1
|
Chi KY, Kim G, Kim H, Kim H, Jo S, Lee J, Lee Y, Yoon H, Cho S, Kim J, Lee JS, Yeon GB, Kim DS, Park HJ, Kim JH. Optimization of culture conditions to generate vascularized multi-lineage liver organoids with structural complexity and functionality. Biomaterials 2025; 314:122898. [PMID: 39447308 DOI: 10.1016/j.biomaterials.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Hepatic organoids (HOs), primarily composed of hepatobiliary cells, do not represent the pathogenesis of liver diseases due to the lack of non-parenchymal cells. Multi-lineage liver organoids (mLOs) containing various cell types found in the liver offer a promising in vitro disease model. However, their structural complexity remains challenging to achieve due to the difficulty in optimizing culture conditions that meet the growth need of all component cell types. Here, we demonstrate that cystic HOs generated from hPSCs can be expanded long-term and serve as a continuous source for generating complex mLOs. Assembling cystic HOs with hPSC-derived endothelial and hepatic stellate cell-like cells under conventional HO culture conditions failed to support the development of multiple cell types within mLOs, resulting in biased differentiation towards specific cell types. In contrast, modulating the cAMP/Wnt/Hippo signaling pathways with small molecules during assembly and differentiation phases efficiently generate mLOs containing both hepatic parenchymal and non-parenchymal cells. These mLOs exhibited structural complexity and functional maturity, including vascular network formation between parenchymal lobular structures, cell polarity for bile secretion, and the capacity to respond to fibrotic stimuli. Our study underscores the importance of modulating signaling pathways to enhance mLO structural complexity for applications in modeling liver pathologies.
Collapse
Affiliation(s)
- Kyun Yoo Chi
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyojin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Heeseok Yoon
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seunghyun Cho
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jeongjun Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jin-Seok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyu-Bum Yeon
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea; Laboratory of Reprogramming and Differentiation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Dae-Sung Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea; Laboratory of Reprogramming and Differentiation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Wu QJ, Chen LY, Sun QM, Wang N, Han D, Lv WL. Quantitative pharmacodynamics functional evaluation of Chinese medicine Qizhu formula in mice with dynamic near-infrared photoacoustic imaging. PHOTOACOUSTICS 2025; 41:100667. [PMID: 39640433 PMCID: PMC11615922 DOI: 10.1016/j.pacs.2024.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
Background & Aims Effective anti-fibrotic drugs and new non-invasive evaluation methods for liver fibrosis (LF) are urgently needed. Our study aimed to evaluate the histological effects of the Qizhu (QZ) formula on LF and to explore a non-invasive Near-infrared photoacoustic imaging (NIR-PAI) kinetic model for liver function detection and pharmacodynamic evaluation. Methods C57BL/6 J mice were randomly divided into six groups (n=6). An LF model was induced by CCl4 for 8 weeks, followed by an 8-week treatment period. Histological and serological parameters were assessed, and indocyanine green (ICG) metabolism (maximum peak time [Tmax] and half-life [T1/2]) was monitored by NIR-PAI. Spearman correlation analysis was conducted to evaluate correlations. Results & Conclusions Histological and serological results confirmed the anti-fibrotic effects of QZ. NIR-PAI kinetic parameters indicated that QZ shortened the Tmax and T1/2 of ICG. There were good correlations between ICG metabolism and liver histopathology. The non-invasive NIR-PAI kinetic model shows potential in liver function detection and pharmacodynamic evaluation.
Collapse
Affiliation(s)
- Qing-Juan Wu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Lan-Yu Chen
- Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, Beijing, PR China
| | - Quan-Mei Sun
- Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, Beijing, PR China
| | - Ning Wang
- Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, Beijing, PR China
| | - Dong Han
- Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, Beijing, PR China
| | - Wen-Liang Lv
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| |
Collapse
|
3
|
Shao W, Xu H, Zeng K, Ye M, Pei R, Wang K. Advances in liver organoids: replicating hepatic complexity for toxicity assessment and disease modeling. Stem Cell Res Ther 2025; 16:27. [PMID: 39865320 PMCID: PMC11771052 DOI: 10.1186/s13287-025-04139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
The lack of in vivo accurate human liver models hinders the investigation of liver-related diseases, injuries, and drug-related toxicity, posing challenges for both basic research and clinical applications. Traditional cellular and animal models, while widely used, have significant limitations in replicating the liver's complex responses to various stressors. Liver organoids derived from human pluripotent stem cells, adult stem cells primary cells, or tissues can mimic diverse liver cell types, major physiological functions, and architectural features. Recent advancements in the field have shown that some liver organoids have sufficient accuracy to replicate specific aspects of the human liver's complexity. This review highlights recent progress in liver organoid research, with a particular emphasis on their potential for toxicity assessment and disease modeling. The intrinsic advantages of liver organoids include higher sensitivity and suitability for long-term studies, which enhance the predictive value in drug and nanomaterial toxicity testing. The integration of liver organoids with microfluidic devices enables the simulation of the liver microenvironment and facilitates high-throughput drug screening. The liver organoids also serve as ideal platforms for studying liver diseases such as hepatitis, liver fibrosis, viral liver diseases, and monogenic diseases. Additionally, this review discusses the advantages and limitations of liver organoids along with potential avenues for future research.
Collapse
Affiliation(s)
- Weidong Shao
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China
- China Pharmaceutical University, 639 Longmian Rd, Nanjing, Jiangsu, 210009, China
| | - Hui Xu
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China
| | - Kanghua Zeng
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China
| | - Mingzhou Ye
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China
| | - Renjun Pei
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.
| | - Kai Wang
- Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
4
|
Sartorius K, Wang Y, Sartorius B, Antwi SO, Li X, Chuturgoon A, Yu C, Lu Y, Wang Y. The interactive role of microRNA and other non-coding RNA in hepatitis B (HBV) associated fibrogenesis. Funct Integr Genomics 2025; 25:24. [PMID: 39847120 DOI: 10.1007/s10142-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
One of the outstanding features of chronic hepatitis B infection (CHB) is its strong association with liver fibrosis. CHB induced inflammation and injury trigger multiple biochemical and physical changes that include the promotion of a wide range of cytokines, chemokines and growth factors that activate hepatic stellate cells (HSCs) CHB induced activation of hepatic stellate cells (HSCs) is regarded as a central event in fibrogenesis to directly promote the synthesis of myofibroblasts and the expression of a range of materials to repair injured liver tissue. Fibrogenesis is modulated by the mainstream epigenetic machinery, as well as by non-coding RNA (ncRNA) that are often referred to as an ancillary epigenetic response to fine tune gene expression. Although extensive research has explained the regulatory role of ncRNA in liver fibrogenesis, most of this research relates to non-CHB etiologies. This review paper outlines the complex interactive regulatory role of microRNA (miRNA) and their interaction with long non-coding RNA (lncRNA), circular RNA (circRNA) and the mainstream epigenetic machinery in CHB induced liver fibrosis. The paper also illustrates some of the difficulties involved in translating candidate ncRNA into approved drugs or diagnostic tools. In conclusion, the important regulatory role of ncRNA in CHB induced liver fibrosis warrants further investigation to exploit their undoubted potential as diagnostic and therapeutic agents.
Collapse
MESH Headings
- Humans
- Liver Cirrhosis/genetics
- Liver Cirrhosis/pathology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/virology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Epigenesis, Genetic
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/pathology
- Hepatitis B virus/genetics
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Animals
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg, South Africa.
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA.
| | - Yanglong Wang
- Department of General Surgery, Xinyi People's Hospital, Xinyi, Jiangsu, China
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Samuel O Antwi
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA
- Division of Epidemiology Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, AL, USA
| | - Xiaodong Li
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, UKZN, Durban, South Africa
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunjie Lu
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yu Wang
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, 213200, Changzhou, Jiangsu, China.
| |
Collapse
|
5
|
Nie YM, Zhou WQ, Niu T, Mao MF, Zhan YX, Li Y, Wang KP, Li MX, Ding K. Peptidoglycan isolated from the fruit of Lycium barbarum alleviates liver fibrosis in mice by regulating the TGF-β/Smad7 signaling and gut microbiota. Acta Pharmacol Sin 2025:10.1038/s41401-024-01454-x. [PMID: 39833303 DOI: 10.1038/s41401-024-01454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The hepatoprotective effect of the fruit of Lycium barbarum has been documented in China over millennia. Lycium barbarum polysaccharides (LBPs) were the first macromolecules reported to mitigate liver fibrosis in carbon tetrachloride (CCl4)-treated mice. Herein, a neutral peptidoglycan, named as LBPW, was extracted from the fruit of Lycium barbarum. In this study, we investigated the hepatoprotective mechanisms of LBPW. CCl4-induced liver fibrosis mice were administered LBPW (50, 100, 200 mg ·kg-1 ·d-1, i.p.) or (100, 200, 300 mg· kg-1 ·d-1, i.g.) for 6 weeks. We showed that either i.p. or i.g. administration of LBPW dose-dependently attenuated liver damage and fibrosis in CCl4-treated mice. Pharmacokinetic analysis showed that cyanine 5.5 amine (Cy5.5)-labeled LBPW (Cy5.5-LBPW) could be detected in the liver through i.p. and i.g. administration with i.g.-administered Cy5.5-LBPW mainly accumulating in the intestine. In TGF-β1-stimulated LX-2 cells as well as in the liver of CCl4-treated mice, we demonstrated that LBPW significantly upregulated Smad7, a negative regulator of TGF-β/Smad signaling, to retard the activation of hepatic stellate cells (HSCs) and prevent liver fibrosis. On the other hand, LBPW significantly boosted the abundance of Akkermansia muciniphila (A. muciniphila) and fortified gut barrier function. We demonstrated that A. muciniphila might be responsible for the efficacy of LBPW since decreasing the abundance of this bacterium by antibiotics (Abs) blocked the effectiveness of LBPW. Overall, our results show that LBPW may exert the hepatoprotective effect via rebalancing TGF-β/Smad7 signaling and propagating gut commensal A. muciniphila, suggesting that LBPW could be leading components to be developed as new drug candidates or nutraceuticals against liver fibrosis.
Collapse
Affiliation(s)
- Ying-Min Nie
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Qi Zhou
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 201203, China
| | - Ting Niu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Meng-Fei Mao
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xue Zhan
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai-Ping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Mei-Xia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Lingang Laboratory, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, 528400, China.
| |
Collapse
|
6
|
Liu S, He F, Jin C, Li Q, Zhao G, Ding K. Design and Synthesis of Dual Galectin-3 and EGFR Inhibitors Against Liver Fibrosis. Chem Asian J 2025; 20:e202401078. [PMID: 39504308 DOI: 10.1002/asia.202401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Liver fibrosis, mainly arising from chronic viral or metabolic liver diseases, is a significant global health concern. There is currently only one FDA-approved drug (Resmetirom) in the market to combat liver fibrosis. Both galectin-3 and epidermal growth factor receptor (EGFR) play important roles in liver fibrosis, while galectin-3 may interact with EGFR. Galectin-3 inhibitors, typically lactose or galactose derivatives may inhibit liver fibrosis. We hypothesized that targeting both galectin-3 and EGFR may have better effect against liver fibrosis. Here, EGFR inhibitor erlotinib was used in a series of designed galectin-3 inhibitors after hybridization with the pharmacophore structure in reported galectin-3 inhibitors to impede hepatic stellate cells (HSCs) activation by a typical method of click chemistry. Bioactivity test results showed that compound 29 suppressed TGF-β-induced upregulation of fibrotic markers (α-SMA, fibronectin-1, and collagen I). The preferred compound 29 displayed better binding to galectin-3 (KD=52.29 μM) and EGFR protein (KD=3.31 μM) by SPR assay. Further docking studies were performed to clarify the possible binding mode of compound 29 with galectin-3 and EGFR. Taken together, these results suggested that compound 29 could be a potential dual galectin-3 and EGFR inhibitor as leading compound for anti-liver fibrosis new drug development.
