Metastatic and Postoperative Cancer Treatment. Angew Chem Int Ed Engl 2024; 63:e202403541. [PMID: 38885002 DOI: 10.1002/anie.202403541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
The exploration of cell-based drug delivery systems for cancer therapy has gained growing attention. Approaches to engineering therapeutic cells with multidrug loading in an effective, safe, and precise manner while preserving their inherent biological properties remain of great interest. Here, we report a strategy to simultaneously load multiple drugs in platelets in a one-step fusion process. We demonstrate doxorubicin (DOX)-encapsulated liposomes conjugated with interleukin-15 (IL-15) could fuse with platelets to achieve both cytoplasmic drug loading and surface cytokine modification with a loading efficiency of over 70 % within minutes. Due to their inherent targeting ability to metastatic cancers and postoperative bleeding sites, the engineered platelets demonstrated a synergistic therapeutic effect to suppress lung metastasis and postoperative recurrence in mouse B16F10 melanoma tumor models.
Collapse
Affiliation(s)
- Zhengjie Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinxian Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhang Bao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruixi Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinmin Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuangxu Jia
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qing Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaojie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xinyuan Shen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ziyi Lu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofeng Chen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyun Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| |
Collapse
|
14
|
Yamane T, Sasano T, Tomita H, Aoyama D, Miyazaki S, Takigawa M, Kimura M, Itoh T, Yamashita S, Selma JM, Cerkvenik J, Verma A, Tada H. Safety, efficacy, and quality of life outcomes of pulsed field ablation in Japanese patients with atrial fibrillation: results from the PULSED AF trial. J Interv Card Electrophysiol 2024:10.1007/s10840-024-01912-w. [PMID: 39243306 DOI: 10.1007/s10840-024-01912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Pulsed field ablation (PFA), a novel treatment for atrial fibrillation (AF), has yet to be evaluated in a Japanese cohort. METHODS In this sub-analysis of the PULSED AF trial, 12-month outcomes of paroxysmal AF (PAF) and persistent AF (PsAF) patients treated with PFA in four Japan centers were assessed. After a 90-day blanking period, primary efficacy was determined via freedom from a composite endpoint of acute procedural failure, arrhythmia recurrence, or antiarrhythmic drug escalation over 1 year. Patient improvement was evaluated via two quality of life (QoL) surveys (AFEQT and EQ-5D) at baseline and 12 months. RESULTS The analysis included 32 patients, 16 PAF and 16 PsAF, with PAF patients averaging 61.1 ± 10.6 years and PsAF patients averaging 62.8 ± 11.5 years of age. Females made up 31% of PAF and 25% of PsAF cohorts. Acute pulmonary vein isolation was achieved in 100% of both cohorts. The primary efficacy success rate at 12 months was 75.0% for PAF and 56.3% for PsAF patients. No primary safety events occurred. The mean AFEQT score significantly increased for both PAF (25.9 points, p < 0.0001) and PsAF (13.2 points, p = 0.0002) patients, while the EQ-5D-5L score improved significantly for PAF (0.12 points, p = 0.048) patients but not for PsAF (0.04 points, p = 0.08) patients. CONCLUSIONS Similar to outcomes in the global cohort, ablation with the PulseSelect™ PFA catheter was efficient, effective, and safe in a Japanese population, resulting in improved QoL for PAF and PsAF patients. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04198701.
Collapse
Affiliation(s)
- Teiichi Yamane
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirofumi Tomita
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Daisetsu Aoyama
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shinsuke Miyazaki
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masateru Takigawa
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaomi Kimura
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taihei Itoh
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Seigo Yamashita
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Jada M Selma
- Cardiac Ablation Solutions, Medtronic, Inc, Minneapolis, MN, USA
| | | | - Atul Verma
- Division of Cardiology, McGill University Health Centre, Montreal, QC, Canada
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| |
Collapse
|
15
|
Strucic M, Miklavcic D, Vidic Z, Scuderi M, Sersa I, Kranjc M. Analysis of magnetic resonance contrast agent entrapment following reversible electroporation in vitro. Radiol Oncol 2024; 58:406-415. [PMID: 39287162 PMCID: PMC11406930 DOI: 10.2478/raon-2024-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Administering gadolinium-based contrast agent before electroporation allows the contrast agent to enter the cells and enables MRI assessment of reversibly electroporated regions. The aim of this study was evaluation of contrast agent entrapment in Chinese hamster ovary (CHO) cells and comparison of these results with those determined by standard in vitro methods for assessing cell membrane permeability, cell membrane integrity and cell survival following electroporation. MATERIALS AND METHODS Cell membrane permeabilization and cell membrane integrity experiments were performed using YO-PRO-1 dye and propidium iodide, respectively. Cell survival experiments were performed by assessing metabolic activity of cells using MTS assay. The entrapment of gadolinium-based contrast agent gadobutrol inside the cells was evaluated using T1 relaxometry of cell suspensions 25 min and 24 h after electroporation and confirmed by inductively coupled plasma mass spectrometry. RESULTS Contrast agent was detected 25 min and 24 h after the delivery of electric pulses in cells that were reversibly electroporated. In addition, contrast agent was present in irreversibly electroporated cells 25 min after the delivery of electric pulses but was no longer detected in irreversibly electroporated cells after 24 h. Inductively coupled plasma mass spectrometry showed a proportional decrease in gadolinium content per cell with shortening of T1 relaxation time (R 2 = 0.88 and p = 0.0191). CONCLUSIONS Our results demonstrate that the contrast agent is entrapped in cells exposed to reversible electroporation but exits from cells exposed to irreversible electroporation within 24 h, thus confirming the hypothesis on which detection experiments in vivo were based.
Collapse
Affiliation(s)
- Marko Strucic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Zala Vidic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Maria Scuderi
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Sersa
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
Mickevičiūtė E, Radzevičiūtė-Valčiukė E, Malyško-Ptašinskė V, Malakauskaitė P, Lekešytė B, Rembialkowska N, Kulbacka J, Tunikowska J, Novickij J, Novickij V. The Effects of Bipolar Cancellation Phenomenon on Nano-Electrochemotherapy of Melanoma Tumors: In Vitro and In Vivo Pilot. Int J Mol Sci 2024; 25:9338. [PMID: 39273287 PMCID: PMC11395067 DOI: 10.3390/ijms25179338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The phenomenon known as bipolar cancellation is observed when biphasic nanosecond electric field pulses are used, which results in reduced electroporation efficiency when compared to unipolar pulses of the same parameters. Basically, the negative phase of the bipolar pulse diminishes the effect of the positive phase. Our study aimed to investigate how bipolar cancellation affects Ca2+ electrochemotherapy and cellular response under varying electric field intensities and pulse durations (3-7 kV/cm, 100, 300, and 500 ns bipolar 1 MHz repetition frequency pulse bursts, n = 100). As a reference, standard microsecond range parametric protocols were used (100 µs × 8 pulses). We have shown that the cancellation effect is extremely strong when the pulses are closely spaced (1 MHz frequency), which results in a lack of cell membrane permeabilization and consequent failure of electrochemotherapy in vitro. To validate the observations, we have performed a pilot in vivo study where we compared the efficacy of monophasic (5 kV/cm × ↑500 ns × 100) and biphasic sequences (5 kV/cm × ↑500 ns + ↓500 ns × 100) delivered at 1 MHz frequency in the context of Ca2+ electrochemotherapy (B16-F10 cell line, C57BL/6 mice, n = 24). Mice treated with bipolar pulses did not exhibit prolonged survival when compared to the untreated control (tumor-bearing mice); therefore, the bipolar cancellation phenomenon was also occurrent in vivo, significantly impairing electrochemotherapy. At the same time, the efficacy of monophasic nanosecond pulses was comparable to 1.4 kV/cm × 100 µs × 8 pulses sequence, resulting in tumor reduction following the treatment and prolonged survival of the animals.
