1
|
Krasnov BR, Shenbrot GI, Khokhlova IS, López Berrizbeitia MF, Matthee S, Sanchez JP, VAN DER Mescht L. Environment and traits affect parasite and host species positions but not roles in flea-mammal networks. Integr Zool 2024; 19:1163-1180. [PMID: 38263720 DOI: 10.1111/1749-4877.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
We studied spatial variation in the effects of environment and network size on species positions and roles in multiple flea-mammal networks from four biogeographic realms. We asked whether species positions (measured as species strength [SS], the degree of interaction specialization [d'], and the eigenvector centrality [C]) or the roles of fleas and their hosts in the interaction networks: (a) are repeatable/conserved within a flea or a host species; (b) vary in dependence on environmental variables and/or network size; and (c) the effects of environment and network size on species positions or roles in the networks depend on species traits. The repeatability analysis of species position indices for 441 flea and 429 host species, occurring in at least two networks, demonstrated that the repeatability of SS, d', and C within a species was significant, although not especially high, suggesting that the indices' values were affected by local factors. The majority of flea and host species in the majority of networks demonstrated a peripheral role. A value of at least one index of species position was significantly affected by environmental variables or network size in 41 and 36, respectively, of the 52 flea and 52 host species that occurred in multiple networks. In both fleas and hosts, the occurrence of the significant effect of environment or network size on at least one index of species position, but not on a species' role in a network, was associated with some species traits.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Georgy I Shenbrot
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Irina S Khokhlova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - M Fernanda López Berrizbeitia
- Programa de Conservación de los Murciélagos de Argentina (PCMA) and Instituto de Investigaciones de Biodiversidad Argentina (PIDBA)-CCT CONICET Noa Sur (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Naturales e IML, UNT, and Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa
| | - Juliana P Sanchez
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires-CITNOBA (CONICET-UNNOBA), Pergamino, Argentina
| | - Luther VAN DER Mescht
- Clinvet International (Pty) Ltd, Bloemfontein, South Africa
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
2
|
Hervías-Parejo S, Cuevas-Blanco M, Lacasa L, Traveset A, Donoso I, Heleno R, Nogales M, Rodríguez-Echeverría S, Melián CJ, Eguíluz VM. On the structure of species-function participation in multilayer ecological networks. Nat Commun 2024; 15:8910. [PMID: 39443479 PMCID: PMC11499872 DOI: 10.1038/s41467-024-53001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Understanding how biotic interactions shape ecosystems and impact their functioning, resilience and biodiversity has been a sustained research priority in ecology. Yet, traditional assessments of ecological complexity typically focus on species-species interactions that mediate a particular function (e.g., pollination), overlooking both the synergistic effect that multiple functions might develop as well as the resulting species-function participation patterns that emerge in ecosystems that harbor multiple ecological functions. Here we propose a mathematical framework that integrates various types of biotic interactions observed between different species. Its application to recently collected data of an islet ecosystem-reporting 1537 interactions between 691 plants, animals and fungi across six different functions (pollination, herbivory, seed dispersal, decomposition, nutrient uptake, and fungal pathogenicity)-unveils a non-random, nested structure in the way plant species participate across different functions. The framework further allows us to identify a ranking of species and functions, where woody shrubs and fungal decomposition emerge as keystone actors whose removal have a larger-than-random effect on secondary extinctions. The dual insight-from species and functional perspectives-offered by the framework opens the door to a richer quantification of ecosystem complexity and to better calibrate the influence of multifunctionality on ecosystem functioning and biodiversity.
Collapse
Affiliation(s)
- Sandra Hervías-Parejo
- Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Mallorca, Illes Balears, Spain
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Mar Cuevas-Blanco
- Institute for Cross-Disciplinary Physics and Complex Systems, (IFISC, CSIC-UIB), Palma de Mallorca, Spain
| | - Lucas Lacasa
- Institute for Cross-Disciplinary Physics and Complex Systems, (IFISC, CSIC-UIB), Palma de Mallorca, Spain.
| | - Anna Traveset
- Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Mallorca, Illes Balears, Spain
| | - Isabel Donoso
- Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Mallorca, Illes Balears, Spain
- Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Country, 48940, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ruben Heleno
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Manuel Nogales
- Institute of Natural Products and Agrobiology (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Susana Rodríguez-Echeverría
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos J Melián
- Institute for Cross-Disciplinary Physics and Complex Systems, (IFISC, CSIC-UIB), Palma de Mallorca, Spain
- Department of Fish Ecology and Evolution, Eawag Centre of Ecology, Evolution and Biogeochemistry, Dübendorf, Switzerland
- Institute of Ecology and Evolution, Aquatic Ecology, University of Bern, Bern, Switzerland
| | - Victor M Eguíluz
- Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Country, 48940, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Zheng C, Song J, Shan M, Qiu M, Cui M, Huang C, Chen W, Wang J, Zhang L, Yu Y, Fang H. Key bacterial taxa with specific metabolisms and life history strategies sustain soil microbial network stability exposed to carbendazim and deoxynivalenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176680. [PMID: 39366579 DOI: 10.1016/j.scitotenv.2024.176680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Co-contamination of carbendazim (CBD) and deoxynivalenol (DON) is common in agricultural soils, yet their ecological impact on soil microbiome remains poorly assessed. Here, we investigated the influence of CBD and DON on the structure, function, and co-occurrence networks of soil microbiome. The combined treatment of CBD and DON significantly exacerbated the negative impacts on soil microbial diversity, functional diversity, and microbial network stability compared to individual treatments. Specifically, Lysobacter, Gemmatimonas, Nitrospira, Massilia, and Bacillus were identified as indicator species for CBD and DON. Simultaneously, the abundance of genes involved in key ecological functions, such as nitrification (amoA) and organic phosphorus mineralization (phoAD), was significantly reduced. Notably, key bacterial taxa Nitrospira and Gemmatimonas, with K-life history strategy and capabilities for nitrification and organic nitrogen mineralization, played crucial roles in promoting positive interactions in networks. Furthermore, variance partitioning analysis (VPA) and structural equation modeling (SEM) demonstrated that the abundance and niche breadth of key bacterial taxa were the primary drivers of microbial network stability. In conclusion, our study provides new insights into how soil microbiomes and networks respond to pesticides and mycotoxins, aiding in a more comprehensive assessment of exposure risks.
Collapse
Affiliation(s)
- Conglai Zheng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Song
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mei Shan
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Minrong Cui
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenyu Huang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weibin Chen
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Wang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Nereu M, Silva JS, Timóteo S. The disruption of birds' double mutualistic interactions in novel ecosystems. Proc Biol Sci 2024; 291:20241872. [PMID: 39437840 PMCID: PMC11495963 DOI: 10.1098/rspb.2024.1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Non-native trees disrupt ecological processes vital to native plant communities. We studied how forests dominated by Acacia dealbata and Eucalyptus globulus affect the role of birds as dual pollinators and seed dispersers in a region heavily impacted by these two non-native species. We compared bird-plant interactions in the native and in the two non-native forest types. We constructed a multilayer regional network for each forest type and evaluated differences in network dissimilarity between networks. We also calculated the bird's importance in connecting processes and variables associated with module diversity. To determine how the networks react to changes in species richness, we did a simulation of species richness gradient and link percentage for each forest type. The number of birds acting both as pollinators and seed dispersers was higher in native than in non-native forests. However, birds in non-native forests still play a crucial role in maintaining the ecological services provided to native plant communities. However, the eucalyptus network exhibited a concerning simplification, forcing bird species to fully exploit the few remaining resources, leaving little room for structural adjustments and limiting the ecosystem's ability to withstand further species loss. These findings highlight how non-native trees may trigger cascading effects across trophic levels.
Collapse
Affiliation(s)
- Mauro Nereu
- TERRA Associate Laboratory, Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra3000-456, Portugal
- Coimbra Agriculture School, Polytechnic Institute of Coimbra, Bencanta, Coimbra3045-601, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joaquim S. Silva
- Coimbra Agriculture School, Polytechnic Institute of Coimbra, Bencanta, Coimbra3045-601, Portugal
| | - Sérgio Timóteo
- TERRA Associate Laboratory, Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra3000-456, Portugal
| |
Collapse
|
5
|
Vitali A, Goldstein M, Markfeld M, Pilosof S. Local and regional processes drive distance decay in structure in a spatial multilayer plant-pollinator network. J Anim Ecol 2024; 93:1582-1592. [PMID: 39252414 DOI: 10.1111/1365-2656.14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Understanding spatial variation in species distribution and community structure is at the core of community ecology. Nevertheless, the effect of distance on metacommunity structure remains little studied. We examine how plant-pollinator community structure changes across geographical distances at a regional scale and disentangle its underlying local and regional processes. We use a multilayer network to represent linked plant-pollinator communities as a metacommunity in the Canary Islands. We used modularity (i.e. the extent to which the community is partitioned into groups of densely interacting species) to quantify distance decay in structure across space. In multilayer modularity, the same species can belong to different modules in different communities, and modules can span communities. This enabled quantifying how similarity in module composition varied with distance between islands. We developed three null models, each controlling for a separate component of the multilayer network, to disentangle the role of species turnover, interaction rewiring and local factors in driving distance decay in structure. We found a pattern of distance decay in structure, indicating that islands tended to share fewer modules with increasing distance. Species turnover (but not interaction rewiring) was the primary regional process triggering distance decay in structure. Local interaction structure also played an essential role in determining the structure similarity of communities at a regional scale. Therefore, local factors that determine species interactions occurring at a local scale drive distance decay in structure at a regional scale. Our work highlights the interplay between local and regional processes underlying community structure. The methodology, and specifically the null models, we developed provides a general framework for linking communities in space and testing different hypotheses regarding the factors generating spatial structure.
Collapse
Affiliation(s)
- Agustin Vitali
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maya Goldstein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matan Markfeld
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shai Pilosof
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
6
|
de Araújo WS, Bergamini LL, Almeida-Neto M. Global effects of land-use intensity and exotic plants on the structure and phylogenetic signal of plant-herbivore networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173949. [PMID: 38876343 DOI: 10.1016/j.scitotenv.2024.173949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Interactions between plants and herbivorous insects are often phylogenetically structured, with closely related insect species using similar sets of species or lineages of plants, while phylogenetically closer plants tend to share high proportions of their herbivore insect species. Notably, these phylogenetic constraints in plant-herbivore interactions tend to be more pronounced among internal plant-feeding herbivores (i.e., endophages) than among external feeders (i.e., exophages). In the context of growing human-induced habitat conversion and the global proliferation of exotic species, it is crucial to understand how ecological networks respond to land-use intensification and the increasing presence of exotic plants. In this study, we analyzed plant-herbivore network data from various locations of the World to ascertain the degree to which land-use intensity and the prevalence of exotic plants induce predictable changes in their network topology - measured by levels of nestedness and modularity - and phylogenetic structures. Additionally, we investigated whether the intimacy of plant-herbivore interactions, contrasting endophagous with exophagous networks, modulate changes in network structure. Our findings reveal that most plant-herbivore networks are characterized by significant phylogenetic and topological structures. However, neither these structures did not show consistent changes in response to increased levels of land-use intensify. On the other hand, for the networks composed of endophagous herbivores, the level of nestedness was higher in the presence of a high proportion of exotic plants. Additionally, for networks of exophagous herbivores, we observed an increase in the phylogenetic structure of interactions due to exotic host dominance. These results underscore the differential impacts of exotic species and land-use intensity on the phylogenetic and topological structures of plant-herbivore networks.