Collapse
Affiliation(s)
- Shuanglin Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
| | - Fei He
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| | - Can Jin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| | - Qing Li
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Guilong Zhao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| | - Kan Ding
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, Tsuihang New District, 528400, China
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
7
|
Tang B, Jin C, Li M, Liu S, Zhang X, Li J, Ding K, Zang Y. A novel pectin-like polysaccharide from Crocus sativus targets Galectin-3 to inhibit hepatic stellate cells activation and liver fibrosis. Carbohydr Polym 2025; 348:122826. [PMID: 39562101 DOI: 10.1016/j.carbpol.2024.122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024]
Abstract
Liver fibrosis may lead to cirrhosis and even cancer without effective clinical medicine available. Previous studies demonstrated that galactan-containing pectins or pectin-like polysaccharides might target Galectin-3 (Gal-3) to impede fibrosis. This research aims to discover novel pectin-like galactan to interfere with fibrosis for potential new drug development. Thus, we purify a novel homogeneous Rhamnogalacturonan-I like polysaccharide with galactan input, XHH2, from the Crocus sativus flower. XHH2 (MW: 35.7 kDa) consists of rhamnose, galacturonic acid, galactose, and arabinose in ratios of 6.6: 6.1: 25.2: 12.1. The backbone of XHH2 comprises 1, 3, 6-Gal and 1, 3, 4-GalA, with branches at O-3 of 1, 3, 6-Gal and O-4 of 1, 3, 4-GalA. O-3 branches include 1, 3-Gal, 1, 4-Gal, 1, 6-Gal, T-Gal, and T-Glc, while O-4 branches consist of 1, 2, 4-Rha, 1, 4-GalA, 1, 5-Ara, T-Ara, T-Gal, and T-α-HexA. Surface plasmon resonance measurement shows that XHH2 binds to both Gal-3 and integrin β1 to block Gal-3/integrin β1 interaction. Mechanism studies further suggest that XHH2 inactivates hepatic stellate cells (HSCs) via disturbing the Gal-3/Integrin-β1/FAK pathway to alleviate liver injury and fibrosis in vitro & in vivo. XHH2 shows a favorable drug safety in the acute toxicity test of oral administration of XHH2 in mice. Overall, XHH2 is an active ingredient against liver fibrosis by targeting the interaction between Gal-3 and Integrin-β1.
Collapse
Affiliation(s)
- Bixi Tang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Can Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District; Zhongshan, Guangzhou 528400, China
| | - Maoting Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District; Zhongshan, Guangzhou 528400, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Siqi Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District; Zhongshan, Guangzhou 528400, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Kan Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District; Zhongshan, Guangzhou 528400, China.
| | - Yi Zang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Lingang Laboratory, Shanghai 201203, China.
| |
Collapse
|
8
|
Chu R, Kong J, Gao Q, Yang Y, Pan T, Lu X, Wang Z, Wang Y, He J. Ether bond-modified lipid nanoparticles for enhancing the treatment effect of hepatic fibrosis. Int J Pharm 2025; 671:125192. [PMID: 39824265 DOI: 10.1016/j.ijpharm.2025.125192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Lipid nanoparticle (LNP)-mediated RNA delivery holds significant potential for the treatment of various liver diseases. Ionizable lipids play a crucial role in the formulation of LNPs and directly influence their delivery efficiency. In this study, we introduced an innovative concept by incorporating an ether bond into the hydrophobic tail of ionizable lipids for the first time. Three ionizable lipids, namely, ND-O1, ND-O2, and ND-O3, were synthesized based on 1-octylnonyl 8-[(2-hydroxyethyl)-[8-(nonyloxy)-8-oxooctyl] amino] octanoate (Lipid M). The efficacy of lipids-based LNPs for the delivery of the heat shock protein 47 (HSP47)-targeted siRNA to the liver was investigated. Compared to Lipid M-based LNP (LNP-M), it was observed that ND-O1 based LNP (LNP-O1) exhibited enhanced siRNA transfection efficiency in activated fibroblasts. In the fibrosis mice, LNP-O1 effectively suppressed HSP47 expression by approximately 84%, which was three times more effective than LNP-M, resulting in a significant decrease of collagen deposition and an amelioration of liver fibrosis. These findings highlighted the potential application of ND-O1 as an ionizable lipid for enhancing the efficient delivery of LNPs-delivered siRNA to the liver. Furthermore, this ionizable lipid design strategy offers a promising avenue for the improvement of the LNP delivery system.
Collapse
Affiliation(s)
- Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qiang Gao
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaohong Lu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Zhefeng Wang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China.
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China.
| |
Collapse
|
9
|
Cai H, Zhang J, Chen C, Shen J, Zhang X, Peng W, Li C, Lv H, Wen T. Prognostic assessment of early-stage liver cirrhosis induced by HCV using an integrated model of CX3CR1-associated immune infiltration genes. Sci Rep 2025; 15:1771. [PMID: 39800763 PMCID: PMC11725579 DOI: 10.1038/s41598-024-80422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
Chemokine (C-X3-C motif) Receptor 1 (CX3CR1) primarily mediates the chemotaxis and adhesion of immune cells. However, its role in hepatitis C virus (HCV)-induced early-stage liver cirrhosis remains unexplored. GSE15654 was downloaded from the GEO database. The Cox regression model, CIBERSORT, and LASSO technique were utilized to identify CX3CR1-associated immune infiltration genes (IIGs). Surgical resection samples were collected for verification, including 3 healthy controls (HC), 4 individuals with HCV-induced hepatic cirrhosis, and 3 with HCV-induced liver failure. High CX3CR1 expression correlated with worse prognosis in early-stage cirrhosis. CX3CR1-associated IIGs, namely ACTIN4, CD1E, TMCO1, and WSF1, were identified, showing specific expression in the livers of individuals with post-hepatic cirrhosis and liver failure compared to HC. LOC400499 and MTHFD2 were elevated in individuals with liver failure in comparison to those with hepatocirrhosis. Notably, high infiltration of plasma cells and low infiltration of monocytes were predictive of poor prognosis in early-stage cirrhosis. The combined risk model predicted that high expression of CX3CR1-associated IIGs and increased infiltration of plasma cells were associated with unfavorable prognosis in individuals with HCV-induced early-stage liver cirrhosis. The developed combined risk model effectively predicted the prognosis of these individuals.
Collapse
Affiliation(s)
- Haozheng Cai
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Jing Zhang
- Division of Biliary Tract, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, China
| | - Chuwen Chen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Junyi Shen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Xiaoyun Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Wei Peng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Chuan Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China
| | - Haopeng Lv
- Department of General Surgery, ChengDu Shi Xinjin Qu Renmin Yiyuan: People's Hospital of Xinjin District, Chengdu, China
| | - Tianfu Wen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Si Chuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Yang LX, Qi C, Lu S, Ye XS, Merikhian P, Zhang DY, Yao T, Zhao JS, Wu Y, Jia Y, Shan B, Chen J, Mou X, You J, Li W, Feng YX. Alleviation of liver fibrosis by inhibiting a non-canonical ATF4-regulated enhancer program in hepatic stellate cells. Nat Commun 2025; 16:524. [PMID: 39789010 PMCID: PMC11718104 DOI: 10.1038/s41467-024-55738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions. HSC-specific depletion of ATF4 suppresses liver fibrosis in vivo. Mechanistically, TGFβ resets ATF4 to orchestrate a unique enhancer program for the transcriptional activation of pro-fibrotic EMT genes. Analysis of human data confirms a strong correlation between HSC ATF4 expression and liver fibrosis progression. Importantly, a small molecule inhibitor targeting ATF4 translation effectively mitigates liver fibrosis. Together, our findings identify a mechanism promoting liver fibrosis and reveal new opportunities for treating this otherwise non-targetable disease.
Collapse
Affiliation(s)
- Li-Xian Yang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chuangye Qi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Si Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Head and Neck Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Shi Ye
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Parnaz Merikhian
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Du-Yu Zhang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Tao Yao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang-Sha Zhao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Wu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bo Shan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China.
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA.
| | - Yu-Xiong Feng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Zhang L, Deng W, Wang X, Huang Q, Liang S, Ding Z, Qi L, Wang Y, Zhou T, Xing L, Lee J, Oh Y, Jiang H. Pathological Microenvironment-Remodeling Nanoparticles to Alleviate Liver Fibrosis: Reversing Hepatocytes-Hepatic Stellate Cells Malignant Crosstalk. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408898. [PMID: 39467090 PMCID: PMC11775515 DOI: 10.1002/advs.202408898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
During the onset and malignant development of liver fibrosis, the pernicious interplay between damaged hepatocytes and activated hepatic stellate cells (HSCs) induce a self-perpetuating vicious cycle, deteriorating fibrosis progression and posing a grave threat to public health. The secretions released by damaged hepatocytes and activated HSCs interact through autocrine or paracrine mechanisms, involving multiple signaling pathways. This interaction creates a harsh microenvironment and weakens the therapeutic efficacy of single-cell-centric drugs. Herein, a malignant crosstalk-blocking strategy is prompted to remodel vicious cellular interplay and reverse pathological microenvironment to put an end to liver fibrosis. Collagenases modified, bardoxolone and siTGF-β co-delivered nanoparticles (C-NPs/BT) are designed to penetrate the deposited collagen barriers and further regulate the cellular interactions through upregulating anti-oxidative stress capacity and eliminating the pro-fibrogenic effects of TGF-β. The C-NPs/BT shows successful remodeling of vicious cellular crosstalk and significant disease regression in animal models. This study presents an innovative strategy to modulate cellular interactions for enhanced anti-fibrotic therapy and suggests a promising approach for treating other chronic liver diseases.
