1
|
Zhou Y, Zhu S, Ye S, Ye Z, Chen W, Li J, Shu G, Wang S, Zhu C, Wu R, Jiang Q, Wang L. Central corticotropin releasing hormone receptor 2 may participate in sex differential regulation of cold-evoked eating behavior. Neuroscience 2025; 566:169-176. [PMID: 39733820 DOI: 10.1016/j.neuroscience.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Corticotropin-releasing factor (CRF) is an important stress hormone, and because of the different distributions and functions of its receptors, CRF has various effects on the stress response of animals. CRF receptor 2 (CRFR2) is a functional receptor of CRF that may be related to appetite regulation and sex differences. In this study, male and female C57BL/6 mice were exposed to an ambient temperature of 4 °C, and feed intake were determined. Consequently, neuronal excitability, as well as the expression of CRFR2 and related genes in the brain were determined. As a result, 1) there were only significant changes in 2 h feed intake and rectal temperature in males; 2) neuronal excitability was elevated in the paraventricular thalamus (PVT) and paraventricular hypothalamic nucleus (PVH) brain regions of both male and female mice; 3) serum corticosterone and the expression of corticosterone receptors in the PVH were elevated in males but not in females; 4) the activation of the CRFR2 signal in the PVT and PVH brain regions differed by sex: the expression of CRFR2 was upregulated in male mice, and the phosphorylation of protein kinase B (AKT) and cAMP-response element binding protein (CREB) was significantly reduced; and 5) the cold-evoked eating behavior of male mice was abolished when CRFR2 in the PVT was knocked down. In summary, we conclude that male mice are more sensitive to cold stress than are female mice. The CRFR2/AKT/CREB signaling pathway in the PVT and PVH may mediate sex differences in the eating behavior of cold-exposed mice.
Collapse
Affiliation(s)
- Ying Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuqing Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shangwu Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ziyuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wenxi Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jieshan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruifan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Liu Z, Hu J, Shen G. Bioinspired Intelligent Electronic Skin for Medicine and Healthcare. SMALL METHODS 2025:e2402164. [PMID: 39906020 DOI: 10.1002/smtd.202402164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Intelligent electronic skin aims to mimic, enhance, and even surpass the functions of biological skin, enabling artificial systems to sense environmental stimuli and interact more naturally with humans. In healthcare, intelligent electronic skin is revolutionizing diagnostics and personalized medicine by detecting early signs of diseases and programming exogenous stimuli for timely intervention and on-demand treatment. This review discusses latest progress in bioinspired intelligent electronic skin and its application in medicine and healthcare. First, strategies for the development of intelligent electronic skin to simulate or even surpass human skin are discussed, focusing on its basic characteristics, as well as sensing and regulating functions. Then, the applications of electronic skin in health monitoring and wearable therapies are discussed, illustrating its potential to provide early warning and on-demand treatment. Finally, the significance of electronic skin in bridging the gap between electronic and biological systems is emphasized and the challenges and future perspectives of intelligent electronic skin are summarized.
Collapse
Affiliation(s)
- Zhirong Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Junhao Hu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Casas-Alvarado A, Mora-Medina P, Hernández-Avalos I, Martínez-Burnes J, Miranda-Cortes A, Domínguez-Oliva A, Mota-Rojas D. Assessing Facial Thermal Nociceptive Response in Female Dogs After Elective Ovariohysterectomy Anesthetized with Isoflurane and Treated with Cannabidiol and Meloxicam Analgesia. Animals (Basel) 2025; 15:227. [PMID: 39858227 PMCID: PMC11758305 DOI: 10.3390/ani15020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Pain management requires the identification of certain indicators to recognize pain. Various tools have been suggested to achieve an objective evaluation, including infrared thermography (IRT). The objective of this study was to assess the facial thermal nociceptive response produced by the use of cannabidiol (CBD) alone and in combination with meloxicam in female dogs undergoing elective ovariohysterectomy anesthetized with isoflurane. Sixty-four female dogs of different breeds were randomly distributed into four study groups according to the treatment received. G1: Placebo group (n = 16); G2: Group receiving intravenous meloxicam as premedication (0.2 mg Kg-1) and every 24 h postoperatively 0.1 mg Kg-1 (n = 16); G3: Group treated with CBD (n = 16) at a dose of 2 mg kg-1 orally every 12 h; and G4: Group medicated with the combination of both treatments (n = 16). All treatments were administered for 48 h postoperatively. After the anesthetic surgical procedure, radiometric images were captured using IRT and physiological parameters during the events EBasal, E30min, E1h, E2h, E3h, E4h, E8h, E12h, E24h and E48h. Overall, it was found that the high, medium and low temperatures of the thermal windows of the eye, upper eyelid and lower eyelid, as well as the average temperature of the lacrimal gland in G1 between events, were significantly lower at E30min, E1h and E2h compared to EBasal (p = 0.01). Among treatments, a significantly higher temperature was observed in groups G2, G3 and G4 compared to G1 (p = 0.001) in the thermal windows of the upper eyelid, lower eyelid, lacrimal gland and ocular areas. Regarding physiological parameters, heart rate (HR) was higher in G1 compared to the animals in G2, G3 and G4 (p = 0.03). The respiratory rate (RR) was significantly lower in all four study groups during the postoperative events compared to their respective EBasal (p < 0.05), while among treatments, G2, G3 and G4 had a lower RR compared to G1 (p = 0.03). Mild hypothermia was observed in all study groups at E30min and E1h compared to EBasal (p = 0.001). No significant correlation was found between the temperatures of the assessed thermal regions and the physiological traits. In conclusion, CBD, whether administered alone or in combination with meloxicam, demonstrated comparable analgesic efficacy, which could control nociceptive cardiorespiratory and hemodynamic autonomic responses, as there were no significant changes in the facial thermal response between treatments G2, G3 and G4.
Collapse
Affiliation(s)
- Alejandro Casas-Alvarado
- PhD Program in Biological and Health Sciences [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Ismael Hernández-Avalos
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Agatha Miranda-Cortes
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, Department of Animal Production and Agriculture, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, Department of Animal Production and Agriculture, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| |
Collapse
|
4
|
Vabba A, Scattolin M, Porciello G, Panasiti MS, Aglioti SM. From feeling chilly to burning up: How thermal signals shape the physiological state of the body and impact physical, emotional, and social well-being. Neurosci Biobehav Rev 2025; 169:105992. [PMID: 39793684 DOI: 10.1016/j.neubiorev.2024.105992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
This review examines the role of thermal interoception-awareness of body temperature-in shaping physiological states and its impact on physical, emotional, and social well-being. We describe the neural pathways and mechanisms involved in thermal processing and environmental heat exchange and how thermal interoception influences both autonomic and behavioral responses, contributing to survival and homeostasis. Additionally, the review highlights the significance of thermal signals and thermoregulation in determining higher-order cognitive and emotional functions, such as regulating sleep patterns and activity levels, monitoring physical well-being, regulating emotions, and even social interactions. We describe the existing instruments for assessing body temperature and thermal awareness and call for further research to investigate the role of thermal interoception in emotional and social domains. We also discuss potential therapeutic applications, particularly in the context of psychosomatic and neurological disorders characterized by emotional dysregulation, disrupted sleep and mood patterns, social difficulties, and alterations in self-consciousness.
Collapse
Affiliation(s)
- Alisha Vabba
- Sapienza University of Rome and CLN2S@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, Rome 00161, Italy; IRCCS, Santa Lucia Foundation, Rome 00142, Italy.
| | - Marina Scattolin
- Sapienza University of Rome and CLN2S@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, Rome 00161, Italy; IRCCS, Santa Lucia Foundation, Rome 00142, Italy; Department of Psychology, Sapienza University of Rome, Rome 00185, Italy
| | - Giuseppina Porciello
- IRCCS, Santa Lucia Foundation, Rome 00142, Italy; Department of Psychology, Sapienza University of Rome, Rome 00185, Italy
| | - Maria Serena Panasiti
- IRCCS, Santa Lucia Foundation, Rome 00142, Italy; Department of Psychology, Sapienza University of Rome, Rome 00185, Italy
| | - Salvatore Maria Aglioti
- Sapienza University of Rome and CLN2S@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, Rome 00161, Italy; IRCCS, Santa Lucia Foundation, Rome 00142, Italy
| |
Collapse
|
5
|
Cao X, Wen X, Tang H, Zhou Y, Liang J. Predictive tool for the risk of hypothermia during laparoscopic gynecologic tumor resection. Eur J Obstet Gynecol Reprod Biol 2025; 306:147-153. [PMID: 39827791 DOI: 10.1016/j.ejogrb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Based on the machine learning algorithm, construct a hypothermia prediction model for gynecological tumor resection under laparoscopic general anesthesia. METHODS This research conducted a retrospective analysis, gathering data from individuals who had undergone minimally invasive surgical procedures for gynecological tumors in a Chinese Hospital, ranging from June 2018 to August 2024. During this timeframe, a total of 308 cases were examined for analysis, with 70% of the cases allocated to the modeling dataset and the remaining 30% designated for the validation dataset. The factors associated with intraoperative hypothermia were identified within the modeling dataset. Subsequently, three predictive models were established: a Classification and Regression Trees model, a Random Forest model, and a Support Vector Machine model. RESULTS The incidence of intraoperative hypothermia in 308 cases was 30.84%. The results showed that age, body mass index, preoperative body temperature, preoperative albumin, operating room temperature and peritoneal lavage fluid volume were the influencing factors of intraoperative hypothermia. Using these variables, it was determined that the Random Forest model had demonstrated strong predictive performance. CONCLUSION The prediction model developed using the random forest algorithm exhibits excellent predictive capabilities, which are highly significant for pinpointing the critical factors contributing to intraoperative hypothermia in patients undergoing laparoscopic procedures.