Collapse
Affiliation(s)
- Eglė Mickevičiūtė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Eivina Radzevičiūtė-Valčiukė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | | | - Paulina Malakauskaitė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Barbora Lekešytė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Nina Rembialkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Joanna Tunikowska
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
17
|
Narkar A, Kaboudian A, Ardeshirpour Y, Casciola M, Feaster TK, Blinova K. In Vitro Assay Development to Study Pulse Field Ablation Outcome Using Solanum Tuberosum. Int J Mol Sci 2024; 25:8967. [PMID: 39201653 PMCID: PMC11354718 DOI: 10.3390/ijms25168967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Exposing cells to intense and brief electric field pulses can modulate cell permeability, a phenomenon termed electroporation. When applied in medical treatments of diseases like cancer and cardiac arrhythmias, depending on level of cellular destruction, it is also referred to as irreversible electroporation (IRE) or Pulsed Field Ablation (PFA). For ablation device testing, several pulse parameters need to be characterized in a comprehensive manner to assess lesion boundary and efficacy. Overly aggressive voltages and application numbers increase animal burden. The potato tuber is a widely used initial model for the early testing of electroporation. The aim of this study is to characterize and refine bench testing for the ablation outcomes of PFA in this simplistic vegetal model. For in vitro assays, several pulse parameters like voltage, duration, and frequency were modulated to study effects not only on 2D ablation area but also 3D depth and volume. As PFA is a relatively new technology with minimal thermal effects, we also measured temperature changes before, during, and after ablation. Data from experiments were supplemented with in silico modeling to examine E-field distribution. We have estimated the irreversible electroporation threshold in Solanum Tuberosum to be at 240 V/cm. This bench testing platform can screen several pulse recipes at early stages of PFA device development in a rapid and high-throughput manner before proceeding to laborious trials for IRE medical devices.
Collapse
Affiliation(s)
- Akshay Narkar
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | | | | | | | | |
Collapse
|
18
|
Qiao M, Zeng C, Liu C, Lei Z, Liu B, Xie H. The advancement of siRNA-based nanomedicine for tumor therapy. Nanomedicine (Lond) 2024; 19:1841-1862. [PMID: 39145477 PMCID: PMC11418284 DOI: 10.1080/17435889.2024.2377062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Small interfering RNA (siRNA) has been proved to be able to effectively down-regulate gene expression through the RNAi mechanism. Thus, siRNA-based drugs have become one of the hottest research directions due to their high efficiency and specificity. However, challenges such as instability, off-target effects and immune activation hinder their clinical application. This review explores the mechanisms of siRNA and the challenges in siRNA-based tumor therapy. It highlights the use of various nanomaterials - including lipid nanoparticles, polymeric nanoparticles and inorganic nanoparticles - as carriers for siRNA delivery in different therapeutic modalities. The application strategies of siRNA-based nanomedicine in chemotherapy, phototherapy and immunotherapy are discussed in detail, along with recent clinical advancements. Aiming to provide insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Muchuan Qiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Chenlu Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Changqing Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Ziwei Lei
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Hailong Xie
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
19
|
Khaparde A, Mathias GP, Poornachandra B, Thirumalesh MB, Shetty R, Ghosh A. Gene therapy for retinal diseases: From genetics to treatment. Indian J Ophthalmol 2024; 72:1091-1101. [PMID: 39078952 PMCID: PMC11451791 DOI: 10.4103/ijo.ijo_2902_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 04/19/2024] [Indexed: 10/06/2024] Open
Abstract
The gene therapy approach for retinal disorders has been considered largely over the last decade owing to the favorable outcomes of the US Food and Drug Administration-approved commercial gene therapy, Luxturna. Technological advances in recent years, such as next-generation sequencing, research in molecular pathogenesis of retinal disorders, and precise correlations with their clinical phenotypes, have contributed to the progress of gene therapies for various diseases worldwide, and more recently in India as well. Thus, considerable research is being conducted for the right choice of vectors, transgene engineering, and accessible and cost-effective large-scale vector production. Many retinal disease-specific clinical trials are presently being conducted, thereby necessitating the collation of such information as a ready reference for the scientific and clinical community. In this article, we present an overview of existing gene therapy research, which is derived from an extensive search across PubMed, Google Scholar, and clinicaltrials.gov sources. This contributes to prime the understanding of basic aspects of this cutting-edge technology and information regarding current clinical trials across many different conditions. This information will provide a comprehensive evaluation of therapies in existing use/research for personalized treatment approaches in retinal disorders.
Collapse
Affiliation(s)
- Ashish Khaparde
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
| | - Grace P Mathias
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - B Poornachandra
- Department of Vitreo Retina Services, Narayana Nethralaya, Manipal, Karnataka, India
| | - M B Thirumalesh
- Department of Vitreo Retina Services, Narayana Nethralaya, Manipal, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
| |
Collapse
|
20
|
Keum H, Cevik E, Kim J, Demirlenk YM, Atar D, Saini G, Sheth RA, Deipolyi AR, Oklu R. Tissue Ablation: Applications and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310856. [PMID: 38771628 PMCID: PMC11309902 DOI: 10.1002/adma.202310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.
Collapse
Affiliation(s)
- Hyeongseop Keum
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Enes Cevik
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Jinjoo Kim
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Yusuf M Demirlenk
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Dila Atar
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Gia Saini
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amy R Deipolyi
- Interventional Radiology, Department of Surgery, West Virginia University, Charleston Area Medical Center, Charleston, WV 25304, USA
| | - Rahmi Oklu
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
21
|
Fang M, Liu R, Fang Y, Zhang D, Kong B. Emerging platelet-based drug delivery systems. Biomed Pharmacother 2024; 177:117131. [PMID: 39013224 DOI: 10.1016/j.biopha.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Drug delivery systems are becoming increasingly utilized; however, a major challenge in this field is the insufficient target of tissues or cells. Although efforts with engineered nanoparticles have shown some success, issues with targeting, toxicity and immunogenicity persist. Conversely, living cells can be used as drug-delivery vehicles because they typically have innate targeting mechanisms and minimal adverse effects. As active participants in hemostasis, inflammation, and tumors, platelets have shown great potential in drug delivery. This review highlights platelet-based drug delivery systems, including platelet membrane engineering, platelet membrane coating, platelet cytoplasmic drug loading, genetic engineering, and synthetic/artificial platelets for different applications.
Collapse
Affiliation(s)
- Mengkun Fang
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Rui Liu
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Yile Fang
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China.
| | - Dagan Zhang
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China.
| | - Bin Kong
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China; Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China; Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China.
| |
Collapse
|
22
|
Eşmekaya MA, Gürsoy G, Coşkun A. The estimation of pore size distribution of electroporated MCF-7 cell membrane. Electromagn Biol Med 2024; 43:176-186. [PMID: 38900674 DOI: 10.1080/15368378.2024.2366272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
The size of the pores created by external electrical pulses is important for molecule delivery into the cell. The size of pores and their distribution on the cell membrane determine the efficiency of molecule transport into the cell. There are very few studies visualizing the presence of electropores. In this study, we aimed to investigate the size distribution of electropores that were created by high intensity and short duration electrical pulses on MCF-7 cell membrane. Scanning Electron Microscopy (SEM) was used to visualize and characterize the membrane pores created by the external electric field. Structural changes on the surface of the electroporated cell membrane was observed by Atomic Force Microscopy (AFM). The size distribution of pore sizes was obtained by measuring the radius of 500 electropores. SEM imaging showed non-uniform patterning. The average radius of the electropores was 12 nm, 51.60% of pores were distributed within the range of 5 to 10 nm, and 81% of pores had radius below 15 nm. These results showed that microsecond (µs) high intensity electrical pulses cause the creation of heterogeneous nanopores on the cell membrane.
