1
|
X M. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2025; 100:362-406. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- Maggs X
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Wang Z, Zeng L, Hu S, Hu Q, Zhang Y, Liu J. Community-specific cell death sustains bacterial expansion under phosphorus starvation. Nat Chem Biol 2025:10.1038/s41589-024-01796-x. [PMID: 39747657 DOI: 10.1038/s41589-024-01796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
Colony expansion is important for establishing territories. It is unclear to what extent bacteria can maintain colony expansion under nutrient limitation. Here, we found that Escherichia coli biofilms could maintain steady expansion for an extended period of time under severe phosphorus limitation. The expansion was supported by reactive-oxygen-species-mediated cell death within the biofilm. The cell death was spatially separated from the region of growth, resulting in cross-regional recycling of phosphorus from the lysed bacteria. The increase in cell death and the steady growth after phosphorus removal was community specific and was not observed in planktonic bacteria. Lastly, phosphorus had a unique role in the cell-death-mediated nutrient recycling, as the phenomenon described above was not observed under carbon or nitrogen starvation. Our work reveals how bacterial communities use spatially coordinated metabolism to cope with phosphorus limitation, which promotes robust expansion of the bacteria in fluctuating environments.
Collapse
Affiliation(s)
- Ziyan Wang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Lingbin Zeng
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Shouxian Hu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Qianyu Hu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Yuzhen Zhang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jintao Liu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
da Silva MMR, Bilezikian JP, de Paula FJA. Phosphate metabolism: its impact on disorders of mineral metabolism. Endocrine 2024:10.1007/s12020-024-04092-9. [PMID: 39527339 DOI: 10.1007/s12020-024-04092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Regulatory molecules typically work cooperatively to ensure the efficient functioning of hormonal systems. Examples include LH and FSH in reproductive biology, insulin and glucagon in glucose metabolism. Similarly, calcium and phosphorus are important regulators of skeletal homeostasis. In the circulation, these molecules are under the control of PTH, 1,25(OHD), and FGF23. In turn, these hormones depend upon a mutual and complex interplay among themselves. For example, alterations in calcium metabolism influence phosphorus homeostasis, as occurs in primary hyperparathyroidism (PHPT). Not as well recognized is the influence that abnormalities in phosphorus metabolism can have on calcium homeostasis. In this review, we call attention to the impact that abnormalities in phosphorus can have on calcium metabolism.
Collapse
Affiliation(s)
- Maisa Monseff Rodrigues da Silva
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, SP, Brazil
| | - John P Bilezikian
- Department of Medicine, Division of Endocrinology, Vagelos College of Physicians and Surgeons. Columbia University, New York, NY, USA
| | - Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Mettakoonpitak J, Hatsakhun P, Sirasunthorn N. Alcohol ink-modified microfluidic paper-based analytical devices for enhanced white detection in simultaneous determination of multiple water quality indicators. Mikrochim Acta 2024; 191:680. [PMID: 39425796 DOI: 10.1007/s00604-024-06772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
White detection remains a critical limitation in using colorimetry to determine substances with microfluidic paper-based analytical devices (µPADs). Here, we introduced a simple, safe alcohol ink-modified µPAD for the straightforward and facile detection of white color in precipitation reactions. Although absolute alcohol ink was found to cause device leakage, dilution of the ink with water was the key to successfully precoat wax-created µPADs. Device utility was demonstrated through simultaneous detection of sulfate, phosphate, and water hardness via precipitation reactions. While phosphate interfered with sulfate detection by Ba2+, in situ distance-based quantification of phosphate was implemented. Aside from anions, the modified µPADs could be extended to detect cationic analytes such as total hardness. The limits of detection (LODs) for sulfate, phosphate, and hardness were 0.005 mmol L-1, 0.005 mmol L-1, and 0.5 mmol L-1, respectively, with the linear ranges of 0.01-10.0 mmol L-1, 0.005-1.0 mmol L-1, and 0.001-0.5 mol L-1. The µPADs were applied to real water samples, demonstrating results that were consistent with standard methods at a 95% confidence level. By incorporating white detection, these alcohol ink-modified µPADs offer enhanced versatility for addressing a broader array of analytical challenges in real-world settings.
Collapse
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi, 22000, Thailand.
| | - Patcharaporn Hatsakhun
- Microbiology Program, Department of Biology, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi, 22000, Thailand
| | - Nichanun Sirasunthorn
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| |
Collapse
|
5
|
Hufnagel B, Bernardino KC, Malosetti M, Sousa SM, Silva LA, Guimaraes CT, Coelho AM, Santos TT, Viana JHM, Schaffert RE, Kochian LV, Eeuwijk FA, Magalhaes JV. Multi-trait association mapping for phosphorous efficiency reveals flexible root architectures in sorghum. BMC PLANT BIOLOGY 2024; 24:562. [PMID: 38877425 PMCID: PMC11179229 DOI: 10.1186/s12870-024-05183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND On tropical regions, phosphorus (P) fixation onto aluminum and iron oxides in soil clays restricts P diffusion from the soil to the root surface, limiting crop yields. While increased root surface area favors P uptake under low-P availability, the relationship between the three-dimensional arrangement of the root system and P efficiency remains elusive. Here, we simultaneously assessed allelic effects of loci associated with a variety of root and P efficiency traits, in addition to grain yield under low-P availability, using multi-trait genome-wide association. We also set out to establish the relationship between root architectural traits assessed in hydroponics and in a low-P soil. Our goal was to better understand the influence of root morphology and architecture in sorghum performance under low-P availability. RESULT In general, the same alleles of associated SNPs increased root and P efficiency traits including grain yield in a low-P soil. We found that sorghum P efficiency relies on pleiotropic loci affecting root traits, which enhance grain yield under low-P availability. Root systems with enhanced surface area stemming from lateral root proliferation mostly up to 40 cm soil depth are important for sorghum adaptation to low-P soils, indicating that differences in root morphology leading to enhanced P uptake occur exactly in the soil layer where P is found at the highest concentration. CONCLUSION Integrated QTLs detected in different mapping populations now provide a comprehensive molecular genetic framework for P efficiency studies in sorghum. This indicated extensive conservation of P efficiency QTL across populations and emphasized the terminal portion of chromosome 3 as an important region for P efficiency in sorghum. Increases in root surface area via enhancement of lateral root development is a relevant trait for sorghum low-P soil adaptation, impacting the overall architecture of the sorghum root system. In turn, particularly concerning the critical trait for water and nutrient uptake, root surface area, root system development in deeper soil layers does not occur at the expense of shallow rooting, which may be a key reason leading to the distinctive sorghum adaptation to tropical soils with multiple abiotic stresses including low P availability and drought.
Collapse
Affiliation(s)
- Barbara Hufnagel
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil
- CIRAD, UMR AGAP Institut, Petit-Bourg, Guadeloupe, F-97170, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Marcos Malosetti
- Biometris, Wageningen University and Research Center, Wageningen, 6700AC, The Netherlands
- BASF - Nunhems, Nunhem, The Netherlands
| | - Sylvia M Sousa
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| | - Lidianne A Silva
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil
- Universidade Federal do Acre, Rio Branco, Acre, 69920-900, Brazil
| | | | | | | | - Joao H M Viana
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| | | | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Fred A Eeuwijk
- Biometris, Wageningen University and Research Center, Wageningen, 6700AC, The Netherlands
| | | |
Collapse
|
6
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
7
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|
8
|
Ryu JH, Jeon HJ, Han R, Jung HY, Kim MG, Huh KH, Park JB, Kang KP, Han S, Yang J. High pretransplant FGF23 level is associated with persistent vitamin D insufficiency and poor graft survival in kidney transplant patients. Sci Rep 2023; 13:19640. [PMID: 37949967 PMCID: PMC10638428 DOI: 10.1038/s41598-023-46889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Vitamin D3 (25[OH]D3) insufficiency and fibroblast growth factor 23 (FGF23) elevation are usually attenuated after kidney transplantation (KT). However, elevated FGF23 may be associated with poor graft outcomes and vitamin D insufficiency after KT. This study investigated the effect of pretransplant FGF23 levels on post-KT 25(OH)D3 status and graft outcomes. Serum FGF23 levels from 400 participants of the KoreaN Cohort Study for Outcome in Patients With Kidney Transplantation were measured. Annual serum 25(OH)D3 levels, all-cause mortality, cardiovascular event, and graft survival were assessed according to baseline FGF23 levels. Serum 25(OH)D3 levels were initially increased 1 year after KT (12.6 ± 7.4 vs. 22.6 ± 6.4 ng/mL). However, the prevalence of post-KT vitamin D deficiency increased again after post-KT 3 years (79.1% at baseline, 30.8% and 37.8% at 3 and 6 years, respectively). Serum FGF23 level was decreased 3 years post-KT. When participants were categorized into tertiles according to baseline FGF23 level (low, middle, high), 25(OH)D3 level in the low FGF23 group was persistently low at a median follow-up of 8.3 years. Furthermore, high baseline FGF23 level was a risk factor for poor graft survival (HR 5.882, 95% C.I.; 1.443-23.976, P = 0.013). Elevated FGF23 levels are associated with persistently low post-transplant vitamin D levels and poor graft survival.
Collapse
Affiliation(s)
- Jung-Hwa Ryu
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Hee Jung Jeon
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Ro Han
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Myung-Gyu Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu Ha Huh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Seoul Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seungyeup Han
- Department of Internal Medicine, Dongsan Medical Center, Keimyung University, Daegu, Republic of Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Patel OV, Partridge C, Plaut K. Space Environment Impacts Homeostasis: Exposure to Spaceflight Alters Mammary Gland Transportome Genes. Biomolecules 2023; 13:biom13050872. [PMID: 37238741 DOI: 10.3390/biom13050872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Membrane transporters and ion channels that play an indispensable role in metabolite trafficking have evolved to operate in Earth's gravity. Dysregulation of the transportome expression profile at normogravity not only affects homeostasis along with drug uptake and distribution but also plays a key role in the pathogenesis of diverse localized to systemic diseases including cancer. The profound physiological and biochemical perturbations experienced by astronauts during space expeditions are well-documented. However, there is a paucity of information on the effect of the space environment on the transportome profile at an organ level. Thus, the goal of this study was to analyze the effect of spaceflight on ion channels and membrane substrate transporter genes in the periparturient rat mammary gland. Comparative gene expression analysis revealed an upregulation (p < 0.01) of amino acid, Ca2+, K+, Na+, Zn2+, Cl-, PO43-, glucose, citrate, pyruvate, succinate, cholesterol, and water transporter genes in rats exposed to spaceflight. Genes associated with the trafficking of proton-coupled amino acids, Mg2+, Fe2+, voltage-gated K+-Na+, cation-coupled chloride, as well as Na+/Ca2+ and ATP-Mg/Pi exchangers were suppressed (p < 0.01) in these spaceflight-exposed rats. These findings suggest that an altered transportome profile contributes to the metabolic modulations observed in the rats exposed to the space environment.
