1
|
Zhang J, Sun B, Shen W, Wang Z, Liu Y, Sun Y, Zhang J, Liu R, Wang Y, Bai T, Ma Z, Luo C, Qiao X, Zhang X, Yang S, Sun Y, Jiang D, Yang K. In Silico Analyses, Experimental Verification and Application in DNA Vaccines of Ebolavirus GP-Derived pan-MHC-II-Restricted Epitopes. Vaccines (Basel) 2023; 11:1620. [PMID: 37897022 PMCID: PMC10610722 DOI: 10.3390/vaccines11101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background and Purpose: Ebola virus (EBOV) is the causative agent of Ebola virus disease (EVD), which causes extremely high mortality and widespread epidemics. The only glycoprotein (GP) on the surface of EBOV particles is the key to mediating viral invasion into host cells. DNA vaccines for EBOV are in development, but their effectiveness is unclear. The lack of immune characteristics resides in antigenic MHC class II reactivity. (2) Methods: We selected MHC-II molecules from four human leukocyte antigen II (HLA-II) superfamilies with 98% population coverage and eight mouse H2-I alleles. IEDB, NetMHCIIpan, SYFPEITHI, and Rankpep were used to screen MHC-II-restricted epitopes with high affinity for EBOV GP. Further immunogenicity and conservation analyses were performed using VaxiJen and BLASTp, respectively. EpiDock was used to simulate molecular docking. Cluster analysis and binding affinity analysis of EBOV GP epitopes and selected MHC-II molecules were performed using data from NetMHCIIpan. The selective GP epitopes were verified by the enzyme-linked immunospot (ELISpot) assay using splenocytes of BALB/c (H2d), C3H, and C57 mice after DNA vaccine pVAX-GPEBO immunization. Subsequently, BALB/c mice were immunized with Protein-GPEBO, plasmid pVAX-GPEBO, and pVAX-LAMP/GPEBO, which encoded EBOV GP. The dominant epitopes of BALB/c (H-2-I-AdEd genotype) mice were verified by the enzyme-linked immunospot (ELISpot) assay. It is also used to evaluate and explore the advantages of pVAX-LAMP/GPEBO and the reasons behind them. (3) Results: Thirty-one HLA-II-restricted and 68 H2-I-restricted selective epitopes were confirmed to have high affinity, immunogenicity, and conservation. Nineteen selective epitopes have cross-species reactivity with good performance in MHC-II molecular docking. The ELISpot results showed that pVAX-GPEBO could induce a cellular immune response to the synthesized selective peptides. The better immunoprotection of the DNA vaccines pVAX-LAMP/GPEBO coincides with the enhancement of the MHC class II response. (4) Conclusions: Promising MHC-II-restricted candidate epitopes of EBOV GP were identified in humans and mice, which is of great significance for the development and evaluation of Ebola vaccines.
Collapse
Affiliation(s)
- Junqi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
- Yingtan Detachment, Jiangxi Corps, Chinese People’s Armed Police Force, Yingtan 335000, China
| | - Wenyang Shen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Zhenjie Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Yang Liu
- Institute of AIDS Prevention and Control, Shaanxi Provincial Center for Disease Control and Prevention, Xi’an 710054, China;
| | - Yubo Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Jiaxing Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Ruibo Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Yongkai Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Tianyuan Bai
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Zilu Ma
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Cheng Luo
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Xupeng Qiao
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Shuya Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
- Institute of AIDS Prevention and Control, Shaanxi Provincial Center for Disease Control and Prevention, Xi’an 710054, China;
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China; (J.Z.); (B.S.); (W.S.); (Z.W.); (Y.S.); (J.Z.); (R.L.); (Y.W.); (T.B.); (Z.M.); (C.L.); (X.Q.); (X.Z.); (S.Y.); (Y.S.)
