1
|
Celona B, Salomonsson SE, Wu H, Dang B, Kratochvil HT, Clelland CD, DeGrado WF, Black BL. Zfp106 binds to G-quadruplex RNAs and inhibits RAN translation and formation of RNA foci caused by G4C2 repeats. Proc Natl Acad Sci U S A 2024; 121:e2220020121. [PMID: 39042693 PMCID: PMC11295049 DOI: 10.1073/pnas.2220020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Expansion of intronic GGGGCC repeats in the C9orf72 gene causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Transcription of the expanded repeats results in the formation of RNA-containing nuclear foci and altered RNA metabolism. In addition, repeat-associated non-AUG (RAN) translation of the expanded GGGGCC-repeat sequence results in the production of highly toxic dipeptide-repeat (DPR) proteins. GGGGCC repeat-containing transcripts form G-quadruplexes, which are associated with formation of RNA foci and RAN translation. Zfp106, an RNA-binding protein essential for motor neuron survival in mice, suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Here, we show that Zfp106 inhibits formation of RNA foci and significantly reduces RAN translation caused by GGGGCC repeats in cultured mammalian cells, and we demonstrate that Zfp106 coexpression reduces the levels of DPRs in C9orf72 patient-derived cells. Further, we show that Zfp106 binds to RNA G-quadruplexes and causes a conformational change in the G-quadruplex structure formed by GGGGCC repeats. Together, these data demonstrate that Zfp106 suppresses the formation of RNA foci and DPRs caused by GGGGCC repeats and suggest that the G-quadruplex RNA-binding function of Zfp106 contributes to its suppression of GGGGCC repeat-mediated cytotoxicity.
Collapse
Affiliation(s)
- Barbara Celona
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
| | - Sally E. Salomonsson
- Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Memory & Aging Center, Department of Neurology, University of California, San Francisco, CA94143
| | - Haifan Wu
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Bobo Dang
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Huong T. Kratochvil
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Claire D. Clelland
- Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Memory & Aging Center, Department of Neurology, University of California, San Francisco, CA94143
| | - William F. DeGrado
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
| |
Collapse
|
2
|
Nguyen L. Updates on Disease Mechanisms and Therapeutics for Amyotrophic Lateral Sclerosis. Cells 2024; 13:888. [PMID: 38891021 PMCID: PMC11172142 DOI: 10.3390/cells13110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a motor neuron disease. In ALS, upper and lower motor neurons in the brain and spinal cord progressively degenerate during the course of the disease, leading to the loss of the voluntary movement of the arms and legs. Since its first description in 1869 by a French neurologist Jean-Martin Charcot, the scientific discoveries on ALS have increased our understanding of ALS genetics, pathology and mechanisms and provided novel therapeutic strategies. The goal of this review article is to provide a comprehensive summary of the recent findings on ALS mechanisms and related therapeutic strategies to the scientific audience. Several highlighted ALS research topics discussed in this article include the 2023 FDA approved drug for SOD1 ALS, the updated C9orf72 GGGGCC repeat-expansion-related mechanisms and therapeutic targets, TDP-43-mediated cryptic splicing and disease markers and diagnostic and therapeutic options offered by these recent discoveries.
Collapse
Affiliation(s)
- Lien Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Tierney JAS, Świrski M, Tjeldnes H, Mudge JM, Kufel J, Whiffin N, Valen E, Baranov PV. Ribosome decision graphs for the representation of eukaryotic RNA translation complexity. Genome Res 2024; 34:530-538. [PMID: 38719470 PMCID: PMC11146595 DOI: 10.1101/gr.278810.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, within both annotated protein-coding and noncoding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term ribosome decision graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the latter "translons." Nondeterministic events, such as initiation, reinitiation, selenocysteine insertion, or ribosomal frameshifting, are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions and for analyzing genetic variation and quantitative genome-wide data on translation for characterization of regulatory modulators of translation.
Collapse
Affiliation(s)
- Jack A S Tierney
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork T12 K8AF, Ireland
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Håkon Tjeldnes
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
- Computational Biology Unit, Department of Informatics, University of Bergen, NO-5020 Bergen, Norway
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridge, United Kingdom
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Nicola Whiffin
- The Big Data Institute and Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, NO-5020 Bergen, Norway
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland;
| |
Collapse
|
4
|
Apostolopoulos A, Kawamoto N, Chow SYA, Tsuiji H, Ikeuchi Y, Shichino Y, Iwasaki S. dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat Commun 2024; 15:2205. [PMID: 38467613 PMCID: PMC10928199 DOI: 10.1038/s41467-024-46412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)‒Cas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPR‒Cas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.
Collapse
Grants
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05278 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05786 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20K07016 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15023 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2175 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005h0001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- Pioneering Projects MEXT | RIKEN
- Pioneering Projects MEXT | RIKEN
- Exploratory Research Center on Life and Living Systems (ExCELLS), 23EX601
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Naohiro Kawamoto
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hitomi Tsuiji
- Education and Research Division of Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
5
|
Rösing S, Ullrich F, Meisterfeld S, Schmidt F, Mlitzko L, Croon M, Nattrass RG, Eberl N, Mahlberg J, Schlee M, Wieland A, Simon P, Hilbig D, Reuner U, Rapp A, Bremser J, Mirtschink P, Drukewitz S, Zillinger T, Beissert S, Paeschke K, Hartmann G, Trifunovic A, Bartok E, Günther C. Chronic endoplasmic reticulum stress in myotonic dystrophy type 2 promotes autoimmunity via mitochondrial DNA release. Nat Commun 2024; 15:1534. [PMID: 38378748 PMCID: PMC10879130 DOI: 10.1038/s41467-024-45535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Myotonic dystrophy type 2 (DM2) is a tetranucleotide CCTG repeat expansion disease associated with an increased prevalence of autoimmunity. Here, we identified an elevated type I interferon (IFN) signature in peripheral blood mononuclear cells and primary fibroblasts of DM2 patients as a trigger of chronic immune stimulation. Although RNA-repeat accumulation was prevalent in the cytosol of DM2-patient fibroblasts, type-I IFN release did not depend on innate RNA immune sensors but rather the DNA sensor cGAS and the prevalence of mitochondrial DNA (mtDNA) in the cytoplasm. Sublethal mtDNA release was promoted by a chronic activation of the ATF6 branch of the unfolded protein response (UPR) in reaction to RNA-repeat accumulation and non-AUG translated tetrapeptide expansion proteins. ATF6-dependent mtDNA release and resulting cGAS/STING activation could also be recapitulated in human THP-1 monocytes exposed to chronic endoplasmic reticulum (ER) stress. Altogether, our study demonstrates a novel mechanism by which large repeat expansions cause chronic endoplasmic reticulum stress and associated mtDNA leakage. This mtDNA is, in turn, sensed by the cGAS/STING pathway and induces a type-I IFN response predisposing to autoimmunity. Elucidating this pathway reveals new potential therapeutic targets for autoimmune disorders associated with repeat expansion diseases.
Collapse
Affiliation(s)
- Sarah Rösing
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Fabian Ullrich
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Susann Meisterfeld
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Franziska Schmidt
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Laura Mlitzko
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Marijana Croon
- Institute for Mitochondrial Diseases and Aging, Faculty of Medicine, CECAD Research Center, 50931, Cologne, Germany
| | - Ryan G Nattrass
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Nadia Eberl
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Julia Mahlberg
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Anja Wieland
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Philipp Simon
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Daniel Hilbig
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Ulrike Reuner
- Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Alexander Rapp
- Department of Biology, Cell biology and Epigenetic, Technical University of Darmstadt, Darmstadt, Germany
| | - Julia Bremser
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Stephan Drukewitz
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefan Beissert
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Katrin Paeschke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Faculty of Medicine, CECAD Research Center, 50931, Cologne, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
- Unit of Experimental Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Claudia Günther
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany.
| |
Collapse
|
6
|
Anderson R, Das MR, Chang Y, Farenhem K, Schmitz CO, Jain A. CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs. Mol Cell 2024; 84:702-714.e10. [PMID: 38295802 PMCID: PMC10923110 DOI: 10.1016/j.molcel.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Expansions of CAG trinucleotide repeats cause several rare neurodegenerative diseases. The disease-causing repeats are translated in multiple reading frames and without an identifiable initiation codon. The molecular mechanism of this repeat-associated non-AUG (RAN) translation is not known. We find that expanded CAG repeats create new splice acceptor sites. Splicing of proximal donors to the repeats produces unexpected repeat-containing transcripts. Upon splicing, depending on the sequences surrounding the donor, CAG repeats may become embedded in AUG-initiated open reading frames. Canonical AUG-initiated translation of these aberrant RNAs may account for proteins that have been attributed to RAN translation. Disruption of the relevant splice donors or the in-frame AUG initiation codons is sufficient to abrogate RAN translation. Our findings provide a molecular explanation for the abnormal translation products observed in CAG trinucleotide repeat expansion disorders and add to the repertoire of mechanisms by which repeat expansion mutations disrupt cellular functions.