Collapse
Affiliation(s)
- Osman V Patel
- Cell and Molecular Biology Department, Grand Valley State University, Allendale, MI 49401, USA
| | - Charlyn Partridge
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
10
|
Hu Y, van Baal J, Hendriks WH, Resink JW, Liesegang A, van Krimpen MM, Bikker P. High dietary Ca and microbial phytase reduce the expression of Ca transporters while enhancing claudins involved in paracellular Ca absorption in the porcine jejunum and colon. Br J Nutr 2023; 129:1127-1135. [PMID: 35912696 PMCID: PMC10011584 DOI: 10.1017/s0007114522002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
Expression levels of genes (RT-qPCR) related to Ca and P homeostasis (transporters and claudins (CLDN)) were determined in porcine jejunal and colonic mucosa. Forty growing pigs (BW 30·4 (sem 1·3) kg) received a low and high Ca content (2·0 and 9·6 g/kg, respectively) diet with or without microbial phytase (500 FTU/kg) for 21 d. Dietary Ca intake enhanced serum Ca and alkaline phosphatase concentration and reduced P, 1,25(OH)2D3, and parathyroid hormone concentration. Jejunal transient receptor potential vanilloid 5 (TRPV5) mRNA expression was decreased (32%) with phytase inclusion only, while colonic TRPV5 mRNA was reduced by dietary Ca (34%) and phytase (44%). Both jejunal and colonic TRPV6 mRNA expression was reduced (30%) with microbial phytase. Calbindin-D9k mRNA expression was lower in colonic but not jejunal mucosa with high dietary Ca (59%) and microbial phytase (37%). None of the mRNAs encoding the Na-P cotransporters (NaPi-IIc, PiT-1, PiT-2) were affected. Jejunal, but not colonic expression of the phosphate transporter XPR1, was slightly downregulated with dietary Ca. Dietary Ca downregulated colonic CLDN-4 (20%) and CLDN-10 (40%) expression while CLDN-7 was reduced by phytase inclusion in pigs fed low dietary Ca. Expression of colonic CLDN-12 tended to be increased by phytase. In jejunal mucosa, dietary Ca increased CLDN-2 expression (48%) and decreased CLDN-10 (49%) expression, while phytase slightly upregulated CLDN-12 expression. In conclusion, compared with a Ca-deficient phytase-free diet, high dietary Ca and phytase intake in pigs downregulate jejunal and colonic genes related to transcellular Ca absorption and upregulate Ca pore-forming claudins.
Collapse
Affiliation(s)
- Yixin Hu
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, 6700, the Netherlands
- Wageningen University and Research, Animal Nutrition Group, Wageningen, the Netherlands
| | - Jurgen van Baal
- Wageningen University and Research, Animal Nutrition Group, Wageningen, the Netherlands
| | - Wouter H. Hendriks
- Wageningen University and Research, Animal Nutrition Group, Wageningen, the Netherlands
| | | | - Annette Liesegang
- University of Zurich, Institute of Animal Nutrition, Vetsuisse Faculty, Zürich, Switzerland
| | - Marinus M. van Krimpen
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, 6700, the Netherlands
| | - Paul Bikker
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, 6700, the Netherlands
| |
Collapse
|
11
|
Bari VK, Singh D, Nassar JA, Aly R. Silencing of a mannitol transport gene in Phelipanche aegyptiaca by the tobacco rattle virus system reduces the parasite germination on the host root. PLANT SIGNALING & BEHAVIOR 2022; 17:2139115. [PMID: 36420997 PMCID: PMC9704376 DOI: 10.1080/15592324.2022.2139115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Root parasitic weed Phelipanche aegyptiaca is an obligate plant parasite that causes severe damage to host crops. Agriculture crops mainly belong to the Brassicaceae, Leguminosae, Cruciferae, and Solanaceae plant families affected by this parasitic weed, leading to the devastating loss of crop yield and economic growth. This root-specific parasitic plant is not able to complete its life cycle without a suitable host and is dependent on the host plant for nutrient uptake and germination. Therefore, selected parasitic genes of P. aegyptiaca which were known to be upregulated upon interaction with the host were chosen. These genes are essential for parasitism, and reduced activity of these genes could affect host-parasitic interaction and provide resistance to the host against these parasitic weeds. To check and examine the role of these parasitic genes which can affect the development of host resistance, we silenced selected genes in the P. aegyptiaca using the tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) method. Our results demonstrated that the total number of P. aegyptiaca parasite tubercles attached to the root of the host plant Nicotiana benthamiana was substantially decreased in all the silenced plants. However, silencing of the P. aegyptiaca MNT1 gene which encodes the mannitol transporter showed a significantly reduced number of germinated shoots and tubercles. Thus, our study indicates that the mannitol transport gene of P. aegyptiaca plays a crucial role in parasitic germination, and silencing of the PaMNT1 gene abolishes the germination of parasites on the host roots.
Collapse
Affiliation(s)
- Vinay Kumar Bari
- Department of Plant Pathology and Weed Sciences, Newe Yaar Research Station, Agricultural Research Organization (ARO), Ramat Yishay, Israel
- Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Dharmendra Singh
- Department of Computational Sciences, Central University of Punjab, Bathinda, India
| | - Jackline Abu Nassar
- Department of Plant Pathology and Weed Sciences, Newe Yaar Research Station, Agricultural Research Organization (ARO), Ramat Yishay, Israel
| | - Radi Aly
- Department of Plant Pathology and Weed Sciences, Newe Yaar Research Station, Agricultural Research Organization (ARO), Ramat Yishay, Israel
| |
Collapse
|
12
|
Lacerda-Abreu MA, Dick CF, Meyer-Fernandes JR. The Role of Inorganic Phosphate Transporters in Highly Proliferative Cells: From Protozoan Parasites to Cancer Cells. MEMBRANES 2022; 13:42. [PMID: 36676849 PMCID: PMC9860751 DOI: 10.3390/membranes13010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In addition to their standard inorganic phosphate (Pi) nutritional function, Pi transporters have additional roles in several cells, including Pi sensing (the so-called transceptor) and a crucial role in Pi metabolism, where they control several phenotypes, such as virulence in pathogens and tumour aggressiveness in cancer cells. Thus, intracellular Pi concentration should be tightly regulated by the fine control of intake and storage in organelles. Pi transporters are classified into two groups: the Pi transporter (PiT) family, also known as the Pi:Na+ symporter family; and the Pi:H+ symporter (PHS) family. Highly proliferative cells, such as protozoan parasites and cancer cells, rely on aerobic glycolysis to support the rapid generation of biomass, which is equated with the well-known Warburg effect in cancer cells. In protozoan parasite cells, Pi transporters are strongly associated with cell proliferation, possibly through their action as intracellular Pi suppliers for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Similarly, the growth rate hypothesis (GRH) proposes that the high Pi demands of tumours when achieving accelerated proliferation are mainly due to increased allocation to P-rich nucleic acids. The purpose of this review was to highlight recent advances in understanding the role of Pi transporters in unicellular eukaryotes and tumorigenic cells, correlating these roles with metabolism in these cells.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudia Fernanda Dick
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
13
|
Sodium phosphate cotransporter 2a inhibitors: potential therapeutic uses. Curr Opin Nephrol Hypertens 2022; 31:486-492. [PMID: 35894284 PMCID: PMC9387751 DOI: 10.1097/mnh.0000000000000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Targeting sodium phosphate cotransporter 2a (Npt2a) offers a novel strategy for treating hyperphosphatemia in chronic kidney disease (CKD). Here we review recent studies on the efficacy of Npt2a inhibition, its plasma phosphate (Pi)-lowering effects, as well as potential "off-target" beneficial effects on cardiovascular consequences. RECENT FINDINGS Two novel Npt2a-selective inhibitors (PF-06869206 and BAY-767) have been developed. Pharmacological Npt2a inhibition shows a significant phosphaturic effect and consequently lowers plasma Pi and parathyroid hormone (PTH) levels regardless of CKD. However, plasma fibroblast growth factor 23 (FGF23), a master regulator of Pi homeostasis, shows inconsistent responses between these two inhibitors (no effect by PF-06869206 vs. reduction by BAY-767). In addition to the effects on Pi homeostasis, Npt2a inhibition also enhances urinary excretions of Na+, Cl-, and Ca2+, which is recapitulated in animal models with reduced kidney function. The effect of Npt2a inhibition by BAY-767 on vascular calcification has been studied, with positive results showing that oral treatment with BAY-767 (10 mg kg-1) attenuated the increases in plasma Pi and Ca2+ content in the aorta under the setting of vascular calcification induced by a pan-FGF receptor inhibitor. Together, Npt2a inhibition offers a promising therapeutic approach for treating hyperphosphatemia and reducing cardiovascular complications in CKD. SUMMARY Npt2a inhibition significantly increases urinary Pi excretion and lowers plasma Pi and PTH levels; moreover, it exerts pleiotropic "off-target" effects, providing a novel treatment for hyperphosphatemia and exhibiting beneficial potential for cardiovascular complications in CKD.
Collapse
|
14
|
Mucosal expression of Ca and P transporters and claudins in the small intestine of broilers is altered by dietary Ca:P in a limestone particle size dependent manner. PLoS One 2022; 17:e0273852. [PMID: 36048795 PMCID: PMC9436080 DOI: 10.1371/journal.pone.0273852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/16/2022] [Indexed: 12/01/2022] Open
Abstract
High calcium (Ca) intake and fine limestone reduces precaecal phosphorus (P) absorption independently of P solubility in broilers. This study aimed to determine whether dietary total Ca: total P ratio (Ca:P) and limestone particle size (LPS) affect gene expression of P transporters in the small intestine. A total of 384 one-day-old Ross 308 male broiler chickens received diets low (0.50), medium (1.00) or high (1.75) in Ca:P containing either fine (160 μm) or coarse (1062 μm) limestone, in a 3×2 factorial arrangement. Expression of Ca- and P-related genes were determined using real-time quantitative PCR (RT-qPCR) in duodenum and jejunum. Increasing dietary Ca:P decreased duodenal calcium-sensing receptor (CaSR), calbindin-D28k (CaBP-D28k), plasma membrane Ca-ATPase 1 (PMCA1) and sodium-coupled P cotransporter type IIb (NaPi-IIb), but not transient receptor potential canonical 1 (TRPC1) mRNA. This effect was greater with fine limestone when Ca:P increased from low to medium, but greater with coarse limestone when increased from medium to high. A similar inhibitory effect was observed for jejunal CaBP-D28k expression where increasing dietary Ca:P and fine limestone decreased CaSR mRNA, while dietary Ca:P decreased TRPC1 mRNA only for coarse limestone. It also decreased jejunal NaPi-IIb mRNA irrespective of LPS. Dietary treatments did not affect jejunal PMCA1 mRNA expression or that of inorganic phosphate transporter 1 and 2 and xenotropic and polytropic retrovirus receptor 1 in both intestinal segments. Dietary Ca increase reduced mucosal claudin-2 mRNA in both segments, and jejunal zonula occludens-1 (ZO-1) mRNA only for coarse limestone. In conclusion, increasing dietary Ca:P reduced expression of duodenal P transporters (NaPi-IIb) in a LPS dependent manner, hence Ca induced reduction in intestinal P absorption is mediated by decreasing P transporters expression. Dietary Ca reduces Ca digestibility by downregulating mRNA expression of both Ca permeable claudin-2 and Ca transporters (CaBP-D28k, PMCA1).