- The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710032, China
- Department of Rheumatology, Tangdu Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an 710038, China
| |
Collapse
|
2
|
Yankowski C, Kurup D, Wirblich C, Schnell MJ. Effects of adjuvants in a rabies-vectored Ebola virus vaccine on protection from surrogate challenge. NPJ Vaccines 2023; 8:10. [PMID: 36754965 PMCID: PMC9906604 DOI: 10.1038/s41541-023-00615-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Ebola virus is the primary contributor to the global threat of filovirus severe hemorrhagic fever, and Ebola virus disease has a case fatality rate of 50-90%. An inactivated, bivalent filovirus/rabies virus vaccine, FILORAB1, consists of recombinant rabies virus virions expressing the Ebola virus glycoprotein. FILORAB1 is immunogenic and protective from Ebola virus challenge in mice and non-human primates, and protection is enhanced when formulated with toll-like receptor 4 agonist Glucopyranosyl lipid adjuvant (GLA) in a squalene oil-in-water emulsion (SE). Through an adjuvant comparison in mice, we demonstrate that GLA-SE improves FILORAB1 efficacy by activating the innate immune system and shaping a Th1-biased adaptive immune response. GLA-SE adjuvanted mice and those adjuvanted with the SE component are better protected from surrogate challenge, while Th2 alum adjuvanted mice are not. Additionally, the immune response to FILORAB1 is long-lasting, as exhibited by highly-maintained serum antibody titers and long-lived cells in the spleen and bone marrow.
Collapse
Affiliation(s)
- Catherine Yankowski
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Drishya Kurup
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Sun L, Yao C, Amanze C, Yin B, Huang J, Hao B. The cytoplasmic tail substitution increases the assembly efficiency of Ebola virus glycoprotein on the budded virus of Bombyx mori nucleopolyhedrovirus. Protein Expr Purif 2022; 200:106156. [PMID: 35987323 DOI: 10.1016/j.pep.2022.106156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
Glycoprotein (GP1,2) of the Ebola virus (EBOV) is the key membrane fusion protein, which is a key candidate protein for vaccine preparations. Previously, GP1,2 was expressed by Bombyx mori nucleopolyhedrovirus (BmNPV) expression vector system; however, few GP1,2 was incorporated into budded virus (BV) of BmNPV. To improve the incorporation efficiency of GP1,2 into the virion, the GP1,2 fusion with the cytoplasmic tail of GP64 of BmNPV was expressed in BmN cells by the BmNPV expression system. The BV was purified by ultracentrifugation, and GP1,2 expression in BV was detected by the antibody. The result indicated that a 532% increase in the relative GP1,2 densitometry signal was observed in constructs utilizing the GP64 C-terminal domain; moreover, the substitution of GP1,2 native signal peptide with GP64 signal peptide increased the incorporation efficiency by 34.6% in the relative GP1,2 densitometry signal. We revealed that the application of the cytoplasmic tail of BmNPV GP64 significantly increased the incorporation rate of GP1,2 into the BV envelope. This study lays a foundation for GP1,2 vaccine development.
Collapse
Affiliation(s)
- Luping Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Congyue Yao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Bo Yin
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Bifang Hao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
4
|
Le H, Spearman P, Waggoner SN, Singh K. Ebola virus protein VP40 stimulates IL-12- and IL-18-dependent activation of human natural killer cells. JCI Insight 2022; 7:158902. [PMID: 35862204 PMCID: PMC9462474 DOI: 10.1172/jci.insight.158902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulation of activated natural killer (NK) cells in tissues during Ebola virus infection contributes to Ebola virus disease (EVD) pathogenesis. Yet, immunization with Ebola virus-like particles (VLPs) comprising glycoprotein and matrix protein VP40 provides rapid, NK cell–mediated protection against Ebola challenge. We used Ebola VLPs as the viral surrogates to elucidate the molecular mechanism by which Ebola virus triggers heightened NK cell activity. Incubation of human peripheral blood mononuclear cells with Ebola VLPs or VP40 protein led to increased expression of IFN-γ, TNF-α, granzyme B, and perforin by CD3–CD56+ NK cells, along with increases in degranulation and cytotoxic activity of these cells. Optimal activation required accessory cells like CD14+ myeloid and CD14– cells and triggered increased secretion of numerous inflammatory cytokines. VP40-induced IFN-γ and TNF-α secretion by NK cells was dependent on IL-12 and IL-18 and suppressed by IL-10. In contrast, their increased degranulation was dependent on IL-12 with little influence of IL-18 or IL-10. These results demonstrate that Ebola VP40 stimulates NK cell functions in an IL-12– and IL-18–dependent manner that involves CD14+ and CD14– accessory cells. These potentially novel findings may help in designing improved intervention strategies required to control viral transmission during Ebola outbreaks.
