1
|
Sharma MF, Firestine S. A Fragment-Based Screen for Inhibitors of Escherichia coli N5-CAIR Mutase. RESEARCH SQUARE 2024:rs.3.rs-4921418. [PMID: 39372938 PMCID: PMC11451730 DOI: 10.21203/rs.3.rs-4921418/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Although purine biosynthesis is a primary metabolic pathway, there are fundamental differences between how purines are synthesized in microbes versus humans. In humans, the purine intermediate, 4- carboxy-5-aminoimidazole ribonucleotide (CAIR) is directly synthesized from 5-aminoimidazole ribonucleotide (AIR) and carbon dioxide by the enzyme AIR carboxylase. In bacteria, yeast and fungi, CAIR is synthesized from AIR via an intermediate N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) by the enzyme N5-CAIR mutase. The difference in pathways between humans and microbes indicate that N5-CAIR mutase is a potential antimicrobial drug target. To identify inhibitors of E. coli N5-CAIR mutase, a fragment-based screening campaign was conducted using a thermal shift assay and a library of 4,500 fragments. Twenty-eight fragments were initially identified that displayed dose-dependent binding to N5-CAIR mutase with Kd values ranging from 9-309 μM. Of the 28, 14 were obtained from commercial sources for retesting; however, only 5 showed dose-dependent binding to N5-CAIR mutase. The five fragments were assessed for their ability to inhibit enzyme activity. Four out of the 5 showed inhibition with Ki values of 4.8 to 159 μM. All fragments contained nitrogen heterocycles with 3 out of the 4 containing 5-membered heterocycles like those found in the substrate of the enzyme. The identified fragments show similarities to compounds identified from studies on B. anthracis N5-CAIR synthetase and human AIR carboxylase suggesting a common pharmacophore.
Collapse
Affiliation(s)
- Marcella F Sharma
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences
| | - Steven Firestine
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences
| |
Collapse
|
2
|
Shima S, Mizutani Y, Yoshimoto J, Maeda Y, Ohdake R, Nagao R, Maeda T, Higashi A, Ueda A, Ito M, Mutoh T, Watanabe H. Uric acid and alterations of purine recycling disorders in Parkinson's disease: a cross-sectional study. NPJ Parkinsons Dis 2024; 10:170. [PMID: 39251680 PMCID: PMC11385569 DOI: 10.1038/s41531-024-00785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
The relationship between reduced serum uric acid (UA) levels and Parkinson's disease (PD), particularly purine metabolic pathways, is not fully understood. Our study compared serum and cerebrospinal fluid (CSF) levels of inosine, hypoxanthine, xanthine, and UA in PD patients and healthy controls. We analyzed 132 samples (serum, 45 PD, and 29 age- and sex-matched healthy controls; CSF, 39 PD, and 19 age- and sex-matched healthy controls) using liquid chromatography-tandem mass spectrometry. Results showed significantly lower serum and CSF UA levels in PD patients than in controls (p < 0.0001; effect size r = 0.5007 in serum, p = 0.0046; r = 0.3720 in CSF). Decreased serum hypoxanthine levels were observed (p = 0.0002; r = 0.4338) in PD patients compared to controls with decreased CSF inosine and hypoxanthine levels (p < 0.0001, r = 0.5396: p = 0.0276, r = 0.2893). A general linear model analysis indicated that the reduced UA levels were mainly due to external factors such as sex and weight in serum and age and weight in CSF unrelated to the purine metabolic pathway. Our findings highlight that decreased UA levels in PD are influenced by factors beyond purine metabolism, including external factors such as sex, weight, and age, emphasizing the need for further research into the underlying mechanisms and potential therapeutic approaches.