Collapse
|
15
|
Laster ML, Rowan B, Chen HC, Schwantes-An TH, Sheng X, Friedman PA, Ikizler TA, Sinshiemer JS, Ix JH, Susztak K, de Boer IH, Kestenbaum B, Hung A, Moe SM, Perwad F, Robinson-Cohen C. Genetic Variants Associated With Mineral Metabolism Traits in Chronic Kidney Disease. J Clin Endocrinol Metab 2022; 107:e3866-e3876. [PMID: 35587600 PMCID: PMC9387704 DOI: 10.1210/clinem/dgac318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 02/01/2023]
Abstract
CONTEXT Chronic kidney disease (CKD) causes multiple interrelated disturbances in mineral metabolism. Genetic studies in the general population have identified common genetic variants associated with circulating phosphate, calcium, parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23). OBJECTIVE In this study we aimed to discover genetic variants associated with circulating mineral markers in CKD. METHODS We conducted candidate single-nucleotide variation (SNV) analysis in 3027 participants in the multiethnic Chronic Renal Insufficiency Cohort (CRIC) to determine the associations between SNVs and circulating levels of mineral markers. RESULTS SNVs adjacent to or within genes encoding the regulator of G protein-coupled signaling 14 (RGS14) and the calcium-sensing receptor (CASR) were associated with levels of mineral metabolites. The strongest associations (P < .001) were at rs4074995 (RGS14) for phosphate (0.09 mg/dL lower per minor allele) and FGF23 (8.6% lower), and at rs1801725 (CASR) for calcium (0.12 mg/dL higher). In addition, the prevalence of hyperparathyroidism differed by rs4074995 (RGS14) genotype (chi-square P < .0001). Differential inheritance by race was noted for the minor allele of RGS14. Expression quantitative loci (eQTL) analysis showed that rs4074995 was associated with lower RGS14 gene expression in glomeruli (P = 1.03 × 10-11) and tubules (P = 4.0 × 10-4). CONCLUSION We evaluated genetic variants associated with mineral metabolism markers in a CKD population. Participants with CKD and the minor allele of rs4074995 (RGS14) had lower phosphorus, lower plasma FGF23, and lower prevalence of hyperparathyroidism. The minor allele of RGS14 was also associated with lower gene expression in the kidney. Further studies are needed to elucidate the effect of rs4074995 on the pathogenesis of disordered mineral metabolism in CKD.
Collapse
Affiliation(s)
- Marciana L Laster
- Correspondence: Marciana L. Laster, MD, UCLA Department of Pediatrics, Division of Pediatric Nephrology, 10833 Le Conte Ave, MDCC A2-383, Los Angeles, CA 90095-1752, USA.
| | - Bryce Rowan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Xin Sheng
- Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peter A Friedman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - T Alp Ikizler
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt O’Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Janet S Sinshiemer
- Department of Human Genetics and Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1752, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California 90095-1752, USA
| | - Joachim H Ix
- Department of Medicine, University of California, San Diego, San Diego, California 92161, USA
| | - Katalin Susztak
- Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ian H de Boer
- Department of Medicine, University of Washington, Seattle, Washington 98195-6420, USA
| | - Bryan Kestenbaum
- Kidney Research Institute, University of Washington, Seattle, Washington 98195-6420, USA
| | - Adriana Hung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sharon M Moe
- Clinical Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
16
|
Miyazaki-Anzai S, Keenan AL, Blaine J, Miyazaki M. Targeted Disruption of a Proximal Tubule-Specific TMEM174 Gene in Mice Causes Hyperphosphatemia and Vascular Calcification. J Am Soc Nephrol 2022; 33:1477-1486. [PMID: 35459732 PMCID: PMC9342641 DOI: 10.1681/asn.2021121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The proximal tubules play a critical role in phosphate (Pi) homeostasis by reabsorbing Pi via sodium-dependent Pi cotransporters. NPT2A is a major proximal-specific Pi cotransporter, whose expression is regulated by circulating hormones, such as parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). In this study, we aimed to find a novel regulator in Pi homeostasis. METHODS Using RNA-seq and RT-qPCR analysis, we identified proximal tubule cell-enriched genes. We next used RNAi screening of the identified proximal tubular cell-enriched genes to identify a novel proximal tubule-specific gene that contributes to FGF23- and PTH-mediated inhibition of Pi uptake and NPT2 reduction. We created mice lacking this novel regulator of Pi homeostasis to examine whether the novel regulator contributes to Pi homeostasis in vivo. RESULTS We identified 54 kidney-enriched genes, 19 of which are expressed in renal primary proximal tubule cells. One of the proximal tubule-specific genes, TMEM174, interacted with NPT2A, and its knockdown blocked the reduction of NPT2A protein by FGF23 and PTH treatments in human and opossum proximal tubule cells. TMEM174 KO mice had significantly increased levels of serum Pi, FGF23, and PTH, resulting in vascular calcification. CONCLUSIONS TMEM174 is a novel regulator of Pi homeostasis that interacts with NPT2A.
Collapse
Affiliation(s)
- Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Audrey L. Keenan
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Judith Blaine
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
17
|
Ibrahim HAA, Helmy E, Amin A, Mahmoud D. Biochemical and Anthropometric Nutritional Assessment in Children Infected with COVID-19: A Cross-sectional Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Severe acute respiratory syndrome has led to a pandemic of coronavirus disease 2019 (COVID-19). Malnutrition either biochemically or anthropometrically is a well-known risk factor for COVID-19 and may be the vice versa
Objectives : To investigate the prevalence of malnutrition in children infected with COVID-19 through evaluating the nutritional biomarkers such as serum electrolytes, serum albumin and hemoglobin together with the anthropometric assessment.
Methods: A cross sectional study that was conducted at ElMatria Teaching Hospital for all children admitted with confirmed COVID-19 over a period of 6 months from 1st February 2021 to the end of July, 2021. Nutritional biochemical evaluation included serum electrolytes particularly the potassium and other nutritional biomarkers such as serum albumin and hemoglobin. Nutritional anthropometric evaluation depended on BMI (body mass index), the height/length, weight for length and weight for height..The prevalence of malnutrition esp. hypokalemia was the main outcome.
Results: Hypokalemia was present in 21.8% of the study participants . Other nutritional biomarkers were found as hyponatremia, hypocalcemia , hypophosphatemia, hypomagnesemia were detected in 49.1% , 38.2%,21.8% and 34.5% of the study subjects respectively. Anthropometric malnutrition was present in most of the enrolled children with COVID-19 in the study (65.5 % (n= 36) )through which overweight and obese children occupied a greater percentage.
Conclusion: Malnutrition either biochemically or anthropometrically could be linked to COVID-19 in children. COVID-19 could have negative outcomes on the nutritional status such as electrolytes disturbances. Both malnutrition and COVID-19 are considered synergistic associations
Keywords: Malnutrition. COVID-19. Children. Hypokalemia. Obesity
Collapse
|
18
|
Shanti A, Al Adem K, Stefanini C, Lee S. Hydrogen phosphate selectively induces MDA MB 231 triple negative breast cancer cell death in vitro. Sci Rep 2022; 12:5333. [PMID: 35351930 PMCID: PMC8964734 DOI: 10.1038/s41598-022-09299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphate ions are the most abundant anions inside the cells, and they are increasingly gaining attention as key modulators of cellular function and gene expression. However, little is known about the effect of inorganic phosphate ions on cancer cells, particularly breast cancer cells. Here, we investigated the toxicity of different phosphate compounds to triple-negative human breast cancer cells, particularly, MDA-MB-231, and compared it to that of human monocytes, THP-1. We found that, unlike dihydrogen phosphate (H2PO4−), hydrogen phosphate (HPO42−) at 20 mM or lower concentrations induced breast cancer cell death more than immune cell death, mainly via apoptosis. We correlate this effect to the fact that phosphate in the form of HPO42− raises pH levels to alkaline levels which are not optimum for transport of phosphate into cancer cells. The results in this study highlight the importance of further exploring hydrogen phosphate (HPO42−) as a potential therapeutic for the treatment of breast cancer.
Collapse
Affiliation(s)
- Aya Shanti
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Kenana Al Adem
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates. .,Khalifa University's Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
19
|
Abstract
The blood level of phosphate is tightly regulated in a narrow range. Hyperphosphatemia and hypophosphatemia both lead to the development of diseases, such as hyperphosphatemic tumoral calcinosis and rickets/osteomalacia, respectively. Although several humoral factors have been known to affect blood phosphate levels, fibroblast growth factor 23 (FGF23) is the principal hormone involved in the regulation of blood phosphate. This hormone is produced by bone, particularly by osteocytes and osteoblasts, and has the effect of lowering the blood level of phosphate in the renal proximal tubules. Therefore, some phosphate-sensing mechanism should exist, at least in the bone. However, the mechanisms through which bone senses changes in the blood level of phosphate, and through which the bone regulates FGF23 production remain to be fully elucidated. Our recent findings demonstrate that high extracellular phosphate phosphorylates FGF receptor 1c (FGFR1c). Its downstream extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling pathway regulates the expression of several transcription factors and the GALNT3 gene, which encodes GalNAc-T3, which plays a role in the regulation of posttranslational modification of FGF23 protein, which in turn enhances FGF23 production. The FGFR1c-GALNT3 gene axis is considered to be the most important mechanism for regulating the production of FGF23 in bone in the response to a high phosphate diet. Thus-in the regulation of FGF23 production and blood phosphate levels-FGFR1c may be considered to function as a phosphate-sensing molecule. A feedback mechanism, in which FGFR1c and FGF23 are involved, is present in blood phosphate regulation. In addition, other reports indicate that PiT1 and PiT2 (type III sodium-phosphate cotransporters), and calcium-sensing receptor are also involved in the phosphate-sensing mechanism. In the present chapter, we summarize new insights on phosphate-sensing mechanisms.
Collapse
Affiliation(s)
- Yuichi Takashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Seiji Fukumoto
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
20
|
Nguyen NT, Nguyen TT, Park KS. Oxidative Stress Related to Plasmalemmal and Mitochondrial Phosphate Transporters in Vascular Calcification. Antioxidants (Basel) 2022; 11:antiox11030494. [PMID: 35326144 PMCID: PMC8944874 DOI: 10.3390/antiox11030494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Inorganic phosphate (Pi) is essential for maintaining cellular function but excess of Pi leads to serious complications, including vascular calcification. Accumulating evidence suggests that oxidative stress contributes to the pathogenic progression of calcific changes. However, the molecular mechanism underlying Pi-induced reactive oxygen species (ROS) generation and its detrimental consequences remain unclear. Type III Na+-dependent Pi cotransporter, PiT-1/-2, play a significant role in Pi uptake of vascular smooth muscle cells. Pi influx via PiT-1/-2 increases the abundance of PiT-1/-2 and depolarization-activated Ca2+ entry due to its electrogenic properties, which may lead to Ca2+ and Pi overload and oxidative stress. At least four mitochondrial Pi transporters are suggested, among which the phosphate carrier (PiC) is known to be mainly involved in mitochondrial Pi uptake. Pi transport via PiC may induce hyperpolarization and superoxide generation, which may lead to mitochondrial dysfunction and endoplasmic reticulum stress, together with generation of cytosolic ROS. Increase in net influx of Ca2+ and Pi and their accumulation in the cytosol and mitochondrial matrix synergistically increases oxidative stress and osteogenic differentiation, which could be prevented by suppressing either Ca2+ or Pi overload. Therapeutic strategies targeting plasmalemmal and mitochondrial Pi transports can protect against Pi-induced oxidative stress and vascular calcification.
Collapse
Affiliation(s)
- Nhung Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Medical Doctor Program, College of Health Sciences, VinUniversity, Hanoi 12406, Vietnam
| | - Tuyet Thi Nguyen
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Internal Medicine Residency Program, College of Health Sciences, VinUniversity, Hanoi 12406, Vietnam
- Correspondence: (T.T.N.); (K.-S.P.); Tel.: +84-247-108-9779 (T.T.N.); +82-33-741-0294 (K.-S.P.)