Collapse
Affiliation(s)
- Hung Le
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Paul Spearman
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Stephen N Waggoner
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| | - Karnail Singh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America
| |
Collapse
|
5
|
Cruz MA, Frederick TE, Mallimadugula UL, Singh S, Vithani N, Zimmerman MI, Porter JR, Moeder KE, Amarasinghe GK, Bowman GR. A cryptic pocket in Ebola VP35 allosterically controls RNA binding. Nat Commun 2022; 13:2269. [PMID: 35477718 PMCID: PMC9046395 DOI: 10.1038/s41467-022-29927-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Protein-protein and protein-nucleic acid interactions are often considered difficult drug targets because the surfaces involved lack obvious druggable pockets. Cryptic pockets could present opportunities for targeting these interactions, but identifying and exploiting these pockets remains challenging. Here, we apply a general pipeline for identifying cryptic pockets to the interferon inhibitory domain (IID) of Ebola virus viral protein 35 (VP35). VP35 plays multiple essential roles in Ebola's replication cycle but lacks pockets that present obvious utility for drug design. Using adaptive sampling simulations and machine learning algorithms, we predict VP35 harbors a cryptic pocket that is allosterically coupled to a key dsRNA-binding interface. Thiol labeling experiments corroborate the predicted pocket and mutating the predicted allosteric network supports our model of allostery. Finally, covalent modifications that mimic drug binding allosterically disrupt dsRNA binding that is essential for immune evasion. Based on these results, we expect this pipeline will be applicable to other proteins.
Collapse
Affiliation(s)
- Matthew A Cruz
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas E Frederick
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Upasana L Mallimadugula
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sukrit Singh
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Neha Vithani
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Justin R Porter
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Katelyn E Moeder
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Dong L, Feng M, Qiao Y, Liu C, Zhou Y, Xing S, Zhang K, Cai Z, Wu H, Wu J, Yu X, Zhang H, Kong W. Preclinical safety and Biodistribution in mice following single dose intramuscular inoculation of tumor DNA vaccine by electroporation. Hum Gene Ther 2022; 33:757-764. [DOI: 10.1089/hum.2022.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ling Dong
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Mengfan Feng
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Yaru Qiao
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Chenlu Liu
- Jilin University, 12510, Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yi Zhou
- Jilin University, 12510, Changchun, China
| | - Shanshan Xing
- Jilin University, 12510, Changchun, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, China
| | - Ke Zhang
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Zongyu Cai
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Hui Wu
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Jiaxin Wu
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Xianghui Yu
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, School of Life Sciences, Jilin University, Changchun, Changchun, Jilin, China, 130012
- Jilin University, 12510, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, School of Life Sciences, Jilin University, Changchun, Changchun, Jilin, China, 130012
| | - Haihong Zhang
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Wei Kong
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
- Jilin University, 12510, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Changchun, China
| |
Collapse
|
7
|
Research Advances on the Interactions between Rabies Virus Structural Proteins and Host Target Cells: Accrued Knowledge from the Application of Reverse Genetics Systems. Viruses 2021; 13:v13112288. [PMID: 34835093 PMCID: PMC8617671 DOI: 10.3390/v13112288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Rabies is a lethal zoonotic disease caused by lyssaviruses, such as rabies virus (RABV), that results in nearly 100% mortality once clinical symptoms appear. There are no curable drugs available yet. RABV contains five structural proteins that play an important role in viral replication, transcription, infection, and immune escape mechanisms. In the past decade, progress has been made in research on the pathogenicity of RABV, which plays an important role in the creation of new recombinant RABV vaccines by reverse genetic manipulation. Here, we review the latest advances on the interaction between RABV proteins in the infected host and the applied development of rabies vaccines by using a fully operational RABV reverse genetics system. This article provides a background for more in-depth research on the pathogenic mechanism of RABV and the development of therapeutic drugs and new biologics.