Collapse
Affiliation(s)
- Meriç Arda Eşmekaya
- Department of Biophysics, Basic Medical Sciences, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Güney Gürsoy
- Department of Biophysics, Basic Medical Sciences, Faculty of Medicine, Kırşehir Ahi Evran University, Kırsehır, Turkey
| | - Alaaddin Coşkun
- Department of Biophysics, Basic Medical Sciences, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
23
|
Lu C, Rohilla P, Felner EI, Byagathvalli G, Azizoglu E, Bhamla MS, Prausnitz MR. Tolerability of a piezoelectric microneedle electroporator in human subjects. Bioeng Transl Med 2024; 9:e10662. [PMID: 39036075 PMCID: PMC11256137 DOI: 10.1002/btm2.10662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 07/23/2024] Open
Abstract
Electroporation, or the use of electric pulses to facilitate the intracellular delivery of DNA, RNA, and other molecules, is a well-established technique, that has been demonstrated to significantly augment the immunogenicity of DNA/mRNA vaccines and therapeutics. However, the clinical translation of traditional electroporators has been limited due to high costs, large size, complex user operation, and poor tolerability in humans due to nerve stimulation. In prior work, we introduced ePatch: an ultra-low-cost, handheld, battery-free electroporator employing a piezoelectric pulser coupled with a microneedle electrode array that showed enhanced immunogenic responses to an intradermal SARS-CoV-2 DNA vaccine in mice. The current study shifts focus from efficacy to tolerability, hypothesizing that ePatch's microneedle array, which localizes the electric field to the superficial skin strata, will minimize nerve stimulation and improve patient comfort. We tested this hypothesis in 14 healthy adults, monitoring pain and other potential adverse effects associated with electroporation. Compared to the insertion of a traditional hypodermic needle, the ePatch was less painful. Adverse effects such as pain, tenderness, erythema and swelling at the application sites were minimal, transient, and statistically indistinguishable between the experimental and placebo ePatch application, suggesting excellent tolerability towards electroporation. In summary, ePatch has a favorable tolerability profile in humans and offers the potential for the safe use of electroporation in a variety of clinical settings, including DNA and mRNA vaccination.
Collapse
Affiliation(s)
- Chao‐Yi Lu
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Pankaj Rohilla
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Eric I. Felner
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of Pediatrics, Division of EndocrinologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Gaurav Byagathvalli
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Erkan Azizoglu
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - M. Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Mark R. Prausnitz
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
24
|
Behzadipour Y, Hemmati S. Covalent conjugation and non-covalent complexation strategies for intracellular delivery of proteins using cell-penetrating peptides. Biomed Pharmacother 2024; 176:116910. [PMID: 38852512 DOI: 10.1016/j.biopha.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Therapeutic proteins provided new opportunities for patients and high sales volumes. However, they are formulated for extracellular targets. The lipophilic barrier of the plasma membrane renders the vast array of intracellular targets out of reach. Peptide-based delivery systems, namely cell-penetrating peptides (CPPs), have few safety concerns, and low immunogenicity, with control over administered doses. This study investigates CPP-based protein delivery systems by classifying them into CPP-protein "covalent conjugation" and CPP: protein "non-covalent complexation" categories. Covalent conjugates ensure the proximity of the CPP to the cargo, which can improve cellular uptake and endosomal escape. We will discuss various aspects of covalent conjugates through non-cleavable (stable) or cleavable bonds. Non-cleavable CPP-protein conjugates are produced by recombinant DNA technology to express the complete fusion protein in a host cell or by chemical ligation of CPP and protein, which ensures stability during the delivery process. CPP-protein cleavable bonds are classified into pH-sensitive and redox-sensitive bonds, enzyme-cleavable bonds, and physical stimuli cleavable linkers (light radiation, ultrasonic waves, and thermo-responsive). We have highlighted the key characteristics of non-covalent complexes through electrostatic and hydrophobic interactions to preserve the conformational integrity of the CPP and cargo. CPP-mediated protein delivery by non-covalent complexation, such as zippers, CPP adaptor methods, and avidin-biotin technology, are featured. Conclusively, non-covalent complexation methods are appropriate when a high number of CPP or protein samples are to be screened. In contrast, when the high biological activity of the protein is critical in the intracellular compartment, conjugation protocols are preferred.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| |
Collapse
|
25
|
Sun H, Yu L, Chen Y, Yang H, Sun L. Analysis of In Situ Electroporation Utilizing Induced Electric Field at a Wireless Janus Microelectrode. MICROMACHINES 2024; 15:819. [PMID: 39064330 PMCID: PMC11279304 DOI: 10.3390/mi15070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In situ electroporation, a non-invasive technique for enhancing the permeability of cell membranes, has emerged as a powerful tool for intracellular delivery and manipulation. This method allows for the precise introduction of therapeutic agents, such as nucleic acids, drugs, and proteins, directly into target cells within their native tissue environment. Herein, we introduce an innovative electroporation strategy that employs a Janus particle (JP)-based microelectrode to generate a localized and controllable electric field within a microfluidic chip. The microfluidic device is engineered with an indium tin oxide (ITO)-sandwiched microchannel, where the electric field is applied, and suspended JP microelectrodes that induce a stronger localized electric field. The corresponding simulation model is developed to better understand the dynamic electroporation process. Numerical simulations for both single-cell and chain-assembled cell electroporation have been successfully conducted. The effects of various parameters, including pulse voltage, duration medium conductivity, and radius of Janus microelectrode, on cell membrane permeabilization are systematically investigated. Our findings indicate that the enhanced electric intensity near the poles of the JP microelectrode significantly contributes to the electroporation process. In addition, the distribution for both transmembrane voltage and the resultant nanopores can be altered by conveniently adjusting the relative position of the JP microelectrode, demonstrating a selective and in situ electroporation technique for spatial control over the delivery area. Moreover, the obtained differences in the distribution of electroporation between chain cells can offer insightful directives for the electroporation of tissues or cell populations, enabling the precise and targeted modulation of specific cell populations. As a proof of concept, this work can provide a robust alternative technique for the study of complex and personalized cellular processes.
Collapse
Affiliation(s)
- Haizhen Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Linkai Yu
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Yifan Chen
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Hao Yang
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Lining Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
26
|
Bhuiyan MTI, Karal MAS, Orchi US, Ahmed N, Moniruzzaman M, Ahamed MK, Billah MM. Probability and kinetics of rupture and electrofusion in giant unilamellar vesicles under various frequencies of direct current pulses. PLoS One 2024; 19:e0304345. [PMID: 38857287 PMCID: PMC11164401 DOI: 10.1371/journal.pone.0304345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
Irreversible electroporation induces permanent permeabilization of lipid membranes of vesicles, resulting in vesicle rupture upon the application of a pulsed electric field. Electrofusion is a phenomenon wherein neighboring vesicles can be induced to fuse by exposing them to a pulsed electric field. We focus how the frequency of direct current (DC) pulses of electric field impacts rupture and electrofusion in cell-sized giant unilamellar vesicles (GUVs) prepared in a physiological buffer. The average time, probability, and kinetics of rupture and electrofusion in GUVs have been explored at frequency 500, 800, 1050, and 1250 Hz. The average time of rupture of many 'single GUVs' decreases with the increase in frequency, whereas electrofusion shows the opposite trend. At 500 Hz, the rupture probability stands at 0.45 ± 0.02, while the electrofusion probability is 0.71 ± 0.01. However, at 1250 Hz, the rupture probability increases to 0.69 ± 0.03, whereas the electrofusion probability decreases to 0.46 ± 0.03. Furthermore, when considering kinetics, at 500 Hz, the rate constant of rupture is (0.8 ± 0.1)×10-2 s-1, and the rate constant of fusion is (2.4 ± 0.1)×10-2 s-1. In contrast, at 1250 Hz, the rate constant of rupture is (2.3 ± 0.8)×10-2 s-1, and the rate constant of electrofusion is (1.0 ± 0.1)×10-2 s-1. These results are discussed by considering the electrical model of the lipid bilayer and the energy barrier of a prepore.