Collapse
Affiliation(s)
- Walter Santos de Araújo
- Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, MG 39401-089, Brazil..
| | - Leonardo Lima Bergamini
- Centro de Estudos Ambientais do Cerrado, Instituto Brasileiro de Geografia e Estatística, Reserva Ecológica do IBGE, Brasília, DF 70312-970, Brazil
| | - Mário Almeida-Neto
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO 74001-970, Brazil
| |
Collapse
|
7
|
de Araújo WS, Silveira LT. Ecological networks in savannas reflect different levels of hydric stress in adjacent palm swamp forest ecosystems. Sci Rep 2024; 14:21317. [PMID: 39266640 PMCID: PMC11393334 DOI: 10.1038/s41598-024-72479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Palm swamp forests are wetland ecosystems typical of the Brazilian Cerrado, which in recent decades have undergone intense changes due to land use alterations and climate change. As a result of these disturbances, many palm swamps have been experiencing significant drying, which can also affect adjacent vegetation. In the present study, we evaluated whether the drying of palm swamps affects the structure of plant-herbivore networks located in adjacent savanna areas in Brazil. Our results show that savanna areas adjacent to dry zones of palm swamps have fewer interactions, fewer interacting species, and a less specialized topology, which corroborates our expectations. Our findings indicate that the drying of palm swamps also has propagated impacts on adjacent savanna vegetation, impairing more specialized interactions in these environments. On the other hand, contrary to expectations, plant-herbivore networks in dry zones displayed higher modularity, lower nestedness and lower robustness than those in wet zones, suggesting that in dry environments, species tend to compartmentalize their interactions, even with lower interaction specialization. This is the first study to investigate the impacts of environmental drying on the structure of plant-herbivore networks in tropical ecosystems, highlighting the complexity of these effects and their differential impact on specialized and generalized interactions. Understanding these dynamics is crucial for developing effective conservation and management strategies in the face of ongoing environmental changes.
Collapse
Affiliation(s)
- Walter Santos de Araújo
- Department of General Biology, Center for Biological and Health Sciences, State University of Montes Claros, Montes Claros, Brazil.
| | - Luana Teixeira Silveira
- Graduate Program in Animal Biodiversity, Institute of Biological Sciences, Federal University of Goiás, Goiânia, 74690-900, Brazil
| |
Collapse
|
8
|
Cai G, Ge Y, Dong Z, Liao Y, Chen Y, Wu A, Li Y, Liu H, Yuan G, Deng J, Fu H, Jeppesen E. Temporal shifts in the phytoplankton network in a large eutrophic shallow freshwater lake subjected to major environmental changes due to human interventions. WATER RESEARCH 2024; 261:122054. [PMID: 38986279 DOI: 10.1016/j.watres.2024.122054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Phytoplankton communities are crucial components of aquatic ecosystems, and since they are highly interactive, they always form complex networks. Yet, our understanding of how interactive phytoplankton networks vary through time under changing environmental conditions is limited. Using a 29-year (339 months) long-term dataset on Lake Taihu, China, we constructed a temporal network comprising monthly sub-networks using "extended Local Similarity Analysis" and assessed how eutrophication, climate change, and restoration efforts influenced the temporal dynamics of network complexity and stability. The network architecture of phytoplankton showed strong dynamic changes with varying environments. Our results revealed cascading effects of eutrophication and climate change on phytoplankton network stability via changes in network complexity. The network stability of phytoplankton increased with average degree, modularity, and nestedness and decreased with connectance. Eutrophication (increasing nitrogen) stabilized the phytoplankton network, mainly by increasing its average degree, while climate change, i.e., warming and decreasing wind speed enhanced its stability by increasing the cohesion of phytoplankton communities directly and by decreasing the connectance of network indirectly. A remarkable shift and a major decrease in the temporal dynamics of phytoplankton network complexity (average degree, nestedness) and stability (robustness, persistence) were detected after 2007 when numerous eutrophication mitigation efforts (not all successful) were implemented, leading to simplified phytoplankton networks and reduced stability. Our findings provide new insights into the organization of phytoplankton networks under eutrophication (or re-oligotrophication) and climate change in subtropical shallow lakes.
Collapse
Affiliation(s)
- Guojun Cai
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China; Institute of Mountain Resources, Guizhou Academy of Science, Guiyang 550001, China
| | - Yili Ge
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Dong
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Yu Liao
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Yaoqi Chen
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Aiping Wu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Youzhi Li
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Huanyao Liu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Guixiang Yuan
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hui Fu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China.
| | - Erik Jeppesen
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China; imnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
9
|
Laine AL, Tylianakis JM. The coevolutionary consequences of biodiversity change. Trends Ecol Evol 2024; 39:745-756. [PMID: 38705768 DOI: 10.1016/j.tree.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Coevolutionary selection is a powerful process shaping species interactions and biodiversity. Anthropogenic global environmental change is reshaping planetary biodiversity, including by altering the structure and intensity of interspecific interactions. However, remarkably little is understood of how coevolutionary selection is changing in the process. Here, we outline three interrelated pathways - change in evolutionary potential, change in community composition, and shifts in interaction trait distributions - that are expected to redirect coevolutionary selection under biodiversity change. Assessing how both ecological and evolutionary rules governing species interactions are disrupted under anthropogenic global change is of paramount importance to understand the past, present, and future of Earth's biodiversity.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1 (PO Box 65), University of Helsinki, FI-00014 Helsinki, Finland.
| | - Jason M Tylianakis
- Bioprotection Aotearoa, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
10
|
Suding KN, Collins CG, Hallett LM, Larios L, Brigham LM, Dudney J, Farrer EC, Larson JE, Shackelford N, Spasojevic MJ. Biodiversity in changing environments: An external-driver internal-topology framework to guide intervention. Ecology 2024; 105:e4322. [PMID: 39014865 DOI: 10.1002/ecy.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 07/18/2024]
Abstract
Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
Collapse
Affiliation(s)
- Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Hallett
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | - Loralee Larios
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Laurel M Brigham
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Emily C Farrer
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Julie E Larson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Nancy Shackelford
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Marko J Spasojevic
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
11
|
Martins LP, Stouffer DB, Blendinger PG, Böhning-Gaese K, Costa JM, Dehling DM, Donatti CI, Emer C, Galetti M, Heleno R, Menezes Í, Morante-Filho JC, Muñoz MC, Neuschulz EL, Pizo MA, Quitián M, Ruggera RA, Saavedra F, Santillán V, Schleuning M, da Silva LP, Ribeiro da Silva F, Tobias JA, Traveset A, Vollstädt MGR, Tylianakis JM. Birds optimize fruit size consumed near their geographic range limits. Science 2024; 385:331-336. [PMID: 39024457 DOI: 10.1126/science.adj1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
Animals can adjust their diet to maximize energy or nutritional intake. For example, birds often target fruits that match their beak size because those fruits can be consumed more efficiently. We hypothesized that pressure to optimize diet-measured as matching between fruit and beak size-increases under stressful environments, such as those that determine species' range edges. Using fruit-consumption and trait information for 97 frugivorous bird and 831 plant species across six continents, we demonstrate that birds feed more frequently on closely size-matched fruits near their geographic range limits. This pattern was particularly strong for highly frugivorous birds, whereas opportunistic frugivores showed no such tendency. These findings highlight how frugivore interactions might respond to stressful conditions and reveal that trait matching may not predict resource use consistently.
Collapse
Affiliation(s)
- Lucas P Martins
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Pedro G Blendinger
- Instituto de Ecología Regional, Universidad Nacional de Tucumán and CONICET, CC 34, 4107 Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 2005, 4000 Tucumán, Argentina
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60439 Frankfurt am Main, Germany
| | - José Miguel Costa
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - D Matthias Dehling
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Camila I Donatti
- Conservation International, Arlington, VA 22202, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| | - Carine Emer
- Rio de Janeiro Botanical Garden Research Institute, Rua Pacheco Leão 915, Jardim Botânico, Rio de Janeiro, RJ 22460-030, Brazil
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Mauro Galetti
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
- Kimberly Green Latin American and Caribbean Center, Florida International University (FIU), Miami, FL 33199, USA
| | - Ruben Heleno
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ícaro Menezes
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, BA 45662-000, Brazil
| | - José Carlos Morante-Filho
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, BA 45662-000, Brazil
| | - Marcia C Muñoz
- Programa de Biología, Universidad de La Salle, Carrera 2 # 10-70, Bogotá, Colombia
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Marco Aurélio Pizo
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Marta Quitián
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Systematic Zoology Laboratory, Tokyo Metropolitan University TMU, Tokyo, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Roman A Ruggera
- Instituto de Ecorregiones Andinas (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy), Canónigo Gorriti 237, Y4600 San Salvador de Jujuy, Jujuy, Argentina
- Cátedra de Diversidad Biológica III, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, Y4600 San Salvador de Jujuy, Jujuy, Argentina
| | - Francisco Saavedra
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Vinicio Santillán
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Av. de las Américas, Cuenca, Ecuador
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Luís Pascoal da Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Fernanda Ribeiro da Silva
- Laboratory of Ecology and Management of Forest Ecosystems, University of Santa Catarina (UFSC), Trindade, Florianópolis, SC 88040-900, Brazil
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Anna Traveset
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Maximilian G R Vollstädt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Jason M Tylianakis
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
- Bioprotection Aotearoa, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| |
Collapse
|
12
|
Wang B, Zhu Y, Yang X, Shan D, Wang D, Tu Y, Shi Z, Indree T. Effects of plant diversity and community structure on ecosystem multifunctionality under different grazing potentials in the eastern Eurasian steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173128. [PMID: 38734106 DOI: 10.1016/j.scitotenv.2024.173128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Grazing potential represents the potential carrying capacity of steppe livestock production. Understanding the impact of changes in plant diversity and community structure on ecosystem multifunctionality (EMF) at different grazing potentials is crucial for the sustainable management of steppe ecosystems. We examined the associations between plant diversity, community structure, above-ground ecosystem multifunctionality (AEMF), and below-ground ecosystem multifunctionality (BEMF) at various grazing potentials. Our assessment employed generalized linear mixed-effects models and structural equation models to determine the impact of these factors on ecosystem multifunctionality. Our study results indicated that ecosystem multifunctionality differed depending on the level of grazing potential and decreased as grazing potential declined. The impact of plant diversity and community structure on above- and below-ground ecosystem multifunctionality varied. Plant diversity and community structure correlated more with AEMF than BEMF. Plant diversity had the most significant effect on EMF under high grazing potential, while community structure had the greatest effect on EMF under moderate and low grazing potential. These improve our understanding of the correlation between steppe plant diversity, community structure, and above- and below-ground ecosystem multifunctionality. This understanding is necessary to develop strategies to increase plant diversity or regulate community structure and the sustainability of steppes.
Collapse
Affiliation(s)
- Baizhu Wang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuanjun Zhu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Xiaohui Yang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Dan Shan
- College of Agriculture and Forestry, Hulun Buir University, Hulun Buir, 021000, China
| | - Danyu Wang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Ya Tu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhongjie Shi
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Tuvshintogtokh Indree
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| |
Collapse
|
13
|
Martins LP, Garcia-Callejas D, Lai HR, Wootton KL, Tylianakis JM. The propagation of disturbances in ecological networks. Trends Ecol Evol 2024; 39:558-570. [PMID: 38402007 DOI: 10.1016/j.tree.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Despite the development of network science, we lack clear heuristics for how far different disturbance types propagate within and across species interaction networks. We discuss the mechanisms of disturbance propagation in ecological networks, and propose that disturbances can be categorized into structural, functional, and transmission types according to their spread and effect on network structure and functioning. We describe the properties of species and their interaction networks and metanetworks that determine the indirect, spatial, and temporal extent of propagation. We argue that the sampling scale of ecological studies may have impeded predictions regarding the rate and extent that a disturbance spreads, and discuss directions to help ecologists to move towards a predictive understanding of the propagation of impacts across interacting communities and ecosystems.
Collapse
Affiliation(s)
- Lucas P Martins
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, Aotearoa New Zealand.
| | - David Garcia-Callejas
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Hao Ran Lai
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, Aotearoa New Zealand; Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Kate L Wootton
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Jason M Tylianakis
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, Aotearoa New Zealand; Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, Aotearoa New Zealand
| |
Collapse
|
14
|
Hederström V, Ekroos J, Friberg M, Krausl T, Opedal ØH, Persson AS, Petrén H, Quan Y, Smith HG, Clough Y. Pollinator-mediated effects of landscape-scale land use on grassland plant community composition and ecosystem functioning - seven hypotheses. Biol Rev Camb Philos Soc 2024; 99:675-698. [PMID: 38118437 DOI: 10.1111/brv.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Environmental change is disrupting mutualisms between organisms worldwide. Reported declines in insect populations and changes in pollinator community compositions in response to land use and other environmental drivers have put the spotlight on the need to conserve pollinators. While this is often motivated by their role in supporting crop yields, the role of pollinators for reproduction and resulting taxonomic and functional assembly in wild plant communities has received less attention. Recent findings suggest that observed and experimental gradients in pollinator availability can affect plant community composition, but we know little about when such shifts are to be expected, or the impact they have on ecosystem functioning. Correlations between plant traits related to pollination and plant traits related to other important ecosystem functions, such as productivity, nitrogen uptake or palatability to herbivores, lead us to expect non-random shifts in ecosystem functioning in response to changes in pollinator communities. At the same time, ecological and evolutionary processes may counteract these effects of pollinator declines, limiting changes in plant community composition, and in ecosystem functioning. Despite calls to investigate community- and ecosystem-level impacts of reduced pollination, the study of pollinator effects on plants has largely been confined to impacts on plant individuals or single-species populations. With this review we aim to break new ground by bringing together aspects of landscape ecology, ecological and evolutionary plant-insect interactions, and biodiversity-ecosystem functioning research, to generate new ideas and hypotheses about the ecosystem-level consequences of pollinator declines in response to land-use change, using grasslands as a focal system. Based on an integrated set of seven hypotheses, we call for more research investigating the putative pollinator-mediated links between landscape-scale land use and ecosystem functioning. In particular, future research should use combinations of experimental and observational approaches to assess the effects of changes in pollinator communities over multiple years and across species on plant communities and on trait distributions both within and among species.