Collapse
Affiliation(s)
- Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ryunosuke Nagao
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Toshiki Maeda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Atsuhiro Higashi
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
- Fujita Health University Central Japan International Airport Clinic, 1-1 Centrair, Tokoname, Aichi, 479-0881, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
3
|
Warne NM, Nowell CJ, Tran MP, Finnegan JR, Feeney OM, Kempe K. Impact of Drug Conjugation Site and Corona Chemistry on the Therapeutic Activity of Polymer Nanorod - Drug Conjugates. Adv Healthc Mater 2024:e2402029. [PMID: 39235719 DOI: 10.1002/adhm.202402029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Biocompatible rod-shaped nanoparticles of controlled length can be produced through the heat-induced "living" seeded crystallization-driven self-assembly (CDSA) of poly(2-isopropyl-2-oxazoline)-containing block copolymers. With a hydrophilic poly(2-methyl-2-oxazine) or poly(2-methyl-2-oxazoline) corona, these nanorods have proven non-cytotoxic, non-hemolytic, and ideal for use as a polymer-based drug delivery system. This study demonstrates a facile, one-pot method for the synthesis of mycophenolic acid (MPA)-conjugated block copolymer "unimers" for use in seeded CDSA. Through altering block order during sequential monomer addition cationic ring-opening polymerization (CROP), MPA is conjugated to either the chain end of the core-forming or corona-forming block. This allows bioactive polymer nanorods to be prepared with MPA positioned at either the periphery of the corona, or at the core-corona interface of the nanorod formed during seeded CDSA. In vitro, these nanorods arrest growth in human T and B lymphocytes, with reduced effect in "off-target" monocytes when compared with unconjugated MPA. Furthermore, the conjugation of MPA to the core-corona interface of the nanorods leads to a slower release and reduced cytostatic effect. This study offers a robust investigation into the effect of steric hindrance and corona chemistry on the therapeutic potential of drug-conjugated CDSA nanorods and demonstrates the potential of poly(2-oxazoline)/poly(2-oxazine)-based CDSA nanomaterials as effective drug delivery platforms.
Collapse
Affiliation(s)
- Nicole M Warne
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Mai P Tran
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - John R Finnegan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
4
|
Sha Z, Benkovic SJ. Purinosomes spatially co-localize with mitochondrial transporters. J Biol Chem 2024; 300:107620. [PMID: 39098527 PMCID: PMC11402301 DOI: 10.1016/j.jbc.2024.107620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024] Open
Abstract
In this study, we advance our understanding of the spatial relationship between the purinosome, a liquid condensate consisting of six enzymes involved in de novo purine biosynthesis, and mitochondria. Previous research has shown that purinosomes move along tubulin toward mitochondria, suggesting a direct uptake of glycine from mitochondria. Here, we propose that the purinosome is located proximally to the mitochondrial transporters SLC25A13 and SLC25A38, facilitating the uptake of glycine, aspartate, and glutamate, essential factors for purine synthesis. We utilized the proximity ligation assay and APEX proximity labeling to investigate the association between purinosome proteins and mitochondrial transporters. Our results indicate that purinosome assembly occurs close to the mitochondrial membrane under purine-deficient conditions, with the transporters migrating to be adjacent to the purinosome. Furthermore, both targeted and non-targeted analyses suggest that the SLC25A13-APEX2-V5 probe accurately reflects endogenous cellular status. These findings provide insights into the spatial organization of purine biosynthesis and lay the groundwork for further investigations into additional proteins involved in this pathway.
Collapse
Affiliation(s)
- Zhou Sha
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
5
|
Sekine M, Fujiwara M, Okamoto K, Ichida K, Nagata K, Hille R, Nishino T. Significance and amplification methods of the purine salvage pathway in human brain cells. J Biol Chem 2024; 300:107524. [PMID: 38960035 PMCID: PMC11342100 DOI: 10.1016/j.jbc.2024.107524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Previous studies suggest that uric acid or reactive oxygen species, products of xanthine oxidoreductase (XOR), may associate with neurodegenerative diseases. However, neither relationship has ever been firmly established. Here, we analyzed human brain samples, obtained under protocols approved by research ethics committees, and found no expression of XOR and only low levels of uric acid in various regions of the brain. In the absence of XOR, hypoxanthine will be preserved and available for incorporation into the purine salvage pathway. To clarify the importance of salvage in the brain, we tested using human-induced pluripotent stem cell-derived neuronal cells. Stable isotope analyses showed that the purine salvage pathway was more effective for ATP synthesis than purine de novo synthesis. Blood uric acid levels were related to the intracellular adenylate pool (ATP + ADP + AMP), and reduced levels of this pool result in lower uric acid levels. XOR inhibitors are related to extracellular hypoxanthine levels available for uptake into the purine salvage pathway by inhibiting the oxidation of hypoxanthine to xanthine and uric acid in various organs where XOR is present and can prevent further decreases in the intracellular adenylate pool under stress. Furthermore, adding precursors of the pentose phosphate pathway enhanced hypoxanthine uptake, indicating that purine salvage is activated by phosphoribosyl pyrophosphate replenishment. These findings resolve previous contradictions regarding XOR products and provide new insights into clinical studies. It is suggested that therapeutic strategies maximizing maintenance of intracellular adenylate levels may effectively treat pathological conditions associated with ischemia and energy depletion.