Collapse
Affiliation(s)
- Rachel Anderson
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Michael R Das
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Yeonji Chang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Kelsey Farenhem
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Cameron O Schmitz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Ankur Jain
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Yang S, Wijegunawardana D, Sheth U, Veire AM, Salgado JMS, Agrawal M, Zhou J, Pereira JD, Gendron TF, Guo JU. Aberrant splicing exonizes C9ORF72 repeat expansion in ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566896. [PMID: 38014069 PMCID: PMC10680656 DOI: 10.1101/2023.11.13.566896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A nucleotide repeat expansion (NRE) in the first annotated intron of the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While C9 NRE-containing RNAs can be translated into several toxic dipeptide repeat proteins, how an intronic NRE can assess the translation machinery in the cytoplasm remains unclear. By capturing and sequencing NRE-containing RNAs from patient-derived cells, we found that C9 NRE was exonized by the usage of downstream 5' splice sites and exported from the nucleus in a variety of spliced mRNA isoforms. C9ORF72 aberrant splicing was substantially elevated in both C9 NRE+ motor neurons and human brain tissues. Furthermore, NREs above the pathological threshold were sufficient to activate cryptic splice sites in reporter mRNAs. In summary, our results revealed a crucial and potentially widespread role of repeat-induced aberrant splicing in the biogenesis, localization, and translation of NRE-containing RNAs.
Collapse
Affiliation(s)
- Suzhou Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Denethi Wijegunawardana
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Udit Sheth
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Austin M. Veire
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Juliana M. S. Salgado
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Manasi Agrawal
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeffrey Zhou
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - João D. Pereira
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tania F. Gendron
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Junjie U. Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
8
|
Tierney JAS, Świrski M, Tjeldnes H, Mudge JM, Kufel J, Whiffin N, Valen E, Baranov PV. Ribosome Decision Graphs for the Representation of Eukaryotic RNA Translation Complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566564. [PMID: 37986835 PMCID: PMC10659439 DOI: 10.1101/2023.11.10.566564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, both within annotated protein-coding and non-coding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term Ribosome Decision Graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the later 'translons'. Non-deterministic events, such as initiation, re-initiation, selenocysteine insertion or ribosomal frameshifting are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions, analysis of genetic variation and quantitative genome-wide data on translation for characterisation of regulatory modulators of translation.
Collapse
Affiliation(s)
- Jack A S Tierney
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Håkon Tjeldnes
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nicola Whiffin
- The Big Data Institute and Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Anderson R, Das M, Chang Y, Farenhem K, Jain A. CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562581. [PMID: 37904984 PMCID: PMC10614865 DOI: 10.1101/2023.10.16.562581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Expansions of CAG trinucleotide repeats cause several rare neurodegenerative diseases. The disease-causing repeats are translated in multiple reading frames, without an identifiable initiation codon. The molecular mechanism of this repeat-associated non-AUG (RAN) translation is not known. We find that expanded CAG repeats create new splice acceptor sites. Splicing of proximal donors to the repeats produces unexpected repeat-containing transcripts. Upon splicing, depending on the sequences surrounding the donor, CAG repeats may become embedded in AUG-initiated open reading frames. Canonical AUG-initiated translation of these aberrant RNAs accounts for proteins that are attributed to RAN translation. Disruption of the relevant splice donors or the in-frame AUG initiation codons is sufficient to abrogate RAN translation. Our findings provide a molecular explanation for the abnormal translation products observed in CAG trinucleotide repeat expansion disorders and add to the repertoire of mechanisms by which repeat expansion mutations disrupt cellular functions.
Collapse
Affiliation(s)
- Rachel Anderson
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Michael Das
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Yeonji Chang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Kelsey Farenhem
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Ankur Jain
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Morón-Oset J, Fischer LKS, Jauré N, Zhang P, Jahn AJ, Supèr T, Pahl A, Isaacs AM, Grönke S, Partridge L. Repeat length of C9orf72-associated glycine-alanine polypeptides affects their toxicity. Acta Neuropathol Commun 2023; 11:140. [PMID: 37644512 PMCID: PMC10463776 DOI: 10.1186/s40478-023-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023] Open
Abstract
G4C2 hexanucleotide repeat expansions in a non-coding region of the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G4C2 insertion length is variable, and patients can carry up to several thousand repeats. Dipeptide repeat proteins (DPRs) translated from G4C2 transcripts are thought to be a main driver of toxicity. Experiments in model organisms with relatively short DPRs have shown that arginine-rich DPRs are most toxic, while polyGlycine-Alanine (GA) DPRs cause only mild toxicity. However, GA is the most abundant DPR in patient brains, and experimental work in animals has generally relied on the use of low numbers of repeats, with DPRs often tagged for in vivo tracking. Whether repeat length or tagging affect the toxicity of GA has not been systematically assessed. Therefore, we generated Drosophila fly lines expressing GA100, GA200 or GA400 specifically in adult neurons. Consistent with previous studies, expression of GA100 and GA200 caused only mild toxicity. In contrast, neuronal expression of GA400 drastically reduced climbing ability and survival of flies, indicating that long GA DPRs can be highly toxic in vivo. This toxicity could be abolished by tagging GA400. Proteomics analysis of fly brains showed a repeat-length-dependent modulation of the brain proteome, with GA400 causing earlier and stronger changes than shorter GA proteins. PolyGA expression up-regulated proteins involved in ER to Golgi trafficking, and down-regulated proteins involved in insulin signalling. Experimental down-regulation of Tango1, a highly conserved regulator of ER-to Golgi transport, partially rescued GA400 toxicity, suggesting that misregulation of this process contributes to polyGA toxicity. Experimentally increasing insulin signaling also rescued GA toxicity. In summary, our data show that long polyGA proteins can be highly toxic in vivo, and that they may therefore contribute to ALS/FTD pathogenesis in patients.
Collapse
Affiliation(s)
- Javier Morón-Oset
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | | | - Nathalie Jauré
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Pingze Zhang
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Annika Julia Jahn
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Tessa Supèr
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - André Pahl
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Porquet F, Weidong L, Jehasse K, Gazon H, Kondili M, Blacher S, Massotte L, Di Valentin E, Furling D, Gillet NA, Klein AF, Seutin V, Willems L. Specific DMPK-promoter targeting by CRISPRi reverses myotonic dystrophy type 1-associated defects in patient muscle cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:857-871. [PMID: 37273786 PMCID: PMC10238591 DOI: 10.1016/j.omtn.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disease that originates from an expansion of CTG microsatellites in the 3' untranslated region of the DMPK gene, thus leading to the expression of transcripts containing expanded CUG repeats (CUGexp). The pathophysiology is explained by a toxic RNA gain of function where CUGexp RNAs form nuclear aggregates that sequester and alter the function of MBNL splicing factors, triggering splicing misregulation linked to the DM1 symptoms. There is currently no cure for DM1, and most therapeutic strategies aim at eliminating CUGexp-DMPK transcripts. Here, we investigate a DMPK-promoter silencing strategy using CRISPR interference as a new alternative approach. Different sgRNAs targeting the DMPK promoter are evaluated in DM1 patient muscle cells. The most effective guides allowed us to reduce the level of DMPK transcripts and CUGexp-RNA aggregates up to 80%. The CUGexp-DMPK repression corrects the overall transcriptome, including spliceopathy, and reverses a physiological parameter in DM1 muscle cells. Its action is specific and restricted to the DMPK gene, as confirmed by genome-wide expression analysis. Altogether, our findings highlight DMPK-promoter silencing by CRISPRi as a promising therapeutic approach for DM1.
Collapse
Affiliation(s)
- Florent Porquet
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Lin Weidong
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| | - Kévin Jehasse
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
| | - Hélène Gazon
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| | - Maria Kondili
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Silvia Blacher
- Laboratory of Biology of Tumor and Development, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| | - Laurent Massotte
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
| | | | - Denis Furling
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Nicolas Albert Gillet
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, 5000 Namur, Belgium
| | - Arnaud François Klein
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Vincent Seutin
- Laboratory of Neurophysiology, GIGA-Neurosciences, ULiège, 4000 Liège, Belgium
| | - Luc Willems
- Laboratory of Molecular and Cellular Epigenetics, GIGA-Cancer, ULiège, 4000 Liège, Belgium
| |
Collapse
|
12
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|
13
|
Al-Turki TM, Griffith JD. Mammalian telomeric RNA (TERRA) can be translated to produce valine-arginine and glycine-leucine dipeptide repeat proteins. Proc Natl Acad Sci U S A 2023; 120:e2221529120. [PMID: 36812212 PMCID: PMC9992779 DOI: 10.1073/pnas.2221529120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Mammalian telomeres consist of (TTAGGG)n repeats. Transcription of the C-rich strand generates a G-rich RNA, termed TERRA, containing G-quadruplex structures. Recent discoveries in several human nucleotide expansion diseases revealed that RNA transcripts containing long runs of 3 or 6 nt repeats which can form strong secondary structures can be translated in multiple frames to generate homopeptide or dipeptide repeat proteins, and multiple studies have shown them to be toxic in cells. We noted that the translation of TERRA would generate two dipeptide repeat proteins: highly charged repeating valine-arginine (VR)n and hydrophobic repeating glycine-leucine (GL)n. Here, we synthesized these two dipeptide proteins and raised polyclonal antibodies to VR. The VR dipeptide repeat protein binds nucleic acids and localizes strongly to replication forks in DNA. Both VR and GL form long 8-nm filaments with amyloid properties. Using labeled antibodies to VR and laser scanning confocal microscopy, threefold to fourfold more VR was observed in the nuclei of cell lines containing elevated TERRA as contrasted to a primary fibroblast line. Induction of telomere dysfunction via knockdown of TRF2 led to higher amounts of VR, and alteration of TERRA levels using a locked nucleic acid (LNA) GapmeR led to large nuclear VR aggregates. These observations suggest that telomeres, in particular in cells undergoing telomere dysfunction, may express two dipeptide repeat proteins with potentially strong biological properties.