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
- Correspondence: (T.T.N.); (K.-S.P.); Tel.: +84-247-108-9779 (T.T.N.); +82-33-741-0294 (K.-S.P.)
| |
Collapse
|
21
|
Npt2a as a target for treating hyperphosphatemia. Biochem Soc Trans 2022; 50:439-446. [PMID: 34994388 PMCID: PMC9022968 DOI: 10.1042/bst20211005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022]
Abstract
Hyperphosphatemia results from an imbalance in phosphate (Pi) homeostasis. In patients with and without reduced kidney function, hyperphosphatemia is associated with cardiovascular complications. The current mainstays in the management of hyperphosphatemia are oral Pi binder and dietary Pi restriction. Although these options are employed in patients with chronic kidney disease (CKD), they seem inadequate to correct elevated plasma Pi levels. In addition, a paradoxical increase in expression of intestinal Pi transporter and uptake may occur. Recently, studies in rodents targeting the renal Na+/Pi cotransporter 2a (Npt2a), responsible for ∼70% of Pi reabsorption, have been proposed as a potential treatment option. Two compounds (PF-06869206 and BAY-767) have been developed which are selective for Npt2a. These Npt2a inhibitors significantly increased urinary Pi excretion consequently lowering plasma Pi and PTH levels. Additionally, increases in urinary excretions of Na+, Cl− and Ca2+ have been observed. Some of these results are also seen in models of reduced kidney function. Responses of FGF23, a phosphaturic hormone that has been linked to the development of left ventricular hypertrophy in CKD, are ambiguous. In this review, we discuss the recent advances on the role of Npt2a inhibition on Pi homeostasis as well as other pleiotropic effects observed with Npt2a inhibition.
Collapse
|
22
|
Haffner D, Leifheit-Nestler M, Grund A, Schnabel D. Rickets guidance: part I-diagnostic workup. Pediatr Nephrol 2022; 37:2013-2036. [PMID: 34910242 PMCID: PMC9307538 DOI: 10.1007/s00467-021-05328-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/22/2023]
Abstract
Rickets is a disease of the growing child arising from alterations in calcium and phosphate homeostasis resulting in impaired apoptosis of hypertrophic chondrocytes in the growth plate. Its symptoms depend on the patients' age, duration of disease, and underlying disorder. Common features include thickened wrists and ankles due to widened metaphyses, growth failure, bone pain, muscle weakness, waddling gait, and leg bowing. Affected infants often show delayed closure of the fontanelles, frontal bossing, and craniotabes. The diagnosis of rickets is based on the presence of these typical clinical symptoms and radiological findings on X-rays of the wrist or knee, showing metaphyseal fraying and widening of growth plates, in conjunction with elevated serum levels of alkaline phosphatase. Nutritional rickets due to vitamin D deficiency and/or dietary calcium deficiency is the most common cause of rickets. Currently, more than 20 acquired or hereditary causes of rickets are known. The latter are due to mutations in genes involved in vitamin D metabolism or action, renal phosphate reabsorption, or synthesis, or degradation of the phosphaturic hormone fibroblast growth factor 23 (FGF23). There is a substantial overlap in the clinical features between the various entities, requiring a thorough workup using biochemical analyses and, if necessary, genetic tests. Part I of this review focuses on the etiology, pathophysiology and clinical findings of rickets followed by the presentation of a diagnostic approach for correct diagnosis. Part II focuses on the management of rickets, including new therapeutic approaches based on recent clinical practice guidelines.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charitè Berlin, Germany
| |
Collapse
|
23
|
Küng CJ, Haykir B, Schnitzbauer U, Egli-Spichtig D, Hernando N, Wagner CA. Fibroblast growth factor 23 leads to endolysosomal routing of the renal phosphate cotransporters NaPi-IIa and NaPi-IIc in vivo. Am J Physiol Renal Physiol 2021; 321:F785-F798. [PMID: 34719948 DOI: 10.1152/ajprenal.00250.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Na+-dependent phosphate cotransporters NaPi-IIa and NaPi-IIc, located at the brush-border membrane of renal proximal tubules, are regulated by numerous factors, including fibroblast growth factor 23 (FGF23). FGF23 downregulates NaPi-IIa and NaPi-IIc abundance after activating a signaling pathway involving phosphorylation of ERK1/2 (phospho-ERK1/2). FGF23 also downregulates expression of renal 1-α-hydroxylase (Cyp27b1) and upregulates 24-hydroxylase (Cyp24a1), thus reducing plasma calcitriol levels. Here, we examined the time course of FGF23-induced internalization of NaPi-IIa and NaPi-IIc and their intracellular pathway toward degradation in vivo. Mice were injected intraperitoneally with recombinant human (rh)FGF23 in the absence (biochemical analysis) or presence (immunohistochemistry) of leupeptin, an inhibitor of lysosomal proteases. Phosphorylation of ERK1/2 was enhanced 60 min after rhFGF23 administration, and increased phosphorylation was still detected 480 min after injection. Colocalization of phospho-ERK1/2 with NaPi-IIa was seen at 60 and 120 min and partly at 480 min. The abundance of both cotransporters was reduced 240 min after rhFGF23 administration, with a further reduction at 480 min. NaPi-IIa and NaPi-IIc were found to colocalize with clathrin and early endosomal antigen 1 as early as 120 min after rhFGF23 injection. Both cotransporters partially colocalized with cathepsin B and lysosomal-associated membrane protein-1, markers of lysosomes, 120 min after rhFGF23 injection. Thus, NaPi-IIa and NaPi-IIc are internalized within 2 h upon rhFGF23 injection. Both cotransporters share the pathway of clathrin-mediated endocytosis that leads first to early endosomes, finally resulting in trafficking toward the lysosome as early as 120 min after rhFGF23 administration.NEW & NOTEWORTHY The hormone fibroblast growth factor 23 (FGF23) controls phosphate homeostasis by regulating renal phosphate excretion. FGF23 acts on several phosphate transporters in the kidney. Here, we define the time course of this action and demonstrate how phosphate transporters NaPi-IIa and NaPi-IIc are internalized.
Collapse
Affiliation(s)
- Catharina J Küng
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Betül Haykir
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Daniela Egli-Spichtig
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney.CH, Zurich, Switzerland
| |
Collapse
|
24
|
Yamazaki M, Kawai M, Kinoshita S, Tachikawa K, Nakanishi T, Ozono K, Michigami T. Clonal osteoblastic cell lines with CRISPR/Cas9-mediated ablation of Pit1 or Pit2 show enhanced mineralization despite reduced osteogenic gene expression. Bone 2021; 151:116036. [PMID: 34118444 DOI: 10.1016/j.bone.2021.116036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Multiple actions of extracellular Pi on the skeletal cells are likely to be partly mediated by type III sodium/phosphate (Na+/Pi) cotransporters Pit1 and Pit2, although the details are not fully understood. In the current study, to determine the roles of Pit1 and Pit2 in osteoblasts, we generated Pit1-knockout (KO) and Pit2-KO osteoblastic cells by applying CRISPR/Cas9 genome editing to an osteoblastic cell line MC3T3-E1 subclone 4. The extracellular Pi level was increased in the Pit1-KO and Pit2-KO clones due to the reduced Pi uptake. Interestingly, in vitro mineralization was accelerated in the Pit1-KO and Pit2-KO clones, although the induction of the expression of osteogenic marker genes was suppressed. In the cells before mineralization, extracellular levels of pyrophosphate (PPi) and adenosine triphosphate (ATP) were increased in the Pit1-KO and Pit2-KO clones, which might be attributable to the reduced expression and activity of tissue-nonspecific alkaline phosphatase (TNSALP). A 24-h treatment with high Pi reduced the expression and activity of TNSALP, suggesting that the suppression of TNSALP in the Pit1-KO and Pit2-KO clones was caused by the increased availability of extracellular Pi. Lentiviral gene transfer of Pit1 and Pit2 restored the changes observed in Pit1-KO and Pit2-KO clones, respectively. The expressions of P2Y2 and P2X7 which encode receptors for extracellular ATP were altered in the Pit1-KO and Pit2-KO clones, suggesting an influence on purinergic signaling. In mineralized cells after long-term culture, intracellular levels of PPi and ATP were higher in the Pit1-KO and Pit2-KO clones. Taken together, ablation of Pit1 or Pit2 in this osteoblastic cell model led to accelerated mineralization, suppressed TNSALP and altered the levels of extracellular and intracellular PPi and ATP, which might be partly mediated by changes in the availability of extracellular Pi.
Collapse
Affiliation(s)
- Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Saori Kinoshita
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Tatsuro Nakanishi
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
25
|
Thongprayoon C, Dumancas CY, Nissaisorakarn V, Keddis MT, Kattah AG, Pattharanitima P, Petnak T, Vallabhajosyula S, Garovic VD, Mao MA, Dillon JJ, Erickson SB, Cheungpasitporn W. Machine Learning Consensus Clustering Approach for Hospitalized Patients with Phosphate Derangements. J Clin Med 2021; 10:4441. [PMID: 34640457 PMCID: PMC8509302 DOI: 10.3390/jcm10194441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The goal of this study was to categorize patients with abnormal serum phosphate upon hospital admission into distinct clusters utilizing an unsupervised machine learning approach, and to assess the mortality risk associated with these clusters. METHODS We utilized the consensus clustering approach on demographic information, comorbidities, principal diagnoses, and laboratory data of hypophosphatemia (serum phosphate ≤ 2.4 mg/dL) and hyperphosphatemia cohorts (serum phosphate ≥ 4.6 mg/dL). The standardized mean difference was applied to determine each cluster's key features. We assessed the association of the clusters with mortality. RESULTS In the hypophosphatemia cohort (n = 3113), the consensus cluster analysis identified two clusters. The key features of patients in Cluster 2, compared with Cluster 1, included: older age; a higher comorbidity burden, particularly hypertension; diabetes mellitus; coronary artery disease; lower eGFR; and more acute kidney injury (AKI) at admission. Cluster 2 had a comparable hospital mortality (3.7% vs. 2.9%; p = 0.17), but a higher one-year mortality (26.8% vs. 14.0%; p < 0.001), and five-year mortality (20.2% vs. 44.3%; p < 0.001), compared to Cluster 1. In the hyperphosphatemia cohort (n = 7252), the analysis identified two clusters. The key features of patients in Cluster 2, compared with Cluster 1, included: older age; more primary admission for kidney disease; more history of hypertension; more end-stage kidney disease; more AKI at admission; and higher admission potassium, magnesium, and phosphate. Cluster 2 had a higher hospital (8.9% vs. 2.4%; p < 0.001) one-year mortality (32.9% vs. 14.8%; p < 0.001), and five-year mortality (24.5% vs. 51.1%; p < 0.001), compared with Cluster 1. CONCLUSION Our cluster analysis classified clinically distinct phenotypes with different mortality risks among hospitalized patients with serum phosphate derangements. Age, comorbidities, and kidney function were the key features that differentiated the phenotypes.
Collapse
Affiliation(s)
- Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 59005, USA; (C.Y.D.); (A.G.K.); (V.D.G.); (J.J.D.); (S.B.E.)
| | - Carissa Y. Dumancas
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 59005, USA; (C.Y.D.); (A.G.K.); (V.D.G.); (J.J.D.); (S.B.E.)
| | - Voravech Nissaisorakarn
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Mira T. Keddis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Andrea G. Kattah
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 59005, USA; (C.Y.D.); (A.G.K.); (V.D.G.); (J.J.D.); (S.B.E.)
| | - Pattharawin Pattharanitima
- Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Tananchai Petnak
- Division of Pulmonary and Pulmonary Critical Care Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Saraschandra Vallabhajosyula
- Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 59005, USA; (C.Y.D.); (A.G.K.); (V.D.G.); (J.J.D.); (S.B.E.)
| | - Michael A. Mao
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - John J. Dillon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 59005, USA; (C.Y.D.); (A.G.K.); (V.D.G.); (J.J.D.); (S.B.E.)
| | - Stephen B. Erickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 59005, USA; (C.Y.D.); (A.G.K.); (V.D.G.); (J.J.D.); (S.B.E.)