Collapse
Affiliation(s)
- Veronica Hederström
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Johan Ekroos
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Theresia Krausl
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Øystein H Opedal
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Anna S Persson
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Yuanyuan Quan
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Henrik G Smith
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Yann Clough
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| |
Collapse
|
15
|
Wu H, Gao T, Dini-Andreote F, Xiao N, Zhang L, Kimirei IA, Wang J. Biotic and abiotic factors interplay in structuring the dynamics of microbial co-occurrence patterns in tropical mountainsides. ENVIRONMENTAL RESEARCH 2024; 250:118517. [PMID: 38401680 DOI: 10.1016/j.envres.2024.118517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Ecological interactions are important for maintaining biodiversity and ecosystem functions. Particularly in stream biofilms, little is known about the distributional patterns of different taxonomic groups and their potential interactions along elevational gradients. Here, we investigated the bacterial and fungal community structures of stream biofilms across elevational gradients on Mount Kilimanjaro, and explored patterns of their distribution, diversity, community structures, and taxa co-occurrence. We found that fungal and bacterial richness were more convergent at higher elevations, while their community structures became significantly more divergent. Inferred network complexity and stability significantly decreased with increasing elevation for fungi, while an opposite trend was observed for bacteria. Further quantitative analyses showed that network structures of bacteria and fungi were more divergent as elevation increased. This pattern was strongly associated with shifts in abiotic factors, such as mean annual temperatures, water PO43--P, and stream width. By constructing bipartite networks, we showed the fungal-bacterial network to be less redundant, more clustering, and unstable with increasing elevation. Abiotic factors (e.g., temperatures and stream width) and microbial community properties (i.e., structure and composition) significantly explained the dynamic changes in fungal-bacterial network properties. Taken together, this study provides evidence for the interplay of biotic and abiotic factors structuring potential microbial interactions in stream biofilms along a mountainside elevational gradient.
Collapse
Affiliation(s)
- Hao Wu
- College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianheng Gao
- College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nengwen Xiao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ismael Aaron Kimirei
- Tanzania Fisheries Research Institute, Headquarter, Dar Es Salaam, P.O. Box 9750, Tanzania
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
16
|
Ye ZM, He YD, Bergamo PJ, Orr MC, Huang W, Jin XF, Lun HN, Wang QF, Yang CF. Floral resource partitioning of coexisting bumble bees: Distinguishing species-, colony-, and individual-level effects. Ecology 2024; 105:e4284. [PMID: 38494344 DOI: 10.1002/ecy.4284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 03/19/2024]
Abstract
Resource partitioning is considered a key factor in alleviating competitive interactions, enabling coexistence among consumer species. However, most studies have focused on resource partitioning between species, ignoring the potentially critical role of intraspecific variation in resource use. We investigated floral resource partitioning across species, colonies, and individuals in a species-rich bumblebee community in the diversification center of bumblebees. We used a total of 10,598 bumblebees belonging to 13 species across 5 years in the Hengduan Mountains of southwest China. First, we evaluated the influence of a comprehensive set of floral traits, including both those related to attractiveness (flower color and shape) and rewards (pollen, sugar ratio, nectar volume, sugar concentration, and amino acid content) on resource partitioning at the species level in bumblebee-plant networks. Then, we explored intraspecific resource partitioning on the colony and individual levels. Our results suggest that bumblebee species differ substantially in their use of the available floral resources, and that this mainly depends on flower attractiveness (floral color and shape). Interestingly, we also detected floral resource partitioning at the colony level within all commonest bumblebee species evaluated. In general, floral resource partitioning between bumblebee individuals decreased with species- and individual-level variation in body size (intertegular span). These results suggest that bumblebee species may coexist via the flexibility in their preferences for specific floral traits, which filters up to support the co-occurrence of high numbers of species and individuals in this global hotspot of species richness.
Collapse
Affiliation(s)
- Zhong-Ming Ye
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Yong-Deng He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pedro J Bergamo
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael C Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Wen Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Fang Jin
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Han-Ning Lun
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Feng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Chun-Feng Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
17
|
Librán-Embid F, Grass I, Emer C, Alarcón-Segura V, Behling H, Biagioni S, Ganuza C, Herrera-Krings C, Setyaningsih CA, Tscharntke T. Flower-bee versus pollen-bee metanetworks in fragmented landscapes. Proc Biol Sci 2024; 291:20232604. [PMID: 38807521 PMCID: PMC11338570 DOI: 10.1098/rspb.2023.2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Understanding the organization of mutualistic networks at multiple spatial scales is key to ensure biological conservation and functionality in human-modified ecosystems. Yet, how changing habitat and landscape features affect pollen-bee interaction networks is still poorly understood. Here, we analysed how bee-flower visitation and bee-pollen-transport interactions respond to habitat fragmentation at the local network and regional metanetwork scales, combining data from 29 fragments of calcareous grasslands, an endangered biodiversity hotspot in central Europe. We found that only 37% of the total unique pairwise species interactions occurred in both pollen-transport and flower visitation networks, whereas 28% and 35% were exclusive to pollen-transport and flower visitation networks, respectively. At local level, network specialization was higher in pollen-transport networks, and was negatively related to the diversity of land cover types in both network types. At metanetwork level, pollen transport data revealed that the proportion of single-fragment interactions increased with landscape diversity. Our results show that the specialization of calcareous grasslands' plant-pollinator networks decreases with landscape diversity, but network specialization is underestimated when only based on flower visitation information. Pollen transport data, more than flower visitation, and multi-scale analyses of metanetworks are fundamental for understanding plant-pollinator interactions in human-dominated landscapes.
Collapse
Affiliation(s)
- Felipe Librán-Embid
- Agroecology, University of Göttingen, Göttingen37077, Germany
- Justus Liebig University of Gießen, Institute of Animal Ecology and Systematics, Heinrich-Buff-Ring 26, Gießen35390, Germany
| | - Ingo Grass
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart70599, Germany
- Center for Biodiversity and Integrative Taxonomy (KomBioTa), University of Hohenheim, Stuttgart70599, Germany
| | - Carine Emer
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de JaneiroCEP22460-030, Brazil
| | - Viviana Alarcón-Segura
- Agroecology, University of Göttingen, Göttingen37077, Germany
- Animal Ecology, Department of Biology, University of Marburg, Marburg35037, Germany
| | - Hermann Behling
- Department of Palynology and Climate Dynamics, Albrecht‐von‐Haller‐Institute for Plant Sciences, University of Göttingen, Göttingen37077, Germany
| | - Siria Biagioni
- Department of Palynology and Climate Dynamics, Albrecht‐von‐Haller‐Institute for Plant Sciences, University of Göttingen, Göttingen37077, Germany
| | - Cristina Ganuza
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | | | - Christina Ani Setyaningsih
- Department of Palynology and Climate Dynamics, Albrecht‐von‐Haller‐Institute for Plant Sciences, University of Göttingen, Göttingen37077, Germany
| | - Teja Tscharntke
- Agroecology, University of Göttingen, Göttingen37077, Germany
| |
Collapse
|
18
|
Lortie CJ, Brown C, Haas-Desmarais S, Lucero J, Callaway R, Braun J, Filazzola A. Plant networks are more connected by invasive brome and native shrub facilitation in Central California drylands. Sci Rep 2024; 14:8958. [PMID: 38637667 PMCID: PMC11026385 DOI: 10.1038/s41598-024-59868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Dominant vegetation in many ecosystems is an integral component of structure and habitat. In many drylands, native shrubs function as foundation species that benefit other plants and animals. However, invasive exotic plant species can comprise a significant proportion of the vegetation. In Central California drylands, the facilitative shrub Ephedra californica and the invasive Bromus rubens are widely dispersed and common. Using comprehensive survey data structured by shrub and open gaps for the region, we compared network structure with and without this native shrub canopy and with and without the invasive brome. The presence of the invasive brome profoundly shifted the network measure of centrality in the microsites structured by a shrub canopy (centrality scores increased from 4.3 under shrubs without brome to 6.3, i.e. a relative increase of 42%). This strongly suggests that plant species such as brome can undermine the positive and stabilizing effects of native foundation plant species provided by shrubs in drylands by changing the frequency that the remaining species connect to one another. The net proportion of positive and negative associations was consistent across all microsites (approximately 50% with a total of 14% non-random co-occurrences on average) suggesting that these plant-plant networks are rewired but not more negative. Maintaining resilience in biodiversity thus needs to capitalize on protecting native shrubs whilst also controlling invasive grass species particularly when associated with shrubs.
Collapse
Affiliation(s)
- C J Lortie
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Charlotte Brown
- Département de Biologie, Université de Sherbrooke, Voie 9, Sherbrooke, Québec, J1K 2R1, Canada
| | | | - Jacob Lucero
- Texas A & M, Department of Rangeland, Wildlife and Fisheries Management, 495 Horticulture Rd #305, College Station, TX, 77843-2183, USA
| | - Ragan Callaway
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jenna Braun
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Alessandro Filazzola
- Apex Resource Management Solutions, Ottawa, ON, Canada.
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
19
|
Fu H, Cai G, Özkan K, Johansson LS, Søndergaard M, Lauridsen TL, Yuan G, Jeppesen E. Re-oligotrophication and warming stabilize phytoplankton networks. WATER RESEARCH 2024; 253:121325. [PMID: 38367379 DOI: 10.1016/j.watres.2024.121325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Phytoplankton taxa are strongly interconnected as a network, which could show temporal dynamics and non-linear responses to changes in drivers at both seasonal and long-term scale. Using a high quality dataset of 20 Danish lakes (1989-2008), we applied extended Local Similarity Analysis to construct temporal network of phytoplankton communities for each lake, obtained sub-network for each sampling month, and then measured indices of network complexity and stability for each sub-network. We assessed how lake re-oligotrophication, climate warming and grazers influenced the temporal dynamics on network complexity and stability of phytoplankton community covering three aspects: seasonal trends, long-term trends and detrended variability. We found strong seasonality for the complexity and stability of phytoplankton network, an increasing trend for the average degree, modularity, nestedness, persistence and robustness, and a decreasing trend for connectance, negative:positive interactions and vulnerability. Our study revealed a cascading effect of lake re-oligotrophication, climate warming and zooplankton grazers on phytoplankton network stability through changes in network complexity characterizing diversity, interactions and topography. Network stability of phytoplankton increased with average degree, modularity, nestedness and decreased with connectance and negative:positive interactions. Oligotrophication and warming stabilized the phytoplankton network (enhanced robustness, persistence and decreased vulnerability) by enhancing its average degree, modularity, nestedness and by reducing its connectance, while zooplankton richness promoted stability of phytoplankton network through increases in average degree and decreases in negative interactions. Our results further indicate that the stabilization effects might lead to more closed, compartmentalized and nested interconnections especially in the deeper lakes, in the warmer seasons and during bloom periods. From a temporal dynamic network view, our findings highlight stabilization of the phytoplankton community as an adaptive response to lake re-oligotrophication, climate warming and grazers.