Collapse
Affiliation(s)
- Ling‐Feng Zhang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Wen‐Qi Deng
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xing‐Huan Wang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Qing‐Wen Huang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Su‐Qing Liang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Ze‐Quan Ding
- Department of Pediatric SurgeryChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjingJiangsu210000China
| | - Liang Qi
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Yi Wang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Tian‐Jiao Zhou
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Lei Xing
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Jai‐Woo Lee
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoul08826South Korea
| | - Yu‐Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoul08826South Korea
| | - Hu‐Lin Jiang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
- College of PharmacyYanbian UniversityYanji133002China
- Jiangsu Key Laboratory of Druggability of BiopharmaceuticalsChina Pharmaceutical UniversityNanjing210009China
- Department of Precision MedicineSchool of MedicineSungkyunkwan UniversitySuwon16419South Korea
| |
Collapse
|
12
|
Adetutu A, Adegbola PI, Aborisade AB. Low Dose of Nickel and Benzo [a] Anthracene in Rat-Diet, Induce Apoptosis, Fibrosis, and Initiate Carcinogenesis in Liver via NF-Ƙβ Pathway. Biol Trace Elem Res 2025; 203:305-333. [PMID: 38656682 DOI: 10.1007/s12011-024-04177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Environmental contaminants such as polycyclic aromatic hydrocarbon (PAH) and heavy metals are major contaminants of food such as fish thus serving as source of exposure to human. This study was designed to evaluate the carcinogenic risk and other risks associated with long-term consumption of environmentally relevant dose of nickel and benzo [a] anthracene in rats. Thirty-six (36) male rats weighing between 80 and 100 g were assigned into 6 groups of 6 animals each; normal, nickel-, and benzo [a] anthracene-exposed groups for 12 and 24 weeks, respectively. Micronucleus and comet analyses were done in the blood, liver, and bone marrow. Liver function, redox, and inflammatory markers (AST, ALT, GGT, SOD, GSH, MDA, protein carbonyl, protein thiol, total protein, IL-10, 1L-1β, TNF-α, TGF-β NF-Ƙβ, and 8-oxodeoxyguansine) were analysed by standard methods. Immuno-histochemical quantification of Bax, Bcl2, and Erk 1/2 as well as mRNA expression of cyclin D1 was done in liver. From the results, weight gain was observed in varying degrees throughout the exposure period. The polychromatic erythrocytes/normochromatic erythrocytes ratio > 0.2 indicates no cytotoxic effects on the bone marrow. Percentage-MnPCE in blood significantly (p < 0.05) increased throughout exposure duration. Percentage tail DNA in blood was significantly (< 0.05) increased at weeks 20 and 24 in the exposed groups and in liver at weeks 12 (16.22 ± 0.47) and 24 (17.00 ± 0.36) of nickel-exposed rats. The aspartate amino transferase (AST):alanine amino transferase (ALT) ratio indicated fatty liver disease in the benzo [a] anthracene (0.90) and acute liver injury in the nickel (> 10 times greater than the upper limits of the reference group) exposed groups during the first 12 weeks. Observation from the histological and cytological data of the liver revealed the presence of inflammation, fibrosis, and high nuclear/cytoplasmic ratio, respectively, in the nickel and benzo [a] anthracene groups. Only benzo [a] anthracene induced liver oxidative stress with significant (p < 0.05) decrease in SOD (0.64 ± 0.02) activity and increase in protein carbonyl (7.60 ± 0.80 × 10-5) and MDA (57.10 ± 6.64) concentration after 24 weeks. Benzo [a] anthracene up-regulated the cyclin D1 expression and significantly (p < 0.05) increased the levels of the cytokines. Nickel and benzo [a] anthracene significantly (p < 0.05) increased the Bax (183.45 ± 6.50 and 199.76 ± 10.04) and Erk 1/2 (108.25 ± 6.41 and 136.74 ± 4.22) levels when compared with the control (37.43 ± 22.22 and 60.37 ± 17.86), respectively. Overall result showed that the toxic effects of nickel and benzo [a] anthracene might involve fibrosis, cirrhosis, apoptosis, and inflammation of the liver. As clearly demonstrated in this study, benzo [a] anthracene after the 24 weeks of exposure stimulates carcinogenic process by suppressing the liver antioxidant capacity, altering apoptotic, cell proliferation, and differentiation pathways.
Collapse
Affiliation(s)
- Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Peter Ifeoluwa Adegbola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria.
| | - Abiodun Bukunmi Aborisade
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Nigeria Institute of Oceanography and Marine Research, Lagos, Nigeria
| |
Collapse
|
13
|
Bishnolia M, Yadav P, Singh SK, Manhar N, Rajput S, Khurana A, Bhatti JS, Navik U. Methyl donor ameliorates CCl 4-induced liver fibrosis by inhibiting inflammation, and fibrosis through the downregulation of EGFR and DNMT-1 expression. Food Chem Toxicol 2024; 196:115230. [PMID: 39736447 DOI: 10.1016/j.fct.2024.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Methyl donors regulate the one-carbon metabolism and have significant potential to reduce oxidative stress and inflammation. Therefore, this study aims to investigate the protective effect of methyl donors against CCl4-induced liver fibrosis. Liver fibrosis was induced in male Sprague Dawley rats using CCl4 at a dose of 1 ml/kg (twice a week for a 4-week, via intraperitoneal route). Subsequently, methyl donor treatments were given orally for the next six weeks while continuing CCl4 administration. After 10 weeks, biochemical, histopathology, immunohistochemistry, western blotting, and qRT-PCR were performed. Methyl donor treatment significantly ameliorated ALT, AST, ALP levels, and oxidative stress associated with CCl4-induced liver injury. The histopathological investigation also demonstrated the hepatoprotective effect of methyl donors against CCl4-induced liver fibrosis, showing reduced tissue damage, collagen deposition, and attenuating the expression of the COL1A1 gene. Further, methyl donors inhibited the CCl4-induced increase in DNMT-1 and NF-κB p65 expression with an upregulation of AMPK. Methyl donor downregulated the CCl4-induced increase in inflammatory and fibrosis related gene expression and inhibited the apoptosis with a downregulation of EGFR expression. Here, we provide the first evidence that methyl donor combinations prevent liver fibrosis by attenuating oxidative stress, inflammation, and fibrosis through DNMT-1 and EGFR downregulation.
Collapse
Affiliation(s)
- Manish Bishnolia
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Nirmal Manhar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
14
|
Yang Y, Liu Y, Cheng Y, He H, Liang A, Pan Z, Liu Y, Chen Z. Multi-omics and experimental analysis unveil the key components in Scutellaria baicalensis Georgi to alleviate hepatic fibrosis via regulating cPLA2-mediated arachidonic acid metabolism. J Transl Med 2024; 22:1138. [PMID: 39716274 DOI: 10.1186/s12967-024-05955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Scutellaria baicalensis Georgi, a traditional Chinese herb, is known for its various biological effects, including antibacterial, anti-inflammatory, antioxidative, and antitumor properties. However, the function and mechanisms of methanol extract of Scutellaria baicalensis Georgi (MESB) in treating hepatic fibrosis remain unclear. METHODS This study utilized a CCl4-induced mouse model of hepatic fibrosis to assess the effects of MESB through histopathological analysis and serum tests. The anti-fibrosis mechanism of MESB was investigated using qPCR, Western blotting, RNA interference, proteomics, and metabolomics. Spatial metabolomics identified key components of MESB in liver tissue, while molecular docking determined their targets. RESULTS Treatment with MESB alleviated hepatic pathological changes and reversed hepatic fibrosis in the CCl4-induced models, as evidenced by decreased collagen fibers deposition, reduced expression of hepatic fibrosis markers COL1A1, FN, and PAI-1, and lowered serum levels of AST and ALT. In vitro, MESB inhibited the proliferation of LX-2 cells and the expression of hepatic fibrosis markers. Furthermore, MESB intervention modulated various pathways, particularly those involved in metabolic pathways. Subsequent metabolomics analysis demonstrated that MESB disrupted glycerophospholipid metabolism and suppressed arachidonic acid metabolism. MESB downregulated the expression of cPLA2 in LX-2 cells, leading to decreased production of arachidonic acid and its downstream inflammatory mediators. Meanwhile, MESB inhibited the expression of cPLA2 and its downstream NF-κB pathway in the liver tissues of models induced by CCl4. Additionally, silencing cPLA2 markedly reduced the expressions of COL1A1, FN, and PAI-1. Spatial metabolomics analysis confirmed the penetration of baicalein, wogonin and wogonoside into liver tissue. Further results indicated that baicalein and wogonin inhibited the expression of cPLA2, while baicalin and wogonoside do not exhibit this effect. Moreover, molecular docking suggested that baicalein and wogonin possess the potential to directly interact with cPLA2. CONCLUSION This study reveals that MESB is crucial in preventing hepatic fibrosis via the cPLA2-mediated arachidonic acid metabolic pathway, highlighting its key active components as potential drugs for fibrosis treatment.
Collapse
Affiliation(s)
- Yunheng Yang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yujie Cheng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Honglin He
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Liang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Pan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
15
|
Li H, Xie X, Qiu T, Zhang J, Bai J, Yang G, Wang N, Yao X, Sun X. PLIN5 contributes to lipophagy of hepatic stellate cells induced by inorganic arsenic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117547. [PMID: 39700776 DOI: 10.1016/j.ecoenv.2024.117547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Arsenic exposure triggers the activation of hepatic stellate cells (HSCs), resulting in liver fibrosis (LF). A significant decrease in lipid droplets marks the activation of HSCs. However, the exact underlying molecular mechanism remains elusive. Lipophagy, a specialized form of selective autophagy, is crucial for the degradation of lipid droplets to maintain intracellular lipid metabolism homeostasis. In this study, arsenic treatment induced lipophagy, as evidenced by the co-localization of LC3 with lipid droplets. Remarkably, arsenic exposure increased the expression levels of Perilipin 5 (PLIN5), a lipid droplet-associated protein, both at the mRNA and protein levels. Moreover, silencing PLIN5 influenced arsenic-induced lipolysis. Consequently, the results of this study indicate that PLIN5 serves as a substrate protein involved in arsenic-induced lipophagy. This research offers a novel perspective on the mechanisms of arsenic-induced HSCs activation and liver lipid metabolism, potentially guiding new strategies for the prevention and treatment of arsenic-related liver diseases.
Collapse
Affiliation(s)
- Haomiao Li
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xuri Xie
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Department of Public Health Experimental Teaching Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Ningning Wang
- Department of Public Health Experimental Teaching Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
16
|
Guan Y, Fang Z, Hu A, Roberts S, Wang M, Ren W, Johansson PK, Heilshorn SC, Enejder A, Peltz G. Live-cell imaging of human liver fibrosis using hepatic micro-organoids. JCI Insight 2024; 10:e187099. [PMID: 39656528 DOI: 10.1172/jci.insight.187099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025] Open
Abstract
Due to the limitations of available in vitro systems and animal models, we lack a detailed understanding of the pathogenetic mechanisms of and have minimal treatment options for liver fibrosis. Therefore, we engineered a live-cell imaging system that assessed fibrosis in a human multilineage hepatic organoid in a microwell (i.e., microHOs). Transcriptomic analysis revealed that TGFB converted mesenchymal cells in microHOs into myofibroblast-like cells resembling those in fibrotic human liver tissue. When pro-fibrotic intracellular signaling pathways were examined, the antifibrotic effect of receptor-specific tyrosine kinase inhibitors was limited to the fibrosis induced by the corresponding growth factor, which indicates their antifibrotic efficacy would be limited to fibrotic diseases solely mediated by that growth factor. Based upon transcriptomic and transcription factor activation analyses in microHOs, glycogen synthase kinase 3β and p38 MAPK inhibitors were identified as potential new broad-spectrum therapies for liver fibrosis. Other new therapies could subsequently be identified using the microHO system.