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 59005, USA; (C.Y.D.); (A.G.K.); (V.D.G.); (J.J.D.); (S.B.E.)
| |
Collapse
|
26
|
Müller CBM, Kuhla B. Holstein dairy cows with high phosphorus utilization efficiency fed a low phosphorous diet secreted less phosphorus with urine but more with milk and feces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147813. [PMID: 34029807 DOI: 10.1016/j.scitotenv.2021.147813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The environmental pollution of phosphorus (P) from livestock farming is becoming increasingly problematic especially with regard to dwindling global P resources. Thus, a more sustainable handling of P resources, including improvements in P use efficiency and a reduction of P loss from farm animals, is necessary. Dairy cows may differ in milk P yield and P use efficiency despite receiving the same feed ration. The objective of this study was to elucidate inter-individual differences in P and closely linked nitrogen (N) excretions and the expression of P transport proteins in dairy cows with low and high P utilization efficiency. Twenty multiparous, late lactating German Holstein dairy cows were retrospectively assigned to either a high (HPeff; n = 10) or low (LPeff; n = 10) P utilization efficiency group. Cows were fed a diet low in P and crude protein (CP) content. During a 4-day balance study, feed intake, urine and fecal excretions, and milk yield were recorded to determine total P and N content in subsamples. Mammary gland, kidney and jejunal mucosa were sampled to analyze mRNA expressions of P transporters by real-time-PCR. A high milk P yield in HPeff cows strongly correlated with milk protein and milk N yield. HPeff cows excreted less urinary P, had a higher renal P reabsorption rate, and a higher renal sodium-P cotransporter 2 expression than LPeff cows. As HPeff cows channeled more P into milk, they mobilized more P from body reserves as indicated by their more negative P-balance. In addition, HPeff cows had higher fecal P excretion relative to ingested P, resulting in a lower apparent P digestibility. In conclusion, when fed a low P diet, HPeff cows channeled more endogenous P into milk and feces, which in the long-term, likely has adverse effects on animal health and the environment.
Collapse
Affiliation(s)
- Carolin Beatrix Maria Müller
- Institute of Nutritional Physiology 'Oskar Kellner', Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology 'Oskar Kellner', Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
27
|
Wang R, He M, Kang Y. Hypophosphatemia at Admission is Associated with Increased Mortality in COVID-19 Patients. Int J Gen Med 2021; 14:5313-5322. [PMID: 34526806 PMCID: PMC8435477 DOI: 10.2147/ijgm.s319717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Background Electrolyte disturbances are commonly observed in patients with coronavirus disease 2019 (COVID-19) and associated with outcome in these patients. Our study was designed to examine whether hypophosphatemia is associated with mortality in COVID-19 patients. Methods Patients diagnosed with COVID-19 and hospitalized in Renmin Hospital of Wuhan University between January 30 and February 24, 2020 were included in this study. Patients were divided into two groups, a hypophosphatemia group and a non-hypophosphatemia group, based on a serum phosphate level of 0.8 mmol/L. Logistic regression was performed to analyze the relationship between hypophosphatemia and mortality. A locally weighted scatterplot smoothing (LOWESS) curve was plotted to show the detailed association between mortality rate and serum phosphate level. A Kaplan–Meier survival curve was drawn to compare the difference in cumulative survival between the two groups. Results Hypophosphatemia at admission occurred in 33 patients, with an incidence of 7.6%. The hypophosphatemia group had a significantly higher incidence of respiratory failure (54.5% vs 32.6%, p=0.013) and mortality (57.6% vs 15.2%, p<0.001). Multivariate logistic regression indicated that age (OR=1.059, p<0.001), oxygen saturation (OR=0.733, p<0.001), white blood cells (OR=1.428, p<0.001), lymphocytes (OR=0.075, p<0.001) and hypophosphatemia (OR=3.636, p=0.015) were independently associated with mortality in the included patients. The hypophosphatemia group had significantly shorter survival than the non-hypophosphatemia group (p<0.001). Conclusion Hypophosphatemia at admission is associated with increased mortality in COVID-19 patients. More attention and medical care should be given to COVID-19 patients with hypophosphatemia at admission.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.,COVID19 Medical Team (Hubei) of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.,COVID19 Medical Team (Hubei) of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
28
|
Uwai Y, Yamaguchi R, Nabekura T. Analysis of sex difference in the tubular reabsorption of lithium in rats. Physiol Res 2021; 70:655-659. [PMID: 34062068 PMCID: PMC8820543 DOI: 10.33549/physiolres.934568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
Lithium is used in the treatment of bipolar disorder. We previously demonstrated that two types of transporters mediate the tubular reabsorption of lithium in rats, and suggested that sodium-dependent phosphate transporters play a role in lithium reabsorption with high affinity. In the present study, we examined sex differences in lithium reabsorption in rats. When lithium chloride was infused at 60 µg/min, creatinine clearance and the renal clearance of lithium were lower, and the plasma concentration of lithium was higher in female rats. These values reflected the higher fractional reabsorption of lithium in female rats. In rats infused with lithium chloride at 6 µg/min, the pharmacokinetic parameters of lithium examined were all similar in both sexes. The fractional reabsorption of lithium was decreased by foscarnet, a representative inhibitor of sodium-dependent phosphate transporters, in male and female rats when lithium chloride was infused at the low rate. Among the candidate transporters mediating lithium reabsorption examined herein, the mRNA expression of only PiT2, a sodium-dependent phosphate transporter, exhibited sexual dimorphism. The present results demonstrated sex differences in the tubular reabsorption of lithium with low affinity in rats.
Collapse
Affiliation(s)
- Y Uwai
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan.
| | | | | |
Collapse
|
29
|
Boller LA, Shiels SM, Florian DC, Peck SH, Schoenecker JG, Duvall C, Wenke JC, Guelcher SA. Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats. Acta Biomater 2021; 130:485-496. [PMID: 34129957 DOI: 10.1016/j.actbio.2021.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Most fractures heal by a combination of endochondral and intramembranous ossification dependent upon strain and vascularity at the fracture site. Many biomaterials-based bone regeneration strategies rely on the use of calcium phosphates such as nano-crystalline hydroxyapatite (nHA) to create bone-like scaffolds. In this study, nHA was dispersed in reactive polymers to form composite scaffolds that were evaluated both in vitro and in vivo. Matrix assays, immunofluorescent staining, and Western blots demonstrated that nHA influenced mineralization and subsequent osteogenesis in a dose-dependent manner in vitro. Furthermore, nHA dispersed in polymeric composites promoted osteogenesis by a similar mechanism as particulated nHA. Scaffolds were implanted into a 2-mm defect in the femoral diaphysis or metaphysis of Sprague-Dawley rats to evaluate new bone formation at 4 and 8 weeks. Two formulations were tested: a poly(thioketal urethane) scaffold without nHA (PTKUR) and a PTKUR scaffold augmented with 22 wt% nHA (22nHA). The scaffolds supported new bone formation in both anatomic sites. In the metaphysis, augmentation of scaffolds with nHA promoted an intramembranous healing response. Within the diaphysis, nHA inhibited endochondral ossification. Immunohistochemistry was performed on cryo-sections of the bone/scaffold interface in which CD146, CD31, Endomucin, CD68, and Myeloperoxidase were evaluated. No significant differences in the infiltrating cell populations were observed. These findings suggest that nHA dispersed in polymeric composites induces osteogenic differentiation of adherent endogenous cells, which has skeletal site-specific effects on fracture healing. STATEMENT OF SIGNIFICANCE: Understanding the mechanism by which synthetic scaffolds promote new bone formation in preclinical models is crucial for bone regeneration applications in the clinic where complex fracture cases are seen. In this study, we found that dispersion of nHA in polymeric scaffolds promoted in vitro osteogenesis in a dose-dependent manner through activation of the PiT1 receptor and subsequent downstream Erk1/2 signaling. While augmentation of polymeric scaffolds with nHA enhanced intramembranous ossification in metaphyseal defects, it inhibited endochondral ossification in diaphyseal defects. Thus, our findings provide new insights into designing synthetic bone grafts that complement the skeletal site-specific fracture healing response.
Collapse
|
30
|
Tang X, Liu X, Liu H. Mechanisms of Epidermal Growth Factor Effect on Animal Intestinal Phosphate Absorption: A Review. Front Vet Sci 2021; 8:670140. [PMID: 34195248 PMCID: PMC8236626 DOI: 10.3389/fvets.2021.670140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Phosphorus is one of the essential mineral elements of animals that plays an important role in animal growth and development, bone formation, energy metabolism, nucleic acid synthesis, cell signal transduction, and blood acid–base balance. It has been established that the Type IIb sodium-dependent phosphate cotransporters (NaPi-IIb) protein is the major sodium-dependent phosphate (Pi) transporter, which plays an important role in Pi uptake across the apical membrane of epithelial cells in the small intestine. Previous studies have demonstrated that epidermal growth factor (EGF) is involved in regulating intestinal Pi absorption. Here we summarize the effects of EGF on active Pi transport of NaPi-IIb under different conditions. Under normal conditions, EGF inhibits the active transport of Pi by inhibiting the expression of NaPi-IIb, while, under intestinal injury condition, EGF promotes the active absorption of Pi through upregulating the expression of NaPi-IIb. This review provides a reference for information about EGF-regulatory functions in Pi absorption in the animal intestine.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Xuguang Liu
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Hu Liu
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
31
|
Papadopoulou A, Bountouvi E, Karachaliou FE. The Molecular Basis of Calcium and Phosphorus Inherited Metabolic Disorders. Genes (Basel) 2021; 12:genes12050734. [PMID: 34068220 PMCID: PMC8153134 DOI: 10.3390/genes12050734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca) and Phosphorus (P) hold a leading part in many skeletal and extra-skeletal biological processes. Their tight normal range in serum mirrors their critical role in human well-being. The signalling “voyage” starts at Calcium Sensing Receptor (CaSR) localized on the surface of the parathyroid glands, which captures the “oscillations” of extracellular ionized Ca and transfers the signal downstream. Parathyroid hormone (PTH), Vitamin D, Fibroblast Growth Factor (FGF23) and other receptors or ion-transporters, work synergistically and establish a highly regulated signalling circuit between the bone, kidneys, and intestine to ensure the maintenance of Ca and P homeostasis. Any deviation from this well-orchestrated scheme may result in mild or severe pathologies expressed by biochemical and/or clinical features. Inherited disorders of Ca and P metabolism are rare. However, delayed diagnosis or misdiagnosis may cost patient’s quality of life or even life expectancy. Unravelling the thread of the molecular pathways involving Ca and P signaling, we can better understand the link between genetic alterations and biochemical and/or clinical phenotypes and help in diagnosis and early therapeutic intervention.