Collapse
Affiliation(s)
- Mai Sekine
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, Japan; Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | - Megumi Fujiwara
- Department of Laboratory of Morphological Analysis, Nippon Medical School, Bunkyo, Tokyo, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Takeshi Nishino
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, Japan; Professor Emeritus, Nippon Medical School, Bunkyo, Tokyo, Japan; University of Tokyo Health Sciences, Tama, Tokyo, Japan.
| |
Collapse
|
6
|
Zhang H, Wang J, Shen J, Chen S, Yuan H, Zhang X, Liu X, Yu Y, Li X, Gao Z, Wang Y, Wang J, Song M. Prophylactic supplementation with Bifidobacterium infantis or its metabolite inosine attenuates cardiac ischemia/reperfusion injury. IMETA 2024; 3:e220. [PMID: 39135700 PMCID: PMC11316933 DOI: 10.1002/imt2.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/15/2024]
Abstract
Emerging evidence has demonstrated the profound impact of the gut microbiome on cardiovascular diseases through the production of diverse metabolites. Using an animal model of myocardial ischemia-reperfusion (I/R) injury, we found that the prophylactic administration of a well-known probiotic, Bifidobacterium infantis (B. infantis), exhibited cardioprotective effects in terms of preserving cardiac contractile function and preventing adverse cardiac remodeling following I/R and that these cardioprotective effects were recapitulated by its metabolite inosine. Transcriptomic analysis further revealed that inosine mitigated I/R-induced cardiac inflammation and cell death. Mechanistic investigations elucidated that inosine suppressed the production of pro-inflammatory cytokines and reduced the numbers of dendritic cells and natural killer cells, achieved through the activation of the adenosine A2A receptor (A2AR) that when inhibited abrogated the cardioprotective effects of inosine. Additionally, in vitro studies using C2C12 myoblasts revealed that inosine attenuated cell death by serving as an alternative carbon source for adenosine triphosphate (ATP) generation through the purine salvage pathway when subjected to oxygen-glucose deprivation/reoxygenation that simulated myocardial I/R injury. Likewise, inosine reversed the I/R-induced decrease in ATP levels in mouse hearts. Taken together, our findings indicate that B. infantis or its metabolite inosine exerts cardioprotective effects against I/R by suppressing cardiac inflammation and attenuating cardiac cell death, suggesting prophylactic therapeutic options for acute ischemic cardiac injury.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiawan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Department of AnesthesiologyBeijing Chao‐Yang HospitalBeijingChina
| | - Jianghua Shen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Siqi Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Hailong Yuan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Joint National Laboratory for Antibody Drug EngineeringHenan UniversityKaifengChina
| | - Xuan Zhang
- University of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Xu Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ying Yu
- University of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Xinran Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Zeyu Gao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug EngineeringHenan UniversityKaifengChina
| | - Jun Wang
- University of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Tran DH, Kim D, Kesavan R, Brown H, Dey T, Soflaee MH, Vu HS, Tasdogan A, Guo J, Bezwada D, Al Saad H, Cai F, Solmonson A, Rion H, Chabatya R, Merchant S, Manales NJ, Tcheuyap VT, Mulkey M, Mathews TP, Brugarolas J, Morrison SJ, Zhu H, DeBerardinis RJ, Hoxhaj G. De novo and salvage purine synthesis pathways across tissues and tumors. Cell 2024; 187:3602-3618.e20. [PMID: 38823389 PMCID: PMC11246224 DOI: 10.1016/j.cell.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.