Collapse
Affiliation(s)
- Yuan Guan
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Angelina Hu
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Sarah Roberts
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Meiyue Wang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Wenlong Ren
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Patrik K Johansson
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
17
|
Corbalan JJ, Jagadeesan P, Frietze KK, Taylor R, Gao GL, Gallagher G, Nickels JT. Humanized monoacylglycerol acyltransferase 2 mice develop metabolic dysfunction-associated steatohepatitis. J Lipid Res 2024; 65:100695. [PMID: 39505262 DOI: 10.1016/j.jlr.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Mice lacking monoacylglycerol acyltransferase 2 (mMGAT21) are resistant to diet-induced fatty liver, suggesting hMOGAT2 inhibition is a viable option for treating metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH). We generated humanized hMOGAT2 mice (HuMgat2) for use in pre-clinical studies testing the efficacy of hMOGAT2 inhibitors for treating MASLD/MASH. HuMgat2 mice developed MASH when fed a steatotic diet. Computer-aided histology revealed the presence of hepatocyte cell ballooning, immune cell infiltration, and fibrosis. Hepatocytes accumulated Mallory-Denk bodies containing phosphorylated p62/sequestosome-1-ubiquitinated protein aggregates likely caused by defects in autophagy. Metainflammation and apoptotic cell death were seen in the livers of HuMgat2 mice. Treating HuMgat2 mice with elafibranor reduced several MASH phenotypes. RNASeq analysis predicted changes in bile acid transporter expression that correlated with altered bile acid metabolism indicative of cholestasis. Our results suggest that HuMgat2 mice will serve as a pre-clinical model for testing hMOGAT2 inhibitor efficacy and toxicity and allow for the study of hMOGAT2 in the context of MASH.
Collapse
Affiliation(s)
- J Jose Corbalan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Pranavi Jagadeesan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Karla K Frietze
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Grace L Gao
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - Grant Gallagher
- Oncoveda, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Joseph T Nickels
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
18
|
Lee JH, Seo KH, Yang JH, Cho SS, Kim NY, Kim JH, Kim KM, Ki SH. CCCP induces hepatic stellate cell activation and liver fibrogenesis via mitochondrial and lysosomal dysfunction. Free Radic Biol Med 2024; 225:181-192. [PMID: 39370054 DOI: 10.1016/j.freeradbiomed.2024.10.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Hepatic stellate cells (HSCs) are primary cells for development and progression of liver fibrosis. Mitophagy is an essential lysosomal process for mitochondrial homeostasis, which can be activated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a representative mitochondrial uncoupler. However, little information is available on the role of CCCP-mediated mitophagy in HSC activation and liver fibrogenesis. In this study, we showed that CCCP treatment in HSCs caused mitochondrial dysfunction proved by decreased mitochondrial membrane potential, mitochondrial DNA, and ATP contents and increased mitochondrial ROS. Moreover, CCCP induced mitophagy and impaired mitophagy flux at the later stage. This blockade of mitophagic flux effect was mediated by suppression of lysosomal activity; CCCP decreased expression of lysosomal markers and cathepsin B activity, and increased lysosomal pH. Intriguingly, CCCP treatment in LX-2 cells or primary HSCs elevated plasminogen activator inhibitor-1 (PAI-1), a typical fibrogenic marker of HSCs which was attenuated by mitochondrial division inhibitor 1, a mitophagy inhibitor. The up-regulation of PAI-1 by CCCP was not due to altered transcriptional activity but lysosomal dysfunction. In vivo acute or sub-chronic treatment of CCCP to mice induced mitophagy and fibrogenesis of liver. Hepatic fibrogenic marker (PAI-1) was incremented with mitophagy markers (parkin and PTEN-induced putative kinase 1) in the livers of CCCP injected mice. Furthermore, we found that 5-aminoimidazole-4-carboxyamide ribonucleoside reversed CCCP-mediated mitophagy and subsequent HSC activation. To conclude, CCCP facilitated HSC activation and hepatic fibrogenesis via mitochondrial dysfunction and lysosomal blockade, implying that attenuation of CCCP-related signaling molecules may contribute to treat liver fibrosis.
Collapse
Affiliation(s)
- Ji Hyun Lee
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Kyu Hwa Seo
- General for Narcotics Safety Planning, Pharmaceutical Safety Bureau, Ministry of Food and Drug Safety (MFDS), Cheongju, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do, 58245, South Korea
| | - Sam Seok Cho
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea; Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk, South Korea
| | - Na Yeon Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Ji Hye Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, South Korea; Institute of Well-Aging Medicare & Chosun University LAMP Project Group, Chosun University, Gwangju, 61452, South Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, 61452, South Korea.
| | - Sung Hwan Ki
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, South Korea.
| |
Collapse
|
19
|
Yao H, He Q, Xiang L, Liu S, Yang Z, Li X, Liu W, Huang C, Wang B, Xie Q, Gao Y, Zheng C, Li X. Guizhi Fuling Wan attenuates tetrachloromethane-induced hepatic fibrosis in rats via PTEN/AKT/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118593. [PMID: 39032663 DOI: 10.1016/j.jep.2024.118593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Treatment options for hepatic fibrosis, a prevalent liver condition closely linked to cirrhosis, are currently limited. While Guizhi Fuling Wan (GFW), a pill derived from traditional Chinese herbs, has been reported to possess hepatoprotective properties, its therapeutic effect and mechanism in hepatic fibrosis remain elusive. AIM OF THE STUDY This study aimed to evaluate the anti-fibrotic impact of GFW and its underlying mechanisms in both in vivo and in vitro settings. MATERIALS AND METHODS Tetrachloromethane (CCl4) was used to induce hepatic fibrosis in male rats. In vitro, activation of hepatic stellate cells (HSCs) was triggered by platelet-derived growth factor-BB (PDGF-BB). In vivo, liver function, pathological alterations, and HSC activation were evaluated. Additionally, the impact of GFW on the activated phenotypes of Lieming Xu-2 (LX-2) cells was examined in vitro. Network pharmacology was employed to identify the potential targets of GFW in hepatic fibrosis. Lastly, the impact of GFW on the PTEN/AKT/mTOR pathway and PTEN ubiquitination in HSCs was investigated. RESULTS GFW alleviated CCl4-induced liver damage and scarring in rats in a dose-dependent manner and suppressed HSC activation in vivo. Moreover, GFW inhibited the proliferation, migration, differentiation, and extracellular matrix (ECM) production of activated HSCs in vitro. GFW also promoted autophagy and apoptosis of HSCs. Meanwhile, network pharmacology and in vitro studies suggested that GFW inhibits the AKT/mTOR pathway by preventing PTEN degradation by suppressing ubiquitination. CONCLUSION GFW attenuates Ccl4-induced hepatic fibrosis in male rats by regulating the PTEN/AKT/mTOR signaling pathway, positioning it as a potential candidate for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Huan Yao
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu 611930, China.
| | - Qingman He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| | - Li Xiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| | - Sixian Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| | - Zhuodi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| | - Xue Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| | - Weiwei Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Cong Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Baojia Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Qian Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yongxiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| | - Chuan Zheng
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu 611930, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
20
|
Ge T, Wang Y, Han Y, Bao X, Lu C. Exploring the Updated Roles of Ferroptosis in Liver Diseases: Mechanisms, Regulators, and Therapeutic Implications. Cell Biochem Biophys 2024:10.1007/s12013-024-01611-3. [PMID: 39543068 DOI: 10.1007/s12013-024-01611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Ferroptosis, a newly discovered mode of cell death, is a type of iron-dependent regulated cell death characterized by intracellular excessive lipid peroxidation and imbalanced redox. As the liver is susceptible to oxidative damage and the abnormal iron accumulation is a major feature of most liver diseases, studies on ferroptosis in the field of liver diseases are of great interest. Studies show that targeting the key regulators of ferroptosis can effectively alleviate or even reverse the deterioration process of liver diseases. System Xc- and glutathione peroxidase 4 are the main defense regulators of ferroptosis, while acyl-CoA synthetase long chain family member 4 is a key enzyme causing peroxidation in ferroptosis. Generally speaking, ferroptosis should be suppressed in alcoholic liver disease, non-alcoholic fatty liver disease, and drug-induced liver injury, while it should be induced in liver fibrosis and hepatocellular carcinoma. In this review, we summarize the main regulators involved in ferroptosis and then the mechanisms of ferroptosis in different liver diseases. Treatment options of drugs targeting ferroptosis are further concluded. Determining different triggers of ferroptosis can clarify the mechanism of ferroptosis occurs at both physiological and pathological levels.
Collapse
Affiliation(s)
- Ting Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yang Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yiwen Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
21
|
De Ponti FF, Liu Z, Scott CL. Understanding the complex macrophage landscape in MASLD. JHEP Rep 2024; 6:101196. [PMID: 39524202 PMCID: PMC11550213 DOI: 10.1016/j.jhepr.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum of disease states ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), which can eventually lead to the development of cirrhosis and hepatocellular carcinoma. Macrophages have long been implicated in driving the progression from steatosis to end-stage disease, yet we still know relatively little about the precise involvement of these cells in MASLD progression and/or regression. Rather, there are a considerable number of conflicting reports regarding the precise roles of these cells. This confusion stems from the fact that, until recently, macrophages in the liver were considered a homogenous population. However, thanks to recent technological advances including multi-parameter flow cytometry, single-cell RNA sequencing and spatial proteogenomics, we now know that this is not the case. Rather hepatic macrophages, even in the healthy liver, are heterogenous, existing in multiple subsets with distinct transcriptional profiles and hence likely functions. This heterogeneity is even more prominent in MASLD, where the macrophage pool consists of multiple different subsets of resident and recruited cells. To probe the unique functions of these cells and determine if targeting macrophages may be a viable therapeutic strategy in MASLD, we first need to unravel this complexity and decipher which populations and/or activation states are present and what functions each of these may play in driving MASLD progression. In this review, we summarise recent advances in the field, highlighting what is currently known about the hepatic macrophage landscape in MASLD and the questions that remain to be tackled.
Collapse
Affiliation(s)
- Federico F. De Ponti
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Zhuangzhuang Liu
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| |
Collapse
|
22
|
Hegde SS, Malashetty VB. Azoospermia and multi-organ damage in juvenile rats exposed to α-Terpineol from weaning to sexual maturity. Toxicol Appl Pharmacol 2024; 492:117106. [PMID: 39278549 DOI: 10.1016/j.taap.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
This study aimed to evaluate the repeated oral administration of α-terpineol in juvenile Wistar rats over a 70-day period. The objective was to assess the potential systemic and reproductive toxicity of α-terpineol when administered by gavage at doses of 75, 150, and 300 mg/kg/day to juvenile Wistar rats for 70 days from postnatal day 24. The control group received corn oil for 70 days. During the study, various parameters were evaluated, including clinical signs, body weight, food intake, neurobehavioral observations, haematology, serum biochemistry, organ weights, steroidogenic gene expression, and histopathological examination. No toxicity-related changes were observed in body weight, food intake, neurobehavioral observations, or steroidogenic gene expression. However, sperm evaluation revealed a complete absence of sperm and delayed sexual maturation. Total cholesterol was significantly elevated in both sexes, and serum testosterone was reduced at the 150 and 300 mg/kg doses. Microscopic examination showed severe pathological changes in the testes, epididymis, liver, and kidneys of both males and females. After the 14-day recovery period, total cholesterol levels returned to the normal range, but no recovery was observed in the other organs. The no-observed-adverse-effect level was 75 mg/kg/day for male rats based on the histopathological findings in the testes, liver, and kidneys, and for female rats based on the kidney and liver histopathology.