Collapse
Affiliation(s)
- Xiaosheng Cao
- Department of Anesthesiology, Liuzhou Maternal and Child Health Hospital, Liuzhou 545001, Guangxi, China.
| | - Xuejin Wen
- Department of Anesthesiology, Liuzhou Maternal and Child Health Hospital, Liuzhou 545001, Guangxi, China
| | - Hua Tang
- Department of Anesthesiology, Liuzhou Maternal and Child Health Hospital, Liuzhou 545001, Guangxi, China
| | - Yu Zhou
- Department of Anesthesiology, Liuzhou Maternal and Child Health Hospital, Liuzhou 545001, Guangxi, China
| | - Jie Liang
- Department of Anesthesiology, Liuzhou Maternal and Child Health Hospital, Liuzhou 545001, Guangxi, China
| |
Collapse
|
6
|
Morrison SF, Cano G, Hernan SL, Chiavetta P, Tupone D. Inhibition of the hypothalamic ventromedial periventricular area activates a dynorphin pathway-dependent thermoregulatory inversion in rats. Curr Biol 2025; 35:59-76.e4. [PMID: 39626667 PMCID: PMC11706707 DOI: 10.1016/j.cub.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025]
Abstract
To maintain core body temperature in mammals, CNS thermoregulatory networks respond to cold exposure by increasing brown adipose tissue and shivering thermogenesis. However, in hibernation or torpor, this canonical thermoregulatory response is replaced by a new, emerging paradigm, thermoregulatory inversion (TI), an alternative homeostatic state in which cold exposure inhibits thermogenesis and warm exposure stimulates thermogenesis. Here, we demonstrate that in the non-torpid rat, either exclusion of the canonical thermoregulatory integrator in the preoptic hypothalamus or inhibition of neurons in the ventromedial periventricular area (VMPeA) induces the TI state through an alternative thermoregulatory pathway. Within this pathway, we have identified a dynorphinergic input to the dorsomedial hypothalamus from the dorsolateral parabrachial nucleus that plays a critical role in mediating the cold-evoked inhibition of thermogenesis during TI. Our results reveal a novel thermosensory reflex circuit within the mammalian CNS thermoregulatory pathways and support the potential for pharmacologically inducing the TI state to elicit therapeutic hypothermia in non-hibernating species, including humans.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Georgina Cano
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shelby L Hernan
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pierfrancesco Chiavetta
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Domenico Tupone
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA; Department of Biomedical and Neuromotor Science, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
7
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
8
|
Sun Y, Wang W, Li Y, Wang H, Liang L, Wang X, Wang K, Bai W, Luan L, Qin L. Unveiling proteomic targets in the hypothalamus of ovariectomized and estradiol-treated rats: Insights into menopausal syndrome mechanisms. Ann Anat 2025; 257:152341. [PMID: 39326767 DOI: 10.1016/j.aanat.2024.152341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Menopausal syndrome profoundly affects the physical and mental health of many women, drawing increasing attention from the medical community. However, its pathogenesis remains unclear. These symptoms are primarily driven by hormonal fluctuation. The hypothalamus, a key regulator of hormonal balance, potentially playing a critical role in the manifestation of menopausal syndrome. METHODS We simulated the low-estrogen menopausal state using ovariectomized rats, confirmed the success of ovariectomy via histological analysis of the uterus and vagina, followed by estrogen treatment. TMT-labeled quantitative proteomics, RTqPCR, targeted proteomics and Western blotting were used to identify differentially expressed proteins and their functions in the hypothalamus under low-estrogen conditions. RESULTS One-way ANOVA (p < 0.05) identified 295 differentially expressed proteins across the sham, ovariectomized and estrogen-treated groups. Post-ovariectomy, 103 differentially expressed proteins were upregulated and 93 were downregulated. Among these, 50 proteins were involved in hormones and neurotransmitters, immunity, metabolism and cardiovascular function. Notably, four proteins-Prkcg, Hsp90ab1, Ywhae, and Gad2-were identified as crucial regulators. CONCLUSIONS This study elucidates the central molecular mechanism of menopausal syndrome through bioinformatics analysis of differentially expressed proteins in the hypothalamus under low-estrogen conditions, providing novel targets for the treatment of related symptoms.
Collapse
Affiliation(s)
- Yanrong Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wenjuan Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yao Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Hanfei Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lining Liang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiangqiu Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ke Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wenpei Bai
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, China.
| | - Liju Luan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Lihua Qin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
9
|
Muhamad SN, Lim FL, Md Akim A, Karuppiah K, Mohd Shabri NSA, How V. Association between physiological responses and heat shock protein 70 (HSP70) expressions in the vulnerable populations of Kuala Lumpur. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:1-11. [PMID: 38616509 DOI: 10.1080/09603123.2024.2340125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Continued heat exposure can cause physiological and cellular responses. This study investigated the association between physiological responses and heat shock protein 70 (HSP70) expressions in Kuala Lumpur's urban vulnerable population. We conducted a cross-sectional study involving 54 participants from four areas classified as experiencing moderate to strong heat stress. Physiological measurements included core body temperature, heart rate, and diastolic and systolic blood pressure. RT-qPCR and ELISA were also performed on blood samples to assess HSP70 gene and protein expressions. Despite indoor heat stress, participants maintained normal physiological parameters while there were significant indications of HSP70 expression at both the gene and protein levels. However, our study found no significant correlation (p > 0.05) between physiological responses and HSP70 expressions. This study shows no interaction between physiological responses and HSP70 expressions in the study population, revealing the complex mechanisms of indoor heat stress in vulnerable individuals.
Collapse
Affiliation(s)
- Siti Nurfahirah Muhamad
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fang Lee Lim
- Department of Environmental Engineering, Universiti Tunku Abdul Rahman, Faculty of Engineering and Green Technology, Kampar, Perak, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Karmegam Karuppiah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Shabrina Azreen Mohd Shabri
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Jia Z, Wang Z, Pan H, Zhang J, Wang Q, Zhou C, Liu J. Crosstalk between fat tissue and muscle, brain, liver, and heart in obesity: cellular and molecular perspectives. Eur J Med Res 2024; 29:637. [PMID: 39741333 DOI: 10.1186/s40001-024-02176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025] Open
Abstract
A high-fat diet and physical inactivity are key contributors to obesity, predisposing individuals to various chronic diseases, such as cardiovascular disease and diabetes, which involve multiple organs and tissues. To better understand the role of multi-organ interaction mechanisms in the rising incidence of obesity and its associated chronic conditions, treatment and prevention strategies are being extensively investigated. This review examines the signaling mechanisms between different tissues and organs, with a particular focus on the crosstalk between adipose tissue and the muscle, brain, liver, and heart, and potentially offers new strategies for the treatment and management of obesity and its complications.
Collapse
Affiliation(s)
- Zixuan Jia
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Ziqi Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Huixin Pan
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Jing Zhang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Qinglu Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Caixia Zhou
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China.
| | - Jun Liu
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Heat acclimation induces hypothalamic temperature sensitivity that promotes heat tolerance. Nat Neurosci 2024:10.1038/s41593-024-01835-9. [PMID: 39690322 DOI: 10.1038/s41593-024-01835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
|
12
|
Ambroziak W, Nencini S, Pohle J, Zuza K, Pino G, Lundh S, Araujo-Sousa C, Goetz LIL, Schrenk-Siemens K, Manoj G, Herrera MA, Acuna C, Siemens J. Thermally induced neuronal plasticity in the hypothalamus mediates heat tolerance. Nat Neurosci 2024:10.1038/s41593-024-01830-0. [PMID: 39653806 DOI: 10.1038/s41593-024-01830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/25/2024] [Indexed: 12/19/2024]
Abstract
Heat acclimation is an adaptive process that improves physiological performance and supports survival in the face of increasing environmental temperatures, but the underlying mechanisms are not well understood. Here we identified a discrete group of neurons in the mouse hypothalamic preoptic area (POA) that rheostatically increase their activity over the course of heat acclimation, a property required for mice to become heat tolerant. In non-acclimated mice, peripheral thermoafferent pathways via the parabrachial nucleus activate POA neurons and mediate acute heat-defense mechanisms. However, long-term heat exposure promotes the POA neurons to gain intrinsically warm-sensitive activity, independent of thermoafferent parabrachial input. This newly gained cell-autonomous warm sensitivity is required to recruit peripheral heat tolerance mechanisms in acclimated animals. This pacemaker-like, warm-sensitive activity is driven by a combination of increased sodium leak current and enhanced utilization of the NaV1.3 ion channel. We propose that this salient neuronal plasticity mechanism adaptively drives acclimation to promote heat tolerance.
Collapse
Affiliation(s)
- Wojciech Ambroziak
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Sara Nencini
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jörg Pohle
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Kristina Zuza
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Sofia Lundh
- Department of Pathology and Imaging, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Carolina Araujo-Sousa
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Larissa I L Goetz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | - Gokul Manoj
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Mildred A Herrera
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jan Siemens
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
13
|
Yoshimura Y, Watanabe T, Nakamura K, Futatsugi A, Mikoshiba K, Hiyama TY. High-temperature exposure during the early embryonic stage lowers core body temperature after growth via a hypothalamic Igfbp2-dependent mechanism. Sci Rep 2024; 14:29586. [PMID: 39627352 PMCID: PMC11615319 DOI: 10.1038/s41598-024-80252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
The mechanisms underlying individual differences in core body temperature (Tc) are unexplained by genetic factors and poorly understood. Here, we investigated whether the environmental temperature during early development affects postnatal Tc. Mouse embryos were cultured from pronuclear to blastocyst stage in either standard (37 °C) or high (38 °C) temperature, and the Tc of each grown-up adult was measured. The adult 38 °C-incubated mice showed lower Tc than the 37 °C group without changes in activity levels. In the hypothalamus of the 38 °C group, insulin-like growth factor 1 (Igf1) and IGF binding protein 2 (Igfbp2) gene expression increased. The decrease in Tc in the wild-type 38 °C group was alleviated by brain neuron-specific Igfbp2 knockout. This suggests that IGFBP2 binds to IGF-1 and, inhibits its binding to the receptor, thereby interfering with the thermogenic signaling of IGF-1. These results suggest that one of the factors determining individual postnatal Tc is the ambient temperature of embryos at an early developmental stage, which could affect epigenetic changes, such as DNA methylation, leading to alterations in the Igf1 and Igfbp2 gene expressions in adulthood.