Collapse
|
32
|
Krishnaveni K, Gurusamy S, Sathish V, Thanasekaran P, Mathavan A. Selective anions mediated fluorescence "turn-on", aggregation induced emission (AIE) and lysozyme targeting properties of pyrene-naphthalene sulphonyl conjugate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119537. [PMID: 33611147 DOI: 10.1016/j.saa.2021.119537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/08/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
We have designed and synthesized a novel pyrene-naphthalene sulphonyl conjugate, 1-((1Z)-(4-((Z)-4-(pyrene-1-yl)methyleneamino)phenylsulfonyl)phenylimino)methyl)naphthalene-2-ol (PSN) through a facile two-step reactions. It was characterized by various spectral techniques. Fluorescence spectral studies showed that compound PSN featured fluorescence enhancement upon increasing the water content in THF. This can be attributed to the phenomena of aggregated induced emission (AIE), which is confirmed by SEM and AFM studies, due to the restriction of CHN isomerization of PSN. The anion sensing of PSN was examined with various anions. Among these anions, H2PO4- and F- ions were selectively sensing with a low detection limit of 3.52 × 10-7 M and 7.23 × 10-7 M, respectively, and an obvious color change from yellow to orange was observed by the naked eye. The mechanism of sensing involved the formation of hydrogen bonding interaction between O-H group of PSN and H2PO4-/ F- ions. The binding of PSN with LYZ was also examined by docking studies, which shows that H-bonding and hydrophobic interactions play crucial roles for the interaction of LYZ toward PSN.
Collapse
Affiliation(s)
- Kumar Krishnaveni
- PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India; Reg. NO:17212232032004, PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India. Affiliated by Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India
| | - Shunmugasundaram Gurusamy
- PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India; Reg. NO:17212232031003, PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India. Affiliated by Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India
| | - Veerasamy Sathish
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam - 638 401, India.
| | - Pounraj Thanasekaran
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Alagarsamy Mathavan
- PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India.
| |
Collapse
|
33
|
Bird RP, Eskin NAM. The emerging role of phosphorus in human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:27-88. [PMID: 34112356 DOI: 10.1016/bs.afnr.2021.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorus, an essential nutrient, performs vital functions in skeletal and non-skeletal tissues and is pivotal for energy production. The last two decades of research on the physiological importance of phosphorus have provided several novel insights about its dynamic nature as a nutrient performing functions as a phosphate ion. Phosphorous also acts as a signaling molecule and induces complex physiological responses. It is recognized that phosphorus homeostasis is critical for health. The intake of phosphorus by the general population world-wide is almost double the amount required to maintain health. This increase is attributed to the incorporation of phosphate containing food additives in processed foods purchased by consumers. Research findings assessed the impact of excessive phosphorus intake on cells' and organs' responses, and highlighted the potential pathogenic consequences. Research also identified a new class of bioactive phosphates composed of polymers of phosphate molecules varying in chain length. These polymers are involved in metabolic responses including hemostasis, brain and bone health, via complex mechanism(s) with positive or negative health effects, depending on their chain length. It is amazing, that phosphorus, a simple element, is capable of exerting multiple and powerful effects. The role of phosphorus and its polymers in the renal and cardiovascular system as well as on brain health appear to be important and promising future research directions.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
34
|
Kulesza T, Piwkowska A. The impact of type III sodium-dependent phosphate transporters (Pit 1 and Pit 2) on podocyte and kidney function. J Cell Physiol 2021; 236:7176-7185. [PMID: 33738792 DOI: 10.1002/jcp.30368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 01/07/2023]
Abstract
The sodium-dependent phosphate transporters Pit 1 and Pit 2 belong to the solute carrier 20 (SLC20) family of membrane proteins. They are ubiquitously distributed in the human body. Their crucial function is the intracellular transport of inorganic phosphate (Pi) in the form of H2 PO4 - . They are one of the main elements in maintaining physiological phosphate homeostasis. Recent data have emerged that indicate novel roles of Pit 1 and Pit 2 proteins besides the well-known function of Pi transporters. These membrane proteins are believed to be precise phosphate sensors that mediate Pi-dependent intracellular signaling. They are also involved in insulin signaling and influence cellular insulin sensitivity. In diseases that are associated with hyperphosphatemia, such as diabetes and chronic kidney disease (CKD), disturbances in the function of Pit 1 and Pit 2 are observed. Phosphate transporters from the SLC20 family participate in the calcification of soft tissues, mainly blood vessels, during the course of CKD. The glomerulus and podocytes therein can also be a target of pathological calcification that damages these structures. A few studies have demonstrated the development of Pi-dependent podocyte injury that is mediated by Pit 1 and Pit 2. This paper discusses the role of Pit 1 and Pit 2 proteins in podocyte function, mainly in the context of the development of pathological calcification that disrupts permeability of the renal filtration barrier. We also describe the mechanisms that may contribute to podocyte damage by Pit 1 and Pit 2.
Collapse
Affiliation(s)
- Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| |
Collapse
|
35
|
Feng H, Li X, Sun D, Chen Y, Xu G, Cao Y, Ma LQ. Expressing Phosphate Transporter PvPht2;1 Enhances P Transport to the Chloroplasts and Increases Arsenic Tolerance in Arabidopsis thaliana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2276-2284. [PMID: 33497189 DOI: 10.1021/acs.est.0c03316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arsenic (As) contamination in soils is of great concerns due to its toxicity to plants. As an analogue, phosphorus plays an important role in protecting plants from As toxicity. In this study, we identified a new phosphate transporter 2 (PHT2), PvPht2;1, from As-hyperaccumulator Pteris vittata and analyzed its functions in As and P transport in a yeast mutant, and model plant Arabidopsis thalian. PvPht2;1 contained 12 transmembrane domains, sharing high identity with PHT2 genes in diverse plants. Further, independent of external P or As levels, PvPht2;1 was mainly expressed in P. vittata fronds with the expression being 3-4 folds higher than that in the roots and rhizomes. Localized to the chloroplasts based on GFP-fused PvPht2;1 in model plant tobacco, PvPht2;1 functioned as a low-affinity P transporter. Under As exposure, PvPht2;1 yeast transformants showed comparable growth with the control while high-affinity P transporter PvPht1;3 transformants showed better growth, suggesting that PvPht2;1 transported P but slower than PvPht1;3 transporter. Expressing PvPht2;1 in A. thaliana increased its shoot P concentration without influencing its As accumulation. Further, the chloroplasts' P content in transgenic A. thaliana increased by 37-59% than wild-type (WT) plants. Under As exposure, the photosynthesis of PvPht2;1-expressing A. thaliana remained stable but that of WT plants decreased. The data indicate that, under As stress, expressing PvPht2;1 in A. thaliana enhanced its P transport to the chloroplasts and protected its photosynthesis. In short, highly expressed in the fronds and not impacted by As exposure, chloroplast-located PvPht2;1 may have protected As-hyperaccumulator P. vittata from As toxicity by efficiently transporting only P to its chloroplasts.
Collapse
Affiliation(s)
- Huayuan Feng
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xinyuan Li
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dan Sun
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanshan Chen
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
- China School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
36
|
Bosman A, van den Beld AW, Feelders RA, Zillikens MC. Cortisol and Phosphate Homeostasis: Cushing's Syndrome Is Associated With Reversible Hypophosphatemia. Front Endocrinol (Lausanne) 2021; 12:733793. [PMID: 34659120 PMCID: PMC8515286 DOI: 10.3389/fendo.2021.733793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The influence of hypercortisolism on phosphate homeostasis is relatively unknown. A few previous studies have reported on patients with Cushing's syndrome (CS) with hypophosphatemia in whom serum phosphate normalized after initiation of treatment for CS. We aimed to investigate the prevalence of hypophosphatemia in CS, the association between the degree of hypercortisolism and serum phosphate and the change in serum phosphate after remission of CS. We compared the prevalence of hypophosphatemia in CS with the prevalence in the population-based Rotterdam Study (RS). METHODS Patients diagnosed with CS and treated at the Department of Endocrinology of Erasmus MC in the period of 2002-2020 were included and data was collected on age at diagnosis, sex, serum phosphate, calcium and potassium levels, kidney function and BMI. Using multivariate linear regression, we analyzed the association between 24h urinary free cortisol excretion (UFC) and serum phosphate. Changes in serum phosphate and covariates were tested with a repeated measurement ANOVA, using mean levels of laboratory values for the periods before remission, and 0-14 days and 15-180 days after remission. RESULTS Hypophosphatemia before treatment was present in 16% of the 99 CS patients with data on serum phosphate, 24h UFC and covariates. In comparison, the prevalence of hypophosphatemia in RS was 2.0-4.2%. Linear regression showed a negative association between the level of UFC and serum phosphate at diagnosis, which remained significant after adjusting for covariates [β -0.002 (95%CI -0.004; -0.0004), p=0.021]. A subset of 24 patients had additional phosphate measurements at 0-14 days and 15-180 days after remission. In this subgroup, serum phosphate significantly increased from 1.03 ± 0.17 mmol/L prior to remission to 1.22 ± 0.25 mmol/L 15-180 days after remission (p = 0.008). BMI decreased after remission [-1.1 kg/m2, (95%CI -2.09 to -0.07), p=0.037]. Other covariates did not show an equivalent change over time. CONCLUSION In this retrospective study, we found that 16% of patients with CS had hypophosphatemia. Moreover, serum phosphate was related to the level of cortisoluria and increased after remission of CS. Potential underlying mechanisms related to urinary phosphate excretion and possibly involving FGF23, BMI and parathyroid hormone levels should be further explored.
Collapse
Affiliation(s)
- Ariadne Bosman
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annewieke W. van den Beld
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Groene Hart Ziekenhuis, Gouda, Netherlands
| | - Richard A. Feelders
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: M. Carola Zillikens,
| |
Collapse
|
37
|
Abstract
Phosphorus, a 5A element with atomic weight of 31, comprises just over 0.6% of the composition by weight of plants and animals. Three isotopes are available for studying phosphorus metabolism and kinetics. 31P is stable, whereas the radioactive isotope 33P has a half-life of 25 days and 32P has a half-life of 14 days. Phosphate ester and phosphoanhydride are common chemical linkages and phosphorus is a key element in organic molecules involved in a wide variety of essential cellular functions. These include biochemical energy transfer via adenosine triphosphate (ATP), maintenance of genetic information with nucleotides DNA and RNA, intracellular signaling via cyclic adenosine monophosphate (cAMP), and membrane structural integrity via glycerophospholipids. However, this review focuses on the metabolism of inorganic phosphorus (Pi) acting as a weak acid. Phosphoric acid has all three hydrogens attached to oxygen and is a weak diprotic acid. It has 3 pKa values: pH 2.2, pH 7.2, and pH 12.7. At physiological pH of 7.4, Pi exists as both H2PO4(-) and HPO4(2-) and acts as an extracellular fluid (ECF) buffer. Pi is the form transported across tissue compartments and cells. Measurement of Pi in biological fluids is based on its reaction with ammonium molybdate which does not measure organic phosphorus. In humans, 80% of the body phosphorus is present in the form of calcium phosphate crystals (apatite) that confer hardness to bone and teeth, and function as the major phosphorus reservoir (Fig. 1). The remainder is present in soft tissues and ECF. Dietary phosphorus, comprising both inorganic and organic forms, is digested in the upper gastrointestinal tract. Absorbed Pi is transported to and from bone, skeletal muscle and soft tissues, and kidney at rates determined by ECF Pi concentration, rate of blood flow, and activity of cell Pi transporters (Fig. 2). During growth, there is net accretion of phosphorus, and with aging, net loss of phosphorus occurs. The bone phosphorus reservoir is depleted and repleted by overall phosphorus requirement. Skeletal muscle is rich in phosphorus used in essential biochemical energy transfer. Kidney is the main regulator of ECF Pi concentration by virtue of having a tubular maximum reabsorptive capacity for Pi (TmPi) that is under close endocrine control. It is also the main excretory pathway for Pi surplus which is passed in urine. Transcellular and paracellular Pi transports are performed by a number of transport mechanisms widely distributed in tissues, and particularly important in gut, bone, and kidney. Pi transporters are regulated by a hormonal axis comprising fibroblast growth factor 23 (FGF23), parathyroid hormone (PTH), and 1,25 dihydroxy vitamin D (1,25D). Pi and calcium (Ca) metabolism are intimately interrelated, and clinically neither can be considered in isolation. Diseases of Pi metabolism affect bone as osteomalacia/rickets, soft tissues as ectopic mineralization, skeletal muscle as myopathy, and kidney as nephrocalcinosis and urinary stone formation. Fig. 1 Content of phosphorus in human adult: skeleton, soft tissue, and extracellular fluid (grams, log scale). Corresponding data for calcium are shown for comparison Fig. 2 Phosphate (Pi) transport to and from tissue compartments in mg/24 h. At a dietary phosphorus of 1400 mg, 1120 mg is absorbed in upper intestine to the ECF, 210 mg returned to intestine by endogenous secretion, resulting in 910 mg net Pi absorption and 490 mg fecal excretion. At bone, 180 mg is deposited by bone formation and 180 mg return to the ECF by bone resorption. At kidney, 5040 mg is filtered at the glomerulus and 4130 mg return to the ECF by tubular reabsorption with 910 mg excreted in the urine. In soft tissue, Pi is exchanged between ECF and cells.