Collapse
Affiliation(s)
- Hui Fu
- Department of Ecology, College of Environment & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China.
| | - Guojun Cai
- Department of Ecology, College of Environment & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Korhan Özkan
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey
| | - Liselotte Sander Johansson
- Department of Ecoscience and Centre for Water Technology /WATEC), Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark
| | - Martin Søndergaard
- Department of Ecoscience and Centre for Water Technology /WATEC), Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Torben L Lauridsen
- Department of Ecoscience and Centre for Water Technology /WATEC), Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Guixiang Yuan
- Department of Ecology, College of Environment & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China.
| | - Erik Jeppesen
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey; Department of Ecoscience and Centre for Water Technology /WATEC), Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
20
|
Hartig F, Abrego N, Bush A, Chase JM, Guillera-Arroita G, Leibold MA, Ovaskainen O, Pellissier L, Pichler M, Poggiato G, Pollock L, Si-Moussi S, Thuiller W, Viana DS, Warton DI, Zurell D, Yu DW. Novel community data in ecology-properties and prospects. Trends Ecol Evol 2024; 39:280-293. [PMID: 37949795 DOI: 10.1016/j.tree.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
New technologies for monitoring biodiversity such as environmental (e)DNA, passive acoustic monitoring, and optical sensors promise to generate automated spatiotemporal community observations at unprecedented scales and resolutions. Here, we introduce 'novel community data' as an umbrella term for these data. We review the emerging field around novel community data, focusing on new ecological questions that could be addressed; the analytical tools available or needed to make best use of these data; and the potential implications of these developments for policy and conservation. We conclude that novel community data offer many opportunities to advance our understanding of fundamental ecological processes, including community assembly, biotic interactions, micro- and macroevolution, and overall ecosystem functioning.
Collapse
Affiliation(s)
- Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany.
| | - Nerea Abrego
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (Survontie 9C), FI-40014 Jyväskylä, Finland
| | - Alex Bush
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | | | - Otso Ovaskainen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (Survontie 9C), FI-40014 Jyväskylä, Finland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092 Zurich, Switzerland; Unit of Land Change Science, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | | | - Giovanni Poggiato
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | - Laura Pollock
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Sara Si-Moussi
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | | | | | | | - Douglas W Yu
- Kunming Institute of Zoology; Yunnan, China; University of East Anglia, Norfolk, UK
| |
Collapse
|
21
|
He L, Sun X, Li S, Zhou W, Yu J, Zhao G, Chen Z, Bai X, Zhang J. Depth effects on bacterial community altitudinal patterns and assembly processes in the warm-temperate montane forests of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169905. [PMID: 38190904 DOI: 10.1016/j.scitotenv.2024.169905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Soil bacterial communities are essential for ecosystem function, yet their response along altitudinal gradients in different soil strata remains unclear. Understanding bacterial community co-occurrence networks and assembly patterns in mountain ecosystems is crucial for comprehending microbial ecosystem functions. We utilized Illumina MiSeq sequencing to study bacterial diversity and assembly patterns of surface and subsurface soils across a range of elevations (700 to 2100 m) on Dongling Mountain. Our results showed significant altitudinal distribution patterns concerning bacterial diversity and structure in the surface soil. The bacterial diversity exhibited a consistent decrease, while specific taxa demonstrated unique patterns along the altitudinal gradient. However, no altitudinal dependence was observed for bacterial diversity and community structure in the subsurface soil. Additionally, a shift in bacterial ecological groups is evident with changing soil depth. Copiotrophic taxa thrive in surface soils characterized by higher carbon and nutrient content, while oligotrophic taxa dominate in subsurface soils with more limited resources. Bacterial community characteristics exhibited strong correlations with soil organic carbon in both soil layers, followed by pH in the surface soil and soil moisture in the subsurface soil. With increasing depth, there is an observable increase in taxa-taxa interaction complexity and network structure within bacterial communities. The surface soil exhibits greater sensitivity to environmental perturbations, leading to increased modularity and an abundance of positive relationships in its community networks compared to the subsurface soil. Furthermore, the bacterial community at different depths was influenced by combining deterministic and stochastic processes, with stochasticity (homogenizing dispersal and undominated) decreasing and determinism (heterogeneous selection) increasing with soil depth.
Collapse
Affiliation(s)
- Libing He
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Suyan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Wenzhi Zhou
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jiantao Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guanyu Zhao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Zhe Chen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xueting Bai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jinshuo Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
22
|
Sánchez Sánchez M, Lara C. Exotic and native plants play equally important roles in supporting and structuring plant-hummingbird networks within urban green spaces. PeerJ 2024; 12:e16996. [PMID: 38406283 PMCID: PMC10893870 DOI: 10.7717/peerj.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024] Open
Abstract
Background Urban gardens, despite their transformed nature, serve as invaluable microcosms for a quantitative examination of floral resource provision to urban pollinators, considering the plant's origin. Thus, knowledge has increased, emphasizing the importance of these green areas for hosting and conserving pollinator communities. However, there is a significant knowledge gap concerning the changing availability of these native and exotic floral resources over time and their impact on structuring interaction networks with specific pollinators. Methods Over a year-long period, monthly surveys were conducted to record both native and exotic plant species visited by hummingbirds in an urban garden at Tlaxcala, Mexico. Flower visits were recorded, and the total flowers on each plant visited were tallied. Additionally, all observed hummingbirds were recorded during the transect walks, regardless of plant visits, to determine hummingbird abundance. The interactions were summarized using matrices, and network descriptors like connectance, specializacion, nestedness, and modularity were computed. Plant and hummingbird species in the core and periphery of the network were also identified. Lastly, simulations were performed to assess the network's resilience to the extinction of highly connected native and exotic plant species, including those previously situated in the network's core. Results We recorded 4,674 interactions between 28 plant species, and eight hummingbird species. The majority of plants showed an ornithophilic syndrome, with 20 species considered exotic. Despite asynchronous flowering, there was overlap observed across different plant species throughout the year. Exotic plants like Jacaranda mimosifolia and Nicotiana glauca produced more flowers annually than native species. The abundance of hummingbirds varied throughout the study, with Saucerottia berillyna being the most abundant species. The plant-hummingbird network displayed high connectance, indicating generalization in their interaction. Significant nestedness was observed, mainly influenced by exotic plant species. The core of the network was enriched with exotic plants, while Basilinna leucotis and Cynanthus latirostris played central roles among hummingbirds. Network resilience to species extinction remained generally high. Conclusions Our findings provide valuable insights into the dynamics and structure of plant-hummingbird interactions in urban gardens, emphasizing the influence of exotic plant species and the network's resilience to perturbations. Understanding and managing the impact of exotic plants on such networks is crucial for the conservation and sustainable functioning of urban ecosystems.
Collapse
Affiliation(s)
- Monserrat Sánchez Sánchez
- Universidad Autónoma de Tlaxcala, Maestría en Biotecnología y Manejo de Recursos Naturales, San Felipe Ixtacuixtla, Tlaxcala, Mexico
| | - Carlos Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, Mexico
| |
Collapse
|
23
|
Zhu L, Luan L, Chen Y, Wang X, Zhou S, Zou W, Han X, Duan Y, Zhu B, Li Y, Liu W, Zhou J, Zhang J, Jiang Y, Sun B. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. GLOBAL CHANGE BIOLOGY 2024; 30:e17160. [PMID: 38379454 DOI: 10.1111/gcb.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
Unraveling the influence of community assembly processes on soil ecosystem functioning presents a major challenge in the field of theoretical ecology, as it has received limited attention. Here, we used a series of long-term experiments spanning over 25 years to explore the assembly processes of bacterial, fungal, protist, and nematode communities using high-throughput sequencing. We characterized the soil microbial functional potential by the abundance of microbial genes associated with carbon, nitrogen, phosphorus, and sulfur cycling using GeoChip-based functional gene profiling, and determined how the assembly processes of organism groups regulate soil microbial functional potential through community diversity and network stability. Our results indicated that balanced fertilization (NPK) treatment improved the stochastic assembly of bacterial, fungal, and protist communities compared to phosphorus-deficient fertilization (NK) treatment. However, there was a nonsignificant increase in the normalized stochasticity ratio of the nematode community in response to fertilization across sites. Our findings emphasized that soil environmental factors influenced the assembly processes of the biotic community, which regulated soil microbial functional potential through dual mechanisms. One mechanism indicated that the high phosphorus levels and low soil nutrient stoichiometry may increase the stochasticity of bacterial, fungal, and protist communities and the determinism of the nematode community under NPK treatment, ultimately enhancing soil microbial functional potential by reinforcing the network stability of the biotic community. The other mechanism indicated that the low phosphorus levels and high soil nutrient stoichiometry may increase the stochastic process of the bacterial community and the determinism of the fungal, protist, and nematode communities under NK treatment, thereby enhancing soil microbial functional potential by improving the β-diversity of the biotic community. Taken together, these results provide valuable insights into the mechanisms underlying the assembly processes of the biotic community that regulate ecosystem functioning.
Collapse
Affiliation(s)
- Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiu Zou
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shengyang, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Yan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wenzhao Liu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
24
|
Cantwell-Jones A, Tylianakis JM, Larson K, Gill RJ. Using individual-based trait frequency distributions to forecast plant-pollinator network responses to environmental change. Ecol Lett 2024; 27:e14368. [PMID: 38247047 DOI: 10.1111/ele.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Determining how and why organisms interact is fundamental to understanding ecosystem responses to future environmental change. To assess the impact on plant-pollinator interactions, recent studies have examined how the effects of environmental change on individual interactions accumulate to generate species-level responses. Here, we review recent developments in using plant-pollinator networks of interacting individuals along with their functional traits, where individuals are nested within species nodes. We highlight how these individual-level, trait-based networks connect intraspecific trait variation (as frequency distributions of multiple traits) with dynamic responses within plant-pollinator communities. This approach can better explain interaction plasticity, and changes to interaction probabilities and network structure over spatiotemporal or other environmental gradients. We argue that only through appreciating such trait-based interaction plasticity can we accurately forecast the potential vulnerability of interactions to future environmental change. We follow this with general guidance on how future studies can collect and analyse high-resolution interaction and trait data, with the hope of improving predictions of future plant-pollinator network responses for targeted and effective conservation.
Collapse
Affiliation(s)
- Aoife Cantwell-Jones
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Jason M Tylianakis
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
- Bioprotection Aotearoa, School of Biological Sciences, Private Bag 4800, University of Canterbury, Christchurch, New Zealand
| | - Keith Larson
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Richard J Gill
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| |
Collapse
|
25
|
Yue Y, Yang Z, Wang F, Chen X, Huang Y, Ma J, Cai L, Yang M. Effects of Cascade Reservoirs on Spatiotemporal Dynamics of the Sedimentary Bacterial Community: Co-occurrence Patterns, Assembly Mechanisms, and Potential Functions. MICROBIAL ECOLOGY 2023; 87:18. [PMID: 38112791 DOI: 10.1007/s00248-023-02327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
Dam construction as an important anthropogenic activity significantly influences ecological processes in altered freshwater bodies. However, the effects of multiple cascade dams on microbial communities have been largely overlooked. In this study, the spatiotemporal distribution, co-occurrence relationships, assembly mechanisms, and functional profiles of sedimentary bacterial communities were systematically investigated in 12 cascade reservoirs across two typical karst basins in southwest China over four seasons. A significant spatiotemporal heterogeneity was observed in bacterial abundance and diversity. Co-occurrence patterns in the Wujiang Basin exhibited greater edge counts, graph density, average degree, robustness, and reduced modularity, suggesting more intimate and stronger ecological interactions among species than in the Pearl River Basin. Furthermore, Armatimonadota and Desulfobacterota, identified as keystone species, occupied a more prominent niche than the dominant species. A notable distance-decay relationship between geographical distance and community dissimilarities was identified in the Pearl River Basin. Importantly, in the Wujiang Basin, water temperature emerged as the primary seasonal variable steering the deterministic process of bacterial communities, whereas 58.5% of the explained community variance in the neutral community model (NCM) indicated that stochastic processes governed community assembly in the Pearl River Basin. Additionally, principal component analysis (PCA) revealed more pronounced seasonal dynamics in nitrogen functional compositions than spatial variation in the Wujiang Basin. Redundancy analysis (RDA) results indicated that in the Wujiang Basin, environmental factors and in Pearl River Basin, geographical distance, reservoir age, and hydraulic retention time (HRT), respectively, influenced the abundance of nitrogen-related genes. Notably, these findings offer novel insights: building multiple cascade reservoirs could lead to a cascading decrease in biodiversity and resilience in the river-reservoir ecosystem.
Collapse
Affiliation(s)
- Yihong Yue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihong Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Yuxin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen, China.