Collapse
Affiliation(s)
- Yuki Yoshimura
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Tatsuo Watanabe
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kazuomi Nakamura
- Advanced Medicine, Innovation and Clinical Research Center, Tottori University Hospital, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Akira Futatsugi
- Department of Basic Medical Sciences, Kobe City College of Nursing, 3-4 Gakuen-nishi-machi, Nishi-ku, Kobe, Hyogo, 651-2103, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China
- Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Takeshi Y Hiyama
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- International Platform for Dryland Research and Education, Tottori University, 1390 Hamasaka, Tottori, Tottori, 680-0001, Japan.
| |
Collapse
|
14
|
Kawata A, Kaneda Y, Matsunaga D, Nakagawa H, Togo F, Yasumatsu M, Ishiwata T. Influence of extreme light/dark cycles on monoamine levels, physiological indices, and emotional behaviors in rats. Chronobiol Int 2024; 41:1516-1532. [PMID: 39618305 DOI: 10.1080/07420528.2024.2434173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Aberrant light/dark (LD) cycles are prevalent in modern society due to electric light usage, leading to mood disorders from circadian disruption or misalignment. However, research on the physiological and behavioral effects of LD variations on brain neurotransmitters is limited. We investigated the effects of extreme LD cycles on body weight (BW), core body temperature (Tcore), locomotor activity (ACT), emotional behaviors, and monoamine levels (noradrenaline [NA], dopamine [DA], and serotonin [5-HT]) in male Wistar rats that were exposed to 1 month of either long light phase (20 L:4D), long dark phase (4 L:20D), or normal (12 L:12D) LD cycles. The 20 L:4D rats exhibited blunted rhythms, with decreased amplitude and advanced/delayed acrophase in Tcore and ACT, alongside increased BW. The 4 L:20D rats showed circadian misalignment, with increased/decreased amplitude in Tcore or ACT and delayed acrophase in Tcore and ACT, also gaining BW. In the 20 L:4D group, NA and 5-HT levels decreased in the suprachiasmatic nucleus and amygdala, respectively, while the 4 L:20D group had increased DA and 5-HT levels in the caudate putamen and dorsomedial hypothalamus, respectively. Open field and social interaction tests indicated anxiety-like behaviors in both test groups. Overall, each extreme LD cycle affected Tcore, ACT amplitude, acrophase, and monoamine levels differently, inducing anxiogenic responses.
Collapse
Affiliation(s)
- Akira Kawata
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
| | - Yuta Kaneda
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
| | - Daisuke Matsunaga
- Department of Health-Promotion and Sports Science, Osaka Electro-Communication University, Osaka, Japan
| | - Hikaru Nakagawa
- College of Sport and Wellness, Rikkyo University, Saitama, Japan
| | - Fumiharu Togo
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Mikinobu Yasumatsu
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
- College of Sport and Wellness, Rikkyo University, Saitama, Japan
| | - Takayuki Ishiwata
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
- College of Sport and Wellness, Rikkyo University, Saitama, Japan
| |
Collapse
|
15
|
Díaz-Castro F, Morselli E, Claret M. Interplay between the brain and adipose tissue: a metabolic conversation. EMBO Rep 2024; 25:5277-5293. [PMID: 39558137 PMCID: PMC11624209 DOI: 10.1038/s44319-024-00321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
The central nervous system and adipose tissue interact through complex communication. This bidirectional signaling regulates metabolic functions. The hypothalamus, a key homeostatic brain region, integrates exteroceptive and interoceptive signals to control appetite, energy expenditure, glucose, and lipid metabolism. This regulation is partly achieved via the nervous modulation of white (WAT) and brown (BAT) adipose tissue. In this review, we highlight the roles of sympathetic and parasympathetic innervation in regulating WAT and BAT activities, such as lipolysis and thermogenesis. Adipose tissue, in turn, plays a dual role as an energy reservoir and an endocrine organ, secreting hormones that influence brain function and metabolic health. In addition, this review focuses on recently uncovered communication pathways, including extracellular vesicles and neuro-mesenchymal units, which add new layers of regulation and complexity to the brain-adipose tissue interaction. Finally, we also examine the consequences of disrupted communication between the brain and adipose tissue in metabolic disorders like obesity and type-2 diabetes, emphasizing the potential for new therapeutic strategies targeting these pathways to improve metabolic health.
Collapse
Affiliation(s)
- Francisco Díaz-Castro
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- IBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 PMCID: PMC11570342 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
17
|
Wang T, Homberg JR, Boreggio L, Samina MCF, Castro RCR, Kolk SM, Alenina N, Bader M, Dai J, Wöhr M. Socio-affective communication in Tph2-deficient rat pups: communal nesting aggravates growth retardation despite ameliorating maternal affiliation deficits. Mol Autism 2024; 15:50. [PMID: 39614401 PMCID: PMC11606121 DOI: 10.1186/s13229-024-00629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND A lack of serotonin (also known as 5-hydroxytryptamine, 5-HT) in the brain due to deficiency of the rate-limiting enzyme in 5-HT synthesis, tryptophan hydroxylase 2 (TPH2), was recently reported to result in impaired maternal affiliation across species, including mice, rats, and monkeys. In rodents, this was reflected in a lack of preference for maternal odors and reduced levels of isolation-induced ultrasonic vocalizations (USV), possibly contributing to a severe growth retardation phenotype. METHODS Here, we tested whether growth retardation, maternal affiliation deficits, and/or impairments in socio-affective communication caused by Tph2 deficiency can be rescued through early social enrichment in rats. To this aim, we compared male and female Tph2-/- knockout and Tph2+/- heterozygous rat pups to Tph2+/+ wildtype littermate controls, with litters being randomly assigned to standard nesting (SN; one mother with her litter) or communal nesting (CN; two mothers with their two litters). RESULTS Our results show that Tph2 deficiency causes severe growth retardation, together with moderate impairments in somatosensory reflexes and thermoregulatory capabilities, partially aggravated by CN. Tph2 deficiency further led to deficits in socio-affective communication, as evidenced by reduced emission of isolation-induced USV, associated with changes in acoustic features, clustering of subtypes, and temporal organization. Although CN did not rescue the impairments in socio-affective communication, CN ameliorated the maternal affiliation deficit caused by Tph2 deficiency in the homing test. To close the communicative loop between mother and pup, we assessed maternal preference and showed that mothers display a preference for Tph2+/+ controls over Tph2-/- pups, particularly under CN conditions. This is consistent with the aggravated growth phenotype in Tph2-/- pups exposed to the more competitive CN environment. CONCLUSION Together, this indicates that CN aggravates growth retardation despite ameliorating maternal affiliation deficits in Tph2-deficient rat pups, possibly due to reduced and acoustically altered isolation-induced USV, hindering efficient socio-affective communication between mother and pup.
Collapse
Affiliation(s)
- Tianhua Wang
- Faculty of Psychology, Experimental and Biological Psychology, Philipps-Universität Marburg, Behavioral Neuroscience, 35032, Marburg, Germany
- Philipps-Universität Marburg, Center for Mind, Brain, and Behavior (CMBB), 35032, Marburg, Germany
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, 6525 EN, Nijmegen, The Netherlands
| | - Laura Boreggio
- Molecular Biology of Peptide Hormones, Max-Delbrück-Centrum Für Molekulare Medizin (MDC), 13125, Berlin, Germany
| | - Marta C F Samina
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ, Nijmegen, The Netherlands
| | - Rogério C R Castro
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, 6525 EN, Nijmegen, The Netherlands
| | - Sharon M Kolk
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ, Nijmegen, The Netherlands
| | - Natalia Alenina
- Molecular Biology of Peptide Hormones, Max-Delbrück-Centrum Für Molekulare Medizin (MDC), 13125, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785, Berlin, Germany
| | - Michael Bader
- Molecular Biology of Peptide Hormones, Max-Delbrück-Centrum Für Molekulare Medizin (MDC), 13125, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785, Berlin, Germany
- Charité University Medicine Berlin, 10117, Berlin, Germany
- Institute for Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Jinye Dai
- Department of Pharmacological Sciences and Department of Neuroscience, Mount Sinai, Icahn School of Medicine, Friedman Brain Institute, New York, 10029, USA
| | - Markus Wöhr
- Faculty of Psychology, Experimental and Biological Psychology, Philipps-Universität Marburg, Behavioral Neuroscience, 35032, Marburg, Germany.
- Philipps-Universität Marburg, Center for Mind, Brain, and Behavior (CMBB), 35032, Marburg, Germany.
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, KU Leuven, Tiensestraat 102 - Bus 3714, 3000, Louvain, Belgium.
- KU Leuven, Leuven Brain Institute, 3000, Louvain, Belgium.
| |
Collapse
|
18
|
Jiménez AG, Russel WA, Paul KD, McQuillen A, Ay AA. Demographic, morphological and coat factors in dogs after exercise at a fast course ability test (FCAT) trial. Vet Res Commun 2024; 49:25. [PMID: 39570424 DOI: 10.1007/s11259-024-10578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Domestic dogs are a widely diverse species of endothermic mammals that show a positive correlation between body mass and whole-animal metabolic rate, but a negative correlation between body mass and lifespan, making them an interesting system for determining thermoregulatory patterns in relation to body mass, body morphology, and age within a single mammalian species. Though previous work has found differences in thermoregulation across seasons and with training in dogs of different sizes, we now seek to determine (1) whether sampling event-related temperature differences remained when dogs exercised intensely and acutely outdoors and (2) whether thermal differences were also expressed in short-term burst exercise in athletic dogs compared to long-term exercise in non-athletic dogs, as previously found. Here, we measured tympanic membrane temperature (Tear) as a correlate of core or internal body temperature (Tb). We also measured changes in body temperature across different body surfaces using thermal imaging (Teye, Tnose, and Tmouth) in dogs after exercise during Fast Course Agility Trial (FCAT) competitions between spring and summer months in Central New York State, USA (N = 20, July and August N = 26). We correlated these data to each dog's body mass (average(± standard error) = 29.97(± 0.24) lbs.), age (5.99(± 0.78) years), and various aspects of body part measurements and coat characteristics, such as length, type, and color. First, in our overall dataset, being sampled in May was the most significant predictor of temperature slope (p < 0.001), and we identified far more significant predictor variables in the May event dataset than in other datasets. Second, as we gave special attention to our study population, we found that running an outdoor, burst exercise course (FCAT trial) shows a different pattern of thermoregulation compared with previous work. Thus, our data may offer preliminary insights that thermoregulation in dogs varies with sampling event and exercise type, though additional research is needed to understand the complexity of these observed patterns. Our data also provides evidence that responses can be plastic depending on the dog's individual phenotype and that athleticism may affect thermoregulation in dogs, similar to humans.