Collapse
Affiliation(s)
- Diem H Tran
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Dohun Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rushendhiran Kesavan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Harrison Brown
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Trishna Dey
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Mona Hoseini Soflaee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany
| | - Jason Guo
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Houssam Al Saad
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Halie Rion
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rawand Chabatya
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Salma Merchant
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nathan J Manales
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Megan Mulkey
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean J Morrison
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Gerta Hoxhaj
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Chen Y, Vats A, Xi Y, Wolf-Johnston A, Clinger O, Arbuckle R, Dermond C, Li J, Stolze D, Sahel JA, Jackson E, Birder L. Oral 8-aminoguanine against age-related retinal degeneration. RESEARCH SQUARE 2024:rs.3.rs-4022389. [PMID: 38765984 PMCID: PMC11100887 DOI: 10.21203/rs.3.rs-4022389/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Visual decline in the elderly is often attributed to retinal aging, which predisposes the tissue to pathologies such as age-related macular degeneration. Currently, effective oral pharmacological interventions for retinal degeneration are limited. We present a novel oral intervention, 8-aminoguanine (8-AG), targeting age-related retinal degeneration, utilizing the aged Fischer 344 rat model. A low-dose 8-AG regimen (5 mg/kg body weight) via drinking water, beginning at 22 months for 8 weeks, demonstrated significant retinal preservation. This was evidenced by increased retinal thickness, improved photoreceptor integrity, and enhanced electroretinogram responses. 8-AG effectively reduced apoptosis, oxidative damage, and microglial/macrophage activation associated with aging retinae. Age-induced alterations in the retinal purine metabolome, characterized by elevated levels of inosine, hypoxanthine, and xanthine, were partially mitigated by 8-AG. Transcriptomics highlighted 8-AG's anti-inflammatory effects on innate and adaptive immune responses. Extended treatment to 17 weeks further amplified the retinal protective effects. Moreover, 8-AG showed temporary protective effects in the RhoP23H/+ mouse model of retinitis pigmentosa, reducing active microglia/macrophages. Our study positions 8-AG as a promising oral agent against retinal aging. Coupled with previous findings in diverse disease models, 8-AG emerges as a promising anti-aging compound with the capability to reverse common aging hallmarks.
Collapse
|
9
|
Maynard AG, Pohl NK, Mueller AP, Petrova B, Wong AYL, Wang P, Culhane AJ, Brook JR, Hirsch LM, Hoang N, Kirkland O, Braun T, Ducamp S, Fleming MD, Li H, Kanarek N. Folate depletion induces erythroid differentiation through perturbation of de novo purine synthesis. SCIENCE ADVANCES 2024; 10:eadj9479. [PMID: 38295180 PMCID: PMC10830111 DOI: 10.1126/sciadv.adj9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Folate, an essential vitamin, is a one-carbon acceptor and donor in key metabolic reactions. Erythroid cells harbor a unique sensitivity to folate deprivation, as revealed by the primary pathological manifestation of nutritional folate deprivation: megaloblastic anemia. To study this metabolic sensitivity, we applied mild folate depletion to human and mouse erythroid cell lines and primary murine erythroid progenitors. We show that folate depletion induces early blockade of purine synthesis and accumulation of the purine synthesis intermediate and signaling molecule, 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR), followed by enhanced heme metabolism, hemoglobin synthesis, and erythroid differentiation. This is phenocopied by inhibition of folate metabolism using the inhibitor SHIN1, and by AICAR supplementation. Mechanistically, the metabolically driven differentiation is independent of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine 5'-monophosphate-activated protein kinase (AMPK) and is instead mediated by protein kinase C. Our findings suggest that folate deprivation-induced premature differentiation of erythroid progenitor cells is a molecular etiology to folate deficiency-induced anemia.