Collapse
|
8
|
Anderson MS, Niemuth NA, Sabourin CL, Badorrek CS, Bounds CE, Rudge TL. Interlaboratory comparison for the Filovirus Animal Nonclinical Group (FANG) anti-Ebola virus glycoprotein immunoglobulin G enzyme-linked immunosorbent assay. PLoS One 2020; 15:e0238196. [PMID: 32841291 PMCID: PMC7447032 DOI: 10.1371/journal.pone.0238196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/11/2020] [Indexed: 01/11/2023] Open
Abstract
The need for an efficacious vaccine against highly pathogenic filoviruses was reinforced by the devastating 2014–2016 outbreak of Ebola virus (EBOV) disease (EVD) in Guinea, Sierra Leone, and Liberia that resulted in over 28,000 cases and over 11,300 deaths. In addition, the 2018–2020 outbreak in the Democratic Republic of the Congo currently has over 3,400 cases and over 2,200 deaths. A fully licensed vaccine and at least one other investigational vaccine are being deployed to combat this EVD outbreak. To support vaccine development and pre-clinical/clinical testing a Filovirus Animal Nonclinical Group (FANG) human anti-EBOV GP IgG ELISA was developed to measure anti-EBOV GP IgG antibodies. This ELISA is currently being used in multiple laboratories. Reported here is a characterization of an interlaboratory statistical analysis of the human anti-EBOV GP IgG ELISA as part of a collaborative study between five participating laboratories. Each laboratory used similar method protocols and reagents to measure anti-EBOV GP IgG levels in human serum samples from a proficiency panel consisting of ten serum samples created by the differential dilution of a serum sample positive for anti-GP IgG antibodies (BMIZAIRE105) with negative serum (BMI529). The total assay variability (inter- and intra-assay variability) %CVs observed at each laboratory ranged from 12.2 to 30.6. Intermediate precision (inter-assay variability) for the laboratory runs ranged from 8.9 to 21.7%CV and repeatability (intra-assay variability) %CVs ranged from 7.2 to 23.7. The estimated slope for the relationship between log10(Target Concentration) and the log10(Observed Concentration) across all five laboratories was 0.95 with a 90% confidence interval of (0.93, 0.97). Equivalence test results showed that the 90% confidence interval for the ratios for the sample-specific mean concentrations at the five individual labs to the overall laboratory consensus value were within the equivalence bounds of 0.80 to 1.25 for each laboratory and test sample, except for six test samples from Lab D, two samples from Lab B1, and one sample from Lab B2. The mean laboratory concentrations for Lab D were less than those from the other laboratories by 20% on average across the serum samples. The evaluation of the proficiency panel at these laboratories provides a limited assessment of assay precision (intermediate precision, repeatability, and total assay variability), dilutional linearity, and accuracy. This evaluation suggests that the within-laboratory performance of the anti-EBOV GP IgG ELISA as implemented at the five laboratories is consistent with the intended use of the assay based on the acceptance criteria used by laboratories that have validated the assay. However, the assessment of between-laboratory performance revealed lower observed concentrations at Lab D and greater variability in assay results at Lab B1 relative to other laboratories.
Collapse
Affiliation(s)
| | | | | | - Christopher S. Badorrek
- U.S. Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND), Joint Program Manager for Chemical Biological Radiological and Nuclear Medical (JPM-CBRN Medical), Fort Detrick, Maryland, United States of America
| | - Callie E. Bounds
- U.S. Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND), Joint Program Manager for Chemical Biological Radiological and Nuclear Medical (JPM-CBRN Medical), Fort Detrick, Maryland, United States of America
| | | |
Collapse
|
9
|
Tong PBV, Lin LY, Tran TH. Coronaviruses pandemics: Can neutralizing antibodies help? Life Sci 2020; 255:117836. [PMID: 32450171 PMCID: PMC7243778 DOI: 10.1016/j.lfs.2020.117836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
For the first time in Homo sapiens history, possibly, most of human activities is stopped by coronavirus disease 2019 (COVID-19). Nearly eight billion people of this world are facing a great challenge, maybe not "to be or not to be" yet, but unpredictable. What happens to other major pandemics in the past, and how human beings went through these hurdles? The human body is equipped with the immune system that can recognize, respond and fight against pathogens such as viruses. Following the innate response, immune system processes the adaptive response by which each pathogen is encoded and recorded in memory system. The humoral reaction containing cytokines and antibodies is expected to activate when the pathogens come back. Exploiting this nature of body protection, neutralizing antibodies have been investigated. Learning from past, in parallel to SARS-CoV-2, other coronaviruses SARS-CoV and MERS-CoV who caused previous pandemics, are recalled in this review. We here propose insights of origin and characteristics and perspective for the future of antibodies development.