Collapse
Affiliation(s)
- Taghreed M. Al-Turki
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
| |
Collapse
|
14
|
Repeat-associated non-AUG translation induces cytoplasmic aggregation of CAG repeat-containing RNAs. Proc Natl Acad Sci U S A 2023; 120:e2215071120. [PMID: 36623192 PMCID: PMC9934169 DOI: 10.1073/pnas.2215071120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
CAG trinucleotide repeat expansions cause several neurodegenerative diseases, including Huntington's disease and spinocerebellar ataxia. RNAs with expanded CAG repeats contribute to disease in two unusual ways. First, these repeat-containing RNAs may agglomerate in the nucleus as foci that sequester several RNA-binding proteins. Second, these RNAs may undergo aberrant repeat-associated non-AUG (RAN) translation in multiple frames and produce aggregation-prone proteins. The relationship between RAN translation and RNA foci, and their relative contributions to cellular dysfunction, are unclear. Here, we show that CAG repeat-containing RNAs that undergo RAN translation first accumulate at nuclear foci and, over time, are exported to the cytoplasm. In the cytoplasm, these RNAs are initially dispersed but, upon RAN translation, aggregate with the RAN translation products. These RNA-RAN protein agglomerates sequester various RNA-binding proteins and are associated with the disruption of nucleocytoplasmic transport and cell death. In contrast, RNA accumulation at nuclear foci alone does not produce discernable defects in nucleocytoplasmic transport or cell viability. Inhibition of RAN translation prevents cytoplasmic RNA aggregation and alleviates cell toxicity. Our findings demonstrate that RAN translation-induced RNA-protein aggregation correlates with the key pathological hallmarks observed in disease and suggest that cytoplasmic RNA aggregation may be an underappreciated phenomenon in CAG trinucleotide repeat expansion disorders.
Collapse
|
15
|
Kim G, Chen X, Yang Y. Pathogenic Extracellular Vesicle (EV) Signaling in Amyotrophic Lateral Sclerosis (ALS). Neurotherapeutics 2022; 19:1119-1132. [PMID: 35426061 PMCID: PMC9587178 DOI: 10.1007/s13311-022-01232-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), once considered a pathway for cells to remove waste, have now emerged as an important mechanism for intercellular communication. EVs are particularly appealing in understanding the central nervous system (CNS) communication, given that there are very diverse cell types in the CNS and constant communications among various cells to respond to the frequently changing environment. While they are heterogeneous and new vesicles are continuously to be discovered, EVs are primarily classified as plasma membrane-derived microvesicles (MVs) and endosome-derived exosomes. Secretion of EVs has been shown from all CNS cell types in vitro and intercellular EV signaling has been implicated in neural development, axon integrity, neuron to glia communication, and propagation of protein aggregates formed by disease pathogenic proteins. However, significant hurdles remain to be tackled in understanding their physiological and pathological roles as well as how they can be developed as biomarkers or new therapeutics. Here we provide our summary on the known cell biology of EVs and discuss opportunities and challenges in understanding EV biology in the CNS and particularly their involvement in ALS pathogenesis.
Collapse
Affiliation(s)
- Gloria Kim
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Xuan Chen
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
16
|
Andreev DE, Loughran G, Fedorova AD, Mikhaylova MS, Shatsky IN, Baranov PV. Non-AUG translation initiation in mammals. Genome Biol 2022; 23:111. [PMID: 35534899 PMCID: PMC9082881 DOI: 10.1186/s13059-022-02674-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Recent proteogenomic studies revealed extensive translation outside of annotated protein coding regions, such as non-coding RNAs and untranslated regions of mRNAs. This non-canonical translation is largely due to start codon plurality within the same RNA. This plurality is often due to the failure of some scanning ribosomes to recognize potential start codons leading to initiation downstream—a process termed leaky scanning. Codons other than AUG (non-AUG) are particularly leaky due to their inefficiency. Here we discuss our current understanding of non-AUG initiation. We argue for a near-ubiquitous role of non-AUG initiation in shaping the dynamic composition of mammalian proteomes.
Collapse
|
17
|
Gu X, Richman J, Langfelder P, Wang N, Zhang S, Bañez-Coronel M, Wang HB, Yang L, Ramanathan L, Deng L, Park CS, Choi CR, Cantle JP, Gao F, Gray M, Coppola G, Bates GP, Ranum LPW, Horvath S, Colwell CS, Yang XW. Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice. Neuron 2022; 110:1173-1192.e7. [PMID: 35114102 PMCID: PMC9462388 DOI: 10.1016/j.neuron.2022.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In Huntington's disease (HD), the uninterrupted CAG repeat length, but not the polyglutamine length, predicts disease onset. However, the underlying pathobiology remains unclear. Here, we developed bacterial artificial chromosome (BAC) transgenic mice expressing human mutant huntingtin (mHTT) with uninterrupted, and somatically unstable, CAG repeats that exhibit progressive disease-related phenotypes. Unlike prior mHTT transgenic models with stable, CAA-interrupted, polyglutamine-encoding repeats, BAC-CAG mice show robust striatum-selective nuclear inclusions and transcriptional dysregulation resembling those in murine huntingtin knockin models and HD patients. Importantly, the striatal transcriptionopathy in HD models is significantly correlated with their uninterrupted CAG repeat length but not polyglutamine length. Finally, among the pathogenic entities originating from mHTT genomic transgenes and only present or enriched in the uninterrupted CAG repeat model, somatic CAG repeat instability and nuclear mHTT aggregation are best correlated with early-onset striatum-selective molecular pathogenesis and locomotor and sleep deficits, while repeat RNA-associated pathologies and repeat-associated non-AUG (RAN) translation may play less selective or late pathogenic roles, respectively.
Collapse
Affiliation(s)
- Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Richman
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Langfelder
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nan Wang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shasha Zhang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Monica Bañez-Coronel
- Center for Neurogenetics, Department of Molecular Genetics and Microbiology, College of Medicine, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute of Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Huei-Bin Wang
- Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lucia Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lalini Ramanathan
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linna Deng
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chang Sin Park
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher R Choi
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey P Cantle
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fuying Gao
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelle Gray
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Giovanni Coppola
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gillian P Bates
- Huntington's Disease Centre, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Laura P W Ranum
- Center for Neurogenetics, Department of Molecular Genetics and Microbiology, College of Medicine, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute of Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher S Colwell
- Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Masrori P, Beckers J, Gossye H, Van Damme P. The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Mol Neurodegener 2022; 17:22. [PMID: 35303907 PMCID: PMC8932121 DOI: 10.1186/s13024-022-00525-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is an important hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). An inflammatory reaction to neuronal injury is deemed vital for neuronal health and homeostasis. However, a continued activation of the inflammatory response can be detrimental to remaining neurons and aggravate the disease process. Apart from a disease modifying role, some evidence suggests that neuroinflammation may also contribute to the upstream cause of the disease. In this review, we will first focus on the role of neuroinflammation in the pathogenesis of chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansions (HRE)-mediated ALS/FTD (C9-ALS/FTD). Additionally, we will discuss evidence from ex vivo and in vivo studies and finally, we briefly summarize the trials and progress of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Pegah Masrori
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium.,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium
| | - Helena Gossye
- Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium.,VIB Center for Molecular Neurology, Neurodegenerative Brain Diseases, University of Antwerp, 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium. .,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium. .,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
19
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
20
|
Fourier A, Quadrio I. Proteinopathies associated to repeat expansion disorders. J Neural Transm (Vienna) 2022; 129:173-185. [DOI: 10.1007/s00702-021-02454-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
|
21
|
Loureiro JR, Castro AF, Figueiredo AS, Silveira I. Molecular Mechanisms in Pentanucleotide Repeat Diseases. Cells 2022; 11:cells11020205. [PMID: 35053321 PMCID: PMC8773600 DOI: 10.3390/cells11020205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
The number of neurodegenerative diseases resulting from repeat expansion has increased extraordinarily in recent years. In several of these pathologies, the repeat can be transcribed in RNA from both DNA strands producing, at least, one toxic RNA repeat that causes neurodegeneration by a complex mechanism. Recently, seven diseases have been found caused by a novel intronic pentanucleotide repeat in distinct genes encoding proteins highly expressed in the cerebellum. These disorders are clinically heterogeneous being characterized by impaired motor function, resulting from ataxia or epilepsy. The role that apparently normal proteins from these mutant genes play in these pathologies is not known. However, recent advances in previously known spinocerebellar ataxias originated by abnormal non-coding pentanucleotide repeats point to a gain of a toxic function by the pathogenic repeat-containing RNA that abnormally forms nuclear foci with RNA-binding proteins. In cells, RNA foci have been shown to be formed by phase separation. Moreover, the field of repeat expansions has lately achieved an extraordinary progress with the discovery that RNA repeats, polyglutamine, and polyalanine proteins are crucial for the formation of nuclear membraneless organelles by phase separation, which is perturbed when they are expanded. This review will cover the amazing advances on repeat diseases.