Collapse
Affiliation(s)
- Adam G. Maynard
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy K. Pohl
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard School of Public Health PhD Program, Boston, MA 02115, USA
| | - Annabel P. Mueller
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alan Y. L. Wong
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Wang
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J. Culhane
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jeannette R. Brook
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Leah M. Hirsch
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ngoc Hoang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Orville Kirkland
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Tatum Braun
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sarah Ducamp
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Mark D. Fleming
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hojun Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| |
Collapse
|
10
|
Tabata S, Umemura S, Narita M, Udagawa H, Ishikawa T, Tsuboi M, Goto K, Ishii G, Tsuchihara K, Ochiai A, Kobayashi SS, Soga T, Makinoshima H. Metabolic Hallmarks for Purine Nucleotide Biosynthesis in Small Cell Lung Carcinoma. Mol Cancer Res 2024; 22:82-93. [PMID: 37773022 PMCID: PMC10758693 DOI: 10.1158/1541-7786.mcr-23-0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023]
Abstract
Small cell lung cancer (SCLC) has a poor prognosis, emphasizing the necessity for developing new therapies. The de novo synthesis pathway of purine nucleotides, which is involved in the malignant growth of SCLC, has emerged as a novel therapeutic target. Purine nucleotides are supplied by two pathways: de novo and salvage. However, the role of the salvage pathway in SCLC and the differences in utilization and crosstalk between the two pathways remain largely unclear. Here, we found that deletion of the HPRT1 gene, which codes for the rate-limiting enzyme of the purine salvage pathway, significantly suppressed tumor growth in vivo in several SCLC cells. We also demonstrated that HPRT1 expression confers resistance to lemetrexol (LMX), an inhibitor of the purine de novo pathway. Interestingly, HPRT1-knockout had less effect on SCLC SBC-5 cells, which are more sensitive to LMX than other SCLC cell lines, suggesting that a preference for either the purine de novo or salvage pathway occurs in SCLC. Furthermore, metabolome analysis of HPRT1-knockout cells revealed increased intermediates in the pentose phosphate pathway and elevated metabolic flux in the purine de novo pathway, indicating compensated metabolism between the de novo and salvage pathways in purine nucleotide biosynthesis. These results suggest that HPRT1 has therapeutic implications in SCLC and provide fundamental insights into the regulation of purine nucleotide biosynthesis. IMPLICATIONS SCLC tumors preferentially utilize either the de novo or salvage pathway in purine nucleotide biosynthesis, and HPRT1 has therapeutic implications in SCLC.
Collapse
Affiliation(s)
- Sho Tabata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
- Shonai Regional Industry Promotion Center, Tsuruoka, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigeki Umemura
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Miyu Narita
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
- Shonai Regional Industry Promotion Center, Tsuruoka, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Atsushi Ochiai
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Susumu S. Kobayashi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tomoyoshi Soga
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
- Shonai Regional Industry Promotion Center, Tsuruoka, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Yamagata University, Yamagata, Japan
| |
Collapse
|
11
|
Astre G, Atlan T, Goshtchevsky U, Oron-Gottesman A, Smirnov M, Shapira K, Velan A, Deelen J, Levy T, Levanon EY, Harel I. Genetic perturbation of AMP biosynthesis extends lifespan and restores metabolic health in a naturally short-lived vertebrate. Dev Cell 2023; 58:1350-1364.e10. [PMID: 37321215 DOI: 10.1016/j.devcel.2023.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.
Collapse
Affiliation(s)
- Gwendoline Astre
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Tehila Atlan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 10803, Israel
| | - Kobi Shapira
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ariel Velan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tomer Levy
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Itamar Harel
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
12
|
Ryback B, Vorholt JA. Coenzyme biosynthesis in response to precursor availability reveals incorporation of β-alanine from pantothenate in prototrophic bacteria. J Biol Chem 2023; 299:104919. [PMID: 37315792 PMCID: PMC10393543 DOI: 10.1016/j.jbc.2023.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and β-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for β-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.