Collapse
Affiliation(s)
- Phuoc-Bao-Viet Tong
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Li-Yun Lin
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
10
|
A Bivalent, Spherical Virus-Like Particle Vaccine Enhances Breadth of Immune Responses against Pathogenic Ebola Viruses in Rhesus Macaques. J Virol 2020; 94:JVI.01884-19. [PMID: 32075939 DOI: 10.1128/jvi.01884-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 2013-2016 Ebola outbreak in West Africa led to accelerated efforts to develop vaccines against these highly virulent viruses. A live, recombinant vesicular stomatitis virus-based vaccine has been deployed in outbreak settings and appears highly effective. Vaccines based on replication-deficient adenovirus vectors either alone or in combination with a multivalent modified vaccinia Ankara (MVA) Ebola vaccine also appear promising and are progressing in clinical evaluation. However, the ability of current live vector-based approaches to protect against multiple pathogenic species of Ebola is not yet established, and eliciting durable responses may require additional booster vaccinations. Here, we report the development of a bivalent, spherical Ebola virus-like particle (VLP) vaccine that incorporates glycoproteins (GPs) from Zaire Ebola virus (EBOV) and Sudan Ebola virus (SUDV) and is designed to extend the breadth of immunity beyond EBOV. Immunization of rabbits with bivalent Ebola VLPs produced antibodies that neutralized all four pathogenic species of Ebola viruses and elicited antibody-dependent cell-mediated cytotoxicity (ADCC) responses against EBOV and SUDV. Vaccination of rhesus macaques with bivalent VLPs generated strong humoral immune responses, including high titers of binding, as well as neutralizing antibodies and ADCC responses. VLP vaccination led to a significant increase in the frequency of Ebola GP-specific CD4 and CD8 T cell responses. These results demonstrate that a novel bivalent Ebola VLP vaccine elicits strong humoral and cellular immune responses against pathogenic Ebola viruses and support further evaluation of this approach as a potential addition to Ebola vaccine development efforts.IMPORTANCE Ebola outbreaks result in significant morbidity and mortality in affected countries. Although several leading candidate Ebola vaccines have been developed and advanced in clinical testing, additional vaccine candidates may be needed to provide protection against different Ebola species and to extend the durability of protection. A novel approach demonstrated here is to express two genetically diverse glycoproteins on a spherical core, generating a vaccine that can broaden immune responses against known pathogenic Ebola viruses. This approach provides a new method to broaden and potentially extend protective immune responses against Ebola viruses.
Collapse
|
11
|
Liu Y, Ye L, Lin F, Gomaa Y, Flyer D, Carrion R, Patterson JL, Prausnitz MR, Smith G, Glenn G, Wu H, Compans RW, Yang C. Intradermal Vaccination With Adjuvanted Ebola Virus Soluble Glycoprotein Subunit Vaccine by Microneedle Patches Protects Mice Against Lethal Ebola Virus Challenge. J Infect Dis 2019; 218:S545-S552. [PMID: 29893888 DOI: 10.1093/infdis/jiy267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin, China.,Emory University School of Medicine, Atlanta, Georgia
| | - Ling Ye
- Emory University School of Medicine, Atlanta, Georgia
| | - Fang Lin
- Emory University School of Medicine, Atlanta, Georgia.,Central Laboratory, Tangdu Hospital at the Fourth Military Medical University, Xi'An, China
| | - Yasmine Gomaa
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta
| | | | | | | | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta
| | | | | | - Hua Wu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin, China
| | | | - Chinglai Yang
- Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Development, qualification, and validation of the Filovirus Animal Nonclinical Group anti-Ebola virus glycoprotein immunoglobulin G enzyme-linked immunosorbent assay for human serum samples. PLoS One 2019; 14:e0215457. [PMID: 30998735 PMCID: PMC6472792 DOI: 10.1371/journal.pone.0215457] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/03/2019] [Indexed: 12/26/2022] Open
Abstract
The need for an efficacious vaccine against highly pathogenic filoviruses was reinforced by the recent and devastating 2014–2016 outbreak of Ebola virus (EBOV) disease in Guinea, Sierra Leone, and Liberia that resulted in more than 10,000 casualties. Such a vaccine would need to be vetted through a U.S. Food and Drug Administration (FDA) traditional, accelerated, or Animal Rule or similar European Medicines Agency (EMA) regulatory pathway. Under the FDA Animal Rule, vaccine-induced immune responses correlating with survival of non-human primates (NHPs), or another well-characterized animal model, following lethal EBOV challenge will need to be bridged to human immune response distributions in clinical trials. When possible, species-neutral methods are ideal for detection and bridging of these immune responses, such as methods to quantify anti-EBOV glycoprotein (GP) immunoglobulin G (IgG) antibodies. Further, any method that will be used to support advanced clinical and non-clinical trials will most likely require formal validation to assess suitability prior to use. Reported here is the development, qualification, and validation of a Filovirus Animal Nonclinical Group anti-EBOV GP IgG Enzyme-Linked Immunosorbent Assay (FANG anti-EBOV GP IgG ELISA) for testing human serum samples.