Collapse
Affiliation(s)
- Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana S. Figueiredo
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-2240-8800
| |
Collapse
|
22
|
Guo S, Nguyen L, Ranum LPW. RAN proteins in neurodegenerative disease: Repeating themes and unifying therapeutic strategies. Curr Opin Neurobiol 2021; 72:160-170. [PMID: 34953315 DOI: 10.1016/j.conb.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
Microsatellite-expansion mutations cause >50 neurological diseases but there are no effective treatments. Mechanistic studies have historically focused on protein loss-of-function and protein or RNA gain-of-function effects. It is now clear that many expansion mutations are bidirectionally transcribed producing two toxic expansion RNAs, which can produce up to six mutant proteins by repeat associated non-AUG (RAN) translation. Multiple types of RAN proteins have been shown to be toxic in cell and animal models, to lead to common types of neuropathological changes, and to dysregulate key pathways. How RAN proteins are produced without the canonical AUG or close-cognate AUG-like initiation codons is not yet completely understood but RNA structure, flanking sequences and stress pathways have been shown to be important. Here, we summarize recent progress in understanding the role of RAN proteins, mechanistic insights into their production, and the identification of novel therapeutic strategies that may be applicable across these neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu Guo
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA
| | - Lien Nguyen
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA.
| | - Laura P W Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA; Genetics Institute, University of Florida, USA; McKnight Brain Institute, University of Florida, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, USA.
| |
Collapse
|
23
|
Koehorst E, Núñez-Manchón J, Ballester-López A, Almendrote M, Lucente G, Arbex A, Chojnacki J, Vázquez-Manrique RP, Gómez-Escribano AP, Pintos-Morell G, Coll-Cantí J, Ramos-Fransi A, Martínez-Piñeiro A, Suelves M, Nogales-Gadea G. Characterization of RAN Translation and Antisense Transcription in Primary Cell Cultures of Patients with Myotonic Dystrophy Type 1. J Clin Med 2021; 10:jcm10235520. [PMID: 34884222 PMCID: PMC8658563 DOI: 10.3390/jcm10235520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a muscular dystrophy with a multi-systemic nature. It was one of the first diseases in which repeat associated non-ATG (RAN) translation was described in 2011, but has not been further explored since. In order to enhance our knowledge of RAN translation in DM1, we decided to study the presence of DM1 antisense (DM1-AS) transcripts (the origin of the polyglutamine (polyGln) RAN protein) using RT-PCR and FISH, and that of RAN translation via immunoblotting and immunofluorescence in distinct DM1 primary cell cultures, e.g., myoblasts, skin fibroblasts and lymphoblastoids, from ten patients. DM1-AS transcripts were found in all DM1 cells, with a lower expression in patients compared to controls. Antisense RNA foci were found in the nuclei and cytoplasm of a subset of DM1 cells. The polyGln RAN protein was undetectable in all three cell types with both approaches. Immunoblots revealed a 42 kD polyGln containing protein, which was most likely the TATA-box-binding protein. Immunofluorescence revealed a cytoplasmic aggregate, which co-localized with the Golgi apparatus. Taken together, DM1-AS transcript levels were lower in patients compared to controls and a small portion of the transcripts included the expanded repeat. However, RAN translation was not present in patient-derived DM1 cells, or was in undetectable quantities for the available methods.
Collapse
Affiliation(s)
- Emma Koehorst
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
| | - Alfonsina Ballester-López
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
| | - Miriam Almendrote
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Giuseppe Lucente
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Andrea Arbex
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | | | - Rafael P. Vázquez-Manrique
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Ana Pilar Gómez-Escribano
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Guillem Pintos-Morell
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Reference Unit for Hereditary Metabolic Disorders (MetabERN), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Jaume Coll-Cantí
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alba Ramos-Fransi
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Mònica Suelves
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
- Correspondence: ; Tel.: +34-930330530
| |
Collapse
|
24
|
Perez BA, Shorrock HK, Banez‐Coronel M, Zu T, Romano LEL, Laboissonniere LA, Reid T, Ikeda Y, Reddy K, Gomez CM, Bird T, Ashizawa T, Schut LJ, Brusco A, Berglund JA, Hasholt LF, Nielsen JE, Subramony SH, Ranum LPW. CCG•CGG interruptions in high-penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Mol Med 2021; 13:e14095. [PMID: 34632710 PMCID: PMC8573593 DOI: 10.15252/emmm.202114095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
Spinocerebellar ataxia type 8 (SCA8), a dominantly inherited neurodegenerative disorder caused by a CTG•CAG expansion, is unusual because most individuals that carry the mutation do not develop ataxia. To understand the variable penetrance of SCA8, we studied the molecular differences between highly penetrant families and more common sporadic cases (82%) using a large cohort of SCA8 families (n = 77). We show that repeat expansion mutations from individuals with multiple affected family members have CCG•CGG interruptions at a higher frequency than sporadic SCA8 cases and that the number of CCG•CGG interruptions correlates with age at onset. At the molecular level, CCG•CGG interruptions increase RNA hairpin stability, and in cell culture experiments, increase p-eIF2α and polyAla and polySer RAN protein levels. Additionally, CCG•CGG interruptions, which encode arginine interruptions in the polyGln frame, increase toxicity of the resulting proteins. In summary, SCA8 CCG•CGG interruptions increase polyAla and polySer RAN protein levels, polyGln protein toxicity, and disease penetrance and provide novel insight into the molecular differences between SCA8 families with high vs. low disease penetrance.
Collapse
Affiliation(s)
- Barbara A Perez
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Hannah K Shorrock
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Monica Banez‐Coronel
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Tao Zu
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Lisa EL Romano
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Lauren A Laboissonniere
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Tammy Reid
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Yoshio Ikeda
- Department of NeurologyGunma UniversityMaebashiJapan
| | - Kaalak Reddy
- RNA InstituteUniversity at Albany–SUNYAlbanyNYUSA
| | | | - Thomas Bird
- Department of NeurologyUniversity of WashingtonSeattleWAUSA
- Geriatrics Research SectionVA Puget Sound Health Care SystemSeattleWAUSA
| | - Tetsuo Ashizawa
- Department of NeurologyHouston Methodist Research InstituteHoustonTXUSA
| | | | - Alfredo Brusco
- Department of Medical SciencesUniversity of TorinoTorinoItaly
- Medical Genetics Units“Città della Salute e della Scienza” University HospitalTorinoItaly
| | - J Andrew Berglund
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- RNA InstituteUniversity at Albany–SUNYAlbanyNYUSA
| | - Lis F Hasholt
- Institute of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Jorgen E Nielsen
- Department of NeurologyRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - SH Subramony
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- McKnight Brain InstituteUniversity of FloridaGainesvilleFLUSA
| | - Laura PW Ranum
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
- McKnight Brain InstituteUniversity of FloridaGainesvilleFLUSA
- Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
25
|
Sonobe Y, Aburas J, Krishnan G, Fleming AC, Ghadge G, Islam P, Warren EC, Gu Y, Kankel MW, Brown AEX, Kiskinis E, Gendron TF, Gao FB, Roos RP, Kratsios P. A C. elegans model of C9orf72-associated ALS/FTD uncovers a conserved role for eIF2D in RAN translation. Nat Commun 2021; 12:6025. [PMID: 34654821 PMCID: PMC8519953 DOI: 10.1038/s41467-021-26303-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
A hexanucleotide repeat expansion GGGGCC in the non-coding region of C9orf72 is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Toxic dipeptide repeats (DPRs) are synthesized from GGGGCC via repeat-associated non-AUG (RAN) translation. Here, we develop C. elegans models that express, either ubiquitously or exclusively in neurons, 75 GGGGCC repeats flanked by intronic C9orf72 sequence. The worms generate DPRs (poly-glycine-alanine [poly-GA], poly-glycine-proline [poly-GP]) and poly-glycine-arginine [poly-GR]), display neurodegeneration, and exhibit locomotor and lifespan defects. Mutation of a non-canonical translation-initiating codon (CUG) upstream of the repeats selectively reduces poly-GA steady-state levels and ameliorates disease, suggesting poly-GA is pathogenic. Importantly, loss-of-function mutations in the eukaryotic translation initiation factor 2D (eif-2D/eIF2D) reduce poly-GA and poly-GP levels, and increase lifespan in both C. elegans models. Our in vitro studies in mammalian cells yield similar results. Here, we show a conserved role for eif-2D/eIF2D in DPR expression.