Collapse
Affiliation(s)
| | | | - Urbi Shyamolima Orchi
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Nazia Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka, Bangladesh
| | - Md. Masum Billah
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
27
|
Liu F, Su R, Jiang X, Wang S, Mu W, Chang L. Advanced micro/nano-electroporation for gene therapy: recent advances and future outlook. NANOSCALE 2024; 16:10500-10521. [PMID: 38757536 DOI: 10.1039/d4nr01408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Gene therapy is a promising disease treatment approach by editing target genes, and thus plays a fundamental role in precision medicine. To ensure gene therapy efficacy, the effective delivery of therapeutic genes into specific cells is a key challenge. Electroporation utilizes short electric pulses to physically break the cell membrane barrier, allowing gene transfer into the cells. It dodges the off-target risks associated with viral vectors, and also stands out from other physical-based gene delivery methods with its high-throughput and cargo-accelerating features. In recent years, with the help of advanced micro/nanotechnology, micro/nanostructure-integrated electroporation (micro/nano-electroporation) techniques and devices have significantly improved cell viability, transfection efficiency and dose controllability of the electroporation strategy, enhancing its application practicality especially in vivo. This technical advancement makes micro/nano-electroporation an effective and versatile tool for gene therapy. In this review, we first introduce the evolution of electroporation technique with a brief explanation of the perforation mechanism, and then provide an overview of the recent advancements and prospects of micro/nano-electroporation technology in the field of gene therapy. To comprehensively showcase the latest developments of micro/nano-electroporation technology in gene therapy, we focus on discussing micro/nano-electroporation devices and current applications at both in vitro and in vivo levels. Additionally, we outline the ongoing clinical studies of gene electrotransfer (GET), revealing the tremendous potential of electroporation-based gene delivery in disease treatment and healthcare. Lastly, the challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Rongtai Su
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Siqi Wang
- Department of General Surgery and Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Mu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
28
|
Chun KRJ, Miklavčič D, Vlachos K, Bordignon S, Scherr D, Jais P, Schmidt B. State-of-the-art pulsed field ablation for cardiac arrhythmias: ongoing evolution and future perspective. Europace 2024; 26:euae134. [PMID: 38848447 PMCID: PMC11160504 DOI: 10.1093/europace/euae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Pulsed field ablation (PFA) is an innovative approach in the field of cardiac electrophysiology aimed at treating cardiac arrhythmias. Unlike traditional catheter ablation energies, which use radiofrequency or cryothermal energy to create lesions in the heart, PFA utilizes pulsed electric fields to induce irreversible electroporation, leading to targeted tissue destruction. This state-of-the-art review summarizes biophysical principles and clinical applications of PFA, highlighting its potential advantages over conventional ablation methods. Clinical data of contemporary PFA devices are discussed, which combine predictable procedural outcomes and a reduced risk of thermal collateral damage. Overall, these technological developments have propelled the rapid evolution of contemporary PFA catheters, with future advancements potentially impacting patient care.
Collapse
Affiliation(s)
- Kyoung-Ryul Julian Chun
- CCB Frankfurt, Med. Klinik III, Markuskrankenhaus, Wilhelm-Epstein Str. 4, 60431 Frankfurt, Germany
- Klinik für Rhythmologie, UKSH, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, Laboratory of Biocybernetics, University of Ljubljana, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia
| | - Konstantinos Vlachos
- Site Hôpital Xavier Arnozan, Bordeaux University Hospital, University of Bordeaux, Avenue du Haut-Lévêque, –Pessac, France
| | - Stefano Bordignon
- CCB Frankfurt, Med. Klinik III, Markuskrankenhaus, Wilhelm-Epstein Str. 4, 60431 Frankfurt, Germany
| | - Daniel Scherr
- Klinische Abteilung für Kardiologie, Medizinische Universität Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Pierre Jais
- Site Hôpital Xavier Arnozan, Bordeaux University Hospital, University of Bordeaux, Avenue du Haut-Lévêque, –Pessac, France
| | - Boris Schmidt
- CCB Frankfurt, Med. Klinik III, Markuskrankenhaus, Wilhelm-Epstein Str. 4, 60431 Frankfurt, Germany
| |
Collapse
|
29
|
Qian K, Wang Y, Lei Y, Yang Q, Yao C. An experimental and theoretical study on cell swelling for osmotic imbalance induced by electroporation. Bioelectrochemistry 2024; 157:108637. [PMID: 38215652 DOI: 10.1016/j.bioelechem.2023.108637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024]
Abstract
The cellular membrane serves as a pivotal barrier in regulating intra- and extracellular matter exchange. Disruption of this barrier through pulsed electric fields (PEFs) induces the transmembrane transport of ions and molecules, creating a concentration gradient that subsequently results in the imbalance of cellular osmolality. In this study, a multiphysics model was developed to simulate the electromechanical response of cells exposed to microsecond pulsed electric fields (μsPEFs). Within the proposed model, the diffusion coefficient of the cellular membrane for various ions was adjusted based on electropore density. Cellular osmolality was governed and described using Van't Hoff theory, subsequently converted to loop stress to dynamically represent the cell swelling process. Validation of the model was conducted through a hypotonic experiment and simulation at 200 mOsm/kg, revealing a 14.2% increase in the cell's equivalent radius, thereby confirming the feasibility of the cell mechanical model. With the transmembrane transport of ions induced by the applied μsPEF, the hoop stress acting on the cellular membrane reached 179.95 Pa, and the cell equivalent radius increased by 11.0% when the extra-cellular medium was supplied with normal saline. The multiphysics model established in this study accurately predicts the dynamic changes in cell volume resulting from osmotic imbalance induced by PEF action. This model holds theoretical significance, offering valuable references for research on drug delivery and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Yancheng Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Yizhen Lei
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Qiang Yang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, No.174 Shazhengjie Road, Chongqing 400044, China.
| |
Collapse
|
30
|
Xu M, Zhang X, Bai Y, Wang X, Yang J, Hu N. Mechanism study on the influences of buffer osmotic pressure on microfluidic chip-based cell electrofusion. APL Bioeng 2024; 8:026103. [PMID: 38638144 PMCID: PMC11026109 DOI: 10.1063/5.0205100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Cell electrofusion is a key process in many research fields, such as genetics, immunology, and cross-breeding. The electrofusion efficiency is highly dependent on the buffer osmotic pressure properties. However, the mechanism by which the buffer osmotic pressure affects cell electrofusion has not been theoretically or numerically understood. In order to explore the mechanism, the microfluidic structure with paired arc micro-cavities was first evaluated based on the numerical analysis of the transmembrane potential and the electroporation induced on biological cells when the electrofusion was performed on this structure. Then, the numerical model was used to analyze the effect of three buffer osmotic pressures on the on-chip electrofusion in terms of membrane tension and cell size. Compared to hypertonic and isotonic buffers, hypotonic buffer not only increased the reversible electroporation area in the cell-cell contact zone by 1.7 times by inducing a higher membrane tension, but also significantly reduced the applied voltage required for cell electroporation by increasing the cell size. Finally, the microfluidic chip with arc micro-cavities was fabricated and tested for electrofusion of SP2/0 cells. The results showed that no cell fusion occurred in the hypertonic buffer. The fusion efficiency in the isotonic buffer was about 7%. In the hypotonic buffer, the fusion efficiency was about 60%, which was significantly higher compared to hypertonic and isotonic buffers. The experimental results were in good agreement with the numerical analysis results.
Collapse
Affiliation(s)
- Mengli Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Yaqi Bai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xuefeng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
31
|
de Campos MCAV, Moraes VRY, Daher RF, Micheleto JPC, de Campos LAV, Barros GFA, de Oliveira HM, Barros LP, Menezes ADS. Pulsed-field ablation versus thermal ablation for atrial fibrillation: A meta-analysis. Heart Rhythm O2 2024; 5:385-395. [PMID: 38984363 PMCID: PMC11228281 DOI: 10.1016/j.hroo.2024.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Background Pulsed-field ablation (PFA) is an alternative to thermal ablation (TA) in patients with atrial fibrillation (AF) receiving catheter-based therapy for pulmonary vein isolation (PVI). However, its efficacy and safety have yet to be fully elucidated. Objective The purpose of this study was to compare the acute and long-term efficacies and safety of PFA and TA. Methods We performed a systematic review and meta-analysis of randomized and nonrandomized controlled trials comparing PFA and TA in patients with AF undergoing their first PVI ablation. The TA group was divided into cryoballoon (CB) and radiofrequency subgroups. AF patients were divided into paroxysmal atrial fibrillation (PAF) and persistent atrial fibrillation (PersAF) subgroups for further analysis. Results Eighteen studies involving 4998 patients (35.2% PFA) were included. Overall, PFA was associated with a shorter procedure time (mean difference [MD] -21.68; 95% confidence interval [CI] -32.81 to -10.54) but longer fluoroscopy time (MD 4.53; 95% CI 2.18-6.88) than TA. Regarding safety, lower (peri-)esophageal injury rates (odds ratio [OR] 0.17; 95% CI 0.06-0.46) and higher tamponade rates (OR 2.98; 95% CI 1.27-7.00) were observed after PFA. In efficacy assessment, PFA was associated with a better first-pass isolation rate (OR 6.82; 95% CI 1.37-34.01) and a lower treatment failure rate (OR 0.83; 95% CI 0.70-0.98). Subgroup analysis showed no differences in PersAF and PAF. CB was related to higher (peri)esophageal injury, and lower PVI acute success and procedural time. Conclusion Compared to TA, PFA showed better results with regard to acute and long-term efficacy but significant differences in safety, with lower (peri)esophageal injury rates but higher tamponade rates in procedural data.