Collapse
|
13
|
Keshwara R, Hagen KR, Abreu-Mota T, Papaneri AB, Liu D, Wirblich C, Johnson RF, Schnell MJ. A Recombinant Rabies Virus Expressing the Marburg Virus Glycoprotein Is Dependent upon Antibody-Mediated Cellular Cytotoxicity for Protection against Marburg Virus Disease in a Murine Model. J Virol 2019; 93:e01865-18. [PMID: 30567978 PMCID: PMC6401435 DOI: 10.1128/jvi.01865-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Marburg virus (MARV) is a filovirus related to Ebola virus (EBOV) associated with human hemorrhagic disease. Outbreaks are sporadic and severe, with a reported case mortality rate of upward of 88%. There is currently no antiviral or vaccine available. Given the sporadic nature of outbreaks, vaccines provide the best approach for long-term control of MARV in regions of endemicity. We have developed an inactivated rabies virus-vectored MARV vaccine (FILORAB3) to protect against Marburg virus disease. Immunogenicity studies in our labs have shown that a Th1-biased seroconversion to both rabies virus and MARV glycoproteins (GPs) is beneficial for protection in a preclinical murine model. As such, we adjuvanted FILORAB3 with glucopyranosyl lipid adjuvant (GLA), a Toll-like receptor 4 agonist, in a squalene-in-water emulsion. Across two different BALB/c mouse challenge models, we achieved 92% protection against murine-adapted Marburg virus (ma-MARV). Although our vaccine elicited strong MARV GP antibodies, it did not strongly induce neutralizing antibodies. Through both in vitro and in vivo approaches, we elucidated a critical role for NK cell-dependent antibody-mediated cellular cytotoxicity (ADCC) in vaccine-induced protection. Overall, these findings demonstrate that FILORAB3 is a promising vaccine candidate for Marburg virus disease.IMPORTANCE Marburg virus (MARV) is a virus similar to Ebola virus and also causes a hemorrhagic disease which is highly lethal. In contrast to EBOV, only a few vaccines have been developed against MARV, and researchers do not understand what kind of immune responses are required to protect from MARV. Here we show that antibodies directed against MARV after application of our vaccine protect in an animal system but fail to neutralize the virus in a widely used virus neutralization assay against MARV. This newly discovered activity needs to be considered more when analyzing MARV vaccines or infections.
Collapse
Affiliation(s)
- Rohan Keshwara
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Katie R Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Tiago Abreu-Mota
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Life and Health Sciences Research Institute (ICVS) School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Amy B Papaneri
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David Liu
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Zinzula L, Nagy I, Orsini M, Weyher-Stingl E, Bracher A, Baumeister W. Structures of Ebola and Reston Virus VP35 Oligomerization Domains and Comparative Biophysical Characterization in All Ebolavirus Species. Structure 2018; 27:39-54.e6. [PMID: 30482729 DOI: 10.1016/j.str.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
The multifunctional virion protein 35 (VP35) of ebolaviruses is a critical determinant of virulence and pathogenesis indispensable for viral replication and host innate immune evasion. Essential for VP35 function is homo-oligomerization via a coiled-coil motif. Here we report crystal structures of VP35 oligomerization domains from the prototypic Ebola virus (EBOV) and the non-pathogenic Reston virus (RESTV), together with a comparative biophysical characterization of the domains from all known species of the Ebolavirus genus. EBOV and RESTV VP35 oligomerization domains form bipartite parallel helix bundles with a canonical coiled coil in the N-terminal half and increased plasticity in the highly conserved C-terminal half. The domain assembles into trimers and tetramers in EBOV, whereas it exclusively forms tetramers in all other ebolavirus species. Substitution of coiled-coil leucine residues critical for immune antagonism leads to aberrant oligomerization. A conserved arginine involved in inter-chain salt bridges stabilizes the VP35 oligomerization domain and modulates between coiled-coil oligomeric states.
Collapse
Affiliation(s)
- Luca Zinzula
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - István Nagy
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Massimiliano Orsini
- Istituto Zooprofilattico dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Elisabeth Weyher-Stingl
- The Max-Planck Institute of Biochemistry, Core Facility, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andreas Bracher
- The Max-Planck Institute of Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Wolfgang Baumeister
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
15
|
Patel A, Reuschel EL, Kraynyak KA, Racine T, Park DH, Scott VL, Audet J, Amante D, Wise MC, Keaton AA, Wong G, Villarreal DO, Walters J, Muthumani K, Shedlock DJ, de La Vega MA, Plyler R, Boyer J, Broderick KE, Yan J, Khan AS, Jones S, Bello A, Soule G, Tran KN, He S, Tierney K, Qiu X, Kobinger GP, Sardesai NY, Weiner DB. Protective Efficacy and Long-Term Immunogenicity in Cynomolgus Macaques by Ebola Virus Glycoprotein Synthetic DNA Vaccines. J Infect Dis 2018; 219:544-555. [DOI: 10.1093/infdis/jiy537] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/19/2018] [Indexed: 01/29/2023] Open
Abstract
Abstract
Background
There remains an important need for prophylactic anti-Ebola virus vaccine candidates that elicit long-lasting immune responses and can be delivered to vulnerable populations that are unable to receive live-attenuated or viral vector vaccines.