Collapse
Affiliation(s)
| | | | - Kailey Diane Paul
- Department of Biology, Colgate University, Hamilton, NY, 13346, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Alta McQuillen
- Department of Biology, Colgate University, Hamilton, NY, 13346, USA
| | - Ahmet Ali Ay
- Department of Biology, Colgate University, Hamilton, NY, 13346, USA
- Department of Mathematics, Colgate University, Hamilton, NY, 13346, USA
| |
Collapse
|
19
|
Salucci S, Hitrec T, Piscitiello E, Occhinegro A, Alberti L, Taddei L, Burattini S, Luppi M, Tupone D, Amici R, Faenza I, Cerri M. Multiorgan ultrastructural changes in rats induced in synthetic torpor. Front Physiol 2024; 15:1451644. [PMID: 39628940 PMCID: PMC11611833 DOI: 10.3389/fphys.2024.1451644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
Torpor is a state used by several mammals to survive harsh winters and avoid predation, characterized by a drastic reduction in metabolic rate followed by a decrease in body temperature, heart rate, and many physiological variables. During torpor, all organs and systems must adapt to the new low-energy expenditure conditions to preserve physiological homeostasis. These adaptations may be exploited in a translational perspective in several fields. Recently, many features of torpor were shown to be mimicked in non-hibernators by the inhibition of neurons within the brainstem region of the Raphe Pallidus. The physiological resemblance of this artificial state, called synthetic torpor, with natural torpor has so far been described only in physiological terms, but no data have been shown regarding the induced morphological changes. Here, we show the first description of the ultrastructural changes in the liver, kidney, lung, skeletal muscle, and testis induced by a 6-hours inhibition of Raphe Pallidus neurons in a non-hibernating species, the rat.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Timna Hitrec
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Emiliana Piscitiello
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Luca Alberti
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, Carlo Bo Urbino University, Urbino, Italy
| | - Marco Luppi
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Lam B, Kajderowicz KM, Keys HR, Roessler JM, Frenkel EM, Kirkland A, Bisht P, El-Brolosy MA, Jaenisch R, Bell GW, Weissman JS, Griffith EC, Hrvatin S. Multi-species genome-wide CRISPR screens identify conserved suppressors of cold-induced cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605098. [PMID: 39091747 PMCID: PMC11291167 DOI: 10.1101/2024.07.25.605098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cells must adapt to environmental changes to maintain homeostasis. One of the most striking environmental adaptations is entry into hibernation during which core body temperature can decrease from 37°C to as low at 4°C. How mammalian cells, which evolved to optimally function within a narrow range of temperatures, adapt to this profound decrease in temperature remains poorly understood. In this study, we conducted the first genome-scale CRISPR-Cas9 screen in cells derived from Syrian hamster, a facultative hibernator, as well as human cells to investigate the genetic basis of cold tolerance in a hibernator and a non-hibernator in an unbiased manner. Both screens independently revealed glutathione peroxidase 4 (GPX4), a selenium-containing enzyme, and associated proteins as critical for cold tolerance. We utilized genetic and pharmacological approaches to demonstrate that GPX4 is active in the cold and its catalytic activity is required for cold tolerance. Furthermore, we show that the role of GPX4 as a suppressor of cold-induced cell death extends across hibernating species, including 13-lined ground squirrels and greater horseshoe bats, highlighting the evolutionary conservation of this mechanism of cold tolerance. This study identifies GPX4 as a central modulator of mammalian cold tolerance and advances our understanding of the evolved mechanisms by which cells mitigate cold-associated damage-one of the most common challenges faced by cells and organisms in nature.
Collapse
|
21
|
Fang S, Luo S, Jin S, Liu J, Li J, Zhang Y, Liu Z, Yuan M, Yan D, Dong X, Yang R. Transcriptomic profiling of backfat and muscle in Lijiang pigs with divergent body size across growth stages. Sci Rep 2024; 14:27677. [PMID: 39532937 PMCID: PMC11557953 DOI: 10.1038/s41598-024-78054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Backfat thickness is an important economic trait that affects pork quality and flavor. The Lijiang pig (LJP), a local breed in Yunnan province, China, exhibits variations in growth and body composition. However, the molecular basis for these variations is unclear. This study aimed to analyze transcriptome profiles of backfat at different growth stages in LJP with discrepant body size: two months (M2), four months, and six months. Firstly, we analyzed the gene expression differences and discovered a significantly highest number of differentially expressed genes (DEGs) at the M2 stage. Secondly, we identified four gene profiles with reverse expression trends in LJP populations with different body sizes, and the related genes mainly associated with immune response functionality. Thirdly, we observed a lower correlation in LJP with large body size at the M2 stage, with a specific enrichment of DEGs with high genetic differentiation related to neural activity. Finally, we correlated transcriptome profiles of muscle and backfat and discovered the lowest correlation at the M2 stage. Highly correlated genes exhibited more significant differences and were prominently enriched for immune response processes. This study unveils candidate genes linked to backfat growth in LJP, emphasizing the specificity of the early growth stage of backfat.
Collapse
Affiliation(s)
- S Fang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - S Luo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - S Jin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - J Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - J Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Y Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Z Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - M Yuan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - D Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - X Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| | - R Yang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
22
|
Hara R, Taguchi K, Ogino H, Okamoto Y, Enoki Y, Kizu J, Hori S, Matsumoto K. Investigating the hypothermic effects of fluoroquinolone antimicrobials on non-bacterial fever model mice. J Pharm Health Care Sci 2024; 10:68. [PMID: 39491012 PMCID: PMC11533349 DOI: 10.1186/s40780-024-00392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Fluoroquinolone (FQ) antimicrobials have antipyretic effects during the treatment of bacterial infections; however, it is not clear whether these are due to their antimicrobial activities or their hypothermic effects. In this study, we investigated the hypothermic effects of FQ antimicrobials (ciprofloxacin [CPFX], gatifloxacin [GFLX], and levofloxacin [LVFX]) on fever by evaluating rectal body temperature changes in a mouse model of non-bacterial fever. METHODS CPFX, GFLX, and LVFX were administered intraperitoneally to non-bacterial fever model mice induced by yeast. Rectal body temperature was measured up to 180 min after administration. RESULTS A decrease in rectal body temperature of up to 1.2 °C for CPFX, 3.4 °C for GFLX, and 1.0 °C for LVFX was observed. The decrease in temperature was induced by an increase in the plasma concentration of FQ antimicrobials, suggesting that they are responsible for the temperature reduction. Focusing on glucocorticoids, one thermoregulation mechanism, we investigated the substances responsible for the reduction in rectal body temperature induced by FQ antimicrobials. Aminoglutethimide (an inhibitor of glucocorticoid production) were premedicated, followed by intraperitoneal administration of GFLX in the yeast-induced fever mouse model, resulting in attenuated GFLX-induced hypothermic effects. CONCLUSIONS These results suggest that certain antipyretic effects of CPFX, GFPX, and LVFX during fever may contribute to their hypothermic effects; certain mechanisms are glucocorticoid-mediated.
Collapse
Affiliation(s)
- Ryohei Hara
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan.
| | - Hiromi Ogino
- Division of Practical Pharmacy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yuko Okamoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Junko Kizu
- Division of Practical Pharmacy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Seiji Hori
- Department of Infectious Diseases and Infection Control, Jikei University School of Medicine, Tokyo, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| |
Collapse
|
23
|
Van den Bossche L, Vertessen W, Van den Bossche J, Rudenko O, Bogers J, Brancato L. A modular, human body-mimicking phantom with active thermoregulation capabilities for validation and verification of convective hyperthermia devices. Int J Hyperthermia 2024; 41:2421873. [PMID: 39489509 DOI: 10.1080/02656736.2024.2421873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES This study aims to design and fabricate a modular phantom for hyperthermia applications, addressing interpatient variability in thermal regulation mechanisms like sweating rate, metabolic heat production, and blood redistribution. MATERIALS & METHODS The phantom can be constructed in various weights and dimensions by connecting identical units. Each unit consists of an agar-based block, an ethyl cellulose-based top layer, a heat source, deep and superficial water circulation, and a sweating mechanism. Agar and ethyl cellulose gels mimic the thermal properties of human tissues and fat respectively. The blocks are wrapped in PVC foil to prevent water evaporation. A heating wire, coiled around an embedded aluminum tubing simulates metabolic heat production. A superficial water circulation mimics skin capillaries. A water pump ensures a steady flow rate throughout the tubing system. Sweat production is simulated using a water pump and perforated tubing. A programmed controller maintains core temperature in a normal operating mode and simulates an anesthetized patient in anesthesia mode. RESULTS Temperature uniformity and regulation were assessed under varying environmental conditions. The phantom effectively regulated its core temperature at 37.0 °C +/- 0.7 °C with an ambient temperature ranging between 21 °C and 30 °C. Activating the water circulation reduced the maximum temperature gradient within the phantom from 4.70 °C to 1.92 °C. CONCLUSION The versatile phantom successfully models heat exchange processes. Its thermal properties, dimensions, and heat exchange rates can be tuned to mimic different patient models. These are promising results as an effective tool for hyperthermia device validation and verification, representing human physiological responses.
Collapse
Affiliation(s)
| | | | | | | | - J Bogers
- ElmediX NV, Leuven, Belgium
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Applied Molecular Biology Research Group (AMBIOR), University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
24
|
Khan S, Kim J, Kang TU, Park G, Lee S, Park JW, Kim W. Compact Vital-Sensing Band with Uninterrupted Power Supply for Core Body Temperature and Pulse Rate Monitoring. ACS Sens 2024. [PMID: 39484701 DOI: 10.1021/acssensors.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Although wearable devices for continuous monitoring of vital signs have undergone significant advancements, their need for frequent recharging precludes continuous operation, potentially leading to adverse outcomes being overlooked. Additionally, the scattered locations of the sensors hamper wearability. Herein, we present a compact vital-sensing band with uninterrupted power supply designed for continuous monitoring of core body temperature (CBT) and pulse rate. The band─which comprises two sensors, a power source (i.e., a flexible thermoelectric generator (TEG) and a battery), and a flexible circuit─is worn on the forearm. The CBT is calculated by measuring the skin temperature and heat flux, while a triboelectric nanogenerator-based self-powered pressure sensor is utilized for pulse rate monitoring. The TEG is a flexible unit that converts body heat into electricity, accumulating a total energy of 314 mJ (100%). Out of this total energy, only 43.2 mJ (7.2%) is utilized for CBT measurements, while the remaining 270.80 mJ (92.8%) is stored in the battery. This enables reliable and continuous operation of the vital-sensing band, highlighting its potential for use in healthcare applications.