Collapse
Affiliation(s)
| | | | - Rafael Ferreira Daher
- Internal Medicine, Medical Sciences and Life School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | | | - Luiza Azzi Vaz de Campos
- Internal Medicine, Medical Sciences and Life School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | | | - Heitor Martins de Oliveira
- Internal Medicine, Medical Sciences and Life School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Lorrany Pereira Barros
- Internal Medicine, Medical Sciences and Life School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | - Antonio da Silva Menezes
- Internal Medicine, Medical Sciences and Life School, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
- Internal Medicine Department, Medical Faculty, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
32
|
Guo X, Wang P, Yuwen W, Zhu C, Fu R, Ma P, Duan Z, Fan D. Production and Functional Analysis of Collagen Hexapeptide Repeat Sequences in Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38801678 DOI: 10.1021/acs.jafc.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In the development of biomaterials with specific structural domains associated with various cellular activities, the limited integrin specificity of commonly used adhesion sequences, such as the RGD tripeptide, has resulted in an inability to precisely control cellular responses. To overcome this limitation, we conducted multiple replications of the integrin α2β1-specific ligand, the collagen hexapeptide Gly-Phe-Pro-Gly-Glu-Arg (GFPGER) in Pichia pastoris. This enabled the development of recombinant collagen with high biological activity, which was subsequently expressed, isolated, and purified for structural and functional analysis. The proteins carrying the multiple replications GFPGER sequence demonstrated significant bioactivity in cells, leading to enhanced cell adhesion, osteoblast differentiation, and mineralization when compared to control groups. Importantly, these effects were mediated by integrin α2β1. The new collagen constructed in this study is expected to be a biomaterial for regulating specific cell functions and fates.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Pan Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Weigang Yuwen
- Shaanxi Gaint Biotechnology Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Pei Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
33
|
Omar YAD, Lipel ZG, Mandadapu KK. (2+δ)-dimensional theory of the electromechanics of lipid membranes: Electrostatics. Phys Rev E 2024; 109:054401. [PMID: 38907464 DOI: 10.1103/physreve.109.054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 06/24/2024]
Abstract
The coupling of electric fields to the mechanics of lipid membranes gives rise to intriguing electromechanical behavior, as, for example, evidenced by the deformation of lipid vesicles in external electric fields. Electromechanical effects are relevant for many biological processes, such as the propagation of action potentials in axons and the activation of mechanically gated ion channels. Currently, a theoretical framework describing the electromechanical behavior of arbitrarily curved and deforming lipid membranes does not exist. Purely mechanical models commonly treat lipid membranes as two-dimensional surfaces, ignoring their finite thickness. While holding analytical and numerical merit, this approach cannot describe the coupling of lipid membranes to electric fields and is thus unsuitable for electromechanical models. In a sequence of articles, we derive an effective surface theory of the electromechanics of lipid membranes, called the (2+δ)-dimensional theory, which has the advantages of surface descriptions while accounting for finite thickness effects. The present article proposes a generic dimension reduction procedure relying on low-order spectral expansions. This procedure is applied to the electrostatics of lipid membranes to obtain the (2+δ)-dimensional theory that captures potential differences across and electric fields within lipid membranes. This model is tested on different geometries relevant for lipid membranes, showing good agreement with the corresponding three-dimensional electrostatics theory.
Collapse
Affiliation(s)
- Yannick A D Omar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zachary G Lipel
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Kranthi K Mandadapu
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, California 94720, USA
| |
Collapse
|
34
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
35
|
Berry-Kilgour C, Wise L, King J, Oey I. Application of pulsed electric field technology to skin engineering. Front Bioeng Biotechnol 2024; 12:1386725. [PMID: 38689761 PMCID: PMC11058833 DOI: 10.3389/fbioe.2024.1386725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Tissue engineering encompasses a range of techniques that direct the growth of cells into a living tissue construct for regenerative medicine applications, disease models, drug discovery, and safety testing. These techniques have been implemented to alleviate the clinical burdens of impaired healing of skin, bone, and other tissues. Construct development requires the integration of tissue-specific cells and/or an extracellular matrix-mimicking biomaterial for structural support. Production of such constructs is generally expensive and environmentally costly, thus eco-sustainable approaches should be explored. Pulsed electric field (PEF) technology is a nonthermal physical processing method commonly used in food production and biomedical applications. In this review, the key principles of PEF and the application of PEF technology for skin engineering will be discussed, with an emphasis on how PEF can be applied to skin cells to modify their behaviour, and to biomaterials to assist in their isolation or sterilisation, or to modify their physical properties. The findings indicate that the success of PEF in tissue engineering will be reliant on systematic evaluation of key parameters, such as electric field strength, and their impact on different skin cell and biomaterial types. Linking tangible input parameters to biological responses critical to healing will assist with the development of PEF as a sustainable tool for skin repair and other tissue engineering applications.
Collapse
Affiliation(s)
- C. Berry-Kilgour
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - L. Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J. King
- Department of Food Sciences, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - I. Oey
- Department of Food Sciences, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
36
|
Kumar M, Mishra A. A microdosimetry analysis of reversible electroporation in scattered, overlapping, and cancerous cervical cells. Biomed Phys Eng Express 2024; 10:035022. [PMID: 38479001 DOI: 10.1088/2057-1976/ad33a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
We present a numerical method for studying reversible electroporation on normal and cancerous cervical cells. This microdosimetry analysis builds on a unique approach for extracting contours of free and overlapping cervical cells in the cluster from the Extended Depth of Field (EDF) images. The algorithm used for extracting the contours is a joint optimization of multiple-level set function along with the Gaussian mixture model and Maximally Stable Extremal Regions. These contours are then exported to a multi-physics domain solver, where a variable frequency pulsed electric field is applied. The trans-Membrane voltage (TMV) developed across the cell membrane is computed using the Maxwell equation coupled with a statistical approach, employing the asymptotic Smoluchowski equation. The numerical model was validated by successful replication of existing experimental configurations that employed low-frequency uni-polar pulses on the overlapping cells to obtain reversible electroporation, wherein, several overlapping clumps of cervical cells were targeted. For high-frequency calculation, a combination of normal and cancerous cells is introduced to the computational domain. The cells are assumed to be dispersive and the Debye dispersion equation is used for further calculations. We also present the resulting strength-duration relationship for achieving the threshold value of electroporation between the normal and cancerous cervical cells due to their size and conductivity differences. The dye uptake modulation during the high-frequency electric field electroporation is further advocated by a mathematical model.