Collapse
Affiliation(s)
- Sneha Suma Hegde
- Reproductive Biology and Mechanistic Toxicology Lab, Department of Studies in Zoology Vijayanagara Sri Krishnadevaraya University, Ballari 58103, India
| | - Vijaykumar B Malashetty
- Reproductive Biology and Mechanistic Toxicology Lab, Department of Studies in Zoology Vijayanagara Sri Krishnadevaraya University, Ballari 58103, India.
| |
Collapse
|
23
|
Klaus JB, Goerke U, Klarhöfer M, Keerthivasan MB, Jung B, Berzigotti A, Ebner L, Roos J, Christe A, Obmann VC, Huber AT. MRI Dixon Fat-Corrected Look-Locker T1 Mapping for Quantification of Liver Fibrosis and Inflammation-A Comparison With the Non-Fat-Corrected Shortened Modified Look-Locker Inversion Recovery Technique. Invest Radiol 2024; 59:754-760. [PMID: 39514773 PMCID: PMC11462899 DOI: 10.1097/rli.0000000000001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/02/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES This study evaluates the impact of liver steatosis on the discriminative ability for liver fibrosis and inflammation using a novel Dixon water-only fat-corrected Look-Locker T1 mapping sequence, compared with a standard shortened Modified Look-Locker Inversion Recovery (shMOLLI) sequence, with the aim of overcoming the limitation of steatosis-related confounding in liver T1 mapping. MATERIALS AND METHODS 3 T magnetic resonance imaging of the liver including the 2 T1 mapping sequences and proton density fat fraction (PDFF) was prospectively performed in 24 healthy volunteers and 38 patients with histologically proven liver fibrosis evaluated within 90 days of liver biopsy. Paired Mann-Whitney test compared sequences between participants with and without significant liver steatosis (PDFF cutoff 10%), and unpaired Kruskal-Wallis test compared healthy volunteers to patients with early (F0-2) and advanced (F3-4) liver fibrosis, as well as low (A0-1) and marked (A2-3) inflammatory activity. Univariate and multivariate logistic regression models assessed the impact of liver steatosis on both sequences. RESULTS Dixon_W T1 was higher than shMOLLI T1 in participants without steatosis (median 896 ms vs 890 ms, P = 0.04), but lower in participants with liver steatosis (median 891 ms vs 973 ms, P < 0.001). Both methods accurately differentiated between volunteers and patients with early and advanced fibrosis (Dixon_W 849 ms, 910 ms, 947 ms, P = 0.011; shMOLLI 836 ms, 918 ms, 978 ms, P < 0.001), and those with mild and marked inflammation (Dixon_W 849 ms, 896 ms, 941 ms, P < 0.01; shMOLLI 836 ms, 885 ms, 978 ms, P < 0.001). Univariate logistic regression showed slightly lower performance of the Dixon_W sequence in differentiating fibrosis (0.69 vs 0.73, P < 0.01), compensated by adding liver PDFF in the multivariate model (0.77 vs 0.75, P < 0.01). CONCLUSIONS Dixon water-only fat-corrected Look-Locker T1 mapping accurately identifies liver fibrosis and inflammation, with less dependency on liver steatosis than the widely adopted shMOLLI T1 mapping technique, which may improve its predictive value for these conditions.
Collapse
|
24
|
Jusufi AH, Trajkovska M. Correlation Between Real-Time Shear Wave Elastography and Liver Serum Markers in Determining the Stage of Liver Fibrosis in Patients with Chronic Liver Diseases. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2024; 45:85-106. [PMID: 39667001 DOI: 10.2478/prilozi-2024-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Introduction: Non-invasive methods aim to predict the stage of liver fibrosis in line with histological findings via biopsy. Shear wave elastography and serum markers are proven as accurate non-invasive methods for determining liver fibrosis as a modern non-invasive methods compared to liver biopsy in staging hepatic fibrosis. Aims: This study aims to determine the correlation between Shear Wave Elastography and indirect and direct serum markers of fibrosis when staging liver fibrosis. Material and methods: The study was conducted in the Clinic of Gastroenterohepatology, the Institute of Immunology and Human Genetics, and the Institute of Pathology between 2021 and 2023. The study comprises 70 patients with liver lesions, diagnosed based on clinical results, laboratory tests, and ultra-sound imaging. All patients underwent liver biopsy, classified according to Ishak and Metavir score as a reference method for diagnosing liver fibrosis. Real-time shear wave elastography was also performed as a non-invasive method and serum markers were checked for liver fibrosis. Findings: The statistical analysis indicated a positive correlation between the values of direct and indirect liver fibrosis markers and Shear Wave Elastography results. Conclusion: Our study has demonstrated that shear wave elastography has a significant positive correlation with biochemical markers of liver lesions and serum markers of liver fibrosis, whereas it has a negative correlation with platelets.
Collapse
Affiliation(s)
- Arzana Hasani Jusufi
- Clinic of Gastroenterohepatology, Ss. Cyril and Methodius University of Skopje, Republic of North Macedonia
| | - Meri Trajkovska
- Clinic of Gastroenterohepatology, Ss. Cyril and Methodius University of Skopje, Republic of North Macedonia
| |
Collapse
|
25
|
Yang W, Chen L, Zhang J, Qiu C, Hou W, Zhang X, Fu B, Zhao D, Wang H, Liu D, Yan F, Ying W, Tang L. In-Depth Proteomic Analysis Reveals Phenotypic Diversity of Macrophages in Liver Fibrosis. J Proteome Res 2024; 23:5166-5176. [PMID: 39385457 DOI: 10.1021/acs.jproteome.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Macrophages make up a heterogeneous population of immune cells that exhibit diverse phenotypes and functions in health and disease. Although macrophage epigenomic and transcriptomic profiles have been reported, the proteomes of distinct macrophage populations under various pathological conditions remain largely elusive. Here, we employed a label-free proteomic approach to characterize the diversity of the hepatic macrophage pool in an experimental model of CCl4-induced liver fibrosis. We found a decrease in the proportion of liver resident embryo-derived KCs (EmKCs), and a drastic increase in the proportion of monocyte-derived KCs (MoKCs) and CLEC2-Macs. Proteomic profiling revealed that MoKCs largely resembled EmKCs, whereas CLEC2-Macs exhibited greater proteomic alternations compared with EmKCs, suggesting two distinct destinations for monocyte differentiation during liver fibrosis. Furthermore, CLEC2-Macs were characterized by increased expression of proteins associated with inflammatory response, antigen processing and presentation processes, which may be involved in the pathogenesis of liver fibrosis. Collectively, our study provides insights into the considerable heterogeneity within the hepatic macrophage pool during liver fibrosis.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Liling Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chenyi Qiu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenhao Hou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiangye Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dianyuan Zhao
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huan Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Di Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fang Yan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wantao Ying
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Li Tang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
26
|
Kutaiba N, Tran A, Ashraf S, Con D, Lokan J, Goodwin M, Testro A, Egan G, Lim R. Computed Tomography-Derived Extracellular Volume Fraction and Splenic Size for Liver Fibrosis Staging. J Comput Assist Tomogr 2024; 48:837-843. [PMID: 38858799 DOI: 10.1097/rct.0000000000001631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Extracellular volume fraction (fECV) and liver and spleen size have been correlated with liver fibrosis stages and cirrhosis. The purpose of the current study was to determine the predictive value of fECV alone and in conjunction with measurement of liver and spleen size for severity of liver fibrosis. METHODS This was a retrospective study of 95 subjects (65 with liver biopsy and 30 controls). Spearman rank correlation coefficient was used to assess correlation between radiological markers and fibrosis stage. Receiver operating characteristic analysis was performed to assess the discriminative ability of radiological markers for significant (F2+) and advanced (F3+) fibrosis and cirrhosis (F4), by reporting the area under the curve (AUC). RESULTS The cohort had a mean age of 51.4 ± 14.4 years, and 52 were female (55%). There were 36, 5, 6, 9, and 39 in fibrosis stages F0, F1, F2, F3, and F4, respectively. Spleen volume alone showed the highest correlation ( r = 0.552, P < 0.001) and AUCs of 0.823, 0.807, and 0.785 for identification of significant and advanced fibrosis and cirrhosis, respectively. Adding fECV to spleen length improved AUCs (0.764, 0.745, and 0.717 to 0.812, 0.781, and 0.738, respectively) compared with splenic length alone. However, adding fECV to spleen volume did not improve the AUCs for significant or advanced fibrosis or cirrhosis. CONCLUSIONS Spleen size (measured in length or volume) showed better correlation with liver fibrosis stages compared with fECV. The combination of fECV and spleen length had higher accuracy compared with fECV alone or spleen length alone.