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| |
Collapse
|
26
|
Corso AJ, Pina-Amargós F, Rodriguez-Viera L. Cleaning symbiosis in coral reefs of Jardines de la Reina National Park. PeerJ 2023; 11:e16524. [PMID: 38077429 PMCID: PMC10710127 DOI: 10.7717/peerj.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Background Cleaning symbiotic interactions are an important component of coral reef biodiversity and the study of the characteristics of these interacting species networks allows to assess the health of communities. The coral reefs of Jardines de la Reina National Park (JRNP) are subject to a protection gradient and there is a lack of knowledge about the effect of different levels of protection on the cleaning mutualistic networks in the area. The present study aims to characterize the mutualistic cleaning networks in the reefs of JRNP and to assess the potential effect of the protection gradient on their characteristics. Methods We visited 26 reef sites distributed along the National Park and performed 96 band transects (50 m × 4 m). Low, medium and highly protected regions were compared according to the number of cleaning stations and the abundance and number of species of clients and cleaners associated with them. Additionally, we built interaction networks for the three regions and the entire archipelago based on a total of 150 minutes' video records of active cleaning stations. We assessed ecological networks characteristics (specialization, nestedness) using network topological metrics. Results We found a high diversity and complex cleaning interaction network with 6 cleaner species and 39 client species, among them, the threatened grouper Epinephelus striatus was one of the most common clients. No clear effect of the protection level on the density, abundance or diversity of cleaners and clients was detected during this study. However, we found that the network structure varied among regions, with the highly protected region being more specialized and less nested than the other regions. Our research reveals some patterns that suggest the effect of fishing pressure on cleaning symbiosis, as fishing may reduce the abundance and composition of client species, especially those that are targeted by fishers. However, fishing pressure may not be the main factor influencing cleaning symbiosis inside of the National Park, as other factors, such as habitat quality or environmental conditions may have stronger effects on the demand for cleaning services and the interactions between cleaners and clients. Our research provides insights into the factors that influence cleaning symbiosis and its implications for coral reef conservation and management.
Collapse
Affiliation(s)
- Andy Joel Corso
- Center for Marine Research, University of Havana, Havana, Cuba
| | | | - Leandro Rodriguez-Viera
- Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Puerto Real, Cádiz, Spain
| |
Collapse
|
27
|
Sun D, Herath J, Zhou S, Ellepola G, Meegaskumbura M. Associations of Batrachochytrium dendrobatidis with skin bacteria and fungi on Asian amphibian hosts. ISME COMMUNICATIONS 2023; 3:123. [PMID: 37993728 PMCID: PMC10665332 DOI: 10.1038/s43705-023-00332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Amphibian skin harbors microorganisms that are associated with the fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, one of the most significant wildlife diseases known. This pathogen originated in Asia, where diverse Bd lineages exist; hence, native amphibian hosts have co-existed with Bd over long time periods. Determining the nuances of this co-existence is crucial for understanding the prevalence and spread of Bd from a microbial context. However, associations of Bd with the natural skin microbiome remain poorly understood for Asian hosts, especially in relation to skin-associated fungi. We used 16 S rRNA and fungal internal transcribed spacer (ITS) gene sequencing to characterize the skin microbiome of four native Asian amphibian species and examined the relationships between Bd infection and their skin bacterial and fungal communities; we also analyzed the correlates of the putative anti-Bd bacteria. We show that both skin bacterial and fungal community structure and composition had significant associations with infection status (Bd presence/absence) and infection intensity (frequency of Bd sequence reads). We also found that the putative anti-Bd bacterial richness was correlated with Bd infection status and infection intensity, and observed that the relative abundance of anti-Bd bacteria roughly correspond with changes in both Bd prevalence and mean infection intensity in populations. Additionally, the microbial co-occurrence network of infected frogs was significantly different from that of uninfected frogs that were characterized by more keystone nodes (connectors) and larger proportions in correlations between bacteria, suggesting stronger inter-module bacterial interactions. These results indicate that the mutual effects between Bd and skin-associated microbiome, including the interplay between bacteria and fungi, might vary with Bd infection in susceptible amphibian species. This knowledge will help in understanding the dynamics of Bd from a microbial perspective, potentially contributing to mitigate chytridiomycosis in other regions of the world.
Collapse
Affiliation(s)
- Dan Sun
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Jayampathi Herath
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
- School of Biomedical Sciences, International Institute of Health Sciences (IIHS), No 704 Negombo Rd, Welisara, 71722, Sri Lanka
| | - Shipeng Zhou
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Gajaba Ellepola
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, KY20400, Sri Lanka
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China.
| |
Collapse
|
28
|
Pablo-Rodríguez JL, Bravo-Monzón ÁE, Montiel-González C, Benítez-Malvido J, Álvarez-Betancourt S, Ramírez-Sánchez O, Oyama K, Arena-Ortiz ML, Alvarez-Añorve MY, Avila-Cabadilla LD. Linking Anthropogenic Landscape Perturbation to Herbivory and Pathogen Leaf Damage in Tropical Tree Communities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3839. [PMID: 38005736 PMCID: PMC10675074 DOI: 10.3390/plants12223839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Anthropogenic disturbance of tropical humid forests leads to habitat loss, biodiversity decline, landscape fragmentation, altered nutrient cycling and carbon sequestration, soil erosion, pest/pathogen outbreaks, among others. Nevertheless, the impact of these alterations in multitrophic interactions, including host-pathogen and vector-pathogen dynamics, is still not well understood in wild plants. This study aimed to provide insights into the main drivers for the incidence of herbivory and plant pathogen damage, specifically, into how vegetation traits at the local and landscape scale modulate such interactions. For this purpose, in the tropical forest of Calakmul (Campeche, Mexico), we characterised the foliar damage caused by herbivores and pathogens in woody vegetation of 13 sampling sites representing a gradient of forest disturbance and fragmentation in an anthropogenic landscape from well preserved to highly disturbed and fragmented areas. We also evaluated how the incidence of such damage was modulated by the vegetation and landscape attributes. We found that the incidence of damage caused by larger, mobile, generalist herbivores, was more sensitive to changes in landscape configuration, while the incidence of damage caused by small and specialised herbivores with low dispersal capacity was more influenced by vegetation and landscape composition. In relation to pathogen symptoms, the herbivore-induced foliar damage seems to be the main factor related to their incidence, indicating the enormous importance of herbivorous insects in the modulation of disease dynamics across tropical vegetation, as they could be acting as vectors and/or facilitating the entry of pathogens by breaking the foliar tissue and the plant defensive barriers. The incidence of pathogen damage also responded to vegetation structure and landscape configuration; the incidence of anthracnose, black spot, and chlorosis, for example, were favoured in sites surrounded by smaller patches and a higher edge density, as well as those with a greater aggregation of semi-evergreen forest patches. Fungal pathogens were shown to be an important cause of foliar damage for many woody species. Our results indicate that an increasing transformation and fragmentation of the tropical forest of southern Mexico could reduce the degree of specialisation in plant-herbivore interactions and enhance the proliferation of generalist herbivores (chewers and scrapers) and of mobile leaf suckers, and consequently, the proliferation of some symptoms associated with fungal pathogens such as fungus black spots and anthracnose. The symptoms associated with viral and bacterial diseases and to nutrient deficiency, such as chlorosis, could also increase in the vegetation in fragmented landscapes with important consequences in the health and productivity of wild and cultivated plant species. This is a pioneering study evaluating the effect of disturbances on multitrophic interactions, offering key insights on the main drivers of the changes in herbivory interactions and incidence of plant pathogens in tropical forests.
Collapse
Affiliation(s)
- José Luis Pablo-Rodríguez
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
| | - Ángel E. Bravo-Monzón
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
| | - Cristina Montiel-González
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, San Francisco de Campeche 24500, Mexico;
| | - Julieta Benítez-Malvido
- Laboratorio de Ecología de Hábitats Alterados, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia 58190, Mexico;
| | - Sandra Álvarez-Betancourt
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
| | - Oriana Ramírez-Sánchez
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Mexico;
| | - María Leticia Arena-Ortiz
- Laboratorio de Ecogenómica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico, Mérida 97302, Mexico;
| | - Mariana Yólotl Alvarez-Añorve
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Luis Daniel Avila-Cabadilla
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida 97357, Mexico; (J.L.P.-R.); (Á.E.B.-M.); (S.Á.-B.); (O.R.-S.)
- Laboratorio de Ecología Funcional de Sistemas Tropicales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| |
Collapse
|
29
|
Galai G, He X, Rotblat B, Pilosof S. Ecological network analysis reveals cancer-dependent chaperone-client interaction structure and robustness. Nat Commun 2023; 14:6277. [PMID: 37805501 PMCID: PMC10560210 DOI: 10.1038/s41467-023-41906-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Abstract
Cancer cells alter the expression levels of metabolic enzymes to fuel proliferation. The mitochondrion is a central hub of metabolic reprogramming, where chaperones service hundreds of clients, forming chaperone-client interaction networks. How network structure affects its robustness to chaperone targeting is key to developing cancer-specific drug therapy. However, few studies have assessed how structure and robustness vary across different cancer tissues. Here, using ecological network analysis, we reveal a non-random, hierarchical pattern whereby the cancer type modulates the chaperones' ability to realize their potential client interactions. Despite the low similarity between the chaperone-client interaction networks, we highly accurately predict links in one cancer type based on another. Moreover, we identify groups of chaperones that interact with similar clients. Simulations of network robustness show that this group structure affects cancer-specific response to chaperone removal. Our results open the door for new hypotheses regarding the ecology and evolution of chaperone-client interaction networks and can inform cancer-specific drug development strategies.
Collapse
Affiliation(s)
- Geut Galai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Xie He
- Department of Mathematics, Dartmouth College, 27 N Main St, Hanover, NH, 03755, USA
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Beer Sheva, 8410501, Israel
| | - Shai Pilosof
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
30
|
Gómez JM, González-Megías A, Armas C, Narbona E, Navarro L, Perfectti F. The role of phenotypic plasticity in shaping ecological networks. Ecol Lett 2023; 26 Suppl 1:S47-S61. [PMID: 37840020 DOI: 10.1111/ele.14192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 10/17/2023]
Abstract
Plasticity-mediated changes in interaction dynamics and structure may scale up and affect the ecological network in which the plastic species are embedded. Despite their potential relevance for understanding the effects of plasticity on ecological communities, these effects have seldom been analysed. We argue here that, by boosting the magnitude of intra-individual phenotypic variation, plasticity may have three possible direct effects on the interactions that the plastic species maintains with other species in the community: may expand the interaction niche, may cause a shift from one interaction niche to another or may even cause the colonization of a new niche. The combined action of these three factors can scale to the community level and eventually expresses itself as a modification in the topology and functionality of the entire ecological network. We propose that this causal pathway can be more widespread than previously thought and may explain how interaction niches evolve quickly in response to rapid changes in environmental conditions. The implication of this idea is not solely eco-evolutionary but may also help to understand how ecological interactions rewire and evolve in response to global change.
Collapse
Affiliation(s)
- José M Gómez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| | - Adela González-Megías
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Zoología, Universidad de Granada, Granada, Spain
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, Vigo, Spain
| | - Francisco Perfectti
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Genética, Universidad de Granada, Granada, Spain
| |
Collapse
|
31
|
Liu X, Liu H, Zhang Y, Liu C, Liu Y, Li Z, Zhang M. Organic amendments alter microbiota assembly to stimulate soil metabolism for improving soil quality in wheat-maize rotation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117927. [PMID: 37075633 DOI: 10.1016/j.jenvman.2023.117927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Straw retention (SR) and organic fertilizer (OF) application contribute to improve soil quality, but it is unclear how the soil microbial assemblage under organic amendments mediate soil biochemical metabolism pathways to perform it. This study collected soil samples from wheat field under different application of fertilizer (chemical fertilizer, as control; SR, and OF) in North China Plain, and systematically investigated the interlinkages among microbe assemblages, metabolites, and physicochemical properties. Results showed that the soil organic carbon (SOC) and permanganate oxidizable organic carbon (LOC) in soil samples followed the trend as OF > SR > control, and the activity of C-acquiring enzymes presented significantly positive correlation with SOC and LOC. In organic amendments, bacteria and fungi community were respectively dominated by deterministic and stochastic processes, while OF exerted more selective pressure on soil microbe. Compared with SR, OF had greater potential to boost the microbial community robustness through increasing the natural connectivity and stimulating fungal taxa activities in inter-kingdom microbial networks. Altogether 67 soil metabolites were significantly affected by organic amendments, most of them belonged to benzenoids (Ben), lipids and lipid-like molecules (LL), and organic acids and derivatives (OA). These metabolites were mainly derived from lipid and amino acid metabolism pathways. A list of keystone genera such as stachybotrys and phytohabitans were identified as important to soil metabolites, SOC, and C-acquiring enzyme activity. Structural equation modeling showed that soil quality properties were closely associated with LL, OA, and PP drove by microbial community assembly and keystone genera. Overall, these findings suggested that straw and organic fertilizer might drive keystone genera dominated by determinism to mediate soil lipid and amino acid metabolism for improving soil quality, which provided new insights into understanding the microbial-mediated biological process in amending soil quality.