Methods
We designed novel synthetic anti-Ebola virus glycoprotein (EBOV-GP) DNA vaccines as a strategy to expand protective breadth against diverse EBOV strains and evaluated the impact of vaccine dosing and route of administration on protection against lethal EBOV-Makona challenge in cynomolgus macaques. Long-term immunogenicity was monitored in nonhuman primates for >1 year, followed by a 12-month boost.
Results
Multiple-injection regimens of the EBOV-GP DNA vaccine, delivered by intramuscular administration followed by electroporation, were 100% protective against lethal EBOV-Makona challenge. Impressively, 2 injections of a simple, more tolerable, and dose-sparing intradermal administration followed by electroporation generated strong immunogenicity and was 100% protective against lethal challenge. In parallel, we observed that EBOV-GP DNA vaccination induced long-term immune responses in macaques that were detectable for at least 1 year after final vaccination and generated a strong recall response after the final boost.
Conclusions
These data support that this simple intradermal-administered, serology-independent approach is likely important for additional study towards the goal of induction of anti-EBOV immunity in multiple at-risk populations.
Collapse
Affiliation(s)
- Ami Patel
- The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania
| | - Emma L Reuschel
- The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania
| | | | - Trina Racine
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Daniel H Park
- The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania
| | - Veronica L Scott
- College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi
| | - Jonathan Audet
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Dinah Amante
- Inovio Pharmaceuticals Inc., Plymouth Meeting, Pennsylvania
| | - Megan C Wise
- Inovio Pharmaceuticals Inc., Plymouth Meeting, Pennsylvania
| | - Amelia A Keaton
- The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania
| | - Gary Wong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Jewell Walters
- Inovio Pharmaceuticals Inc., Plymouth Meeting, Pennsylvania
| | - Kar Muthumani
- The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania
| | | | - Marc-Antoine de La Vega
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Jean Boyer
- Inovio Pharmaceuticals Inc., Plymouth Meeting, Pennsylvania
| | | | - Jian Yan
- Inovio Pharmaceuticals Inc., Plymouth Meeting, Pennsylvania
| | - Amir S Khan
- Inovio Pharmaceuticals Inc., Plymouth Meeting, Pennsylvania
| | - Shane Jones
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Alexander Bello
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kaylie N Tran
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kevin Tierney
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Gary P Kobinger
- University of Pennsylvania, Philadelphia
- Université Laval, Québec, Canada
| | | | - David B Weiner
- The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Feng Y, Li C, Hu P, Wang Q, Zheng X, Zhao Y, Shi Y, Yang S, Yi C, Feng Y, Wu C, Qu L, Xu W, Li Y, Sun C, Gao FG, Xia X, Feng L, Chen L. An adenovirus serotype 2-vectored ebolavirus vaccine generates robust antibody and cell-mediated immune responses in mice and rhesus macaques. Emerg Microbes Infect 2018; 7:101. [PMID: 29872043 PMCID: PMC5988821 DOI: 10.1038/s41426-018-0102-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/21/2023]
Abstract
Ebolavirus vaccines based on several adenoviral vectors have been investigated in preclinical studies and clinical trials. The use of adenovirus serotype 2 as a vector for ebolavirus vaccine has not been reported. Herein, we generated rAd2-ZGP, a recombinant replication-incompetent adenovirus serotype 2 expressing codon-optimized Zaire ebolavirus glycoprotein, and evaluated its immunogenicity in mice and rhesus macaques. rAd2-ZGP induced significant antibody and cell-mediated immune responses at 2 weeks after a single immunization. The glycoprotein (GP)-specific immune responses could be further enhanced with a booster immunization. Compared to protein antigens, Zaire ebolavirus GP and Zaire ebolavirus-like particles, rAd2-ZGP could induce stronger cross-reactive antibody and cell-mediated immune responses to heterologous Sudan ebolavirus in mice and rhesus macaques. In rAd2-ZGP-immunized macaques, GP-specific CD8+ T cells could secret IFN-γ and IL-2, indicating a Th1-biased response. In adenovirus serotype 5 seropositive macaques, rAd2-ZGP could induce robust antibody and cell-mediated immune responses, suggesting that the efficacy of rAd2-ZGP is not affected by pre-existing immunity to adenovirus serotype 5. These results demonstrated that rAd2-ZGP can be considered an alternative ebolavirus vaccine for use in adenovirus serotype 5 seropositive subjects or as a sequential booster vaccine after the subjects have been immunized with a recombinant adenovirus serotype 5-based vaccine.