Collapse
Affiliation(s)
| | - Anthony Tran
- From the Department of Radiology, Austin Health, Heidelberg, Victoria
| | - Saad Ashraf
- From the Department of Radiology, Austin Health, Heidelberg, Victoria
| | | | - Julie Lokan
- Anatomical Pathology, Austin Health, Heidelberg
| | | | | | - Gary Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
27
|
Zhang Q, Liang Q, Wang G, Xie X, Cao Y, Sheng N, Zeng Z, Ren C. Highly Selective Artificial K + Transporters Reverse Liver Fibrosis In Vivo. JACS AU 2024; 4:3869-3883. [PMID: 39483224 PMCID: PMC11522913 DOI: 10.1021/jacsau.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 11/03/2024]
Abstract
Liver fibrosis is a life-threatening disease that currently lacks clinically effective therapeutic agents. Given the close correlation between dysregulated intracellular K+ homeostasis and the progression of liver fibrosis, developing artificial K+ transporters mimicking the essential function of their natural counterparts in regulating intracellular K+ levels might offer an appealing yet unexplored treatment strategy. Here, we present an unconventional class of artificial K+ transporters involving the "motional" collaboration between two K+ transporter molecules. In particular, 6C6 exhibits an impressive EC50 value of 0.28 μM (i.e., 0.28 mol % relative to lipid) toward K+ and an exceptionally high K+/Na+ selectivity of 15.5, representing one of the most selective artificial K+ transporters reported to date. Most importantly, our study demonstrates, for the first time, the potential therapeutic effect of K+-selective artificial ion transporters in reversing liver fibrosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiuping Zhang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Qinghong Liang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Guijiang Wang
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaopan Xie
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yin Cao
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Nan Sheng
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiping Zeng
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changliang Ren
- State
Key Laboratory of Cellular Stress Biology and Fujian Provincial Key
Laboratory of Innovative Drug Target Research, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen
Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
28
|
Chen W, Liang F, Zhang Y, Zhang Y, Lv J, Jin X, Ran Y, Li S, Sun W. Metagenome-based characterization of the gut bacteriome, mycobiome, and virome in patients with chronic hepatitis B-related liver fibrosis. Front Microbiol 2024; 15:1449090. [PMID: 39526142 PMCID: PMC11543496 DOI: 10.3389/fmicb.2024.1449090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The gut microbiota is believed to be directly involved in the etiology and development of chronic liver diseases. However, the holistic characterization of the gut bacteriome, mycobiome, and virome in patients with chronic hepatitis B-related liver fibrosis (CHB-LF) remains unclear. Methods In this study, we analyzed the multi-kingdom gut microbiome (i.e., bacteriome, mycobiome, and virome) of 25 CHB-LF patients and 28 healthy individuals through whole-metagenome shotgun sequencing of their stool samples. Results We found that the gut bacteriome, mycobiome, and virome of CHB-LF patients were fundamentally altered, characterized by a panel of 110 differentially abundant bacterial species, 16 differential fungal species, and 90 differential viruses. The representative CHB-LF-enriched bacteria included members of Blautia_A (e.g., B. wexlerae, B. massiliensis, and B. obeum), Dorea (e.g., D. longicatena and D. formicigenerans), Streptococcus, Erysipelatoclostridium, while some species of Bacteroides (e.g., B. finegoldii and B. thetaiotaomicron), Faecalibacterium (mainly F. prausnitzii), and Bacteroides_A (e.g., B. plebeius_A and B. coprophilus) were depleted in patients. Fungi such as Malassezia spp. (e.g., M. japonica and M. sympodialis), Candida spp. (e.g., C. parapsilosis), and Mucor circinelloides were more abundant in CHB-LF patients, while Mucor irregularis, Phialophora verrucosa, Hortaea werneckii, and Aspergillus fumigatus were decreases. The CHB-LF-enriched viruses contained 18 Siphoviridae, 12 Myoviridae, and 1 Podoviridae viruses, while the control-enriched viruses included 16 Siphoviridae, 9 Myoviridae, 2 Quimbyviridae, and 1 Podoviridae_crAss-like members. Moreover, we revealed that the CHB-LF-associated gut multi-kingdom signatures were tightly interconnected, suggesting that they may act together on the disease. Finally, we showed that the microbial signatures were effective in discriminating the patients from healthy controls, suggesting the potential of gut microbiota in the prediction of CHB-LF and related diseases. Discussion In conclusion, our findings delineated the fecal bacteriome, mycobiome, and virome landscapes of the CHB-LF microbiota and provided biomarkers that will aid in future mechanistic and clinical intervention studies.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Liver Diseases, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Fang Liang
- Department of Liver Diseases, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Yuncheng Zhang
- Department of Liver Diseases, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Jinzhen Lv
- Department of Liver Diseases, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Xiande Jin
- Department of Liver Diseases, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Yun Ran
- Department of Liver Diseases, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | | | - Wen Sun
- Centre for Translational Medicine, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing Key Laboratory of Health Cultivation, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Liu H, Huang H, Liu Y, Yang Y, Deng H, Wang X, Zhou Z, Peng G, Jin S, Chen D, Zhong Z. Adipose-derived mesenchymal stem cells inhibit hepatic stellate cells activation to alleviate liver fibrosis via Hippo pathway. Stem Cell Res Ther 2024; 15:378. [PMID: 39449061 PMCID: PMC11515333 DOI: 10.1186/s13287-024-03988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Liver fibrosis is a common pathological process of chronic liver disease, characterized by excessive deposition of extracellular matrix (ECM). Mesenchymal stem cells (MSCs) have been found to have potential therapy effect on liver fibrosis, but the mechanism involved was still unclear. The objective of this study is to investigate the therapeutic efficacy of adipose-derived mesenchymal stem cells (ADMSCs) on the treatment of liver fibrosis, with particular emphasis on elucidating the underlying mechanism of action through which ADMSCs inhibit the activation of hepatic stellate cells (HSCs). METHODS ADMSCs were isolated from adipose tissue and injected intravenously into hepatic fibrosis model of rats. The histopathological changes, liver function, collagen deposition, the expression of fibroin and Hippo pathway were evaluated. In vitro, ADMSCs were co-cultured with HSCs activated by transforming growth factor beta 1 (TGF-β1), and the inhibitor of Hippo pathway was used to evaluate the therapeutic mechanism of ADMSCs transplantation. RESULTS The results showed that after the transplantation of ADMSCs, the liver function of rats was improved, the degree of liver fibrosis and collagen deposition were reduced, and the Hippo signaling pathway was activated. In vitro, ADMSCs can effectively inhibit the proliferation and activation of HSCs induced by TGF-β1 treatment. However, the inhibitory effect of ADMSCs was weakened after blocking the Hippo signaling pathway. CONCLUSIONS ADMSCs inhibit HSCs activation by regulating YAP/TAZ, thereby promoting functional recovery after liver fibrosis. These findings lay a foundation for further investigation into the precise mechanism by which ADMSCs alleviate liver fibrosis.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yifan Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuxue Yang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shouchao Jin
- Sichuan Jinbei Banshan Group Co Ltd, Chengdu, 610041, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
30
|
Nian L, Cai X, Li W, Jiang Y, Wu Q, Xiao J. Multiplex Collagen Fingerprinting for the Staging of Hepatic Fibrosis Using High-Precision Fluorescence-Guided SERS Imaging. Anal Chem 2024; 96:16649-16657. [PMID: 39375934 DOI: 10.1021/acs.analchem.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Hepatic fibrosis is a common chronic liver disease, and its severe progression can culminate in cirrhosis and hepatocellular carcinoma (HCC). Precise diagnosis and staging of hepatic fibrosis are essential to prevent liver cirrhosis and HCC. Simultaneous detection of multiplex collagen biomarkers within liver tissue is crucial for staging hepatic fibrosis. We herein for the first time constructed multiplex collagen fingerprinting for the staging of hepatic fibrosis using high-precision fluorescence-guided surface-enhanced Raman scattering (SERS) imaging. SERS/fluorescent probes, collectively referred to as SF, comprising silver nanoparticles (Ag NPs), Raman reporters, and FAM-labeled collagen targeting peptides. These probes exhibit exceptional aqueous dispersion and stability, attributed to the increased number of Asp residues in CTP. Meanwhile, SF probes, namely SF-I, SF-IV, and SF-D have demonstrated specific targeting of type I, type IV, and denatured collagen, respectively, within hepatic fibrotic tissues. The results from fluorescence-guided SERS imaging underscore the method's capacity for typing, localization, and quantification of collagen, thus providing novel insights into collagen's role in the development of hepatic fibrosis. The collagen fingerprinting strategy offers a potent toolkit for the multifaceted profiling of collagen superfamilies, holding significant implications for the precise staging of hepatic fibrosis.
Collapse
Affiliation(s)
- Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, P. R. China
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, P. R. China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, P. R. China
| | - Yuxuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
31
|
Liu Z, Nian L, Cai X, Hu Y, Lei J, Xiao J. A robust collagen-targeting MRI peptide contrast agent for in vivo imaging of hepatic fibrosis. Chem Commun (Camb) 2024; 60:12453-12456. [PMID: 39380539 DOI: 10.1039/d4cc00702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
We herein report the construction of a robust MRI peptide contrast agent Gd-ICTP with superior selectivity for type I collagen, enabling the accurate and non-invasive detection of hepatic fibrosis in vivo.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yue Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
32
|
Deng J, Long J, Yang Y, Yang F, Wei Y. Gentiana decoction inhibits liver fibrosis and the activation of hepatic stellate cells via upregulating the expression of Parkin. Fitoterapia 2024; 178:106170. [PMID: 39122121 DOI: 10.1016/j.fitote.2024.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Liver fibrosis is a wound-healing process. It can be induced by various chronic liver diseases. Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs), a key event. However, no effective treatment strategies to cure or alleviate liver fibrosis-induced pathologic changes have yet been developed. Traditional Chinese medicine (TCM) exhibits a good anti-fibrosis action, with few side effects. Gentiana decoction, a TCM also called Longdan Xiegan Tang (LXT), is used for purging the liver in clinical settings. However, the role of LXT in preventing liver fibrosis and the underlying regulatory mechanism have not yet been investigated. This study demonstrates that LXT treatment can protect the liver from the injuries resulting from CCl4-induced liver fibrosis in mice and suppress the activation of HSCs. The mice in the LXT group exhibit litter collagen I and HSC activation marker α-smooth muscle actin (α-SMA) expression. Transcriptome sequencing of the mouse liver tissue reveals that the level of Parkin, a mitophagy marker, decreased in CCl4-induced liver fibrosis. Further study shows that the injection of Parkin-overexpression adeno-associated virus (Parkin-AAV) via the tail vein can reduce CCl4-induced liver fibrogenesis in mice. We conducted a mechanistic study also, which suggests that LXT treatment suppresses the activation of HSCs by upregulating the expression of Parkin. Hence, it can be suggested that LXT inhibits liver fibrosis by activating the Parkin signaling pathway.
Collapse
Affiliation(s)
- Jing Deng
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhi 78nd Road, Guangzhou 510095, China.
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, PR China
| | - Yang Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Fengyu Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yongjie Wei
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhi 78nd Road, Guangzhou 510095, China.
| |
Collapse
|
33
|
Kim JY, Kang W, Yang S, Park SH, Ha SY, Paik YH. NADPH oxidase 4 deficiency promotes hepatocellular carcinoma arising from hepatic fibrosis by inducing M2-macrophages in the tumor microenvironment. Sci Rep 2024; 14:22358. [PMID: 39333166 PMCID: PMC11437090 DOI: 10.1038/s41598-024-72721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) often arises in the cirrhotic livers, highlighting the intricate link between hepatic fibrosis and carcinogenesis. Reactive oxygen species produced by NADPH oxidase 4 (NOX4) contribute to liver injury leading to hepatic fibrosis. Paradoxically, NOX4 is known to inhibit HCC progression. This study aims to elucidate the role of NOX4 in hepatocarcinogenesis in the background of hepatic fibrosis. We established the mouse model of HCC arising from the fibrotic liver by administering diethylnitrosamine and carbon tetrachloride to wild-type (WT) or NOX4-/- mice. Hepatic fibrogenesis, tumorigenesis, and macrophage polarization were assessed by immunohistochemistry, PCR, and flow cytometry using in vivo and in vitro models. In NOX4-/- mice, hepatic fibrosis was attenuated, while the number of tumors and the proliferation of HCC cells were increased compared to WT mice. Notably, a significant increase in M2-polarized macrophages was observed in NOX4-/- mice through immunohistochemistry and PCR analysis. Subsequent experiments demonstrated that NOX4-silenced HCC cells promote macrophage polarization toward M2. In addition to attenuating hepatic fibrogenesis, NOX4 deficiency triggers macrophage polarization towards the M2 phenotype in the fibrotic liver, thereby promoting hepatocellular carcinogenesis. These findings provide novel insights into the mechanism of NOX4-mediated tumor suppression in HCC arising from fibrotic livers.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Wonseok Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Sera Yang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Su Hyun Park
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yong-Han Paik
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
34
|
Tang RX, Xie XJ, Xiong Y, Li S, Luo C, Wang YG. C23 ameliorates carbon tetrachloride-induced liver fibrosis in mice. World J Hepatol 2024; 16:1278-1288. [PMID: 39351519 PMCID: PMC11438593 DOI: 10.4254/wjh.v16.i9.1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/23/2024] Open
Abstract
BACKGROUND C23, an oligo-peptide derived from cold-inducible RNA-binding protein (CIRP), has been reported to inhibit tissue inflammation, apoptosis and fibrosis by binding to the CIRP receptor; however, there are few reports on its role in liver fibrosis and the underlying mechanism is unknown. AIM To explore whether C23 plays a significant role in carbon tetrachloride (CCl4)-induced liver fibrosis. METHODS CCl4 was injected for 6 weeks to induce liver fibrosis and C23 was used beginning in the second week. Masson and Sirius red staining were used to examine changes in fiber levels. Inflammatory factors in the liver were detected and changes in α-smooth muscle actin (α-SMA) and collagen I expression were detected via immunohistochemical staining to evaluate the activation of hematopoietic stellate cells (HSCs). Western blotting was used to detect the activation status of the transforming growth factor-beta (TGF-β)/Smad3 axis after C23 treatment. RESULTS CCl4 successfully induced liver fibrosis in mice, while tumor necrosis factor-alpha (TNF-α), IL (interleukin)-1β, and IL-6 levels increased significantly and the IL-10 level decreased significantly. Interestingly, C23 inhibited this process. On the other hand, C23 significantly inhibited the activation of HSCs induced by CCl4, which inhibited the expression of α-SMA and the synthesis of collagen I. In terms of mechanism, C23 can block Smad3 phosphorylation significantly and inhibits TGF-β/Smad3 pathway activation, thereby improving liver injury caused by CCl4. CONCLUSION C23 may block TGF-β/Smad3 axis activation, inhibit the expression of inflammatory factors, and inhibit the activation of HSCs induced by CCl4, alleviating liver fibrosis.