Collapse
Affiliation(s)
- Mayank Kumar
- Department of Applied Science, Indian Institute of Information Technology Allahabad, India
| | - Ashutosh Mishra
- Department of Applied Science, Indian Institute of Information Technology Allahabad, India
| |
Collapse
|
37
|
Aldaas OM, Malladi C, Han FT, Hoffmayer KS, Krummen D, Ho G, Raissi F, Birgersdotter-Green U, Feld GK, Hsu JC. Pulsed field ablation versus thermal energy ablation for atrial fibrillation: a systematic review and meta-analysis of procedural efficiency, safety, and efficacy. J Interv Card Electrophysiol 2024; 67:639-648. [PMID: 37855992 PMCID: PMC11016003 DOI: 10.1007/s10840-023-01660-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Pulsed field ablation (PFA) induces cell death through electroporation using ultrarapid electrical pulses. We sought to compare the procedural efficiency characteristics, safety, and efficacy of ablation of atrial fibrillation (AF) using PFA compared with thermal energy ablation. METHODS We performed an extensive literature search and systematic review of studies that compared ablation of AF with PFA versus thermal energy sources. Risk ratio (RR) 95% confidence intervals (CI) were measured for dichotomous variables and mean difference (MD) 95% CI were measured for continuous variables, where RR < 1 and MD < 0 favor the PFA group. RESULTS We included 6 comparative studies for a total of 1012 patients who underwent ablation of AF: 43.6% with PFA (n = 441) and 56.4% (n = 571) with thermal energy sources. There were significantly shorter procedures times with PFA despite a protocolized 20-min dwell time (MD - 21.95, 95% CI - 33.77, - 10.14, p = 0.0003), but with significantly longer fluroscopy time (MD 5.71, 95% CI 1.13, 10.30, p = 0.01). There were no statistically significant differences in periprocedural complications (RR 1.20, 95% CI 0.59-2.44) or recurrence of atrial tachyarrhythmias (RR 0.64, 95% CI 0.31, 1.34) between the PFA and thermal ablation cohorts. CONCLUSIONS Based on the results of this meta-analysis, PFA was associated with shorter procedural times and longer fluoroscopy times, but no difference in periprocedural complications or rates of recurrent AF when compared to ablation with thermal energy sources. However, larger randomized control trials are needed.
Collapse
Affiliation(s)
- Omar Mahmoud Aldaas
- Division of Cardiac Electrophysiology at the University of California San Diego Health System, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - Chaitanya Malladi
- Division of Cardiac Electrophysiology at the University of California San Diego Health System, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - Frederick T Han
- Division of Cardiac Electrophysiology at the University of California San Diego Health System, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - Kurt S Hoffmayer
- Division of Cardiac Electrophysiology at the University of California San Diego Health System, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - David Krummen
- Division of Cardiac Electrophysiology at the University of California San Diego Health System, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - Gordon Ho
- Division of Cardiac Electrophysiology at the University of California San Diego Health System, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - Farshad Raissi
- Division of Cardiac Electrophysiology at the University of California San Diego Health System, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - Ulrika Birgersdotter-Green
- Division of Cardiac Electrophysiology at the University of California San Diego Health System, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - Gregory K Feld
- Division of Cardiac Electrophysiology at the University of California San Diego Health System, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| | - Jonathan C Hsu
- Division of Cardiac Electrophysiology at the University of California San Diego Health System, 9452 Medical Center Drive, La Jolla, CA, 92037, USA.
- Cardiac Electrophysiology Section, Division of Cardiology, Department of Medicine, University of CA - San Diego, 9452 Medical Center Drive, 3rd Floor, Room 3E-417, La Jolla, CA, 92037, USA.
| |
Collapse
|
38
|
Leomil FC, Stephan M, Pramanik S, Riske KA, Dimova R. Bilayer Charge Asymmetry and Oil Residues Destabilize Membranes upon Poration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4719-4731. [PMID: 38373285 PMCID: PMC10919074 DOI: 10.1021/acs.langmuir.3c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/21/2024]
Abstract
Transmembrane asymmetry is ubiquitous in cells, particularly with respect to lipids, where charged lipids are mainly restricted to one monolayer. We investigate the influence of anionic lipid asymmetry on the stability of giant unilamellar vesicles (GUVs), minimal plasma membrane models. To quantify asymmetry, we apply the fluorescence quenching assay, which is often difficult to reproduce, and caution in handling the quencher is generally underestimated. We first optimize this assay and then apply it to GUVs prepared with the inverted emulsion transfer protocol by using increasing fractions of anionic lipids restricted to one leaflet. This protocol is found to produce highly asymmetric bilayers but with ∼20% interleaflet mixing. To probe the stability of asymmetric versus symmetric membranes, we expose the GUVs to porating electric pulses and monitor the fraction of destabilized vesicles. The pulses open macropores, and the GUVs either completely recover or exhibit leakage or bursting/collapse. Residual oil destabilizes porated membranes, and destabilization is even more pronounced in asymmetrically charged membranes. This is corroborated by the measured pore edge tension, which is also found to decrease with increasing charge asymmetry. Using GUVs with imposed transmembrane pH asymmetry, we confirm that poration-triggered destabilization does not depend on the approach used to generate membrane asymmetry.
Collapse
Affiliation(s)
- Fernanda
S. C. Leomil
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
- Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04039-032, Brazil
| | - Mareike Stephan
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Shreya Pramanik
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Karin A. Riske
- Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04039-032, Brazil
| | - Rumiana Dimova
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| |
Collapse
|
39
|
Lopes LB, Pintarelli GB, Guedert R, Andrade DLLS, Antonio AC, Ramos CTS, da Silva JR, Rangel MMM, Suzuki DOH. Novel tetrapolar single-needle electrode for electrochemotherapy in bone cavities: Modeling, design and validation. Med Eng Phys 2024; 125:104120. [PMID: 38508798 DOI: 10.1016/j.medengphy.2024.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Electrochemotherapy is a cancer treatment in which local pulsed electric fields are delivered through electrodes. The effectiveness of the treatment depends on exposing the tumor to a threshold electric field. Electrode geometry plays an important role in the resulting electric field distribution, especially in hard-to-reach areas and deep-seated tumors. We designed and developed a novel tetrapolar single-needle electrode for proper treatment in bone cavities. In silico and in vitro experiments were performed to evaluate the electric field and electric current produced by the electrode. In addition, tomography images of a real case of nasal cavity tumor were segmented into a 3D simulation to evaluate the electrode performance in a bone cavity. The proposed electrode was validated and its operating range was set up to 650 V. In the nasal cavity tumor, we found that the electrode can produce a circular electric field of 3 mm with an electric current of 14.1 A at 500 V, which is compatible with electrochemotherapy standards and commercial equipment.
Collapse
Affiliation(s)
- Lucas B Lopes
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| | - Guilherme B Pintarelli
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Control and Automation Engineering, Federal University of Santa Catarina, Blumenau, 89036-004, SC, Brazil
| | - Raul Guedert
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Daniella L L S Andrade
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Afrânio C Antonio
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Clara T S Ramos
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Jéssica R da Silva
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | | | - Daniela O H Suzuki
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
40
|
Cho ER, Kang DH. Development and investigation of ultrasound-assisted pulsed ohmic heating for inactivation of foodborne pathogens in milk with different fat content. Food Res Int 2024; 179:113978. [PMID: 38342529 DOI: 10.1016/j.foodres.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
The central objective of this research was to develop an ultrasound-assisted pulsed ohmic heating (POH) system for inactivation of food-borne pathogens in phosphate buffered saline (PBS) and milk with 0-3.6% fat and investigate its bactericidal effect. Combining ultrasound with POH did not significantly affect the temperature profile of samples. Both POH alone and ultrasound-assisted POH took 120 s to heat PBS 60℃. Milk with 0, 1, and 3.6% fat was heated to 60℃ by POH alone and ultrasound-assisted POH after 335, 475, and 525 s, respectively. This is because the electrical conductivity of the samples was the same for POH alone and ultrasound-assisted POH. Despite identical temperature profiles, ultrasound-assisted POH exerted a synergistic effect on the reduction of Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. In particular, the inactivation level of S. Typhimurium in PBS subjected to ultrasound-assisted POH treatment for 120 s corresponding to a treatment temperature of 60℃ was 3.73 log units higher than the sum of each treatment alone. A propidium iodide assay, intracellular protein measurements, and scanning electron microscopy revealed that ultrasound-assisted POH treatment provoked lethal cell membrane damage and leakage of intracellular proteins. Meanwhile, fat in milk reduced the efficacy of the bacterial inactivation of the ultrasound-assisted POH system due to its low electrical conductivity and sonoprotective effect. After ultrasound-assisted POH treatment at 60℃, there were no significant differences (P > 0.05) in the pH, color, and apparent viscosity of milk between the untreated and treated group.