Collapse
Affiliation(s)
- Munro Peacock
- Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, 1120 W Michigan Street, CL365, Indianapolis, IN, 46202, USA.
| |
Collapse
|
38
|
Kosciuk P, Meyer C, Wikenheiser-Brokamp KA, McCormack FX. Pulmonary alveolar microlithiasis. Eur Respir Rev 2020; 29:29/158/200024. [PMID: 33246992 PMCID: PMC9488654 DOI: 10.1183/16000617.0024-2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary alveolar microlithiasis (PAM) is a fascinating rare lung disease that is associated with the accumulation of hydroxyapatite microliths within the lumen of the alveolar spaces. In most patients, PAM is discovered incidentally on radiographs performed for other purposes, and the typical disease course is characterised by slowly progressive respiratory insufficiency over decades. Recent genetic analyses that have revealed that the deficiency of the sodium-phosphate cotransporter NPT2B is the cause of PAM have enabled the development of powerful animal models that inform our approach to disease management and treatment. Here we review the epidemiology and molecular pathophysiology of PAM, as well as the diagnostic approach, clinical manifestations, radiographic and pathologic features, and clinical management of the disease. Although there are no proven treatments for PAM, progress in our understanding of disease pathogenesis is providing insights that suggest strategies for trials. A review of the epidemiology and molecular pathophysiology of pulmonary alveolar microlithiasishttps://bit.ly/3lBgM7p
Collapse
Affiliation(s)
- Patrick Kosciuk
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Cristopher Meyer
- Division of Radiology, University of Wisconsin, Madison, WI, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Dept of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
39
|
Lacerda-Abreu MA, Russo-Abrahão T, Leite Tenório Aguiar R, Monteiro RDQ, Rumjanek FD, Meyer-Fernandes JR. Ectophosphatase activity in the triple-negative breast cancer cell line MDA-MB-231. Cell Biol Int 2020; 45:411-421. [PMID: 33140880 DOI: 10.1002/cbin.11497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/06/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the most common cancers in the female population worldwide, and its development is thought to be associated with genetic mutations that lead to uncontrolled and accelerated growth of breast cells. This abnormal behavior requires extra energy, and indeed, tumor cells display a rewired energy metabolism compared to normal breast cells. Inorganic phosphate (Pi) is a glycolytic substrate of glyceraldehyde-3-phosphate dehydrogenase and has an important role in cancer cell proliferation. For cells to obtain Pi, ectoenzymes in the plasma membrane with their catalytic site facing the extracellular environment can hydrolyze phosphorylated molecules, and this is an initial and possibly limiting step for the uptake of Pi by carriers that behave as adjuvants in the process of energy harvesting and thus partially contributes to tumor energy requirements. In this study, the activity of an ectophosphatase in MDA-MB-231 cells was biochemically characterized, and the results showed that the activity of this enzyme was higher in the acidic pH range and that the enzyme had a Km = 4.5 ± 0.5 mM para-nitrophenylphosphate and a Vmax = 2280 ± 158 nM × h-1 × mg protein-1 . In addition, classical acid phosphatase inhibitors, including sodium orthovanadate, decreased enzymatic activity. Sodium orthovanadate was able to inhibit ectophosphatase activity while also inhibiting cell proliferation, adhesion, and migration, which are important processes in tumor progression, especially in metastatic breast cancer MDA-MB-231 cells that have higher ectophosphatase activity than MCF-7 and MCF-10 breast cells.
Collapse
Affiliation(s)
- Marco A Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo De Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Thais Russo-Abrahão
- Instituto de Bioquímica Médica Leopoldo De Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Raíssa Leite Tenório Aguiar
- Instituto de Bioquímica Médica Leopoldo De Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Robson de Queiroz Monteiro
- Instituto de Bioquímica Médica Leopoldo De Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Franklin D Rumjanek
- Instituto de Bioquímica Médica Leopoldo De Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - José R Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo De Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Arnst JL, Beck GR. Modulating phosphate consumption, a novel therapeutic approach for the control of cancer cell proliferation and tumorigenesis. Biochem Pharmacol 2020; 183:114305. [PMID: 33129806 DOI: 10.1016/j.bcp.2020.114305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Phosphorus, often in the form of inorganic phosphate (Pi), is critical to cellular function on many levels; it is required as an integral component of kinase signaling, in the formation and function of DNA and lipids, and energy metabolism in the form of ATP. Accordingly, crucial aspects of cell mitosis - such as DNA synthesis and ATP energy generation - elevate the cellular requirement for Pi, with rapidly dividing cells consuming increased levels. Mechanisms to sense, respond, acquire, accumulate, and potentially seek Pi have evolved to support highly proliferative cellular states such as injury and malignant transformation. As such, manipulating Pi availability to target rapidly dividing cells presents a novel strategy to reduce or prevent unrestrained cell growth. Currently, limited knowledge exists regarding how modulating Pi consumption by pre-cancerous cells might influence the initiation of aberrant growth during malignant transformation, and if reducing the bioavailability or suppressing Pi consumption by malignant cells could alter tumorigenesis. The concept of targeting Pi-regulated pathways and/or consumption by pre-cancerous or tumor cells represents a novel approach to cancer prevention and control, although current data remains insufficient as to rigorously assess the therapeutic value and physiological relevance of this strategy. With this review, we present a critical evaluation of the paradox of how an element critical to essential cellular functions can, when available in excess, influence and promote a cancer phenotype. Further, we conjecture how Pi manipulation could be utilized as a therapeutic intervention, either systemically or at the cell level, to ultimately suppress or treat cancer initiation and/or progression.
Collapse
Affiliation(s)
- Jamie L Arnst
- Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, United States; Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
41
|
Sun M, Wu X, Yu Y, Wang L, Xie D, Zhang Z, Chen L, Lu A, Zhang G, Li F. Disorders of Calcium and Phosphorus Metabolism and the Proteomics/Metabolomics-Based Research. Front Cell Dev Biol 2020; 8:576110. [PMID: 33015068 PMCID: PMC7511772 DOI: 10.3389/fcell.2020.576110] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Since calcium and phosphorus play vital roles in a multitude of physiologic systems, disorders of calcium and phosphorus metabolism always lead to severe consequences such as skeletal-related and cardiovascular morbidity, or even life-threatening. Physiologically, the maintenance of calcium and phosphorus homeostasis is achieved via a variety of concerted actions of hormones such as parathyroid hormone (PTH), vitamin D, and fibroblast growth factor (FGF23), which could be regulated mainly at three organs, the intestine, kidney, and bone. Disruption of any organ or factor might lead to disorders of calcium and phosphorus metabolism. Currently, lacking of accurate diagnostic approaches and unknown molecular basis of pathophysiology will result in patients being unable to receive a precise diagnosis and personalized treatment timely. Therefore, it is urgent to identify early diagnostic biomarkers and develop therapeutic strategies. Fortunately, proteomics and metabolomics offer promising tools to discover novel indicators and further understanding of pathological mechanisms. Therefore, in this review, we will give a systematic introduction on PTH-1,25(OH)2D-FGF23 axis in the disorders of calcium and phosphorus metabolism, diagnostic biomarkers identified, and potential altered metabolic pathways involved.
Collapse
Affiliation(s)
- Meiheng Sun
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Duoli Xie
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
42
|
Uwai Y, Kondo R, Suzuki T, Kawasaki T, Nabekura T. Potent Inhibition of Biphasic Tubular Reabsorption of Lithium by Acetazolamide and Foscarnet in Rats. Physiol Res 2020; 69:645-651. [PMID: 32584131 DOI: 10.33549/physiolres.934285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lithium is mainly excreted into urine, and a large fraction of lithium filtered through glomeruli is reabsorbed in the proximal tubule. However, the mechanisms responsible for lithium reabsorption remain unclear. We previously reported that the reabsorption of lithium was biphasic in rats, and that foscarnet inhibited lithium reabsorption with a high affinity type. We herein evaluated the effects of acetazolamide and foscarnet on the renal excretion of lithium in rats treated with lithium chloride at 2 doses. In rats intravenously injected with a bolus of 25 mg/kg lithium chloride, acetazolamide facilitated the urinary excretion of lithium, and increased the fractional excretion of lithium from 0.446 to 0.953, near the theoretically maximum value. At a dose of 2.5 mg/kg lithium chloride, the fractional excretion of lithium was 0.241 in control rats, 0.420 in rats administered acetazolamide, and 0.976 in rats administered acetazolamide and foscarnet. These results showed the potent inhibition of lithium reabsorption by acetazolamide and foscarnet in rats. And, it was exhibited that the effects of acetazolamide on lithium reabsorption differed with the dosages of lithium administered.
Collapse
Affiliation(s)
- Y Uwai
- Department of Pharmaceutics, School of Pharmacy, Aichi Gakuin University, Kusumoto, Chikusa, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
43
|
Thomas L, Xue J, Tomilin VN, Pochynyuk OM, Dominguez Rieg JA, Rieg T. PF-06869206 is a selective inhibitor of renal P i transport: evidence from in vitro and in vivo studies. Am J Physiol Renal Physiol 2020; 319:F541-F551. [PMID: 32744087 DOI: 10.1152/ajprenal.00146.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plasma phosphate (Pi) levels are tightly controlled, and elevated plasma Pi levels are associated with an increased risk of cardiovascular complications and death. Two renal transport proteins mediate the majority of Pi reabsorption: Na+-phosphate cotransporters Npt2a and Npt2c, with Npt2a accounting for 70-80% of Pi reabsorption. The aim of the present study was to determine the in vitro effects of a novel Npt2a inhibitor (PF-06869206) in opossum kidney (OK) cells as well as determine its selectivity in vivo in Npt2a knockout (Npt2a-/-) mice. In OK cells, Npt2a inhibitor caused dose-dependent reductions of Na+-dependent Pi uptake (IC50: ~1.4 μmol/L), whereas the unselective Npt2 inhibitor phosphonoformic acid (PFA) resulted in an ~20% stronger inhibition of Pi uptake. The dose-dependent inhibitory effects were present after 24 h of incubation with both low- and high-Pi media. Michaelis-Menten kinetics in OK cells identified an ~2.4-fold higher Km for Pi in response to Npt2a inhibition with no significant change in apparent Vmax. Higher parathyroid hormone concentrations decreased Pi uptake equivalent to the maximal inhibitory effect of Npt2a inhibitor. In vivo, the Npt2a inhibitor induced a dose-dependent increase in urinary Pi excretion in wild-type mice (ED50: ~23 mg/kg), which was completely absent in Npt2a-/- mice, alongside a lack of decrease in plasma Pi. Of note, the Npt2a inhibitor-induced dose-dependent increase in urinary Na+ excretion was still present in Npt2a-/- mice, a response possibly mediated by an off-target acute inhibitory effect of the Npt2a inhibitor on open probability of the epithelial Na+ channel in the cortical collecting duct.