Collapse
Affiliation(s)
- Salman Khan
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiyong Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tae-Uk Kang
- Department of Material Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gimin Park
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungbin Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jin-Woo Park
- Department of Material Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Woochul Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
25
|
Wesselink AK, Gause EL, Spangler KD, Hystad P, Kirwa K, Willis MD, Wellenius GA, Wise LA. Exposure to Ambient Heat and Risk of Spontaneous Abortion: A Case-Crossover Study. Epidemiology 2024; 35:864-873. [PMID: 39058555 DOI: 10.1097/ede.0000000000001774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
BACKGROUND Few epidemiologic studies have examined the association of ambient heat with spontaneous abortion, a common and devastating pregnancy outcome. METHODS We conducted a case-crossover study nested within Pregnancy Study Online, a preconception cohort study (2013-2022). We included all participants reporting spontaneous abortion (N = 1,524). We defined the case window as the 7 days preceding the event and used time-stratified referent selection to select control windows matched on calendar month and day of week. Within each 7-day case and control window, we measured the mean, maximum, and minimum of daily maximum outdoor air temperatures. We fit splines to examine nonlinear relationships across the entire year and conditional logistic regression to estimate odds ratios (ORs) and 95% confidence interval (CI) of spontaneous abortion with increases in temperature during the warm season (May-September) and decreases during the cool season (November-March). RESULTS We found evidence of a U-shaped association between outdoor air temperature and spontaneous abortion risk based on year-round data. When restricting to warm season events (n = 657), the OR for a 10-percentile increase in the mean of lag 0-6 daily maximum temperatures was 1.1 (95% CI: 0.96, 1.2) and, for the maximum, 1.1 (95% CI: 0.99, 1.2). The OR associated with any extreme heat days (>95th county-specific percentile) in the preceding week was 1.2 (95% CI: 0.95, 1.5). Among cool season events (n = 615), there was no appreciable association between lower temperatures and spontaneous abortion risk. CONCLUSION Our study provides evidence of an association between high outdoor temperatures and the incidence of spontaneous abortion.
Collapse
Affiliation(s)
- Amelia K Wesselink
- From the Department of Epidemiology, Boston University School of Public Health, Boston, MA
- Center for Climate and Health, Boston University School of Public Health, Boston, MA
| | - Emma L Gause
- Center for Climate and Health, Boston University School of Public Health, Boston, MA
| | - Keith D Spangler
- Center for Climate and Health, Boston University School of Public Health, Boston, MA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Perry Hystad
- College of Health, Oregon State University, Corvallis, OR
| | - Kipruto Kirwa
- Center for Climate and Health, Boston University School of Public Health, Boston, MA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Mary D Willis
- From the Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Gregory A Wellenius
- Center for Climate and Health, Boston University School of Public Health, Boston, MA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Lauren A Wise
- From the Department of Epidemiology, Boston University School of Public Health, Boston, MA
| |
Collapse
|
26
|
Hitrec T, Del Vecchio F, Alberti L, Luppi M, Martelli D, Occhinegro A, Piscitiello E, Taddei L, Tupone D, Amici R, Cerri M. Activation of orexin-A (hypocretin-1) receptors in the Raphe Pallidus at different ambient temperatures in the rat: effects on thermoregulation, cardiovascular control, sleep, and feeding behavior. Front Neurosci 2024; 18:1458437. [PMID: 39429700 PMCID: PMC11486763 DOI: 10.3389/fnins.2024.1458437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
The Raphe Pallidus (RPa) is a brainstem nucleus containing sympathetic premotor neurons that control thermogenesis and modulate cardiovascular function. It receives inputs from various hypothalamic areas, including the Lateral Hypothalamus (LH), a heterogeneous region intricately involved in several autonomic and behavioral functions. A key subpopulation of neurons in the LH expresses orexin/hypocretin, a neuropeptide which is crucially involved in the regulation of the wake-sleep states and feeding behavior. The RPa receives orexinergic projections from the LH and orexinergic signalling in the RPa has been shown to enhance thermogenesis in the anaesthetized rat, but only in the presence of an already existing thermogenic drive, without significantly affecting cardiovascular function. The present work was aimed at exploring the effects on thermoregulation and autonomic function and the possible role in the modulation of the wake-sleep states and feeding behavior of orexin injection in the RPa in the free-behaving rat. In order to assess the influence of an already present thermogenic drive on orexinergic signalling in the RPa, animals were studied at three different ambient temperatures (Ta, 10°C, 24°C, and 32°C). We found that orexin injection into the RPa variably affected the wake-sleep states, autonomic functions, motor activity, and feeding behavior, at the different Tas. In particular, in the first post-injection hour, we observed an increase in wakefulness, which was large at Ta 24°C and Ta 10°C and rather mild at Ta 32°C. Deep brain temperature was increased by orexin injection at Ta 10°C, but not at either Ta 24°C or Ta 32°C. Moreover, an increase in mean arterial blood pressure occurred at Ta 24°C, which was probably masked by the high baseline levels at Ta 10°C and was completely absent at Ta 32°C. Finally, an enhancement in feeding behavior was observed at Ta 24°C and 10°C only. In accordance with what observed in anaesthetized rats, orexinergic signalling in the RPa seems to be ineffective in the absence of any thermogenic drive. Moreover, the effects observed on the wake-sleep states and feeding behavior introduce the RPa as a novel player in the central neural network promoting wakefulness and feeding.
Collapse
Affiliation(s)
- Timna Hitrec
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Flavia Del Vecchio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Alberti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Luppi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Davide Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Emiliana Piscitiello
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Italian Institute of Technology (IIT), Genova, Italy
- National Institute of Nuclear Physics of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Yadav A, Kumar R, Vaish V, Malik S, Rani S. Rising global temperatures and its impact on sleep behavior of male redheaded bunting (Emberiza bruniceps). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60108-60125. [PMID: 39369354 DOI: 10.1007/s11356-024-35160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Anthropogenic global warming is one of the most pervasive threats to nature and biodiversity. The magnitude with which earths' temperature is rising is affecting every lifeform uniquely; however, the studies highlighting the impacts of global warming on avian sleep are scarce. To this end, the present study was aimed at analyzing the impact of global warming on sleep behavior of a nocturnal migrant, Emberiza bruniceps. For this purpose, the birds were divided into two groups (N = 15 each), subjected to high (35 ± 1 °C) and low (19 ± 1 °C) temperature schedule with concurrent exposure to 8L:16D (short day; SD) photoperiod followed by 13L:11D (long day; LD). The experiment continued till 7 cycles of zugunruhe (LD) in birds. The results reveal significant impact of temperature treatment on initiation and quality of zugunruhe. Temporal distribution of activity and rest varied according to the temperature provided. Focusing on rest and specifically on sleep of birds, high ambient temperatures resulted in greater sleep fragmentation (evident by increased awakenings during night), whereas low temperature created a sleep conducive environment (evident by abundance of back sleep). Besides postural differences, high temperature resulted in reduced sleep duration, sleep onset latency and circulating plasma melatonin levels in comparison with low temperature suggesting the negative impact of high temperature on different sleep attributes. Not only sleep, seasonal physiology of birds such as hyperphagia, gain in body mass, and fat stores showed significant reduction in high temperature condition. Besides behavioral and physiological alterations, high ambient temperature led to elevated expression of temperature sensitive (trpv4, trpm8, hspa8, and hsp70) genes. Enhanced expression of chrm3 (responsible for wakefulness) also affirms sleep fragmentation in response to high temperature. Thus, the study highlights the negative impact of high temperature on birds' sleep behavior and seasonal physiology.
Collapse
Affiliation(s)
- Anupama Yadav
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
- CSIR-Central Drug Research Institute, Lucknow, India
| | - Raj Kumar
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
- Dr. B.R. Ambedkar Government Girls P.G. College Fatehpur, Prayagraj, UP, India
| | - Vaibhav Vaish
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shalie Malik
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Sangeeta Rani
- Center for Biological Timekeeping, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
28
|
Blomqvist A. Prostaglandin E 2 production in the brainstem parabrachial nucleus facilitates the febrile response. Temperature (Austin) 2024; 11:309-317. [PMID: 39583895 PMCID: PMC11583619 DOI: 10.1080/23328940.2024.2401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 11/26/2024] Open
Abstract
Our body temperature is normally kept within a narrow range of 1°C. For example, if our body temperature rises, such as in a hot environment or due to strenuous exercise, our thermoregulatory system will trigger a powerful heat defense response with vasodilation, sweating, and lowered metabolism. During fever, which often involves body temperatures of up to 41°C, this heat defense mechanism is apparently inhibited; otherwise, the rising body temperature would be immediately combated, and fever would not be allowed to develop. New evidence suggests how and where this inhibition takes place. In two consecutive studies from Cheng et al. and Xu et al., it has been shown that prostaglandin E2, which generates fever by acting on thermosensory neurons in the preoptic hypothalamus, also acts on neurons in the brainstem parabrachial nucleus, which receive temperature information from temperature-activated spinal cord neurons and relay this information to the thermoregulatory center in the hypothalamus to either induce cold or heat defenses. By acting on the same type of prostaglandin E2 receptor that is critical for fever generation in the preoptic hypothalamus, the EP3 receptor, prostaglandin E2 inhibits the signaling of the heat-responsive parabrachial neurons, while stimulating the cold-responsive neurons. These novel findings thus show that prostaglandin E2, by binding to the same receptor subtype in the parabrachial nucleus as in the preoptic hypothalamus, adjusts the sensitivity of the thermosensory system in a coordinated manner to allow the development of febrile body temperatures.