Collapse
Affiliation(s)
- Rong-Xing Tang
- Department of Hepatopancreatobiliary Surgery, Panzhihua Municipal Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Xiao-Jun Xie
- Department of Pathology, Panzhihua Maternal and Children Health Hospital, Panzhihua 617000, Sichuan Province, China
| | - Yong Xiong
- Department of Hepatopancreatobiliary Surgery, Panzhihua Municipal Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Su Li
- Department of Hepatopancreatobiliary Surgery, Panzhihua Municipal Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Chen Luo
- Department of Hepatopancreatobiliary Surgery, Panzhihua Municipal Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Yi-Gang Wang
- Department of Hepatopancreatobiliary Surgery, Panzhihua Municipal Central Hospital, Panzhihua 617000, Sichuan Province, China.
| |
Collapse
|
35
|
Wang Q, Jia S, Wang Z, Chen H, Jiang X, Li Y, Ji P. Nanogene editing drug delivery systems in the treatment of liver fibrosis. Front Med (Lausanne) 2024; 11:1418786. [PMID: 39386741 PMCID: PMC11461213 DOI: 10.3389/fmed.2024.1418786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liver fibrosis is a group of diseases that seriously affect the health of the world's population. Despite significant progress in understanding the mechanisms of liver fibrogenesis, the technologies and drugs used to treat liver fibrosis have limited efficacy. As a revolutionary genetic tool, gene editing technology brings new hope for treating liver fibrosis. Combining nano-delivery systems with gene editing tools to achieve precise delivery and efficient expression of gene editing tools that can be used to treat liver fibrosis has become a rapidly developing field. This review provides a comprehensive overview of the principles and methods of gene editing technology and commonly used gene editing targets for liver fibrosis. We also discuss recent advances in common gene editing delivery vehicles and nano-delivery formulations in liver fibrosis research. Although gene editing technology has potential advantages in liver fibrosis, it still faces some challenges regarding delivery efficiency, specificity, and safety. Future studies need to address these issues further to explore the potential and application of liver fibrosis technologies in treating liver fibrosis.
Collapse
Affiliation(s)
- Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
37
|
Gao J, Wang Y, Meng X, Wang X, Han F, Xing H, Lv G, Zhang L, Wu S, Jiang X, Yao Z, Fang X, Zhang J, Bu W. A FAPα-activated MRI nanoprobe for precise grading diagnosis of clinical liver fibrosis. Nat Commun 2024; 15:8036. [PMID: 39271701 PMCID: PMC11399433 DOI: 10.1038/s41467-024-52308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Molecular imaging holds the potential for noninvasive and accurate grading of liver fibrosis. It is limited by the lack of biomarkers that strongly correlate with liver fibrosis grade. Here, we discover the grading potential of fibroblast activation protein alpha (FAPα) for liver fibrosis through transcriptional analysis and biological assays on clinical liver samples. The protein and mRNA expression of FAPα are linearly correlated with fibrosis grade (R2 = 0.89 and 0.91, respectively). A FAPα-responsive MRI molecular nanoprobe is prepared for quantitatively grading liver fibrosis. The nanoprobe is composed of superparamagnetic amorphous iron nanoparticles (AFeNPs) and paramagnetic gadoteric acid (Gd-DOTA) connected by FAPα-responsive peptide chains (ASGPAGPA). As liver fibrosis worsens, the increased FAPα cut off more ASGPAGPA, restoring a higher T1-MRI signal of Gd-DOTA. Otherwise, the signal remains quenched due to the distance-dependent magnetic resonance tuning (MRET) effect between AFeNPs and Gd-DOTA. The nanoprobe identifies F1, F2, F3, and F4 fibrosis, with area under the curve of 99.8%, 66.7%, 70.4%, and 96.3% in patients' samples, respectively. This strategy exhibits potential in utilizing molecular imaging for the early detection and grading of liver fibrosis in the clinic.
Collapse
Affiliation(s)
- Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Xianfu Meng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Nuclear Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, P. R. China
| | - Xiaoshuang Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Fang Han
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hao Xing
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Guanglei Lv
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
| | - Li Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiangming Fang
- Department of Radiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 2214023, P. R. China.
| | - Jiawen Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
| | - Wenbo Bu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
38
|
Roy S, Chakrabarti M, Mondal T, Das TK, Sarkar T, Datta S, Kundu M, Banerjee M, Kulkarni OP. Effect of an Autotaxin Inhibitor, 2-(4-Chlorophenyl)-7-methyl-8-pentylimidazo[1,2- a] Pyrimidin-5(8 H)-one (CBT-295), on Bile Duct Ligation-Induced Chronic Liver Disease and Associated Hepatic Encephalopathy in Rats. ACS Pharmacol Transl Sci 2024; 7:2662-2676. [PMID: 39296254 PMCID: PMC11406694 DOI: 10.1021/acsptsci.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024]
Abstract
The role of autotaxin (ATX)-lysophosphatidic acid (LPA) is yet to be explored in the context of liver cirrhosis and associated encephalopathy. Our objective of this study was to evaluate the role of an ATX inhibitor in biliary cirrhosis and associated hepatic encephalopathy in rats. The preliminary investigation revealed significant impairment in liver function, which eventually led to the development of hepatic encephalopathy. Interestingly, LPA levels were significantly increased in the plasma, liver, and brain of rats following bile duct ligation. Subsequently, we tested the efficacy of an ATX inhibitor, CBT-295, in bile duct-induced biliary cirrhosis and neuropsychiatric symptoms associated with hepatic encephalopathy. CBT-295 showed good oral bioavailability and favorable pharmacokinetic properties. CBT-295 exhibited a significant reduction in inflammatory cytokines like TGF-β, TNF-α, and IL-6 levels, also reduced bile duct proliferation marker CK-19, and lowered liver fibrosis, as evident from reduced collagen deposition. The reversal of liver fibrosis with CBT-295 led to a reduction in blood and brain ammonia levels. Furthermore, CBT-295 also reduced neuroinflammation induced by ammonia, which is characterized by a significant reduction in brain cytokine levels. It improved neuropsychiatric symptoms such as locomotor activities, cognitive impairment, and clinical grading scores associated with hepatic encephalopathy. The improvement in hepatic encephalopathy observed with the ATX inhibitor could be the result of its hepatoprotective action and its ability to attenuate neuroinflammation. Therefore, inhibition of ATX-LPA signaling can be a multifactorial approach for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Subhasis Roy
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Monali Chakrabarti
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Trisha Mondal
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Tapas Kumar Das
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Tonmoy Sarkar
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Sebak Datta
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Mrinalkanti Kundu
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Manish Banerjee
- TCG Lifesciences Private Ltd., Sector V, Salt Lake, Kolkata 700091, West Bengal, India
| | - Onkar Prakash Kulkarni
- Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
39
|
Veisman I, Massey WJ, Goren I, Liu W, Chauhan G, Rieder F. Muscular hyperplasia in Crohn's disease strictures: through thick and thin. Am J Physiol Cell Physiol 2024; 327:C671-C683. [PMID: 38912732 PMCID: PMC11427014 DOI: 10.1152/ajpcell.00307.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Fibrostenosing Crohn's disease (CD) represents a challenging clinical condition characterized by the development of symptomatic strictures within the gastrointestinal tract. Despite therapeutic advancements in managing inflammation, the progression of fibrostenotic complications remains a significant concern, often necessitating surgical intervention. Recent investigations have unveiled the pivotal role of smooth muscle cell hyperplasia in driving luminal narrowing and clinical symptomatology. Drawing parallels to analogous inflammatory conditions affecting other organs, such as the airways and blood vessels, sheds light on common underlying mechanisms of muscular hyperplasia. This review synthesizes current evidence to elucidate the mechanisms underlying smooth muscle cell proliferation in CD-associated strictures, offering insights into potential therapeutic targets. By highlighting the emerging significance of muscle thickening as a novel therapeutic target, this review aims to inform future research endeavors and clinical strategies with the goal to mitigate the burden of fibrostenotic complications in CD and other conditions.
Collapse
Affiliation(s)
- Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Weiwei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Cleveland Clinic Program for Global Translational Inflammatory Bowel Diseases (GRID), Cleveland, Ohio, United States
| |
Collapse
|
40
|
Miyaaki H, Miuma S, Fukusima M, Sasaki R, Haraguchi M, Nakao Y, Akazawa Y, Nakao K. Liver fibrosis analysis using digital pathology. Med Mol Morphol 2024; 57:161-166. [PMID: 38980407 DOI: 10.1007/s00795-024-00395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Digital pathology has enabled the noninvasive quantification of pathological parameters. In addition, the combination of digital pathology and artificial intelligence has enabled the analysis of a vast amount of information, leading to the sharing of much information and the elimination of knowledge gaps. Fibrosis, which reflects chronic inflammation, is the most important pathological parameter in chronic liver diseases, such as viral hepatitis and metabolic dysfunction-associated steatotic liver disease. It has been reported that the quantitative evaluation of various fibrotic parameters by digital pathology can predict the prognosis of liver disease and hepatocarcinogenesis. Liver fibrosis evaluation methods include 1 fiber quantification, 2 elastin and collagen quantification, 3 s harmonic generation/two photon excitation fluorescence (SHG/TPE) microscopy, and 4 Fibronest™.. In this review, we provide an overview of role of digital pathology on the evaluation of fibrosis in liver disease and the characteristics of recent methods to assess liver fibrosis.