Collapse
Affiliation(s)
- Yoshifumi Sonobe
- grid.412578.d0000 0000 8736 9513University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.412578.d0000 0000 8736 9513Department of Neurology, University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL USA
| | - Jihad Aburas
- grid.412578.d0000 0000 8736 9513University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Department of Neurobiology, University of Chicago, Chicago, IL USA
| | - Gopinath Krishnan
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Andrew C. Fleming
- grid.16753.360000 0001 2299 3507The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Ghanashyam Ghadge
- grid.412578.d0000 0000 8736 9513University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.412578.d0000 0000 8736 9513Department of Neurology, University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL USA
| | - Priota Islam
- grid.14105.310000000122478951MRC London Institute of Medical Sciences, London, UK ,grid.7445.20000 0001 2113 8111Institute of Clinical Sciences, Imperial College London, London, UK
| | - Eleanor C. Warren
- grid.14105.310000000122478951MRC London Institute of Medical Sciences, London, UK ,grid.7445.20000 0001 2113 8111Institute of Clinical Sciences, Imperial College London, London, UK
| | - Yuanzheng Gu
- grid.417832.b0000 0004 0384 8146Neuromuscular & Movement Disorders, Biogen, Cambridge, MA 02142 USA
| | - Mark W. Kankel
- grid.417832.b0000 0004 0384 8146Neuromuscular & Movement Disorders, Biogen, Cambridge, MA 02142 USA
| | - André E. X. Brown
- grid.14105.310000000122478951MRC London Institute of Medical Sciences, London, UK ,grid.7445.20000 0001 2113 8111Institute of Clinical Sciences, Imperial College London, London, UK
| | - Evangelos Kiskinis
- grid.16753.360000 0001 2299 3507The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Tania F. Gendron
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Fen-Biao Gao
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Raymond P. Roos
- grid.412578.d0000 0000 8736 9513University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.412578.d0000 0000 8736 9513Department of Neurology, University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL USA
| | - Paschalis Kratsios
- University of Chicago Medical Center, 5841S. Maryland Avenue, Chicago, IL, 60637, USA. .,The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL, USA. .,Department of Neurobiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
McGurk L, Rifai OM, Shcherbakova O, Perlegos AE, Byrns CN, Carranza FR, Zhou HW, Kim HJ, Zhu Y, Bonini NM. Toxicity of pathogenic ataxin-2 in Drosophila shows dependence on a pure CAG repeat sequence. Hum Mol Genet 2021; 30:1797-1810. [PMID: 34077532 PMCID: PMC8444453 DOI: 10.1093/hmg/ddab148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia type 2 is a polyglutamine (polyQ) disease associated with an expanded polyQ domain within the protein product of the ATXN2 gene. Interestingly, polyQ repeat expansions in ATXN2 are also associated with amyotrophic lateral sclerosis (ALS) and parkinsonism depending upon the length of the polyQ repeat expansion. The sequence encoding the polyQ repeat also varies with disease presentation: a pure CAG repeat is associated with SCA2, whereas the CAG repeat in ALS and parkinsonism is typically interrupted with the glutamine encoding CAA codon. Here, we asked if the purity of the CAG sequence encoding the polyQ repeat in ATXN2 could impact the toxicity of the ataxin-2 protein in vivo in Drosophila. We found that ataxin-2 encoded by a pure CAG repeat conferred toxicity in the retina and nervous system, whereas ataxin-2 encoded by a CAA-interrupted repeat or CAA-only repeat failed to confer toxicity, despite expression of the protein at similar levels. Furthermore, the CAG-encoded ataxin-2 protein aggregated in the fly eye, while ataxin-2 encoded by either a CAA/G or CAA repeat remained diffuse. The toxicity of the CAG-encoded ataxin-2 protein was also sensitive to the translation factor eIF4H, a known modifier of the toxic GGGGCC repeat in flies. These data indicate that ataxin-2 encoded by a pure CAG versus interrupted CAA/G polyQ repeat domain is associated with differential toxicity, indicating that mechanisms associated with the purity of the sequence of the polyQ domain contribute to disease.
Collapse
Affiliation(s)
- Leeanne McGurk
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia M Rifai
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - China N Byrns
- Neurosciences Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Medical Sciences Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Faith R Carranza
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry W Zhou
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyung-Jun Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yongqing Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Neurosciences Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Coni S, Falconio FA, Marzullo M, Munafò M, Zuliani B, Mosti F, Fatica A, Ianniello Z, Bordone R, Macone A, Agostinelli E, Perna A, Matkovic T, Sigrist S, Silvestri G, Canettieri G, Ciapponi L. Translational control of polyamine metabolism by CNBP is required for Drosophila locomotor function. eLife 2021; 10:69269. [PMID: 34517941 PMCID: PMC8439652 DOI: 10.7554/elife.69269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/08/2021] [Indexed: 01/19/2023] Open
Abstract
Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.
Collapse
Affiliation(s)
- Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica A Falconio
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy.,Department of Life Sciences Imperial College London South Kensington campus, London, United Kingdom
| | - Marta Marzullo
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy.,IBPM CNR c/o Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Marzia Munafò
- European Molecular Biology Laboratory (EMBL) Epigenetics & Neurobiology Unit, Campus Adriano Buzzati-Traverso, Monterotond, Italy
| | - Benedetta Zuliani
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Federica Mosti
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy.,Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Alessandro Fatica
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy.,International Polyamines Foundation 'ETS-ONLUS', Rome, Italy
| | - Alessia Perna
- Department of Neuroscience, Fondazione Policlinico Gemelli IRCCS, University Cattolica del S. Cuore, Roma, Italy
| | - Tanja Matkovic
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Stephan Sigrist
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Gabriella Silvestri
- Department of Neuroscience, Fondazione Policlinico Gemelli IRCCS, University Cattolica del S. Cuore, Roma, Italy.,Department of Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della testa-Collo; UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,International Polyamines Foundation 'ETS-ONLUS', Rome, Italy.,Pasteur Institute, Fondazione Cenci-Bolognetti, Rome, Italy
| | - Laura Ciapponi
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22:589-607. [PMID: 34140671 PMCID: PMC9612635 DOI: 10.1038/s41580-021-00382-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The human genome contains over one million short tandem repeats. Expansion of a subset of these repeat tracts underlies over fifty human disorders, including common genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (C9orf72), polyglutamine-associated ataxias and Huntington disease, myotonic dystrophy, and intellectual disability disorders such as Fragile X syndrome. In this Review, we discuss the four major mechanisms by which expansion of short tandem repeats causes disease: loss of function through transcription repression, RNA-mediated gain of function through gelation and sequestration of RNA-binding proteins, gain of function of canonically translated repeat-harbouring proteins, and repeat-associated non-AUG translation of toxic repeat peptides. Somatic repeat instability amplifies these mechanisms and influences both disease age of onset and tissue specificity of pathogenic features. We focus on the crosstalk between these disease mechanisms, and argue that they often synergize to drive pathogenesis. We also discuss the emerging native functions of repeat elements and how their dynamics might contribute to disease at a larger scale than currently appreciated. Lastly, we propose that lynchpins tying these disease mechanisms and native functions together offer promising therapeutic targets with potential shared applications across this class of human disorders.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Chase P Kelley
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Zhao X, Usdin K. (Dys)function Follows Form: Nucleic Acid Structure, Repeat Expansion, and Disease Pathology in FMR1 Disorders. Int J Mol Sci 2021; 22:ijms22179167. [PMID: 34502075 PMCID: PMC8431139 DOI: 10.3390/ijms22179167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5' UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| | - Karen Usdin
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| |
Collapse
|
30
|
Ayala YM, Nguyen AD. RNA-Based Therapies for Neurodegenerative Diseases. MISSOURI MEDICINE 2021; 118:340-345. [PMID: 34373669 PMCID: PMC8343627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most neurodegenerative disorders afflict the ageing population and are often incurable. Therefore, therapeutic development is a major focus in biomedical research. We highlight a new class of drugs, RNA molecules, to control gene expression and decrease neurotoxicity. Their efficacy is shown in pre-clinical studies, clinical trials and in cases of approved patient treatment. As the number of RNA-based strategies increases, so does the promise of targeting more disease-associated genes through a variety of different mechanisms.