Collapse
Affiliation(s)
- Xueqing Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongrun Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Churong Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yanan Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
32
|
Gao H, Chen J, Wang C, Wang P, Wang R, Hu Y, Pan Y. Diversity and interaction of bacterial and microeukaryotic communities in sediments planted with different submerged macrophytes: Responses to decabromodiphenyl ether. CHEMOSPHERE 2023; 322:138186. [PMID: 36806803 DOI: 10.1016/j.chemosphere.2023.138186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Although various persistent organic pollutants (POPs) can affect microbial communities and functions in aquatic ecosystems, little is known about how bacteria and microeukaryotes respond to the POPs in sediments planted with different submerged macrophytes. Here, a 60-day microcosm experiment was carried out to investigate the changes in the diversity and interaction of bacterial and microeukaryotic communities in sediments collected from Taihu lake, either with decabromodiphenyl ether (BDE-209) own or combined with two common submerged macrophyte species (Vallisneria natans and Hydrilla verticillate). The results showed that BDE-209 significantly decreased the bacterial α-diversity but increased the microeukaryotic one. In sediments planted with submerged macrophytes, the negative effect of BDE-209 on bacterial diversity was weakened, and its positive effect on microeukaryotic one was strengthened. Co-occurrence network analysis revealed that the negative relationship was dominant in bacterial and microeukaryotic communities, while the cooperative relationship between microbial species was increased in planted sediments. Among nine keystone species, one belonging to bacterial family Thermoanaerobaculaceae was enriched by BDE-209, and others were inhibited. Notably, such inhibition was weakened, and the stimulation was enhanced in planted sediments. Together, these observations indicate that the responses of bacteria and microeukaryotes to BDE-209 are different, and their communities under BDE-209 contamination are more stable in sediments planted with submerged macrophytes. Moreover, the effects of plant species on the microbial responses to BDE-209 need to be explored by more specific field studies in the future.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Shenzhen, 518000, China
| |
Collapse
|
33
|
Dáttilo W, Luna P, Villegas-Patraca R. Invasive Plant Species Driving the Biotic Homogenization of Plant-Frugivore Interactions in the Atlantic Forest Biodiversity Hotspot. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091845. [PMID: 37176902 PMCID: PMC10181201 DOI: 10.3390/plants12091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Although biological invasions are a common and intensively studied phenomenon, most studies often ignore the biotic interactions that invasive species play in the environment. Here, we evaluated how and why invasive plant species are interconnected within the overall frugivory network of the Brazilian Atlantic Forest, an important global biodiversity hotspot. To do this, we used the recently published Atlantic Frugivory Dataset to build a meta-network (i.e., a general network made of several local networks) that included interactions between 703 native and invasive plant species and 331 frugivore species. Using tools derived from complex network theory and a bootstrap simulation approach, we found that the general structure of the Atlantic Forest frugivory network (i.e., nestedness and modularity) is robust against the entry of invasive plant species. However, we observed that invasive plant species are highly integrated within the frugivory networks, since both native and invasive plant species play similar structural roles (i.e., plant status is not strong enough to explain the interactive roles of plant species). Moreover, we found that plants with smaller fruits and with greater lipid content play a greater interactive role, regardless of their native or invasive status. Our findings highlight the biotic homogenization involving plant-frugivore interactions in the Atlantic Forest and that the impacts and consequences of invasive plant species on native fauna can be anticipated based on the characteristics of their fruits.
Collapse
Affiliation(s)
- Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Pedro Luna
- Unidad de Servicios Profesionales Altamente Especializados, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Rafael Villegas-Patraca
- Unidad de Servicios Profesionales Altamente Especializados, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| |
Collapse
|
34
|
Dallas TA, Elderd BD. Mean–variance scaling and stability in commercial sex work networks. SOCIAL NETWORK ANALYSIS AND MINING 2023. [DOI: 10.1007/s13278-023-01071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
35
|
Alvarez-Baca JK, Montealegre X, Alfaro-Tapia A, Zepeda-Paulo F, Van Baaren J, Lavandero B, Le Lann C. Composition and Food Web Structure of Aphid-Parasitoid Populations on Plum Orchards in Chile. INSECTS 2023; 14:288. [PMID: 36975973 PMCID: PMC10051262 DOI: 10.3390/insects14030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
By increasing plant diversity in agroecosystems, it has been proposed that one can enhance and stabilize ecosystem functioning by increasing natural enemies' diversity. Food web structure determines ecosystem functioning as species at different trophic levels are linked in interacting networks. We compared the food web structure and composition of the aphid- parasitoid and aphid-hyperparasitoid networks in two differentially managed plum orchards: plums with inter-rows of oats as a cover crop (OCC) and plums with inter-rows of spontaneous vegetation (SV). We hypothesized that food web composition and structure vary between OCC and SV, with network specialization being higher in OCC and a more complex food web composition in SV treatment. We found a more complex food web composition with a higher species richness in SV compared to OCC. Quantitative food web metrics differed significantly among treatments showing a higher generality, vulnerability, interaction evenness, and linkage density in SV, while OCC presented a higher degree of specialization. Our results suggest that plant diversification can greatly influence the food web structure and composition, with bottom-up effects induced by plant and aphid hosts that might benefit parasitoids and provide a better understanding of the activity, abundance, and interactions between aphids, parasitoids, and hyperparasitoids in plum orchards.
Collapse
Affiliation(s)
- Jeniffer K. Alvarez-Baca
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
- ECOBIO (Écosystèmes, Biodiversité, Évolution)-UMR 6553, Université de Rennes 1, CNRS, 6553 Rennes, France
| | - Xiomara Montealegre
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
| | - Armando Alfaro-Tapia
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
- ECOBIO (Écosystèmes, Biodiversité, Évolution)-UMR 6553, Université de Rennes 1, CNRS, 6553 Rennes, France
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, Centro Ceres, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Francisca Zepeda-Paulo
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
- Instituto Interdisciplinario para la Innovación -I3-, Universidad de Talca, Talca 3460000, Chile
| | - Joan Van Baaren
- ECOBIO (Écosystèmes, Biodiversité, Évolution)-UMR 6553, Université de Rennes 1, CNRS, 6553 Rennes, France
| | - Blas Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
| | - Cécile Le Lann
- ECOBIO (Écosystèmes, Biodiversité, Évolution)-UMR 6553, Université de Rennes 1, CNRS, 6553 Rennes, France
| |
Collapse
|
36
|
Novak M. High variation in handling times confers 35-year stability to predator feeding rates despite community change. Ecology 2023; 104:e3954. [PMID: 36495236 DOI: 10.1002/ecy.3954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/15/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Historical resurveys of ecological communities are important for placing the structure of modern ecosystems in context. Rarely, however, are snapshot surveys alone sufficient for providing direct insight into the rates of the ecological processes underlying community functioning, either now or in the past. In this study, I used a statistically reasoned observational approach to estimate the feeding rates of a New Zealand intertidal predator, Haustrum haustorium, using diet surveys performed at several sites by Robert Paine in 1968-1969 and by me in 2004. Comparisons between time periods reveal a remarkable consistency in the predator's prey-specific feeding rates, which contrasts with the changes I observed in prey abundances, the predator's body-size distribution, and the prey's proportional contributions to the predator's apparent diet. Although these and additional changes in the predator's per-capita attack rates seem to show adaptive changes in its prey preferences, they do not. Rather, feeding-rate stability is an inherently statistical consequence of the predator's high among-prey variation in handling times which determine the length of time that feeding events will remain detectable to observers performing diet surveys. Though understudied, similarly high among-prey variation in handling (or digestion) times is evident in many predator species throughout the animal kingdom. The resultant disconnect between a predator's apparent diet and its actual feeding rates suggests that much of the temporal, biogeographic, and seemingly context-dependent variation that is often perceived in community structure, predator diets, and food-web topology may be of less functional consequence than assumed. Qualitative changes in ecological pattern need not represent qualitative changes in ecological process.
Collapse
Affiliation(s)
- Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
37
|
Rodríguez‐Hernández K, Álvarez‐Mendizábal P, Chapa‐Vargas L, Escobar F, Dáttilo W, Santiago‐Alarcon D. Infection intensity shapes specialization and beta diversity of haemosporidian–bird networks across elevations. Ecosphere 2023. [DOI: 10.1002/ecs2.4481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
38
|
Sánchez‐Martín R, Verdú M, Montesinos‐Navarro A. Phylogenetic and functional constraints of plant facilitation rewiring. Ecology 2023; 104:e3961. [PMID: 36545892 PMCID: PMC10078402 DOI: 10.1002/ecy.3961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/30/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Facilitative interactions bind community species in intricate ecological networks, preserving species that would otherwise be lost. The traditional understanding of ecological networks as static components of biological communities overlooks the fact that species interactions in a network can fluctuate. Analyzing the patterns that cause those shifts can reveal the principles that govern the identity of pairwise interactions and whether they are predictable based on the traits of the interacting species and the local environmental contexts in which they occur. Here we explore how abiotic stress and phylogenetic and functional affinities constrain those shifts. Specifically, we hypothesize that rewiring the facilitative interactions is more limited in stressful than in mild environments. We present evidence of a distinct pattern in the rewiring of facilitation-driven communities at different stress levels. In highly stressful environments with a firm reliance on facilitation, rewiring is limited to growing beneath nurse species with traits to overcome harsh stressful conditions. However, when environments are milder, rewiring is more flexible, although it is still constrained to nurses that are close relatives. Understanding the ability of species to rewire their interactions is crucial for predicting how communities may respond to the unprecedented rate of perturbations on Earth.
Collapse
Affiliation(s)
| | - Miguel Verdú
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC‐UV‐GV)MoncadaSpain
| | | |
Collapse
|
39
|
Deus JPA, Noga A, Brozoski F, Dias AMP, Buschini MLT. Trap-nesting biology of an ectoparasitoid spider wasp, Auplopus subaurarius (Hymenoptera: Pompilidae): the importance of wooded environments for niche generalist species. BRAZ J BIOL 2023; 83:e269165. [PMID: 37075424 DOI: 10.1590/1519-6984.269165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/06/2023] [Indexed: 04/21/2023] Open
Abstract
The insect group is one of the most diverse on the planet and due to habitat degradation, many of these species are becoming extinct, leaving a lack of information on the basic biology of each one. In this study, previously unseen information about nesting biology is revealed in Auplopus subaurarius trap nests. This is a solitary ectoparasitoid spider wasp that nests in preexisting cavities. We used a trap-nesting methodology to sample A. subaurarius in two different sampling periods (2017/2018 and 2020/2021) in three types of environment (forest, grassland and Eucalyptus plantation). In our study, the A. subaurarius nest building was more frequent during the hottest months of the year (November to March), with its highest abundance found within natural forest areas and in Eucalyptus plantation than in grassland areas. In addition, the species had two development times: a short one (three months) and a delayed one (up to one year). Moreover, females were larger than males (weight and size) and the species' sex ratio had a tendency toward female production. Auplopus subaurarius presented seven natural enemy species: Ceyxia longispina, Caenochrysis crotonis, Photochryptus sp.1, Photochryptus sp.2, Messatoporus sp., Ephuta icema and Sphaeropthalma sp. We emphasize the importance of wooded environments to maintain the A. subaurarius populations and their associated interactors, both spiders and natural enemies, as these environments can provide better life conditions than grassland areas. Furthermore, other solitary wasps that may have the same lifestyle of A. subaurarius can also be improved by natural forest conservation and by good silviculture plantation planning, which should consider ecological aspects of Atlantic Forest landscapes.