Collapse
Affiliation(s)
- Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
29
|
Bai H, Naidu T, Anderson JB, Montemayor H, Do C, Ni L. The impacts of hypertonic conditions on Drosophila larval cool cells. Front Cell Neurosci 2024; 18:1347460. [PMID: 39381503 PMCID: PMC11459462 DOI: 10.3389/fncel.2024.1347460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Drosophila melanogaster exhibits multiple highly sophisticated temperature-sensing systems, enabling its effective response and navigation to temperature changes. Previous research has identified three dorsal organ cool cells (DOCCs) in fly larvae, consisting of two A-type and one B-type cell with distinct calcium dynamics. When subjected to hypertonic conditions, calcium imaging shows that A-type DOCCs maintain their responses to cool temperatures. In contrast, a subset of B-type DOCCs does not exhibit detectable GCaMP baseline signals, and the remaining detectable B-type DOCCs exhibit reduced temperature responses. The activation of both A-type and B-type DOCCs depends on the same members of the ionotropic receptor (IR) family: IR21a, IR93a, and IR25a. A-type DOCCs exhibit a higher somal level of IR93a than B-type DOCCs. Overexpression of Ir93a restores B-type calcium responses to cool temperatures, but not the proportion of B-type cells with a detectable GCaMP baseline, in a hypertonic environment, suggesting a selective role of IR93a in maintaining the temperature responses under hypertonic conditions. Our findings identify a novel function of B-type DOCCs in integrating temperature and tonic stimuli.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Ni
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
30
|
Wu G, Ma T, Hancock CE, Gonzalez S, Aryal B, Vaz S, Chan G, Palarca-Wong M, Allen N, Chung CI, Shu X, Liu Q. Opposing GPCR signaling programs protein intake setpoint in Drosophila. Cell 2024; 187:5376-5392.e17. [PMID: 39197448 PMCID: PMC11437785 DOI: 10.1016/j.cell.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
Animals defend a target level for their fundamental needs, including food, water, and sleep. Deviation from the target range, or "setpoint," triggers motivated behaviors to eliminate that difference. Whether and how the setpoint itself is encoded remains enigmatic for all motivated behaviors. Employing a high-throughput feeding assay in Drosophila, we demonstrate that the protein intake setpoint is set to different values in male, virgin female, and mated female flies to meet their varying protein demands. Leveraging this setpoint variability, we found, remarkably, that the information on the intake setpoint is stored within the protein hunger neurons as the resting membrane potential. Two RFamide G protein-coupled receptor (GPCR) pathways, by tuning the resting membrane potential in opposite directions, coordinately program and adjust the protein intake setpoint. Together, our studies map the protein intake setpoint to a single trackable physiological parameter and elucidate the cellular and molecular mechanisms underlying setpoint determination and modulation.
Collapse
Affiliation(s)
- Guangyan Wu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tianji Ma
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clare E Hancock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Santiago Gonzalez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Binod Aryal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sharon Vaz
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabrielle Chan
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madison Palarca-Wong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nick Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Yu P, Li Y, Fu W, Yu X, Sui D, Xu H, Sun W. Microglia Caspase11 non-canonical inflammasome drives fever. Acta Physiol (Oxf) 2024; 240:e14187. [PMID: 38864370 DOI: 10.1111/apha.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
AIM Animals exhibit physiological changes designed to eliminate the perceived danger, provoking similar symptoms of fever. However, a high-grade fever indicates poor clinical outcomes. Caspase11 (Casp11) is involved in many inflammatory diseases. Whether Casp11 leads to fever remains unclear. In this study, we investigate the role of the preoptic area of the hypothalamus (PO/AH) microglia Casp11 in fever. METHODS We perform experiments using a rat model of LPS-induced fever. We measure body temperature and explore the functions of peripheral macrophages and PO/AH microglia in fever signaling by ELISA, immunohistochemistry, immunofluorescence, flow cytometry, macrophage depletion, protein blotting, and RNA-seq. Then, the effects of macrophages on microglia in a hyperthermic environment are observed in vitro. Finally, adeno-associated viruses are used to knockdown or overexpress microglia Casp11 in PO/AH to determine the role of Casp11 in fever. RESULTS We find peripheral macrophages and PO/AH microglia play important roles in the process of fever, which is proved by macrophage and microglia depletion. By RNA-seq analysis, we find Casp11 expression in PO/AH is significantly increased during fever. Co-culture and conditioned-culture simulate the induction of microglia Casp11 activation by macrophages in a non-contact manner. Microglia Casp11 knockdown decreases body temperature, pyrogenic factors, and inflammasome, and vice versa. CONCLUSION We report that Casp11 drives fever. Mechanistically, peripheral macrophages transmit immune signals via cytokines to microglia in PO/AH, which activate the Casp11 non-canonical inflammasome. Our findings identify a novel player, the microglia Casp11, in the control of fever, providing an explanation for the transmission and amplification of fever immune signaling.
Collapse
Affiliation(s)
- Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Cancer Center, The First Hospital, Jilin University, Changchun, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Weilun Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
32
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
33
|
Tabarean IV. Opposing actions of co-released GABA and neurotensin on the activity of preoptic neurons and on body temperature. eLife 2024; 13:RP98677. [PMID: 39207910 PMCID: PMC11361704 DOI: 10.7554/elife.98677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4-5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.
Collapse
|
34
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
35
|
O’Reilly-Fong J, Simpson NJ, Thirouin ZS, Bastone PA, Zaelzer C, Murtaz A, Bourque CW. Acute and Reversible Hypothalamic Symptoms in a Lateral Head Impact Mouse Model of Mild Traumatic Brain Injury. Neurotrauma Rep 2024; 5:749-759. [PMID: 39184177 PMCID: PMC11342051 DOI: 10.1089/neur.2024.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Central autonomic and endocrine dysfunctions following traumatic brain injury (TBI) are believed to involve the hypothalamus; however, underlying mechanisms are unknown. Although chronic deficits might be caused by irreversible tissue damage, various neuroendocrine and autonomic symptoms are only observed transiently, suggesting they might result from a temporary alteration in the activity of hypothalamic neurons. We therefore examined if a mouse model of mild TBI could induce reversible autonomic phenotypes and cause acute changes in c-Fos expression within corresponding regions of the hypothalamus. Adult C57Bl/6 male mice were lightly anesthetized with isoflurane and subjected to TBI by lateral head impact using a Gothenburg impactor. Mice treated the same way, but without the head impact served as controls (shams). We monitored body weight and core body temperature by infrared thermography and performed immunohistochemistry against c-Fos in various regions of the hypothalamus. We determined that a projectile velocity of 9 m/s significantly delayed recovery from the anesthesia without inducing skull fractures and signs of discomfort disappeared within 3 h, as assessed by grimace scale. Compared with shams, TBI mice displayed a rapid decrease in core body temperature which resolved within 48 h. Daily body weight gain was also significantly lower in TBI mice on the day following injury but recovered thereafter. c-Fos analysis revealed a significantly higher density of c-Fos-positive cells in the paraventricular nucleus and a significantly lower density in the median preoptic nucleus and medial preoptic area. We conclude that mild TBI induced by a single lateral head impact in mice at 9 m/s produces acute and reversible symptoms associated with hypothalamic dysfunction accompanied by significant changes in c-Fos expression within relevant areas of the hypothalamus. These findings support the hypothesis that a temporary alteration of neuronal activity may underlie the expression of reversible central autonomic and neuroendocrine symptoms.
Collapse
Affiliation(s)
- Julie O’Reilly-Fong
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Nick J. Simpson
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Zahra S. Thirouin
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Paolo A. Bastone
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Cristian Zaelzer
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Anzala Murtaz
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Charles W. Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Center, Montreal, Canada
| |
Collapse
|
36
|
Liu M, Liu M, Chen Z. Hypoperfusion of hypothalamic subunits in medication-overuse headache using a 3D PCASL MRI. Sci Rep 2024; 14:18106. [PMID: 39103427 PMCID: PMC11300719 DOI: 10.1038/s41598-024-69349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024] Open
Abstract
Hypothalamus is a crucial deep brain area that is responsible for the integration and coordination of various brain functions. The altered perfusion of hypothalamus during headache caused by medication-overuse headache (MOH) was previously unknown. In the current study, the altered perfusion of hypothalamic subregions in MOH patients was investigated using state-of-the-art 3D pseudo-continuous arterial spin labeling (PCASL) MR imaging. In this study, 29 normal controls subjects (NCs) and 29 MOH patients underwent 3D PCASL and brain structural MR imaging. The hypothalamus was automatically segmented into 10 subunits and the volume of each subunit was automatically determined using Freesurfer software (v7.4.1). All segmented hypothalamic subunits were converted to individual hypothalamic subunit masks. The cerebral blood flow (CBF) images were coregistered with the raw brain structural images and resliced. The CBF value of each hypothalamic subunit was extracted from the warped CBF images. The volume and CBF value of each hypothalamic subunit were analyzed using the independent sample T test and Mann-Whitney U test, receiver operating characteristic (ROC) curve analysis, and Pearson and Spearman correlation analysis. Hypothalamic subunits with significantly decreased perfusion were located in the left posterior, left tubular superior, right anterior-inferior, right tubular inferior, right tubular superior, right posterior subunit and the entire right hypothalamus [CBF value for MOH vs NC (mL/100 g·min): 48.41 ± 6.75 vs 54.08 ± 11.47, 44.44 ± 4.79 vs 48.11 ± 7.73, 41.49 (32.90, 61.46) vs 49.38 ± 10.47, 46.62 ± 7.04 vs 53.90 ± 11.75, 42.12 ± 5.74 vs 47.02 ± 9.99, 42.79 ± 5.15 vs 47.93 ± 10.48 and 43.58 ± 5.06 vs 48.65 ± 9.33, respectively] in MOH compared to NC (P < 0.05). ROC analysis for these positive subunits revealed that area under the curve was 0.658-0.693, and ROC curve for left posterior subunit had the highest specificity of 93.10% while the entire right hypothalamus had the highest sensitivity of 72.41%. Further correlation analysis showed that the CBF value of the left posterior, right anterior-inferior, right tubular superior, whole right hypothalamus presented significantly negative correlation with Hamilton Depression Scale (HAMD) score (P < 0.05). Hypoperfusion of hypothalamic subunits may contribute to the understanding of MOH pathogenesis, and the 3D PCASL could be considered as a potential diagnostic and assessment tool for MOH.