Collapse
Affiliation(s)
- Eun-Rae Cho
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do, 25354, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do, 25354, Republic of Korea.
| |
Collapse
|
41
|
Lee DH, Lim S, Kwak SS, Kim J. Advancements in Skin-Mediated Drug Delivery: Mechanisms, Techniques, and Applications. Adv Healthc Mater 2024; 13:e2302375. [PMID: 38009520 PMCID: PMC11468599 DOI: 10.1002/adhm.202302375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Indexed: 11/29/2023]
Abstract
Skin-mediated drug delivery methods currently are receiving significant attention as a promising approach for the enhanced delivery of drugs through the skin. Skin-mediated drug delivery offers the potential to overcome the limitations of traditional drug delivery methods, including oral administration and intravenous injection. The challenges associated with drug permeation through layers of skin, which act as a major barrier, are explored, and strategies to overcome these limitations are discussed in detail. This review categorizes skin-mediated drug delivery methods based on the means of increasing drug permeation, and it provides a comprehensive overview of the mechanisms and techniques associated with these methods. In addition, recent advancements in the application of skin-mediated drug delivery are presented. The review also outlines the limitations of ongoing research and suggests future perspectives of studies regarding the skin-mediated delivery of drugs.
Collapse
Affiliation(s)
- Dong Ha Lee
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sunyoung Lim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sung Soo Kwak
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Joohee Kim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
42
|
Morozas A, Malyško-Ptašinskė V, Kulbacka J, Ivaška J, Ivaškienė T, Novickij V. Electrochemotherapy for head and neck cancers: possibilities and limitations. Front Oncol 2024; 14:1353800. [PMID: 38434679 PMCID: PMC10905418 DOI: 10.3389/fonc.2024.1353800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Head and neck cancer continues to be among the most prevalent types of cancer globally, yet it can be managed with appropriate treatment approaches. Presently, chemotherapy and radiotherapy stand as the primary treatment modalities for various groups and regions affected by head and neck cancer. Nonetheless, these treatments are linked to adverse side effects in patients. Moreover, due to tumor resistance to multiple drugs (both intrinsic and extrinsic) and radiotherapy, along with numerous other factors, recurrences or metastases often occur. Electrochemotherapy (ECT) emerges as a clinically proven alternative that offers high efficacy, localized effect, and diminished negative factors. Electrochemotherapy involves the treatment of solid tumors by combining a non-permeable cytotoxic drug, such as bleomycin, with a locally administered pulsed electric field (PEF). It is crucial to employ this method effectively by utilizing optimal PEF protocols and drugs at concentrations that do not possess inherent cytotoxic properties. This review emphasizes an examination of diverse clinical practices of ECT concerning head and neck cancer. It specifically delves into the treatment procedure, the choice of anti-cancer drugs, pre-treatment planning, PEF protocols, and electroporation electrodes as well as the efficacy of tumor response to the treatment and encountered obstacles. We have also highlighted the significance of assessing the spatial electric field distribution in both tumor and adjacent tissues prior to treatment as it plays a pivotal role in determining treatment success. Finally, we compare the ECT methodology to conventional treatments to highlight the potential for improvement and to facilitate popularization of the technique in the area of head and neck cancers where it is not widespread yet while it is not the case with other cancer types.
Collapse
Affiliation(s)
- Arnoldas Morozas
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| | | | - Julita Kulbacka
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Justinas Ivaška
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tatjana Ivaškienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
43
|
Sormoli HA, Mojra A, Heidarinejad G. A novel gas embolotherapy using microbubbles electrocoalescence for cancer treatment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107953. [PMID: 38043501 DOI: 10.1016/j.cmpb.2023.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Embolotherapy has been increasingly used to disrupt tumor growth. Despite its success in the occlusion of microvessels, it has drawbacks such as limited access to the target location, limited control of the blocker size, and inattention to the tumor characteristics, especially high interstitial fluid pressure. The present work introduces a novel numerical method of gas embolotherapy for cancer treatment through tumor vessel occlusion. METHODS The gas microbubbles are generated from Levovist bolus injection into the tumor microvessel. The microbubble movement in the blood flow is innovatively controlled by an electric field applied to the tumor-feeding vessel. The interaction between the Levovist microbubbles and the electric field is resolved by developing a fully coupled model using the phase-field model, Carreau model for non-Newtonian blood, Navier-Stokes equations and Maxwell stress tensor. Additionally, the critical effect of high interstitial fluid pressure as a characteristic of solid tumors is included. RESULTS The findings of this study indicate that the rates of microbubble deformation and displacement increase with the applied potential intensity to the microvessel wall. Accordingly, the required time for a microbubble to join the upper microvessel wall reduces from 1.97ms to 22 μs with an increase of the electric potential from 3.5V to 12.5V. Additionally, an electric potential of 12.5V causes the microbubbles coalescence and formation of a gas column against the bloodstream. CONCLUSIONS Clinically, our novel embolization procedure can be considered a non-invasive targeted therapy, and under a controlled electric field, the blocker size can be precisely controlled. Also, the proposed method has the potential to be used as a gradual treatment in advanced cancers as tumors develop resistance and relapse.
Collapse
Affiliation(s)
| | - Afsaneh Mojra
- Department of Mechanical Engineering, K. N. Toosi University of Technology, 7 Pardis St., Tehran, Iran.
| | | |
Collapse
|
44
|
An J, Zhang CP, Qiu HY, Zhang HX, Chen QB, Zhang YM, Lei XL, Zhang CX, Yin H, Zhang Y. Enhancement of the viability of T cells electroporated with DNA via osmotic dampening of the DNA-sensing cGAS-STING pathway. Nat Biomed Eng 2024; 8:149-164. [PMID: 37500747 DOI: 10.1038/s41551-023-01073-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Viral delivery of DNA for the targeted reprogramming of human T cells can lead to random genomic integration, and electroporation is inefficient and can be toxic. Here we show that electroporation-induced toxicity in primary human T cells is mediated by the cytosolic pathway cGAS-STING (cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase-stimulator of interferon genes). We also show that an isotonic buffer, identified by screening electroporation conditions, that reduces cGAS-STING surveillance allowed for the production of chimaeric antigen receptor (CAR) T cells with up to 20-fold higher CAR T cell numbers than standard electroporation and with higher antitumour activity in vivo than lentivirally generated CAR T cells. The osmotic pressure of the electroporation buffer dampened cGAS-DNA interactions, affecting the production of the STING activator 2'3'-cGAMP. The buffer also led to superior efficiencies in the transfection of therapeutically relevant primary T cells and human haematopoietic stem cells. Our findings may facilitate the optimization of electroporation-mediated DNA delivery for the production of genome-engineered T cells.
Collapse
Affiliation(s)
- Jing An
- Department of Rheumatology and Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chuan-Ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hong-Xia Zhang
- Department of Urology, Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qiu-Bing Chen
- Department of Urology, Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu-Ming Zhang
- Department of Rheumatology and Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xin-Lin Lei
- Department of Urology, Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Cai-Xiang Zhang
- Department of Rheumatology and Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hao Yin
- Department of Urology, Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China.
- State Key Laboratory of Virology, Wuhan University, Wuhan, China.