Collapse
Affiliation(s)
- J P A Deus
- Universidade Estadual Paulista "Julio de Mesquita Filho" - UNESP, Departamento de Biodiversidade, Instituto de Biociências, Laboratório de Ecologia Espacial e Conservação - LEEC, Rio Claro, SP, Brasil
| | - A Noga
- Universidade Estadual do Centro-Oeste - UNICENTRO, Departamento de Biologia - DEBIO, Laboratório de Ecologia e Biologia de Vespas e Abelhas - LABEVESP, Guarapuava, PR, Brasil
| | - F Brozoski
- Universidade Estadual do Centro-Oeste - UNICENTRO, Departamento de Biologia - DEBIO, Laboratório de Ecologia e Biologia de Vespas e Abelhas - LABEVESP, Guarapuava, PR, Brasil
| | - A M P Dias
- Universidade Federal de São Carlos - UFSCar, Departamento de Ecologia e Biologia Evolutiva, São Carlos, SP, Brasil
| | - M L T Buschini
- Universidade Estadual do Centro-Oeste - UNICENTRO, Departamento de Biologia - DEBIO, Laboratório de Ecologia e Biologia de Vespas e Abelhas - LABEVESP, Guarapuava, PR, Brasil
| |
Collapse
|
40
|
Wang R, Cui L, Li J, Li W. Factors driving the halophyte rhizosphere bacterial communities in coastal salt marshes. Front Microbiol 2023; 14:1127958. [PMID: 36910212 PMCID: PMC9992437 DOI: 10.3389/fmicb.2023.1127958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Root-associated microorganisms promote plant growth and provide protection from stresses. Halophytes are the fundamental components maintaining ecosystem functions of coastal salt marshes; however, it is not clear how their microbiome are structured across large spatial scales. Here, we investigated the rhizosphere bacterial communities of typical coastal halophyte species (Phragmites australis and Suaeda salsa) in temperate and subtropical salt marshes across 1,100 km in eastern China. Methods The sampling sites were located from 30.33 to 40.90°N and 119.24 to 121.79°E across east China. A total of 36 plots were investigated in the Liaohe River Estuary, the Yellow River Estuary, Yancheng, and Hangzhou Bay in August 2020. We collected shoot, root, and rhizosphere soil samples. the number of pakchoi leaves, total fresh and dry weight of the seedlings was counted. The soil properties, plant functional traits, the genome sequencing, and metabolomics assay were detected. Results The results showed that soil nutrients (total organic carbon, dissolved organic carbon, total nitrogen, soluble sugars, and organic acids) are high in the temperate marsh, while root exudates (measured by metabolite expressions) are significantly higher in the subtropical marsh. We observed higher bacterial alpha diversity, more complex network structure, and more negative connections in the temperate salt marsh, which suggested intense competition among bacterial groups. Variation partitioning analysis showed that climatic, edaphic, and root exudates had the greatest effects on the bacteria in the salt marsh, especially for abundant and moderate subcommunities. Random forest modeling further confirmed this but showed that plant species had a limited effect. Conclutions Taken together, the results of this study revealed soil properties (chemical properties) and root exudates (metabolites) had the greatest influence on the bacterial community of salt marsh, especially for abundant and moderate taxa. Our results provided novel insights into the biogeography of halophyte microbiome in coastal wetlands and can be beneficial for policymakers in decision-making on the management of coastal wetlands.
Collapse
Affiliation(s)
- Rumiao Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| | - Lijuan Cui
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| | - Jing Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| | - Wei Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| |
Collapse
|
41
|
Chen AL, Xu FQ, Su X, Zhang FP, Tian WC, Chen SJ, Gou F, Xing ZL, Xiang JX, Li J, Zhao TT. Water microecology is affected by seasons but not sediments: A spatiotemporal dynamics survey of bacterial community composition in Lake Changshou-The largest artificial lake in southwest China. MARINE POLLUTION BULLETIN 2023; 186:114459. [PMID: 36529016 DOI: 10.1016/j.marpolbul.2022.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to evaluate the correlation between microecology of sediments and water as well as their spatial-temporal variations in Changshou Lake. The results demonstrated that microecology in the lake exhibits spatiotemporal heterogeneity, and microbial diversity of sediments was significantly higher than that of water body. Further, it was found that there was statistically insignificant positive correlation between microecology of sediments and that of water body. PCoA and community structure analysis revealed that the predominant phyla which exhibited significant spatial differences in sediments were Proteobacteria, Actinobacteria and Planctomycetes. While, the distribution of dominant bacteria Actinobacteria and Verrucomicrobia in water body showed significant seasonal differences. Microbial networks analysis indicated that there was a cooperative symbiotic relationship between lake microbial communities. Notably, the same bacterial genus had no significant positive correlation in sediment and water, which suggested that bacteria transport between sediment-water interface does not influence the microecological functions of lake water.
Collapse
Affiliation(s)
- Ai-Ling Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fu-Qing Xu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xia Su
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fu-Pan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Wan-Chao Tian
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shang-Jie Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fang Gou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhi-Lin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Jin-Xin Xiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Juan Li
- Chongqing Academy of Chinese Materia medica, Chongqing 400060, China
| | - Tian-Tao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
42
|
Shen Y, Holyoak M, Goodale E, Mammides C, Zou F, Chen Y, Zhang C, Quan Q, Zhang Q. Mixed-species bird flocks re-assemble interspecific associations across an elevational gradient. Proc Biol Sci 2022; 289:20221840. [PMID: 36541168 PMCID: PMC9768660 DOI: 10.1098/rspb.2022.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding how non-trophic social systems respond to environmental gradients is still a challenge in animal ecology, particularly in comparing changes in species composition to changes in interspecific interactions. Here, we combined long-term monitoring of mixed-species bird flocks, data on participating species' evolutionary history and traits, to test how elevation affected community assemblages and interspecific interactions in flock social networks. Elevation primarily affected flocks through reassembling interspecific associations rather than modifying community assemblages. Specifically, flock networks at higher elevations (compared to low elevations) had stronger interspecific associations (larger average weighted degree), network connectivity (enhanced network density) and fewer subnetworks. A phylogenetic and functional perspective revealed that associations between similar species weakened, whereas connections between dissimilar and/or random species were unchanged or strengthened with elevation. Likewise, network assortativity for the traits of vertical stratum and breeding period declined with elevation. The overall pattern is a change from modular networks in the lowlands, where species join flocks with other species that have matching traits, to a more open, random system at high elevations. Collectively, this rewiring of interspecific networks across elevational gradients imparts network stability and resiliency and makes mixed-species flocks less sensitive to local extinctions caused by harsh environments.
Collapse
Affiliation(s)
- Yong Shen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, People's Republic of China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, People's Republic of China
| | - Christos Mammides
- Nature Conservation Unit, Frederick University, Nicosia 1036, Cyprus
| | - Fasheng Zou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, People's Republic of China
| | - Yuxin Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Chaoming Zhang
- Guangdong Nanling National Nature Reserve, Shaoguan 512727, People's Republic of China
| | - Qing Quan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, People's Republic of China
| | - Qiang Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, People's Republic of China
| |
Collapse
|
43
|
Scale of effect matters: Forest cover influences on tropical ant-plant ecological networks. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Martins LP, Stouffer DB, Blendinger PG, Böhning-Gaese K, Buitrón-Jurado G, Correia M, Costa JM, Dehling DM, Donatti CI, Emer C, Galetti M, Heleno R, Jordano P, Menezes Í, Morante-Filho JC, Muñoz MC, Neuschulz EL, Pizo MA, Quitián M, Ruggera RA, Saavedra F, Santillán V, Sanz D'Angelo V, Schleuning M, da Silva LP, Ribeiro da Silva F, Timóteo S, Traveset A, Vollstädt MGR, Tylianakis JM. Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions. Nat Commun 2022; 13:6943. [PMID: 36376314 PMCID: PMC9663448 DOI: 10.1038/s41467-022-34355-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Species interactions can propagate disturbances across space via direct and indirect effects, potentially connecting species at a global scale. However, ecological and biogeographic boundaries may mitigate this spread by demarcating the limits of ecological networks. We tested whether large-scale ecological boundaries (ecoregions and biomes) and human disturbance gradients increase dissimilarity among plant-frugivore networks, while accounting for background spatial and elevational gradients and differences in network sampling. We assessed network dissimilarity patterns over a broad spatial scale, using 196 quantitative avian frugivory networks (encompassing 1496 plant and 1004 bird species) distributed across 67 ecoregions, 11 biomes, and 6 continents. We show that dissimilarities in species and interaction composition, but not network structure, are greater across ecoregion and biome boundaries and along different levels of human disturbance. Our findings indicate that biogeographic boundaries delineate the world's biodiversity of interactions and likely contribute to mitigating the propagation of disturbances at large spatial scales.
Collapse
Affiliation(s)
- Lucas P Martins
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch, 8140, Aotearoa New Zealand.
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch, 8140, Aotearoa New Zealand
| | - Pedro G Blendinger
- Instituto de Ecología Regional, Universidad Nacional de Tucumán and CONICET; CC 34, 4107, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 2005, 4000, Tucumán, Argentina
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, 60439, Germany
| | - Galo Buitrón-Jurado
- Laboratorio de Biología de Organismos, Centro de Ecología, Instituto Venezolano de Investigaciones Científicas (IVIC), Carretera Panamericana, km 11, Altos de Pipe, Edo, Miranda, Venezuela
- Universidad Estatal Amazónica-Sede Zamora Chinchipe; Calle Luis Imaicela entre Azuay y Rene Ulloa, El Pangui, Zamora Chinchipe, Ecuador
| | - Marta Correia
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - José Miguel Costa
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - D Matthias Dehling
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Camila I Donatti
- Conservation International, 2011 Crystal Dr. Suite 600, Arlington, VA, 22202, USA
- Department of Biological Sciences, Northern Arizona University, 617S. Beaver St., Flagstaff, AZ, 86011-5640, USA
| | - Carine Emer
- Rio de Janeiro Botanical Garden Research Institute, Rua Pacheco Leão 915, Jardim Botânico, Rio de Janeiro, RJ, CEP 22460-030, Brazil
- Department of Biodiversity, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mauro Galetti
- Department of Biodiversity, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Ruben Heleno
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Pedro Jordano
- Estación Biológica de Doñana, CSIC, av. Americo Vespucio 26, 41092, Sevilla, Spain
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Ícaro Menezes
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, Bahia, 45662-000, Brazil
| | - José Carlos Morante-Filho
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, Bahia, 45662-000, Brazil
| | - Marcia C Muñoz
- Programa de Biología, Universidad de La Salle, Carrera 2 # 10-70, Bogotá, Colombia
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Marco Aurélio Pizo
- Department of Biodiversity, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Marta Quitián
- Systematic Zoology Laboratory, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, Mallorca, Balearic Islands, 07190, Esporles, Spain
| | - Roman A Ruggera
- Instituto de Ecorregiones Andinas (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy), Canónigo Gorriti 237, Y4600 San Salvador de Jujuy, Jujuy, Argentina
| | - Francisco Saavedra
- Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Vinicio Santillán
- Centro de Investigación, Innovación y Transferencia de Tecnología (CIITT), Unidad Académica de Posgrado, Universidad Católica de Cuenca, Av. de las Américas, Cuenca, Ecuador
| | - Virginia Sanz D'Angelo
- Laboratorio de Biología de Organismos, Centro de Ecología, Instituto Venezolano de Investigaciones Científicas (IVIC), Carretera Panamericana, km 11, Altos de Pipe, Edo, Miranda, Venezuela
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Luís Pascoal da Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Fernanda Ribeiro da Silva
- Laboratory of Human Ecology and Ethnobotany, Department of Ecology and Zoology, Federal University of Santa Catarina, UFSC, Campus Trindade, s/n, Florianópolis, SC, 88010-970, Brazil
| | - Sérgio Timóteo
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Anna Traveset
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, Mallorca, Balearic Islands, 07190, Esporles, Spain
| | - Maximilian G R Vollstädt
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Oester Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Jason M Tylianakis
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch, 8140, Aotearoa New Zealand.