Collapse
Affiliation(s)
- Yuna M Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology
| | - Andrew D Nguyen
- Departments of Internal Medicine and Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Haify SN, Buijsen RAM, Verwegen L, Severijnen LAWFM, de Boer H, Boumeester V, Monshouwer R, Yang WY, Cameron MD, Willemsen R, Disney MD, Hukema RK. Small molecule 1a reduces FMRpolyG-mediated toxicity in in vitro and in vivo models for FMR1 premutation. Hum Mol Genet 2021; 30:1632-1648. [PMID: 34077515 PMCID: PMC8369842 DOI: 10.1093/hmg/ddab143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Fragile X-associated tremor and ataxia syndrome (FXTAS) is a late-onset, progressive neurodegenerative disorder characterized by tremors, ataxia and neuropsychological problems. This disease is quite common in the general population with approximately 20 million carriers worldwide. The risk of developing FXTAS increases dramatically with age, with about 45% of male carriers over the age of 50 being affected. FXTAS is caused by a CGG-repeat expansion (CGGexp) in the fragile X mental retardation 1 (FMR1) gene. CGGexp RNA is translated into the FMRpolyG protein by a mechanism called RAN translation. Although both gene and pathogenic trigger are known, no therapeutic interventions are available at this moment. Here, we present, for the first time, primary hippocampal neurons derived from the ubiquitous inducible mouse model which is used as a screening tool for targeted interventions. A promising candidate is the repeat binding, RAN translation blocking, small molecule 1a. Small molecule 1a shields the disease-causing CGGexp from being translated into the toxic FMRpolyG protein. Primary hippocampal neurons formed FMRpolyG-positive inclusions, and upon treatment with 1a, the numbers of FMRpolyG-positive inclusions are reduced. We also describe for the first time the formation of FMRpolyG-positive inclusions in the liver of this mouse model. Treatment with 1a reduced the insoluble FMRpolyG protein fraction in the liver but not the number of inclusions. Moreover, 1a treatment had a reducing effect on the number of Rad23b-positive inclusions and insoluble Rad23b protein levels. These data suggest that targeted small molecule therapy is effective in an FXTAS mouse model and has the potential to treat CGGexp-mediated diseases, including FXTAS.
Collapse
Affiliation(s)
- Saif N Haify
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Ronald A M Buijsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands.,Department of Human Genetics, LUMC, Leiden, the Netherlands
| | - Lucas Verwegen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Helen de Boer
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | | | - Roos Monshouwer
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Wong Y Yang
- Department of Chemistry, Scripps Research Institute, Florida, the United States
| | - Michael D Cameron
- Department of Chemistry, Scripps Research Institute, Florida, the United States
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Matthew D Disney
- Department of Chemistry, Scripps Research Institute, Florida, the United States
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands.,Department of Health Care Studies, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| |
Collapse
|
32
|
Nishimura AL, Arias N. Synaptopathy Mechanisms in ALS Caused by C9orf72 Repeat Expansion. Front Cell Neurosci 2021; 15:660693. [PMID: 34140881 PMCID: PMC8203826 DOI: 10.3389/fncel.2021.660693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease caused by degeneration of motor neurons (MNs). ALS pathogenic features include accumulation of misfolded proteins, glutamate excitotoxicity, mitochondrial dysfunction at distal axon terminals, and neuronal cytoskeleton changes. Synergies between loss of C9orf72 functions and gain of function by toxic effects of repeat expansions also contribute to C9orf72-mediated pathogenesis. However, the impact of haploinsufficiency of C9orf72 on neurons and in synaptic functions requires further examination. As the motor neurons degenerate, the disease symptoms will lead to neurotransmission deficiencies in the brain, spinal cord, and neuromuscular junction. Altered neuronal excitability, synaptic morphological changes, and C9orf72 protein and DPR localization at the synapses, suggest a potential involvement of C9orf72 at synapses. In this review article, we provide a conceptual framework for assessing the putative involvement of C9orf72 as a synaptopathy, and we explore the underlying and common disease mechanisms with other neurodegenerative diseases. Finally, we reflect on the major challenges of understanding C9orf72-ALS as a synaptopathy focusing on integrating mitochondrial and neuronal cytoskeleton degeneration as biomarkers and potential targets to treat ALS neurodegeneration.
Collapse
Affiliation(s)
- Agnes L Nishimura
- Department of Basic and Clinical Neuroscience, UK Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, UK Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
33
|
Ishiguro T, Nagai Y, Ishikawa K. Insight Into Spinocerebellar Ataxia Type 31 (SCA31) From Drosophila Model. Front Neurosci 2021; 15:648133. [PMID: 34113230 PMCID: PMC8185138 DOI: 10.3389/fnins.2021.648133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 31 (SCA31) is a progressive neurodegenerative disease characterized by degeneration of Purkinje cells in the cerebellum. Its genetic cause is a 2.5- to 3.8-kb-long complex pentanucleotide repeat insertion containing (TGGAA)n, (TAGAA)n, (TAAAA)n, and (TAAAATAGAA)n located in an intron shared by two different genes: brain expressed associated with NEDD4-1 (BEAN1) and thymidine kinase 2 (TK2). Among these repeat sequences, (TGGAA)n repeat was the only sequence segregating with SCA31, which strongly suggests its pathogenicity. In SCA31 patient brains, the mutant BEAN1 transcript containing expanded UGGAA repeats (UGGAAexp) was found to form abnormal RNA structures called RNA foci in cerebellar Purkinje cell nuclei. In addition, the deposition of pentapeptide repeat (PPR) proteins, poly(Trp-Asn-Gly-Met-Glu), translated from UGGAAexp RNA, was detected in the cytoplasm of Purkinje cells. To uncover the pathogenesis of UGGAAexp in SCA31, we generated Drosophila models of SCA31 expressing UGGAAexp RNA. The toxicity of UGGAAexp depended on its length and expression level, which was accompanied by the accumulation of RNA foci and translation of repeat-associated PPR proteins in Drosophila, consistent with the observation in SCA31 patient brains. We also revealed that TDP-43, FUS, and hnRNPA2B1, motor neuron disease–linked RNA-binding proteins bound to UGGAAexp RNA, act as RNA chaperones to regulate the formation of RNA foci and repeat-associated translation. Further research on the role of RNA-binding proteins as RNA chaperones may also provide a novel therapeutic strategy for other microsatellite repeat expansion diseases besides SCA31.
Collapse
Affiliation(s)
- Taro Ishiguro
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo City, Japan.,Department of Personalized Genomic Medicine for Health, Graduate School, Tokyo Medical and Dental University, Bunkyo City, Japan
| |
Collapse
|
34
|
Brooker SM, Edamakanti CR, Akasha SM, Kuo SH, Opal P. Spinocerebellar ataxia clinical trials: opportunities and challenges. Ann Clin Transl Neurol 2021; 8:1543-1556. [PMID: 34019331 PMCID: PMC8283160 DOI: 10.1002/acn3.51370] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited diseases that share the defining feature of progressive cerebellar ataxia. The disease process, however, is not confined to the cerebellum; other areas of the brain, in particular, the brainstem, are also affected, resulting in a high burden of morbidity and mortality. Currently, there are no disease‐modifying treatments for the SCAs, but preclinical research has led to the development of therapeutic agents ripe for testing in patients. Unfortunately, due to the rarity of these diseases and their slow and variable progression, there are substantial hurdles to overcome in conducting clinical trials. While the epidemiological features of the SCAs are immutable, the feasibility of conducting clinical trials is being addressed through a combination of strategies. These include improvements in clinical outcome measures, the identification of imaging and fluid biomarkers, and innovations in clinical trial design. In this review, we highlight current challenges in initiating clinical trials for the SCAs and also discuss pathways for researchers and clinicians to mitigate these challenges and harness opportunities for clinical trial development.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Sara M Akasha
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
35
|
Ding B, Sepehrimanesh M. Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. Int J Mol Sci 2021; 22:4165. [PMID: 33920577 PMCID: PMC8072611 DOI: 10.3390/ijms22084165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleocytoplasmic transport (NCT) across the nuclear envelope is precisely regulated in eukaryotic cells, and it plays critical roles in maintenance of cellular homeostasis. Accumulating evidence has demonstrated that dysregulations of NCT are implicated in aging and age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Huntington disease (HD). This is an emerging research field. The molecular mechanisms underlying impaired NCT and the pathogenesis leading to neurodegeneration are not clear. In this review, we comprehensively described the components of NCT machinery, including nuclear envelope (NE), nuclear pore complex (NPC), importins and exportins, RanGTPase and its regulators, and the regulatory mechanisms of nuclear transport of both protein and transcript cargos. Additionally, we discussed the possible molecular mechanisms of impaired NCT underlying aging and neurodegenerative diseases, such as ALS/FTD, HD, and AD.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, 410 East Saint Mary Boulevard, Lafayette, LA 70503, USA;
| | | |
Collapse
|
36
|