- RNA Institute, Wuhan University, Wuhan, China.
| | - Ying Zhang
- Department of Rheumatology and Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- State Key Laboratory of Virology, Wuhan University, Wuhan, China.
| |
Collapse
|
45
|
Cho SB, Lee YJ, Kang SY, Choi M, Kim B, Ahn JC. Effects of Parallel Contact Cooling on Pulsed-Type, Bipolar Radiofrequency-Induced Tissue Reactions in an in vivo Porcine Model. Clin Cosmet Investig Dermatol 2024; 17:125-135. [PMID: 38259431 PMCID: PMC10802173 DOI: 10.2147/ccid.s446814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Background Skin cooling during laser or radiofrequency (RF) treatments is a method to minimize thermal damage to the epidermis, reduce pain, and decrease post-treatment downtime. We evaluated the effect of parallel contact cooling (PCC) on RF-induced thermal reactions in minipig skin in vivo after bipolar microneedling RF treatment. Methods RF treatments were administered at frequencies of 0.5, 1, and 2 MHz with single (500 ms), six (1000 ms), and ten (5000 ms) sub-pulse packs to minipig skin with or without PCC. Subsequently, thermometric imaging and histology were used to analyze skin reactions to RF. Results Thermometric images showed that PCC promptly lowered skin temperature in the RF-treated area, with this effect persisting for over 60s. Regardless of the PCC, RF treatments lasting for 500 ms with a single pulse pack resulted in peri-electrode coagulative necrosis (PECN) zones and inter-electrode non-necrotic thermal reaction (IENT) zones in the dermis. In contrast, treatment lasting 5000 ms with 10 sub-pulse packs produced distinct IENT without notable PECN over a wide dermal area. Skin specimens obtained at 1 h and 3, 7, and 14 days after PCC-assisted RF treatments showed a higher degree of thermal tissue reactions in the deeper dermal regions compared to those after RF treatments without PCC. Conclusion PCC-assisted RF treatment, utilizing an invasive bipolar microneedling device, enhanced RF-induced skin reactions in the mid to deep dermis while preserving the epidermis and upper papillary dermis from excessive thermal tissue injury.
Collapse
Affiliation(s)
- Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, Korea
| | - Yea-Jin Lee
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, Korea
| | | | - Min Choi
- R&D Center, Shenb Co., Ltd, Seoul, Korea
| | - Bora Kim
- R&D Center, Shenb Co., Ltd, Seoul, Korea
| | - Jin-Chul Ahn
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, Korea
| |
Collapse
|
46
|
Batista Napotnik T, Kos B, Jarm T, Miklavčič D, O'Connor RP, Rems L. Genetically engineered HEK cells as a valuable tool for studying electroporation in excitable cells. Sci Rep 2024; 14:720. [PMID: 38184741 PMCID: PMC10771480 DOI: 10.1038/s41598-023-51073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024] Open
Abstract
Electric pulses used in electroporation-based treatments have been shown to affect the excitability of muscle and neuronal cells. However, understanding the interplay between electroporation and electrophysiological response of excitable cells is complex, since both ion channel gating and electroporation depend on dynamic changes in the transmembrane voltage (TMV). In this study, a genetically engineered human embryonic kidney cells expressing NaV1.5 and Kir2.1, a minimal complementary channels required for excitability (named S-HEK), was characterized as a simple cell model used for studying the effects of electroporation in excitable cells. S-HEK cells and their non-excitable counterparts (NS-HEK) were exposed to 100 µs pulses of increasing electric field strength. Changes in TMV, plasma membrane permeability, and intracellular Ca2+ were monitored with fluorescence microscopy. We found that a very mild electroporation, undetectable with the classical propidium assay but associated with a transient increase in intracellular Ca2+, can already have a profound effect on excitability close to the electrostimulation threshold, as corroborated by multiscale computational modelling. These results are of great relevance for understanding the effects of pulse delivery on cell excitability observed in context of the rapidly developing cardiac pulsed field ablation as well as other electroporation-based treatments in excitable tissues.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Bor Kos
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Tomaž Jarm
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Rodney P O'Connor
- École des Mines de Saint-Étienne, Department of Bioelectronics, Georges Charpak Campus, Centre Microélectronique de Provence, 880 Route de Mimet, 13120, Gardanne, France
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Gabay B, Levkov K, Berl A, Wise J, Shir-Az O, Vitkin E, Saulis G, Shalom A, Golberg A. Electroporation-Based Biopsy Treatment Planning with Numerical Models and Tissue Phantoms. Ann Biomed Eng 2024; 52:71-88. [PMID: 37154990 DOI: 10.1007/s10439-023-03208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Molecular sampling with vacuum-assisted tissue electroporation is a novel, minimally invasive method for molecular profiling of solid lesions. In this paper, we report on the design of the battery-powered pulsed electric field generator and electrode configuration for an electroporation-based molecular sampling device for skin cancer diagnostics. Using numerical models of skin electroporation corroborated by the potato tissue phantom model, we show that the electroporated tissue volume, which is the maximum volume for biomarker sampling, strongly depends on the electrode's geometry, needle electrode skin penetration depths, and the applied pulsed electric field protocol. In addition, using excised human basal cell carcinoma (BCC) tissues, we show that diffusion of proteins out of human BCC tissues into water strongly depends on the strength of the applied electric field and on the time after the field application. The developed numerical simulations, confirmed by experiments in potato tissue phantoms and excised human cancer lesions, provide essential tools for the development of electroporation-based molecular markers sampling devices for personalized skin cancer diagnostics.
Collapse
Affiliation(s)
- Batel Gabay
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Klimentiy Levkov
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Julia Wise
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Shir-Az
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Edward Vitkin
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gintautas Saulis
- Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
48
|
Kauth A, Mildner AK, Hegel L, Wegener J, Ingebrandt S. Development of Specialized Microelectrode Arrays with Local Electroporation Functionality. Ann Biomed Eng 2024; 52:12-21. [PMID: 37326946 PMCID: PMC10761456 DOI: 10.1007/s10439-023-03268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
When a cell or tissue is exposed to a pulsed electric field (100-1000 V/cm), the cellular membrane permeabilizes for biomolecules that cannot pass an intact cellular membrane. During this electropermeabilization (EP), plasmid deoxyribonucleic acid sequences encoding therapeutic or regulatory genes can enter the cell, which is called gene electrotransfer (GET). GET using micro-/nano technology provides higher spatial resolution and operates with lower voltage amplitudes compared to conventional bulk EP. Microelectrode arrays (MEAs), which are usually used for the recording and stimulation of neuronal signals, can be utilized for GET as well. In this study, we developed a specialized MEA for local EP of adherent cells. Our manufacturing process provides a most flexible electrode and substrate material selection. We used electrochemical impedance spectroscopy to characterize the impedance of the MEAs and the impact of an adherent cellular layer. We verified the local EP functionality of the MEAs by loading a fluorophore dye into human embryonic kidney 293T cells. Finally, we demonstrated a GET with a subsequent green fluorescent protein expression by the cells. Our experiments prove that a high spatial resolution of GET can be obtained using MEAs.
Collapse
Affiliation(s)
- Andrea Kauth
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 18-24, 52074, Aachen, Germany
| | - Anne-Kathrin Mildner
- Institute of Analytical Chemistry, Universitaet Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Lena Hegel
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 18-24, 52074, Aachen, Germany
| | - Joachim Wegener
- Institute of Analytical Chemistry, Universitaet Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
- Fraunhofer Research Institution for Microsystems and Solid State Technologies EMFT, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 18-24, 52074, Aachen, Germany.
| |
Collapse
|
49
|
Kos Š, Jesenko T, Blagus T. In Vivo Wound Healing Model for Characterization of Gene Electrotransfer Effects in Mouse Skin. Methods Mol Biol 2024; 2773:87-96. [PMID: 38236539 DOI: 10.1007/978-1-0716-3714-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Wound healing is a complex biological response to injury characterized by a sequence of interdependent and overlapping physiological actions. To study wound healing and cutaneous regeneration processes, the complexity of wound healing requires the use of animal models. In this chapter, we describe the protocol to generate skin wounds in a mouse model. In the mouse splinted excisional wound model, two full-thickness wounds are firstly created on the mouse dorsum, which is followed by application of silicone splint around wounded area. A splinting ring tightly adheres to the skin around full-thickness wound, preventing wound contraction and replicating human processes of re-epithelialization and new tissue formation. The wound is easily accessible for treatment as well as for daily monitoring and quantifying the wound closure.This technique represents valuable approach for the study of wound healing mechanisms and for evaluation of new therapeutic modalities. In this protocol, we describe how to utilize the model to study the effect of gene electrotransfer of plasmid DNA coding for antiangiogenic molecules. Additionally, we also present how to precisely regulate electrical parameters and modify electrode composition to reach optimal therapeutic effectiveness of gene electrotransfer into skin around wounded area.
Collapse
Affiliation(s)
- Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
50
|
Avitall B. Have the cake and eat it too: PFA, a case of a technological miracle? J Cardiovasc Electrophysiol 2024; 35:94-96. [PMID: 38031813 DOI: 10.1111/jce.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
|