| |
Collapse
|
45
|
Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M, Boggs C, Brodeur J, Cardoso P, de Boer JG, De Snoo GR, Deacon C, Dell JE, Desneux N, Dillon ME, Duffy GA, Dyer LA, Ellers J, Espíndola A, Fordyce J, Forister ML, Fukushima C, Gage MJG, García‐Robledo C, Gely C, Gobbi M, Hallmann C, Hance T, Harte J, Hochkirch A, Hof C, Hoffmann AA, Kingsolver JG, Lamarre GPA, Laurance WF, Lavandero B, Leather SR, Lehmann P, Le Lann C, López‐Uribe MM, Ma C, Ma G, Moiroux J, Monticelli L, Nice C, Ode PJ, Pincebourde S, Ripple WJ, Rowe M, Samways MJ, Sentis A, Shah AA, Stork N, Terblanche JS, Thakur MP, Thomas MB, Tylianakis JM, Van Baaren J, Van de Pol M, Van der Putten WH, Van Dyck H, Verberk WCEP, Wagner DL, Weisser WW, Wetzel WC, Woods HA, Wyckhuys KAG, Chown SL. Scientists' warning on climate change and insects. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Harvey
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Kévin Tougeron
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
- EDYSAN, UMR 7058, Université de Picardie Jules Verne, CNRS Amiens France
| | - Rieta Gols
- Laboratory of Entomology Wageningen University Wageningen The Netherlands
| | - Robin Heinen
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Mariana Abarca
- Department of Biological Sciences Smith College Northampton Massachusetts USA
| | - Paul K. Abram
- Agriculture and Agri‐Food Canada, Agassiz Research and Development Centre Agassiz British Columbia Canada
| | - Yves Basset
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - Matty Berg
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Groningen Institute of Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Carol Boggs
- School of the Earth, Ocean and Environment and Department of Biological Sciences University of South Carolina Columbia South Carolina USA
- Rocky Mountain Biological Laboratory Gothic Colorado USA
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal Québec Canada
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | - Jetske G. de Boer
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Geert R. De Snoo
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Jane E. Dell
- Geosciences and Natural Resources Department Western Carolina University Cullowhee North Carolina USA
| | | | - Michael E. Dillon
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| | - Grant A. Duffy
- School of Biological Sciences Monash University Melbourne Victoria Australia
- Department of Marine Science University of Otago Dunedin New Zealand
| | - Lee A. Dyer
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Jacintha Ellers
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Anahí Espíndola
- Department of Entomology University of Maryland College Park Maryland USA
| | - James Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee, Knoxville Knoxville Tennessee USA
| | - Matthew L. Forister
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Caroline Fukushima
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | | | | | - Claire Gely
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Mauro Gobbi
- MUSE‐Science Museum, Research and Museum Collections Office Climate and Ecology Unit Trento Italy
| | - Caspar Hallmann
- Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Thierry Hance
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - John Harte
- Energy and Resources Group University of California Berkeley California USA
| | - Axel Hochkirch
- Department of Biogeography Trier University Trier Germany
- IUCN SSC Invertebrate Conservation Committee
| | - Christian Hof
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciences University of Melbourne Melbourne Victoria Australia
| | - Joel G. Kingsolver
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| | - Greg P. A. Lamarre
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - William F. Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Blas Lavandero
- Laboratorio de Control Biológico Universidad de Talca Talca Chile
| | - Simon R. Leather
- Center for Integrated Pest Management Harper Adams University Newport UK
| | - Philipp Lehmann
- Department of Zoology Stockholm University Stockholm Sweden
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| | - Cécile Le Lann
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | | | | | - Chris Nice
- Department of Biology Texas State University San Marcos Texas USA
| | - Paul J. Ode
- Department of Agricultural Biology Colorado State University Fort Collins Colorado USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS Université de Tours Tours France
| | - William J. Ripple
- Department of Forest Ecosystems and Society Oregon State University Oregon USA
| | - Melissah Rowe
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
| | - Michael J. Samways
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Arnaud Sentis
- INRAE, Aix‐Marseille University, UMR RECOVER Aix‐en‐Provence France
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University East Lansing Michigan USA
| | - Nigel Stork
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Nathan Queensland Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Madhav P. Thakur
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Matthew B. Thomas
- York Environmental Sustainability Institute and Department of Biology University of York York UK
| | - Jason M. Tylianakis
- Bioprotection Aotearoa, School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Joan Van Baaren
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | - Martijn Van de Pol
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Hans Van Dyck
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - David L. Wagner
- Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Wolfgang W. Weisser
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - William C. Wetzel
- Department of Entomology, Department of Integrative Biology, and Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Kris A. G. Wyckhuys
- Chrysalis Consulting Hanoi Vietnam
- China Academy of Agricultural Sciences Beijing China
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
46
|
Mestre F, Rozenfeld A, Araújo MB. Human disturbances affect the topology of food webs. Ecol Lett 2022; 25:2476-2488. [PMID: 36167463 PMCID: PMC9828725 DOI: 10.1111/ele.14107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 01/12/2023]
Abstract
Networks describe nodes connected by links, with numbers of links per node, the degree, forming a range of distributions including random and scale-free. How network topologies emerge in natural systems still puzzles scientists. Based on previous theoretical simulations, we predict that scale-free food webs are favourably selected by random disturbances while random food webs are selected by targeted disturbances. We assume that lower human pressures are more likely associated with random disturbances, whereas higher pressures are associated with targeted ones. We examine these predictions using 351 empirical food webs, generally confirming our predictions. Should the topology of food webs respond to changes in the magnitude of disturbances in a predictable fashion, consistently across ecosystems and scales of organisation, it would provide a baseline expectation to understand and predict the consequences of human pressures on ecosystem dynamics.
Collapse
Affiliation(s)
- Frederico Mestre
- ‘Rui Nabeiro’ Biodiversity Chair, MED – Mediterranean Institute for Agriculture, Environment and Development & CHANGE – Global Change and Sustainability Institute, Institute for Advanced Studies and ResearchUniversidade de ÉvoraÉvoraPortugal
| | - Alejandro Rozenfeld
- ‘Rui Nabeiro’ Biodiversity Chair, MED – Mediterranean Institute for Agriculture, Environment and Development & CHANGE – Global Change and Sustainability Institute, Institute for Advanced Studies and ResearchUniversidade de ÉvoraÉvoraPortugal,Centro de Investigaciones en Física e Ingeniería del CentroUniversidad Nacional del Centro de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasTandilBuenos AiresArgentina,CONICET‐CIFICEN‐Universidad del Centro de la Provincia de Buenos AiresTandilBuenos AiresArgentina
| | - Miguel B. Araújo
- ‘Rui Nabeiro’ Biodiversity Chair, MED – Mediterranean Institute for Agriculture, Environment and Development & CHANGE – Global Change and Sustainability Institute, Institute for Advanced Studies and ResearchUniversidade de ÉvoraÉvoraPortugal,Department of Biogeography and Global Change, National Museum of Natural SciencesCSICMadridSpain
| |
Collapse
|
47
|
Ho HC, Brodersen J, Gossner MM, Graham CH, Kaeser S, Reji Chacko M, Seehausen O, Zimmermann NE, Pellissier L, Altermatt F. Blue and green food webs respond differently to elevation and land use. Nat Commun 2022; 13:6415. [PMID: 36302854 PMCID: PMC9613893 DOI: 10.1038/s41467-022-34132-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
While aquatic (blue) and terrestrial (green) food webs are parts of the same landscape, it remains unclear whether they respond similarly to shared environmental gradients. We use empirical community data from hundreds of sites across Switzerland and a synthesis of interaction information in the form of a metaweb to show that inferred blue and green food webs have different structural and ecological properties along elevation and among various land-use types. Specifically, in green food webs, their modular structure increases with elevation and the overlap of consumers' diet niche decreases, while the opposite pattern is observed in blue food webs. Such differences between blue and green food webs are particularly pronounced in farmland-dominated habitats, indicating that anthropogenic habitat modification modulates the climatic effects on food webs but differently in blue versus green systems. These findings indicate general structural differences between blue and green food webs and suggest their potential divergent future alterations through land-use or climatic changes.
Collapse
Affiliation(s)
- Hsi-Cheng Ho
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.
| | - Jakob Brodersen
- Department Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Martin M Gossner
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Catherine H Graham
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Silvana Kaeser
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Merin Reji Chacko
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Ole Seehausen
- Department Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
- Division Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland
| | - Niklaus E Zimmermann
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Loïc Pellissier
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
48
|
Composition and structure of winter aphid–parasitoid food webs along a latitudinal gradient in Chile. Oecologia 2022; 200:425-440. [DOI: 10.1007/s00442-022-05270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2022] [Indexed: 10/31/2022]
|
49
|
Gaiarsa MP, Bascompte J. Hidden effects of habitat restoration on the persistence of pollination networks. Ecol Lett 2022; 25:2132-2141. [PMID: 36006740 PMCID: PMC9804604 DOI: 10.1111/ele.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/23/2022] [Indexed: 01/05/2023]
Abstract
Past and recent studies have focused on the effects of global change drivers such as species invasions on species extinction. However, as we enter the United Nations Decade of Ecosystem Restoration the aim must switch to understanding how invasive-species management affects the persistence of the remaining species in a community. Focusing on plant-pollinator interactions, we test how species persistence is affected by restoration via the removal of invasive plant species. Restoration had a clear positive effect on plant persistence, whereas there was no difference between across treatments for pollinator persistence in the early season, but a clear effect in late season, with higher persistence in unrestored sites. Network structure affected only pollinator persistence, while centrality had a strong positive effect on both plants and pollinators. Our results suggest a hidden effect of invasive plants-although they may compete with native plant species, invasive plants may provide important resources for pollinators, at least in the short term.
Collapse
Affiliation(s)
- Marilia P. Gaiarsa
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- School of Natural SciencesUniversity of California, MercedMercedCaliforniaUSA
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
50
|
Gómez‐Martínez C, González‐Estévez MA, Cursach J, Lázaro A. Pollinator richness, pollination networks, and diet adjustment along local and landscape gradients of resource diversity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2634. [PMID: 35403772 PMCID: PMC9539497 DOI: 10.1002/eap.2634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Loss of habitats and native species, introduction of invasive species, and changing climate regimes lead to the homogenization of landscapes and communities, affecting the availability of habitats and resources for economically important guilds, such as pollinators. Understanding how pollinators and their interactions vary along resource diversity gradients at different scales may help to determine their adaptability to the current diversity loss related to global change. We used data on 20 plant-pollinator communities along gradients of flower richness (local diversity) and landscape heterogeneity (landscape diversity) to understand how the diversity of resources at local and landscape scales affected (1) wild pollinator abundance and richness (accounting also for honey bee abundance), (2) the structure of plant-pollinator networks, (3) the proportion of actively selected interactions (those not occurring by neutral processes), and (4) pollinator diet breadth and species' specialization in networks. Wild pollinator abundance was higher overall in flower-rich and heterogeneous habitats, while wild pollinator richness increased with flower richness (more strongly for beetles and wild bees) and decreased with honeybee abundance. Network specialization (H2 '), modularity, and functional complementarity were all positively related to floral richness and landscape heterogeneity, indicating niche segregation as the diversity of resources increases at both scales. Flower richness also increased the proportion of actively selected interactions (especially for wild bees and flies), whereas landscape heterogeneity had a weak negative effect on this variable. Overall, network-level metrics responded to larger landscape scales than pollinator-level metrics did. Higher floral richness resulted in a wider taxonomic and functional diet for all the study guilds, while functional diet increased mainly for beetles. Despite this, specialization in networks (d') increased with flower richness for all the study guilds, because pollinator species fed on a narrower subset of plants as communities became richer in species. Our study indicates that pollinators are able to adapt their diet to resource changes at local and landscape scales. However, resource homogenization might lead to poor and generalist pollinator communities, where functionally specialized interactions are lost. This study highlights the importance of including different scales to understand the effects of global change on pollination service through changes in resource diversity.
Collapse
Affiliation(s)
- Carmelo Gómez‐Martínez
- Global Change Research GroupMediterranean Institute for Advanced Studies (UIB‐CSIC)EsporlesSpain
| | | | - Joana Cursach
- Department of Biology, Laboratory of Botany, Research Group on Plant Biology under Mediterranean ConditionsUniversity of the Balearic IslandsPalmaSpain
| | - Amparo Lázaro
- Global Change Research GroupMediterranean Institute for Advanced Studies (UIB‐CSIC)EsporlesSpain
- Department of Biology, Ecology AreaUniversity of the Balearic IslandsPalmaSpain
| |
Collapse
|