Liu H, Lu YN, Paul T, Periz G, Banco MT, Ferré-D'Amaré AR, Rothstein JD, Hayes LR, Myong S, Wang J. A Helicase Unwinds Hexanucleotide Repeat RNA G-Quadruplexes and Facilitates Repeat-Associated Non-AUG Translation. J Am Chem Soc 2021; 143:7368-7379. [PMID: 33855846 DOI: 10.1021/jacs.1c00131] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of a hexanucleotide repeat GGGGCC (G4C2) in the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The G4C2 expansion leads to repeat-associated non-AUG (RAN) translation and the production of toxic dipeptide repeat (DPR) proteins, but the mechanisms of RAN translation remain enigmatic. Here, we report that the RNA helicase DHX36 is a robust positive regulator of C9orf72 RAN translation. DHX36 has a high affinity for the G4C2 repeat RNA, preferentially binds to the repeat RNA's G-quadruplex conformation, and efficiently unwinds the G4C2 G-quadruplex structures. Native DHX36 interacts with the G4C2 repeat RNA and is essential for effective RAN translation in the cell. In induced pluripotent stem cells and differentiated motor neurons derived from C9orf72-linked ALS patients, reducing DHX36 significantly decreased the levels of endogenous DPR proteins. DHX36 is also aberrantly upregulated in tissues of C9orf72-linked ALS patients. These results indicate that DHX36 facilitates C9orf72 RAN translation by resolving repeat RNA G-quadruplex structures and may be a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Honghe Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Yu-Ning Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Michael T Banco
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States
| | - Jeffrey D Rothstein
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lindsey R Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
37
|
Tusi SK, Nguyen L, Thangaraju K, Li J, Cleary JD, Zu T, Ranum LPW. The alternative initiation factor eIF2A plays key role in RAN translation of myotonic dystrophy type 2 CCUG•CAGG repeats. Hum Mol Genet 2021; 30:1020-1029. [PMID: 33856033 DOI: 10.1093/hmg/ddab098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 01/29/2023] Open
Abstract
Repeat-associated non-ATG (RAN) proteins have been reported in 11 microsatellite expansion disorders but the factors that allow RAN translation to occur and the effects of different repeat motifs and alternative AUG-like initiation codons are unclear. We studied the mechanisms of RAN translation across myotonic dystrophy type 2 (DM2) expansion transcripts with (CCUG) or without (CAGG) efficient alternative AUG-like codons. To better understand how DM2 LPAC and QAGR RAN proteins are expressed, we generated a series of CRISPR/Cas9-edited HEK293T cell lines. We show that LPAC and QAGR RAN protein levels are reduced in protein kinase R (PKR)-/- and PKR-like endoplasmic reticulum kinase (PERK)-/- cells, with more substantial reductions of CAGG-encoded QAGR in PKR-/- cells. Experiments using mutant eIF2α-S51A HEK293T cells show that p-eIF2α is required for QAGR production. In contrast, LPAC levels were only partially reduced in these cells, suggesting that both non-AUG and close-cognate initiation occur across CCUG RNAs. Overexpression of the alternative initiation factor eIF2A increases LPAC and QAGR protein levels but, notably, has a much larger effect on QAGR expressed from CAGG-expansion RNAs that lack efficient close-cognate codons. The effects of eIF2A on increasing LPAC are consistent with previous reports that eIF2A affects CUG-initiation translation. The observation that eIF2A also increases QAGR proteins is novel because CAGG expansion transcripts do not contain CUG or similarly efficient close-cognate AUG-like codons. For QAGR but not LPAC, the eIF2A-dependent increases are not seen when p-eIF2α is blocked. These data highlight the differential regulation of DM2 RAN proteins and eIF2A as a potential therapeutic target for DM2 and other RAN diseases.
Collapse
Affiliation(s)
- Solaleh Khoramian Tusi
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lien Nguyen
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kiruphagaran Thangaraju
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Jian Li
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - John D Cleary
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Tao Zu
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
38
|
Jhan CR, Satange R, Wang SC, Zeng JY, Horng YC, Jin P, Neidle S, Hou MH. Targeting the ALS/FTD-associated A-DNA kink with anthracene-based metal complex causes DNA backbone straightening and groove contraction. Nucleic Acids Res 2021; 49:9526-9538. [PMID: 33836081 PMCID: PMC8450080 DOI: 10.1093/nar/gkab227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA–DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA–DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a ‘hot-spot’ for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA.
Collapse
Affiliation(s)
- Cyong-Ru Jhan
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Roshan Satange
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.,Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Shun-Ching Wang
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Jing-Yi Zeng
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen Neidle
- The School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Ming-Hon Hou
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.,Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
39
|
Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders. Biochem Soc Trans 2021; 49:775-792. [PMID: 33729487 PMCID: PMC8106499 DOI: 10.1042/bst20200690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Repeat-associated non-AUG (RAN) translation was discovered in 2011 in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1). This non-canonical form of translation occurs in all reading frames from both coding and non-coding regions of sense and antisense transcripts carrying expansions of trinucleotide to hexanucleotide repeat sequences. RAN translation has since been reported in 7 of the 53 known microsatellite expansion disorders which mainly present with neurodegenerative features. RAN translation leads to the biosynthesis of low-complexity polymeric repeat proteins with aggregating and cytotoxic properties. However, the molecular mechanisms and protein factors involved in assembling functional ribosomes in absence of canonical AUG start codons remain poorly characterised while secondary repeat RNA structures play key roles in initiating RAN translation. Here, we briefly review the repeat expansion disorders, their complex pathogenesis and the mechanisms of physiological translation initiation together with the known factors involved in RAN translation. Finally, we discuss research challenges surrounding the understanding of pathogenesis and future directions that may provide opportunities for the development of novel therapeutic approaches for this group of incurable neurodegenerative diseases.
Collapse
|
40
|
Warman-Chardon J, Jasmin BJ, Kothary R, Parks RJ. Report on the 5th Ottawa International Conference on Neuromuscular Disease & Biology -October 17-19, 2019, Ottawa, Canada. J Neuromuscul Dis 2021; 8:323-334. [PMID: 33492242 DOI: 10.3233/jnd-219001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Rashmi Kothary
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Robin J Parks
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| |
Collapse
|
41
|
Azotla-Vilchis CN, Sanchez-Celis D, Agonizantes-Juárez LE, Suárez-Sánchez R, Hernández-Hernández JM, Peña J, Vázquez-Santillán K, Leyva-García N, Ortega A, Maldonado V, Rangel C, Magaña JJ, Cisneros B, Hernández-Hernández O. Transcriptome Analysis Reveals Altered Inflammatory Pathway in an Inducible Glial Cell Model of Myotonic Dystrophy Type 1. Biomolecules 2021; 11:biom11020159. [PMID: 33530452 PMCID: PMC7910866 DOI: 10.3390/biom11020159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most frequent inherited muscular dystrophy in adults, is caused by the CTG repeat expansion in the 3′UTR of the DMPK gene. Mutant DMPK RNA accumulates in nuclear foci altering diverse cellular functions including alternative splicing regulation. DM1 is a multisystemic condition, with debilitating central nervous system alterations. Although a defective neuroglia communication has been described as a contributor of the brain pathology in DM1, the specific cellular and molecular events potentially affected in glia cells have not been totally recognized. Thus, to study the effects of DM1 mutation on glial physiology, in this work, we have established an inducible DM1 model derived from the MIO-M1 cell line expressing 648 CUG repeats. This new model recreated the molecular hallmarks of DM1 elicited by a toxic RNA gain-of-function mechanism: accumulation of RNA foci colocalized with MBNL proteins and dysregulation of alternative splicing. By applying a microarray whole-transcriptome approach, we identified several gene changes associated with DM1 mutation in MIO-M1 cells, including the immune mediators CXCL10, CCL5, CXCL8, TNFAIP3, and TNFRSF9, as well as the microRNAs miR-222, miR-448, among others, as potential regulators. A gene ontology enrichment analyses revealed that inflammation and immune response emerged as major cellular deregulated processes in the MIO-M1 DM1 cells. Our findings indicate the involvement of an altered immune response in glia cells, opening new windows for the study of glia as potential contributor of the CNS symptoms in DM1.
Collapse
Affiliation(s)
- Cuauhtli N. Azotla-Vilchis
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Daniel Sanchez-Celis
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Luis E. Agonizantes-Juárez
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Escuela Nacional de Ciencias Biologicas-Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Rocío Suárez-Sánchez
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
| | - J. Manuel Hernández-Hernández
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Jorge Peña
- Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (J.P.); (C.R.)