Collapse
Affiliation(s)
- Mengqi Liu
- Department of Radiology, Hainan Hospital of PLA General Hospital, No. 80 Jianglin Road, Haitang District, Sanya, 572013, China
- Department of Radiology, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Mengyu Liu
- Department of Radiology, First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Zhiye Chen
- Department of Radiology, Hainan Hospital of PLA General Hospital, No. 80 Jianglin Road, Haitang District, Sanya, 572013, China.
| |
Collapse
|
37
|
García-Delgado M, Rodríguez-García R, Ochagavía A, Rodríguez-Esteban MDLÁ. The medical treatment of cardiogenic shock. Med Intensiva 2024; 48:477-486. [PMID: 38834498 DOI: 10.1016/j.medine.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
Cardiogenic shock is characterized by tissue hypoperfusion due to the inadequate cardiac output to maintain the tissue oxygen demand. Despite some advances in cardiogenic shock management, extremely high mortality is still associated with this clinical syndrome. Its management is based on the immediate stabilization of hemodynamic parameters through medical care and the use of mechanical circulatory supports in specialized centers. This review aims to understand the cardiogenic shock current medical treatment, consisting mainly of inotropic drugs, vasopressors and coronary revascularization. In addition, we highlight the relevance of applying measures to other organ levels based on the optimization of mechanical ventilation and the appropriate initiation of renal replacement therapy.
Collapse
Affiliation(s)
- Manuel García-Delgado
- Servicio de Medicina Intensiva, Hospital Universitario Virgen de las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Raquel Rodríguez-García
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain; CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain.
| | - Ana Ochagavía
- Servicio de Medicina Intensiva, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | |
Collapse
|
38
|
Aragona F, Arfuso F, Rizzo M, Fazio F, Acri G, Piccione G, Giannetto C. Using infrared thermography for the evaluation of road transport thermal homeostasis in athletic horse. J Equine Vet Sci 2024; 138:105102. [PMID: 38815839 DOI: 10.1016/j.jevs.2024.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
This study aimed to evaluate changes in body temperature in athletic horses during two different road transport distances. Six Italian Saddle horses were subjected to a 100 and 300 km transport during different times of day (am and pm). Rectal and cutaneous temperatures were recorded before (T0), immediately (following 5 min- T1) and 1 hour (T2) after transport by means of a rectal digital thermometer and a thermal infrared camera (FLIR T440) respectively, for the evaluation of left and right side of four body regions: jugular, shoulder, croup and inner thigh. There were no differences between left and right sides, inner thigh or rectal temperatures when comparing the transport distance, time points or time of day. At T0, jugular (P < 0.0001), shoulder (P < 0.01) and croup (P < 0.01) average temperatures were higher in the pm compared to those in the am in both journeys. At T1, jugular (P < 0.01) and croup (P < 0.01) temperatures were lower in the pm compared to am following the 300 km journey. Jugular temperature (P < 0.0001) was higher following the 300 km compared to the 100 km journey at each time point (T1 and T2) at both times of day (am and pm). Shoulder (P < 0.0001) and croup temperatures (P < 0.0001) were higher at T2 after the 300 km journey than at T2 after the 100 km journey). The current results suggested a difference between the two distances and the time of day appeared to have as great effect on ocular temperature as road transport distance.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168 Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168 Messina, Italy.
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168 Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168 Messina, Italy
| | - Giuseppe Acri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168 Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Polo University Annunziata, 98168 Messina, Italy
| |
Collapse
|
39
|
Sur S, Sharma A. Understanding the role of temperature in seasonal timing: Effects on behavioural, physiological and molecular phenotypes. Mol Ecol 2024:e17447. [PMID: 38946196 DOI: 10.1111/mec.17447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/26/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Organisms adapt to daily and seasonal environmental changes to maximise their metabolic and reproductive fitness. For seasonally breeding animals, photoperiod is considered the most robust cue to drive these changes. It, however, does not explain the interannual variations in different seasonal phenotypes. Several studies have repeatedly shown the influence of ambient temperature on the timing of different seasonal physiologies including the timing of migration, reproduction and its associated behaviours, etc. In the present review, we have discussed the effects of changes in ambient temperature on different seasonal events in endotherms with a focus on migratory birds as they have evolved to draw benefits from distinct but largely predictable seasonal patterns of natural resources. We have further discussed the physiological and molecular mechanisms by which temperature affects seasonal timings. The primary brain area involved in detecting temperature changes is the hypothalamic preoptic area. This area receives thermal inputs via sensory neurons in the peripheral ganglia that measure changes in thermoregulatory tissues such as the skin and spinal cord. For the input signals, several thermal sensory TRP (transient receptor potential ion channels) channels have been identified across different classes of vertebrates. These channels are activated at specific thermal ranges. Once perceived, this information should activate an effector function. However, the link between temperature sensation and the effector pathways is not properly understood yet. Here, we have summarised the available information that may help us understand how temperature information is translated into seasonal timing.
Collapse
Affiliation(s)
- Sayantan Sur
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Aakansha Sharma
- Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
40
|
Santos Cuevas DC, Campos Ruiz RE, Collina DD, Tierra Criollo CJ. Effective brain connectivity related to non-painful thermal stimuli using EEG. Biomed Phys Eng Express 2024; 10:045044. [PMID: 38834037 DOI: 10.1088/2057-1976/ad53ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Understanding the brain response to thermal stimuli is crucial in the sensory experience. This study focuses on non-painful thermal stimuli, which are sensations induced by temperature changes without causing discomfort. These stimuli are transmitted to the central nervous system through specific nerve fibers and are processed in various regions of the brain, including the insular cortex, the prefrontal cortex, and anterior cingulate cortex. Despite the prevalence of studies on painful stimuli, non-painful thermal stimuli have been less explored. This research aims to bridge this gap by investigating brain functional connectivity during the perception of non-painful warm and cold stimuli using electroencephalography (EEG) and the partial directed coherence technique (PDC). Our results demonstrate a clear contrast in the direction of information flow between warm and cold stimuli, particularly in the theta and alpha frequency bands, mainly in frontal and temporal regions. The use of PDC highlights the complexity of brain connectivity during these stimuli and reinforces the existence of different pathways in the brain to process different types of non-painful warm and cold stimuli.
Collapse
Affiliation(s)
| | | | - Denny Daniel Collina
- Department of Electronics and Biomedical Engineering, Federal Center for Technological Education of Minas Gerais, Belo Horizonte, 30510-000, Brazil
| | | |
Collapse
|
41
|
Sarubbi J, Martínez-Burnes J, Ghezzi MD, Olmos-Hernandez A, Lendez PA, Ceriani MC, Hernández-Avalos I. Hypothalamic Neuromodulation and Control of the Dermal Surface Temperature of Livestock during Hyperthermia. Animals (Basel) 2024; 14:1745. [PMID: 38929364 PMCID: PMC11200636 DOI: 10.3390/ani14121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Hyperthermia elicits several physiological and behavioral responses in livestock to restore thermal neutrality. Among these responses, vasodilation and sweating help to reduce core body temperature by increasing heat dissipation by radiation and evaporation. Thermoregulatory behaviors such as increasing standing time, reducing feed intake, shade-seeking, and limiting locomotor activity also increase heat loss. These mechanisms are elicited by the connection between peripheral thermoreceptors and cerebral centers, such as the preoptic area of the hypothalamus. Considering the importance of this thermoregulatory pathway, this review aims to discuss the hypothalamic control of hyperthermia in livestock, including the main physiological and behavioral changes that animals adopt to maintain their thermal stability.
Collapse
Affiliation(s)
- Juliana Sarubbi
- Department of Animal Science, Federal University of Santa Maria, Av. Independência, Palmeira das Missões 3751, RS, Brazil
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Marcelo Daniel Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina;
| | - Adriana Olmos-Hernandez
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Pamela Anahí Lendez
- Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN, UNCPBA-CICPBA-CONICET (UNCPBA), University Campus, Tandil 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN, UNCPBA-CICPBA-CONICET (UNCPBA), University Campus, Tandil 7000, Argentina
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán (FESC), Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán 54714, Mexico
| |
Collapse
|
42
|
Huang YZ, Ma JX, Bian YJ, Bai QR, Gao YH, Di SK, Lei YT, Yang H, Yang XN, Shao CY, Wang WH, Cao P, Li CZ, Zhu MX, Sun MY, Yu Y. TRPV1 analgesics disturb core body temperature via a biased allosteric mechanism involving conformations distinct from that for nociception. Neuron 2024; 112:1815-1831.e4. [PMID: 38492574 DOI: 10.1016/j.neuron.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
Efforts on developing transient receptor potential vanilloid 1 (TRPV1) drugs for pain management have been hampered by deleterious hypo- or hyperthermia caused by TRPV1 agonists/antagonists. Here, we compared the effects of four antagonists on TRPV1 polymodal gating and core body temperature (CBT) in Trpv1+/+, Trpv1-/-, and Trpv1T634A/T634A. Neither the effect on proton gating nor drug administration route, hair coverage, CBT rhythmic fluctuations, or inflammation had any influence on the differential actions of TRPV1 drugs on CBT. We identified the S4-S5 linker region exposed to the vanilloid pocket of TRPV1 to be critical for hyperthermia associated with certain TRPV1 antagonists. PSFL2874, a TRPV1 antagonist we discovered, is effective against inflammatory pain but devoid of binding to the S4-S5 linker and inducing CBT changes. These findings implicate that biased allosteric mechanisms exist for TRPV1 coupling to nociception and CBT regulation, opening avenues for the development of non-opioid analgesics without affecting CBT.
Collapse
Affiliation(s)
- Yi-Zhe Huang
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Xian Ma
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Jing Bian
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qin-Ru Bai
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Hao Gao
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shu-Ke Di
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yun-Tao Lei
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Yang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Xiao-Na Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chang-Yan Shao
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Hui Wang
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, Hunan, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Meng-Yang Sun
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Ye Yu
- Schools of Basic Medicine and Clinical Pharmacy and Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
43
|
De Preter CC, Heinricher MM. The 'in's and out's' of descending pain modulation from the rostral ventromedial medulla. Trends Neurosci 2024; 47:447-460. [PMID: 38749825 PMCID: PMC11168876 DOI: 10.1016/j.tins.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 06/14/2024]
Abstract
The descending-pain modulating circuit controls the experience of pain by modulating transmission of sensory signals through the dorsal horn. This circuit's key output node, the rostral ventromedial medulla (RVM), integrates 'top-down' and 'bottom-up' inputs that regulate functionally defined RVM cell types, 'OFF-cells' and 'ON-cells', which respectively suppress or facilitate pain-related sensory processing. While recent advances have sought molecular definition of RVM cell types, conflicting behavioral findings highlight challenges involved in aligning functional and molecularly defined types. This review summarizes current understanding, derived primarily from rodent studies but with corroborating evidence from human imaging, of the role of RVM populations in pain modulation and persistent pain states and explores recent advances outlining inputs to, and outputs from, RVM pain-modulating neurons.