Collapse
Affiliation(s)
- Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleh M Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
44
|
Austin S, Mayer A. Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway. Front Microbiol 2020; 11:1367. [PMID: 32765429 PMCID: PMC7381174 DOI: 10.3389/fmicb.2020.01367] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cells face major changes in demand for and supply of inorganic phosphate (Pi). Pi is often a limiting nutrient in the environment, particularly for plants and microorganisms. At the same time, the need for phosphate varies, establishing conflicts of goals. Cells experience strong peaks of Pi demand, e.g., during the S-phase, when DNA, a highly abundant and phosphate-rich compound, is duplicated. While cells must satisfy these Pi demands, they must safeguard themselves against an excess of Pi in the cytosol. This is necessary because Pi is a product of all nucleotide-hydrolyzing reactions. An accumulation of Pi shifts the equilibria of these reactions and reduces the free energy that they can provide to drive endergonic metabolic reactions. Thus, while Pi starvation may simply retard growth and division, an elevated cytosolic Pi concentration is potentially dangerous for cells because it might stall metabolism. Accordingly, the consequences of perturbed cellular Pi homeostasis are severe. In eukaryotes, they range from lethality in microorganisms such as yeast (Sethuraman et al., 2001; Hürlimann, 2009), severe growth retardation and dwarfism in plants (Puga et al., 2014; Liu et al., 2015; Wild et al., 2016) to neurodegeneration or renal Fanconi syndrome in humans (Legati et al., 2015; Ansermet et al., 2017). Intracellular Pi homeostasis is thus not only a fundamental topic of cell biology but also of growing interest for medicine and agriculture.
Collapse
Affiliation(s)
- Sisley Austin
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Burns D, Werner A. Phosphate reabsorption in the kidney: NaPi-IIb or not IIb. Pflugers Arch 2020; 472:437-438. [PMID: 32236864 PMCID: PMC7165134 DOI: 10.1007/s00424-020-02374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Burns
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Andreas Werner
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
46
|
Motta SE, Imenez Silva PH, Daryadel A, Haykir B, Pastor-Arroyo EM, Bettoni C, Hernando N, Wagner CA. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Pflugers Arch 2020; 472:449-460. [PMID: 32219532 DOI: 10.1007/s00424-020-02370-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
Na+-coupled phosphate cotransporters from the SLC34 and SLC20 families of solute carriers mediate transepithelial transport of inorganic phosphate (Pi). NaPi-IIa/Slc34a1, NaPi-IIc/Slc34a3, and Pit-2/Slc20a2 are all expressed at the apical membrane of renal proximal tubules and therefore contribute to renal Pi reabsorption. Unlike NaPi-IIa and NaPi-IIc, which are rather kidney-specific, NaPi-IIb/Slc34a2 is expressed in several epithelial tissues, including the intestine, lung, testis, and mammary glands. Recently, the expression of NaPi-IIb was also reported in kidneys from rats fed on high Pi. Here, we systematically quantified the mRNA expression of SLC34 and SLC20 cotransporters in kidneys from mice, rats, and humans. In all three species, NaPi-IIa mRNA was by far the most abundant renal transcript. Low and comparable mRNA levels of the other four transporters, including NaPi-IIb, were detected in kidneys from rodents and humans. In mice, the renal expression of NaPi-IIa transcripts was restricted to the cortex, whereas NaPi-IIb mRNA was observed in medullary segments. Consistently, NaPi-IIb protein colocalized with uromodulin at the luminal membrane of thick ascending limbs of the loop of Henle segments. The abundance of NaPi-IIb transcripts in kidneys from mice was neither affected by dietary Pi, the absence of renal NaPi-IIc, nor the depletion of intestinal NaPi-IIb. In contrast, it was highly upregulated in a model of oxalate-induced kidney disease where all other SLC34 phosphate transporters were downregulated. Thus, NaPi-IIb may contribute to renal phosphate reabsorption, and its upregulation in kidney disease might promote hyperphosphatemia.
Collapse
Affiliation(s)
- Sarah E Motta
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Pedro Henrique Imenez Silva
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Betül Haykir
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Eva Maria Pastor-Arroyo
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
47
|
Villa-Bellosta R. New insights into endogenous mechanisms of protection against arterial calcification. Atherosclerosis 2020; 306:68-74. [PMID: 32209233 DOI: 10.1016/j.atherosclerosis.2020.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022]
Abstract
Cardiovascular complications due to accelerated atherosclerosis and arterial stiffening are the leading cause of morbidity and mortality in the Western society. Both pathologies are frequently associated with vascular calcification. Deposits of calcium phosphate salts, mainly in form of hydroxyapatite, is the hallmark of vascular calcification. Calcification is frequently observed in atherosclerotic lesions (intimal calcification) associated with vascular smooth muscle cells (VSMCs) and macrophages. By contrast, medial calcification, occurring in the elastic region of the arteries, is almost exclusively associated with VSMCs, and is common in arteriosclerosis related to aging, diabetes, and chronic kidney disease. In extracellular fluids, a range of endogenous low- and high-molecular weight calcification inhibitors are present, including osteopontin, matrix-Gla proteins and Fetuin A. Moreover, pyrophosphate deficiency plays a key role in vascular calcification. Pyrophosphate is produced by extracellular hydrolysis of ATP and is degraded to phosphate by tissue non-specific alkaline phosphatase. Loss of function in the enzymes and transporters involved in the extracellular pyrophosphate metabolism leads to excessive deposition of calcium-phosphate salts. This review summarizes the current knowledge about endogenous mechanisms of protection against calcification in the aortic wall, focusing on the role of extracellular pyrophosphate metabolism in vascular smooth muscle cells and macrophages.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (FIIS-FJD), Avenida Reyes Católicos 2, 28040, Madrid, Spain.
| |
Collapse
|
48
|
Cozzolino M, Ketteler M, Wagner CA. An expert update on novel therapeutic targets for hyperphosphatemia in chronic kidney disease: preclinical and clinical innovations. Expert Opin Ther Targets 2020; 24:477-488. [PMID: 32191548 DOI: 10.1080/14728222.2020.1743680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The management of hyperphosphatemia in patients with chronic kidney disease (CKD) is complicated, requiring a multidisciplinary approach that includes dietary phosphate restriction, dialysis, and phosphate binders.Areas covered: We describe key players involved in regulating inorganic phosphate homeostasis and their differential role in healthy people and different stages of CKD. The contribution of paracellular and transcellular intestinal absorptive mechanisms are also examined. Finally, we illuminate recent therapeutic approaches for hyperphosphatemia in CKD. We searched PubMed/Medline (up to November 2019) using the following terms: chronic kidney disease, dialysis, diet, hyperphosphatemia, NaPi2b, nicotinamide, phosphate binder, secondary hyperparathyroidism, tenapanor and vascular calcification.Expert opinion: The precise mechanisms regulating intestinal phosphate absorption in humans is not completely understood. However, it is now established that this process involves two independent pathways: a) active transport (i.e. transcellular route, via specific ion transporters) and inactive transport (i.e. paracellular route across tight junctions). Dietary phosphate restriction and phosphate-binder use can lead to an undesirable maladaptive increase in phosphate uptake and promote active phosphate transport by increased expression of the gastrointestinal sodium-dependent phosphate transporter, NaPi2b. Nicotinamide may overcome these limitations through the inhibition of NaPi2b, by improved efficacy and reduced phosphate binder use and better compliance.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, ASST Santi Paolo E Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Carsten Alexander Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, NCCR Kidney. CH, Zurich, Switzerland
| |
Collapse
|
49
|
Abstract
Over the past 25 years, successive cloning of SLC34A1, SLC34A2 and SLC34A3, which encode the sodium-dependent inorganic phosphate (Pi) cotransport proteins 2a-2c, has facilitated the identification of molecular mechanisms that underlie the regulation of renal and intestinal Pi transport. Pi and various hormones, including parathyroid hormone and phosphatonins, such as fibroblast growth factor 23, regulate the activity of these Pi transporters through transcriptional, translational and post-translational mechanisms involving interactions with PDZ domain-containing proteins, lipid microdomains and acute trafficking of the transporters via endocytosis and exocytosis. In humans and rodents, mutations in any of the three transporters lead to dysregulation of epithelial Pi transport with effects on serum Pi levels and can cause cardiovascular and musculoskeletal damage, illustrating the importance of these transporters in the maintenance of local and systemic Pi homeostasis. Functional and structural studies have provided insights into the mechanism by which these proteins transport Pi, whereas in vivo and ex vivo cell culture studies have identified several small molecules that can modify their transport function. These small molecules represent potential new drugs to help maintain Pi homeostasis in patients with chronic kidney disease - a condition that is associated with hyperphosphataemia and severe cardiovascular and skeletal consequences.
Collapse
|
50
|
Shi M, Maique J, Shaffer J, Davidson T, Sebti S, Fernández ÁF, Zou Z, Yan S, Levine B, Moe OW, Hu MC. The tripartite interaction of phosphate, autophagy, and αKlotho in health maintenance. FASEB J 2020; 34:3129-3150. [PMID: 31908069 PMCID: PMC7286356 DOI: 10.1096/fj.201902127r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Aging-related organ degeneration is driven by multiple factors including the cell maintenance mechanisms of autophagy, the cytoprotective protein αKlotho, and the lesser known effects of excess phosphate (Pi), or phosphotoxicity. To examine the interplay between Pi, autophagy, and αKlotho, we used the BK/BK mouse (homozygous for mutant Becn1F121A ) with increased autophagic flux, and αKlotho-hypomorphic mouse (kl/kl) with impaired urinary Pi excretion, low autophagy, and premature organ dysfunction. BK/BK mice live longer than WT littermates, and have heightened phosphaturia from downregulation of two key NaPi cotransporters in the kidney. The multi-organ failure in kl/kl mice was rescued in the double-mutant BK/BK;kl/kl mice exhibiting lower plasma Pi, improved weight gain, restored plasma and renal αKlotho levels, decreased pathology of multiple organs, and improved fertility compared to kl/kl mice. The beneficial effects of heightened autophagy from Becn1F121A was abolished by chronic high-Pi diet which also shortened life span in the BK/BK;kl/kl mice. Pi promoted beclin 1 binding to its negative regulator BCL2, which impairs autophagy flux. Pi downregulated αKlotho, which also independently impaired autophagy. In conclusion, Pi, αKlotho, and autophagy interact intricately to affect each other. Both autophagy and αKlotho antagonizes phosphotoxicity. In concert, this tripartite system jointly determines longevity and life span.
Collapse
Affiliation(s)
- Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joy Shaffer
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taylor Davidson
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Salwa Sebti
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Álvaro F. Fernández
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhongju Zou
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shirley Yan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|