Collapse
Affiliation(s)
- Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Satoshi Miuma
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masanori Fukusima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ryu Sasaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masafumi Haraguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
41
|
Oshins R, Greenberg Z, Tai YL, Zhao D, Wang X, Mehrad B, He M, Patel I, Khartabil L, Zhou H, Brantly M, Khodayari N. Extracellular Vesicle-Associated Neutrophil Elastase Activates Hepatic Stellate Cells and Promotes Liver Fibrogenesis via ERK1/2 Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608832. [PMID: 39229038 PMCID: PMC11370372 DOI: 10.1101/2024.08.20.608832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Liver fibrosis associated with increased mortality is caused by activation of hepatic stellate cells and excessive production and accumulation of extracellular matrix in response to fibrotic insults. It has been shown that in addition to liver inflammation, systemic inflammation also contributes to liver fibrogenesis. A deeper understanding of mechanisms that control liver fibrotic response to intra- and extra-hepatic inflammation is essential to develop novel clinical strategies against this disease. Extracellular vesicles (EV) have been recognized as immune mediators that facilitate activation of hepatic stellate cells. In inflammatory diseases, activated neutrophils release neutrophil elastase (NE) bound to EV, which has been identified as a significant contributor to inflammation by promoting immune cell activation. Here, we aimed to explore the role of inflammation derived plasma EV-associated NE in liver fibrogenesis and its potential mechanisms. We show EV-associated NE induces activation, proliferation and migration of hepatic stellate cells by promoting activation of the ERK1/2 signaling pathway. This effect did not occur through EV without surface NE, and Sivelestat, a NE inhibitor, inhibited activation of the ERK1/2 signaling pathway mediated by EV-associated NE. Moreover, we found plasma EV-associated NE increases deposition of collagen1 and α-smooth muscle actin in the liver of a mouse model of liver fibrosis (Mdr2-/-). Notably, this effect does not occur in control mice without preexisting liver disease. These data suggest that EV-associated NE is a pro-fibrogenic factor for hepatic stellate cell activation via the ERK1/2 signaling pathway in pre-existing liver injuries. Inhibition of the plasma EV-associated NE in inflammatory conditions may be a therapeutic target for liver fibrosis in patients with inflammatory diseases.
Collapse
Affiliation(s)
- Regina Oshins
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| | - Zachary Greenberg
- Department of Pharmaceutics, College of Pharmacy; University of Florida, Gainesville, Florida, USA
| | - Yun-Ling Tai
- Department of Microbiology and Immunology; Virginia Commonwealth University, Richmond VA Medical Center, Richmond, Virginia, USA
| | - Derrick Zhao
- Department of Microbiology and Immunology; Virginia Commonwealth University, Richmond VA Medical Center, Richmond, Virginia, USA
| | - Xuan Wang
- Department of Microbiology and Immunology; Virginia Commonwealth University, Richmond VA Medical Center, Richmond, Virginia, USA
| | - Borna Mehrad
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy; University of Florida, Gainesville, Florida, USA
| | - Ishan Patel
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| | - Laith Khartabil
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology; Virginia Commonwealth University, Richmond VA Medical Center, Richmond, Virginia, USA
| | - Mark Brantly
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| | - Nazli Khodayari
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine; University of Florida, Gainesville, Florida, USA
| |
Collapse
|
42
|
Sun J, Yang F, Zheng Y, Huang C, Fan X, Yang L. Pathogenesis and interaction of neutrophils and extracellular vesicles in noncancer liver diseases. Int Immunopharmacol 2024; 137:112442. [PMID: 38889508 DOI: 10.1016/j.intimp.2024.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Liver disease ranks as the eleventh leading cause of mortality, leading to approximately 2 million deaths annually worldwide. Neutrophils are a type of immune cell that are abundant in peripheral blood and play a vital role in innate immunity by quickly reaching the site of liver injury. They exert their influence on liver diseases through autocrine, paracrine, and immunomodulatory mechanisms. Extracellular vesicles, phospholipid bilayer vesicles, transport a variety of substances, such as proteins, nucleic acids, lipids, and pathogenic factors, for intercellular communication. They regulate cell communication and perform their functions by delivering biological information. Current research has revealed the involvement of the interaction between neutrophils and extracellular vesicles in the pathogenesis of liver disease. Moreover, more research has focused on targeting neutrophils as a therapeutic strategy to attenuate disease progression. Therefore, this article summarizes the roles of neutrophils, extracellular vesicles, and their interactions in noncancerous liver diseases.
Collapse
Affiliation(s)
- Jie Sun
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China; Medical College, Tibet University, Lhasa, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Ge J, Chen W, Li M, Zhao J, Zhao Y, Ren J, Gao X, Song T, Li X, Yang J. To elucidate the bioactive components of Lamiophlomis herba in the treatment of liver fibrosis via plasma pharmacochemistry and network pharmacology. J Pharm Biomed Anal 2024; 246:116204. [PMID: 38776584 DOI: 10.1016/j.jpba.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Lamiophlomis Herba (LH) is a traditional Chinese and Tibetan dual-use herb with hemostatic and analgesic effects, and is widely used in the clinical treatment of traumatic bleeding and pain. In recent years, LH has been proven to treat liver fibrosis (LF), but the chemical components related to the pharmacological properties of LH in the treatment of LF are still unclear. Based on the theory of plasma pharmachemistry, the characteristic components in water extract and drug-containing plasma samples of LH were qualitatively analyzed by UPLC-Q-TOF-MS. The chemical components in plasma were screened and the targets were predicted by network pharmacology. Then, the predicted components and targets were verified in vitro by Elisa and qRT-PCR technology. Finally, the pharmacological effects of LH and its monomeric components were determined by hematoxylin-eosin staining of rat liver. A total of 50 chemical constituents were identified in LH, of which 12 were blood prototypes and 9 were metabolites. In vitro experiments showed that LH and its monomeric components luteolin, shanzhiside methyl ester, loganic acid, loganin, 8-O-acetyl shanzhiside methyl ester could increase the expression of antioxidant genes (NQO-1, HO-1) and decrease the expression of inflammatory genes (IL-6, IL-18), thereby reducing the expression of extracellular matrix-related genes and proteins (COL1A1, COL3A1, LN, α-sma, PC-III, Col-IV). In vivo experiments showed that LH could reduce the area of LF in rats in a dose-dependent manner, and shanzhiside methyl ester and 8-O-acetyl shanzhiside methyl ester may be the main components in pharmacodynamics. These effects may be mediated by LH-mediated Nrf2/NF-κB pathway. This study explored the potential pharmacodynamic components of LH in the treatment of LF, and confirmed that shanzhiside methyl ester and 8-O-acetyl shanzhiside methyl ester play a key role in the treatment of LF with LH.
Collapse
Affiliation(s)
- Jiaming Ge
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weisan Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengyuan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Zhao
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchen Gao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tianbao Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China; State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Jinlong Yang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
Liu J, Liu J, Mu W, Ma Q, Zhai X, Jin B, Liu Y, Zhang N. Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems. ACS NANO 2024; 18:20861-20885. [DOI: 10.1021/acsnano.4c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Jie Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
45
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
46
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
47
|
Yang F, Cheng MH, Pan HF, Gao J. Progranulin: A promising biomarker and therapeutic target for fibrotic diseases. Acta Pharm Sin B 2024; 14:3312-3326. [PMID: 39220875 PMCID: PMC11365408 DOI: 10.1016/j.apsb.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Progranulin (PGRN), a multifunctional growth factor-like protein expressed by a variety of cell types, serves an important function in the physiologic and pathologic processes of fibrotic diseases, including wound healing and the inflammatory response. PGRN was discovered to inhibit pro-inflammation effect by competing with tumor necrosis factor-alpha (TNF-α) binding to TNF receptors. Notably, excessive tissue repair in the development of inflammation causes tissue fibrosis. Previous investigations have indicated the significance of PGRN in regulating inflammatory responses. Recently, multiple studies have shown that PGRN was linked to fibrogenesis, and was considered to monitor the formation of fibrosis in multiple organs, including liver, cardiovascular, lung and skin. This paper is a comprehensive review summarizing our current knowledge of PGRN, from its discovery to the role in fibrosis. This is followed by an in-depth look at the characteristics of PGRN, consisting of its structure, basic function and intracellular signaling. Finally, we will discuss the potential of PGRN in the diagnosis and treatment of fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
- Department of Ophthalmology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming-Han Cheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230022, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230022, China
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| |
Collapse
|
48
|
Chen L, Huang Y, Zhang N, Qu J, Fang Y, Fu J, Yuan Y, Zhang Q, Li H, Wen Z, Yuan L, Chen L, Xu Z, Li Y, Yan H, Izawa H, Li L, Xiang C. Single-cell RNA sequencing reveals reduced intercellular adhesion molecule crosstalk between activated hepatic stellate cells and neutrophils alleviating liver fibrosis in hepatitis B virus transgenic mice post menstrual blood-derived mesenchymal stem cell transplantation. MedComm (Beijing) 2024; 5:e654. [PMID: 39040848 PMCID: PMC11261812 DOI: 10.1002/mco2.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Liver fibrosis can cause hepatitis B virus (HBV)-associated hepatocellular carcinoma. Menstrual blood-derived mesenchymal stem cells (MenSCs) can ameliorate liver fibrosis through paracrine. Single-cell RNA sequencing (scRNA-seq) may be used to explore the roadmap of activated hepatic stellate cell (aHSC) inactivation to target liver fibrosis. This study established HBV transgenic (HBV-Tg) mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis and demonstrated that MenSCs migrated to the injured liver to improve serological indices and reduce fibrotic accumulation. RNA-bulk analysis revealed that MenSCs mediated extracellular matrix accumulation and cell adhesion. Liver parenchymal cells and nonparenchymal cells were identified by scRNA-seq in the control, CCl4, and MenSC groups, revealing the heterogeneity of fibroblasts/HSCs. A CellChat analysis revealed that diminished intercellular adhesion molecule (ICAM) signaling is vital for MenSC therapy. Specifically, Icam1 in aHSCs acted on Itgal/Itgb2 and Itgam/Itgb2 in neutrophils, causing decreased adhesion. The expression of Itgal, Itgam, and Itgb2 was higher in CCl4 group than in the control group and decreased after MenSC therapy in neutrophil clusters. The Lcn2, Pglyrp1, Wfdc21, and Mmp8 had high expression and may be potential targets in neutrophils. This study highlights interacting cells, corresponding molecules, and underlying targets for MenSCs in treating HBV-associated liver fibrosis.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Qu
- Department of Respiratory DiseaseThoracic Disease CentreThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hang Li
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Zuoshi Wen
- Department of CardiologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Li Yuan
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Lu Chen
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
| | - Huadong Yan
- Infectious Disease DepartmentShulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical CollegeHangzhouChina
| | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
49
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
50
|
Ning Z. An in-depth exploration of new clinical and prognostic characteristics of decompensated cirrhosis patterns. J Hepatol 2024; 81:e68. [PMID: 38307347 DOI: 10.1016/j.jhep.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Affiliation(s)
- Zhongxing Ning
- Department of Intensive Care Unit, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, 530022, China.
| |
Collapse
|