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA
| | - Karla Vázquez-Santillán
- Epigenetics Laboratory, Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico; (K.V.-S.); (V.M.)
| | - Norberto Leyva-García
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
| | - Arturo Ortega
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico; (K.V.-S.); (V.M.)
| | - Claudia Rangel
- Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (J.P.); (C.R.)
| | - Jonathan J. Magaña
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- School of Engineering and Sciences, Department of Bioengineering, Tecnológico de Monterrey-Campus, Mexico City 14380, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Correspondence: or ; Tel.: +52-55-5999-1000 (ext. 14710)
| |
Collapse
|
42
|
Pattamatta A, Nguyen L, Olafson HR, Scotti MM, Laboissonniere LA, Richardson J, Berglund JA, Zu T, Wang ET, Ranum LPW. Repeat length increases disease penetrance and severity in C9orf72 ALS/FTD BAC transgenic mice. Hum Mol Genet 2020; 29:3900-3918. [PMID: 33378537 DOI: 10.1093/hmg/ddaa279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/14/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
C9orf72 ALS/FTD patients show remarkable clinical heterogeneity, but the complex biology of the repeat expansion mutation has limited our understanding of the disease. BAC transgenic mice were used to better understand the molecular mechanisms and repeat length effects of C9orf72 ALS/FTD. Genetic analyses of these mice demonstrate that the BAC transgene and not integration site effects cause ALS/FTD phenotypes. Transcriptomic changes in cell proliferation, inflammation and neuronal pathways are found late in disease and alternative splicing changes provide early molecular markers that worsen with disease progression. Isogenic sublines of mice with 800, 500 or 50 G4C2 repeats generated from the single-copy C9-500 line show longer repeats result in earlier onset, increased disease penetrance and increased levels of RNA foci and dipeptide RAN protein aggregates. These data demonstrate G4C2 repeat length is an important driver of disease and identify alternative splicing changes as early biomarkers of C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Amrutha Pattamatta
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lien Nguyen
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Hailey R Olafson
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Marina M Scotti
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A Laboissonniere
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Jared Richardson
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - J Andrew Berglund
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Biochemistry and Molecular Biology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,RNA Institute and Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Tao Zu
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Eric T Wang
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Colllege of Medicine, University of Florida, Gainesville, FL 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.,Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
43
|
Lee J, Park J, Kim JH, Lee G, Park TE, Yoon KJ, Kim YK, Lim C. LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLoS Biol 2020; 18:e3001002. [PMID: 33362237 PMCID: PMC7757817 DOI: 10.1371/journal.pbio.3001002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleocytoplasmic transport (NCT) defects have been implicated in neurodegenerative diseases such as C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we identify a neuroprotective pathway of like-Sm protein 12 (LSM12) and exchange protein directly activated by cyclic AMP 1 (EPAC1) that sustains the nucleocytoplasmic RAN gradient and thereby suppresses NCT dysfunction by the C9ORF72-derived poly(glycine-arginine) protein. LSM12 depletion in human neuroblastoma cells aggravated poly(GR)-induced impairment of NCT and nuclear integrity while promoting the nuclear accumulation of poly(GR) granules. In fact, LSM12 posttranscriptionally up-regulated EPAC1 expression, whereas EPAC1 overexpression rescued the RAN gradient and NCT defects in LSM12-deleted cells. C9-ALS patient-derived neurons differentiated from induced pluripotent stem cells (C9-ALS iPSNs) displayed low expression of LSM12 and EPAC1. Lentiviral overexpression of LSM12 or EPAC1 indeed restored the RAN gradient, mitigated the pathogenic mislocalization of TDP-43, and suppressed caspase-3 activation for apoptosis in C9-ALS iPSNs. EPAC1 depletion biochemically dissociated RAN-importin β1 from the cytoplasmic nuclear pore complex, thereby dissipating the nucleocytoplasmic RAN gradient essential for NCT. These findings define the LSM12-EPAC1 pathway as an important suppressor of the NCT-related pathologies in C9-ALS/FTD. A post-transcriptional circuit comprising LSM12 and EPAC1 suppresses neurodegenerative pathologies in C9ORF72-associated amyotrophic lateral sclerosis by establishing the RAN gradient and sustaining nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Jongbo Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jumin Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ji-hyung Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Giwook Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Tae-Eun Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
44
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
45
|
Schwartz JL, Jones KL, Yeo GW. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies. Crit Rev Biochem Mol Biol 2020; 56:31-53. [PMID: 33172304 PMCID: PMC8192115 DOI: 10.1080/10409238.2020.1841726] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dozens of incurable neurological disorders result from expansion of short repeat sequences in both coding and non-coding regions of the transcriptome. Short repeat expansions underlie microsatellite repeat expansion (MRE) disorders including myotonic dystrophy (DM1, CUG50–3,500 in DMPK; DM2, CCTG75–11,000 in ZNF9), fragile X tremor ataxia syndrome (FXTAS, CGG50–200 in FMR1), spinal bulbar muscular atrophy (SBMA, CAG40–55 in AR), Huntington’s disease (HD, CAG36–121 in HTT), C9ORF72-amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD and C9-ALS/FTD, GGGGCC in C9ORF72), and many others, like ataxias. Recent research has highlighted several mechanisms that may contribute to pathology in this heterogeneous class of neurological MRE disorders – bidirectional transcription, intranuclear RNA foci, and repeat associated non-AUG (RAN) translation – which are the subject of this review. Additionally, many MRE disorders share similar underlying molecular pathologies that have been recently targeted in experimental and preclinical contexts. We discuss the therapeutic potential of versatile therapeutic strategies that may selectively target disrupted RNA-based processes and may be readily adaptable for the treatment of multiple MRE disorders. Collectively, the strategies under consideration for treatment of multiple MRE disorders include reducing levels of toxic RNA, preventing RNA foci formation, and eliminating the downstream cellular toxicity associated with peptide repeats produced by RAN translation. While treatments are still lacking for the majority of MRE disorders, several promising therapeutic strategies have emerged and will be evaluated within this review.
Collapse
Affiliation(s)
- Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten Leigh Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
46
|
Jazurek-Ciesiolka M, Ciesiolka A, Komur AA, Urbanek-Trzeciak MO, Krzyzosiak WJ, Fiszer A. RAN Translation of the Expanded CAG Repeats in the SCA3 Disease Context. J Mol Biol 2020; 432:166699. [PMID: 33157084 DOI: 10.1016/j.jmb.2020.10.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene encoding the ataxin-3 protein. Despite extensive research the exact pathogenic mechanisms of SCA3 are still not understood in depth. In the present study, to gain insight into the toxicity induced by the expanded CAG repeats in SCA3, we comprehensively investigated repeat-associated non-ATG (RAN) translation in various cellular models expressing translated or non-canonically translated ATXN3 sequences with an increasing number of CAG repeats. We demonstrate that two SCA3 RAN proteins, polyglutamine (polyQ) and polyalanine (polyA), are found only in the case of CAG repeats of pathogenic length. Despite having distinct cellular localization, RAN polyQ and RAN polyA proteins are very often coexpressed in the same cell, impairing nuclear integrity and inducing apoptosis. We provide for the first time mechanistic insights into SCA3 RAN translation indicating that ATXN3 sequences surrounding the repeat region have an impact on SCA3 RAN translation initiation and efficiency. We revealed that RAN translation of polyQ proteins starts at non-cognate codons upstream of the CAG repeats, whereas RAN polyA proteins are likely translated within repeats. Furthermore, integrated stress response activation enhances SCA3 RAN translation. Our findings suggest that the ATXN3 sequence context plays an important role in triggering SCA3 RAN translation and that SCA3 RAN proteins may cause cellular toxicity.
Collapse
Affiliation(s)
- Magdalena Jazurek-Ciesiolka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Adam Ciesiolka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Alicja A Komur
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Martyna O Urbanek-Trzeciak
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
47
|
Rosbash M. Metformin treatment of the C9orf72 ALS/FTD mouse: Almost too good for words. Proc Natl Acad Sci U S A 2020; 117:19627-19628. [PMID: 32727895 PMCID: PMC7443920 DOI: 10.1073/pnas.2012363117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453;
- Department of Biology, Brandeis University, Waltham, MA 02453
| |
Collapse
|
48
|
Expanding genes, repeating themes and therapeutic schemes: The neurobiology of tandem repeat disorders. Neurobiol Dis 2020; 144:105053. [PMID: 32810583 DOI: 10.1016/j.nbd.2020.105053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Bitetto G, Di Fonzo A. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 2020; 9:25. [PMID: 32616075 PMCID: PMC7333321 DOI: 10.1186/s40035-020-00205-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role. Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage. These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance. The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases. A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.
Collapse
Affiliation(s)
- Giacomo Bitetto
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
50
|
Systematic microsatellite repeat expansion cloning and validation. Hum Genet 2020; 139:1233-1246. [PMID: 32277284 DOI: 10.1007/s00439-020-02165-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
Approximately 3% of the human genome is composed of short tandem repeat (STR) DNA sequence known as microsatellites, which can be found in both coding and non-coding regions. When associated with genic regions, expansion of microsatellite repeats beyond a critical threshold causes dozens of neurological repeat expansion disorders. To better understand the molecular pathology of repeat expansion disorders, precise cloning of microsatellite repeat sequence and expansion size is highly valuable. Unfortunately, cloning repeat expansions is often challenging and presents a significant bottleneck to practical investigation. Here, we describe a clear method for seamless and systematic cloning of practically any microsatellite repeat expansion. We use cloning and expansion of GGGGCC repeats, which are the leading genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as an example. We employ a recursive directional ligation (RDL) technique to build multiple GGGGCC repeat-containing vectors. We describe methods to validate repeat expansion cloning, including diagnostic restriction digestion, PCR across the repeat, and next-generation long-read MinION nanopore sequencing. Validated cloning of microsatellite repeats beyond the critical expansion threshold can facilitate step-by-step characterization of disease mechanisms at the cellular and molecular level.
Collapse
|