Collapse
Affiliation(s)
- Yupeng Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chufang Li
- The Guangzhou 8th People's Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Peiyu Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,The Guangzhou 8th People's Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehua Zheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Changhua Yi
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ying Feng
- The Guangzhou 8th People's Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Chunxiu Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Xu
- The Guangzhou 8th People's Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Yao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caijun Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fu Geroge Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,The Guangzhou 8th People's Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China.
| |
Collapse
|
17
|
Masterson SG, Lobel L, Carroll MW, Wass MN, Michaelis M. Herd Immunity to Ebolaviruses Is Not a Realistic Target for Current Vaccination Strategies. Front Immunol 2018; 9:1025. [PMID: 29867992 PMCID: PMC5954026 DOI: 10.3389/fimmu.2018.01025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Abstract
The recent West African Ebola virus pandemic, which affected >28,000 individuals increased interest in anti-Ebolavirus vaccination programs. Here, we systematically analyzed the requirements for a prophylactic vaccination program based on the basic reproductive number (R0, i.e., the number of secondary cases that result from an individual infection). Published R0 values were determined by systematic literature research and ranged from 0.37 to 20. R0s ≥ 4 realistically reflected the critical early outbreak phases and superspreading events. Based on the R0, the herd immunity threshold (Ic) was calculated using the equation Ic = 1 - (1/R0). The critical vaccination coverage (Vc) needed to provide herd immunity was determined by including the vaccine effectiveness (E) using the equation Vc = Ic/E. At an R0 of 4, the Ic is 75% and at an E of 90%, more than 80% of a population need to be vaccinated to establish herd immunity. Such vaccination rates are currently unrealistic because of resistance against vaccinations, financial/logistical challenges, and a lack of vaccines that provide long-term protection against all human-pathogenic Ebolaviruses. Hence, outbreak management will for the foreseeable future depend on surveillance and case isolation. Clinical vaccine candidates are only available for Ebola viruses. Their use will need to be focused on health-care workers, potentially in combination with ring vaccination approaches.
Collapse
Affiliation(s)
- Stuart G Masterson
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Leslie Lobel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Emerging and Re-Emerging Diseases and Special Pathogens, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Miles W Carroll
- Research & Development Institute, National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | - Mark N Wass
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
18
|
Rey-Jurado E, Tapia F, Muñoz-Durango N, Lay MK, Carreño LJ, Riedel CA, Bueno SM, Genzel Y, Kalergis AM. Assessing the Importance of Domestic Vaccine Manufacturing Centers: An Overview of Immunization Programs, Vaccine Manufacture, and Distribution. Front Immunol 2018; 9:26. [PMID: 29403503 PMCID: PMC5778105 DOI: 10.3389/fimmu.2018.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022] Open
Abstract
Vaccines have significantly reduced the detrimental effects of numerous human infectious diseases worldwide, helped to reduce drastically child mortality rates and even achieved eradication of major pathogens, such as smallpox. These achievements have been possible due to a dedicated effort for vaccine research and development, as well as an effective transfer of these vaccines to public health care systems globally. Either public or private institutions have committed to developing and manufacturing vaccines for local or international population supply. However, current vaccine manufacturers worldwide might not be able to guarantee sufficient vaccine supplies for all nations when epidemics or pandemics events could take place. Currently, different countries produce their own vaccine supplies under Good Manufacturing Practices, which include the USA, Canada, China, India, some nations in Europe and South America, such as Germany, the Netherlands, Italy, France, Argentina, and Brazil, respectively. Here, we discuss some of the vaccine programs and manufacturing capacities, comparing the current models of vaccine management between industrialized and developing countries. Because local vaccine production undoubtedly provides significant benefits for the respective population, the manufacture capacity of these prophylactic products should be included in every country as a matter of national safety.
Collapse
Affiliation(s)
- Emma Rey-Jurado
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Natalia Muñoz-Durango
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Affiliation(s)
- Keith J. Chappell
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Australia
- * E-mail: (KJC); (DW)
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Australia
- * E-mail: (KJC); (DW)
| |
Collapse
|