Collapse
Affiliation(s)
- Caitlynn C De Preter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary M Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
44
|
Aragona F, Fazio F, Piccione G, Giannetto C. Chronophysiology of domestic animals. Chronobiol Int 2024; 41:888-903. [PMID: 38832548 DOI: 10.1080/07420528.2024.2360723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
This review highlights recent findings on biological rhythms and discusses their implications for the management and production of domestic animals. Biological rhythms provide temporal coordination between organs and tissues in order to anticipate environmental changes, orchestrating biochemical, physiological and behavioural processes as the right process may occur at the right time. This allows animals to adapt their internal physiological functions, such as sleep-wake cycles, body temperature, hormone secretion, food intake and regulation of physical performance to environmental stimuli that constantly change. The study and evaluation of biological rhythms of various physiological parameters allows the assessment of the welfare status of animals. Alteration of biological rhythms represents an imbalance of the state of homeostasis that can be found in different management conditions.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
45
|
Rogers JF, Vandendoren M, Prather JF, Landen JG, Bedford NL, Nelson AC. Neural cell-types and circuits linking thermoregulation and social behavior. Neurosci Biobehav Rev 2024; 161:105667. [PMID: 38599356 PMCID: PMC11163828 DOI: 10.1016/j.neubiorev.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.
Collapse
Affiliation(s)
- Joseph F Rogers
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Morgane Vandendoren
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Jonathan F Prather
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Jason G Landen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Nicole L Bedford
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA.
| |
Collapse
|
46
|
Hitrec T, Squarcio F, Piscitiello E, Cerri M, Martelli D, Occhinegro A, Taddei L, Tupone D, Amici R, Luppi M. Sleep deprivation soon after recovery from synthetic torpor enhances tau protein dephosphorylation in the rat brain. J Comp Physiol B 2024; 194:347-368. [PMID: 37812305 DOI: 10.1007/s00360-023-01516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neuronal Tau protein hyperphosphorylation (PPtau) is a hallmark of tauopathic neurodegeneration. However, a reversible brain PPtau occurs in mammals during either natural or "synthetic" torpor (ST), a transient deep hypothermic state that can be pharmacologically induced in rats. Since in both conditions a high sleep pressure builds up during the regaining of euthermia, the aim of this work was to assess the possible role of post-ST sleep in PPtau dephosphorylation. Male rats were studied at the hypothermic nadir of ST, and 3-6 h after the recovery of euthermia, after either normal sleep (NS) or total sleep deprivation (SD). The effects of SD were studied by assessing: (i) deep brain temperature (Tb); (ii) immunofluorescent staining for AT8 (phosphorylated Tau) and Tau-1 (non-phosphorylated Tau), assessed in 19 brain structures; (iii) different phosphorylated forms of Tau and the main cellular factors involved in Tau phospho-regulation, including pro- and anti-apoptotic markers, assessed through western blot in the parietal cortex and hippocampus; (iv) systemic factors which are involved in natural torpor; (v) microglia activation state, by considering morphometric variations. Unexpectedly, the reversibility of PPtau was more efficient in SD than in NS animals, and was concomitant with a higher Tb, higher melatonin plasma levels, and a higher frequency of the microglia resting phenotype. Since the reversibility of ST-induced PPtau was previously shown to be driven by a latent physiological molecular mechanism triggered by deep hypothermia, short-term SD soon after the regaining of euthermia seems to boost the possible neuroprotective effects of this mechanism.
Collapse
Affiliation(s)
- Timna Hitrec
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
| | - Fabio Squarcio
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Emiliana Piscitiello
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
| | - Davide Martelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy.
| |
Collapse
|
47
|
Vöröslakos M, Zhang Y, McClain K, Huszár R, Rothstein A, Buzsáki G. ThermoMaze: A behavioral paradigm for readout of immobility-related brain events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550518. [PMID: 37546818 PMCID: PMC10402115 DOI: 10.1101/2023.07.25.550518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism's responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal's natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, mice avoid the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of the animal. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory-consummatory transitions and open new options for studying behavior-mediated temperature homeostasis.
Collapse
Affiliation(s)
- Mihály Vöröslakos
- Neuroscience Institute and New York University, New York, NY 10016, USA
| | - Yunchang Zhang
- Neuroscience Institute and New York University, New York, NY 10016, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Kathryn McClain
- Neuroscience Institute and New York University, New York, NY 10016, USA
| | - Roman Huszár
- Neuroscience Institute and New York University, New York, NY 10016, USA
| | - Aryeh Rothstein
- Neuroscience Institute and New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute and New York University, New York, NY 10016, USA
- Department of Neurology, School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
48
|
Morimoto A, Nakamura S, Koyano K, Nishisho S, Nakao Y, Arioka M, Inoue K, Inoue E, Nishioka K, Morita H, Konishi Y, Hirao K, Kusaka T. Continuous monitoring using thermography can capture the heat oscillations maintaining body temperature in neonates. Sci Rep 2024; 14:10449. [PMID: 38714775 PMCID: PMC11076520 DOI: 10.1038/s41598-024-60718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/26/2024] [Indexed: 05/10/2024] Open
Abstract
The body temperature of infants at equilibrium with their surroundings is balanced between heat production from metabolism and the transfer of heat to the environment. Total heat production is related to body size, which is closely related to metabolic rate and oxygen consumption. Body temperature control is a crucial aspect of neonatal medicine but we have often struggled with temperature measures. Contactless infrared thermography (IRT) is useful for vulnerable neonates and may be able to assess their spontaneous thermal metabolism. The present study focused on heat oscillations and their cause. IRT was used to measure the skin temperature every 15 s of neonates in an incubator. We analyzed the thermal data of 27 neonates (32 measurements), calculated the average temperature within specified regions, and extracted two frequency components-Components A and B-using the Savitzky-Golay method. Furthermore, we derived an equation describing the cycle-named cycle T-for maintaining body temperature according to body weight. A positive correlation was observed between cycle T and Component B (median [IQR]: 368 [300-506] s). This study sheds light on the physiological thermoregulatory function of newborns and will lead to improved temperature management methods for newborns, particularly premature, low-birth-weight infants.
Collapse
Affiliation(s)
- Aya Morimoto
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | - Sae Nishisho
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | - Yasuhiro Nakao
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | - Makoto Arioka
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | - Kota Inoue
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | - Eri Inoue
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | - Katsufumi Nishioka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | - Hirosuke Morita
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kitagun, Japan
| | | | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kitagun, Japan.
| |
Collapse
|
49
|
Fischer S, Naegeli K, Cardone D, Filippini C, Merla A, Hanusch KU, Ehlert U. Emerging effects of temperature on human cognition, affect, and behaviour. Biol Psychol 2024; 189:108791. [PMID: 38599369 DOI: 10.1016/j.biopsycho.2024.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Human body core temperature is tightly regulated within approximately 37 °C. Global near surface temperature has increased by over 1.2 °C between 1850 and 2020. In light of the challenge this poses to human thermoregulation, the present perspective article sought to provide an overview on the effects of varying ambient and body temperature on cognitive, affective, and behavioural domains of functioning. To this end, an overview of observational and experimental studies in healthy individuals and individuals with mental disorders was provided. Within body core temperature at approximately 37 °C, relatively lower ambient and skin temperatures appear to evoke a need for social connection, whereas comparably higher temperatures appear to facilitate notions of other as closer and more sociable. Above-average ambient temperatures are associated with increased conflicts as well as incident psychotic and depressive symptoms, mental disorders, and suicide. With mild hypo- and hyperthermia, paradoxical effects are observed: whereas the acute states are generally characterised by impairments in cognitive performance, anxiety, and irritability, individuals with depression experience longer-term symptom improvements with treatments deliberately inducing these states for brief amounts of time. When taken together, it has thus become clear that temperature is inexorably associated with human cognition, affect, and (potentially) behaviour. Given the projected increase in global warming, further research into the affective and behavioural sequelae of heat and the mechanisms translating it into mental health outcomes is urgently warranted.
Collapse
Affiliation(s)
- Susanne Fischer
- University of Zurich, Institute of Psychology, Zurich, Switzerland.
| | - Kathrin Naegeli
- University of Zurich, Department of Geography, Zurich, Switzerland
| | - Daniela Cardone
- University G. d'Annunzio of Chieti-Pescara, Department of Engineering and Geology, Chieti, Italy
| | - Chiara Filippini
- University G. d'Annunzio of Chieti-Pescara, Department of Engineering and Geology, Chieti, Italy
| | - Arcangelo Merla
- University G. d'Annunzio of Chieti-Pescara, Department of Engineering and Geology, Chieti, Italy
| | - Kay-Uwe Hanusch
- Bern University of Applied Sciences, Department of Health Sciences, Berne, Switzerland
| | - Ulrike Ehlert
- University of Zurich, Institute of Psychology, Zurich, Switzerland
| |
Collapse
|
50
|
Jia J, Chen T, Chen C, Si T, Gao C, Fang Y, Sun J, Wang J, Zhang Z. Astrocytes in preoptic area regulate acute nociception-induced hypothermia through adenosine receptors. CNS Neurosci Ther 2024; 30:e14726. [PMID: 38715251 PMCID: PMC11076694 DOI: 10.1111/cns.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.
Collapse
Affiliation(s)
- Junke Jia
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Ting Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Chang Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Tengxiao Si
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
| | - Chenyi Gao
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jiahui Sun
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
- Institute of Neuroscience and Brain Diseases, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of MedicineSongjiang Hospital and Songjiang Research InstituteShanghaiChina
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| |
Collapse
|