Collapse
|
13
|
Sato K, Naganuma A, Nagashima T, Arai Y, Mikami Y, Nakajima Y, Kanayama Y, Murakami T, Uehara S, Uehara D, Yamazaki Y, Murase T, Nakamura T, Uraoka T. A Newly Developed Method-Based Xanthine Oxidoreductase Activities in Various Human Liver Diseases. Biomedicines 2023; 11:biomedicines11051445. [PMID: 37239117 PMCID: PMC10216503 DOI: 10.3390/biomedicines11051445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Studies evaluating xanthine oxidoreductase (XOR) activities in comprehensive liver diseases are scarce, and different etiologies have previously been combined in groups for comparison. To accurately evaluate XOR activities in liver diseases, the plasma XOR activities in etiology-based comprehensive liver diseases were measured using a novel, sensitive, and accurate assay that is a combination of liquid chromatography and triple quadrupole mass spectrometry to detect [13C2, 15N2]uric acid using [13C2, 15N2]xanthine as a substrate. We also mainly evaluated the association between the plasma XOR activities and parameters of liver tests, purine metabolism-associated markers, oxidative stress markers, and an inflammation marker. In total, 329 patients and 32 controls were enrolled in our study. Plasma XOR activities were generally increased in liver diseases, especially in the active phase, such as in patients with hepatitis C virus RNA positivity, those with abnormal alanine transaminase (ALT) levels in autoimmune liver diseases, and uncured hepatocellular carcinoma patients. Plasma XOR activities were numerically highest in patients with acute hepatitis B. Plasma XOR activities were closely correlated with parameters of liver tests, especially serum ALT levels, regardless of etiology and plasma xanthine levels. Our results indicated that plasma XOR activity might reflect the active phase in various liver diseases.
Collapse
Affiliation(s)
- Ken Sato
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
- Department of Hepatology, Heisei Hidaka Clinic, Takasaki 371-0001, Japan
- Department of Healthcare Informatics, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan
| | - Atsushi Naganuma
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Takasaki 370-0829, Japan
| | - Tamon Nagashima
- Department of Gastroenterology, National Hospital Organization Shibukawa Medical Center, Shibukawa 377-0204, Japan
| | - Yosuke Arai
- Department of Gastroenterology, National Hospital Organization Shibukawa Medical Center, Shibukawa 377-0204, Japan
| | - Yuka Mikami
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yuka Nakajima
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yuki Kanayama
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Tatsuma Murakami
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Takasaki 370-0829, Japan
| | - Sanae Uehara
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Takasaki 370-0829, Japan
| | - Daisuke Uehara
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yuichi Yamazaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Takayo Murase
- Mie Research Park, Sanwa Kagaku Kenkyusho, Inabe 511-0406, Japan
| | - Takashi Nakamura
- Mie Research Park, Sanwa Kagaku Kenkyusho, Inabe 511-0406, Japan
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
14
|
Wei X, He Y, Wan H, Yin J, Lin B, Ding Z, Yang J, Zhou H. Integrated transcriptomics, proteomics and metabolomics to identify biomarkers of astragaloside IV against cerebral ischemic injury in rats. Food Funct 2023; 14:3588-3599. [PMID: 36946308 DOI: 10.1039/d2fo03030f] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The herb Astragali Radix is a food-medicine herb. A major component of Astragali Radix, astragaloside IV (AS-IV), has neuroprotective effects in IS, but its mechanisms are not well understood. Our research used a transient middle cerebral artery occlusion (MCAO) rat model for longitudinal multi-omics analyses of the side of the brain affected by ischemia. Based on transcriptomic and proteomic analysis, we found that 396 differential expression targets were up-regulated and 114 differential expression targets were down-regulated. A total of 117 differential metabolites were identified based on metabonomics. Finally, we found 8 hub genes corresponding to the compound-reaction-enzyme-gene network using the Metscape plug-in for Cytoscape 3.7.1. We found that the related key metabolites were 3,4-dihydroxy-L-phenylalanine, 2-aminomuconate semialdehyde, (R)-3-hydroxybutanoate, etc., and the affected pathways were tyrosine metabolism, tryptophan metabolism, butanoate metabolism, purine metabolism, etc. We further validated these targets using 4D-PRM proteomics and found that seven targets were significantly different, including Aprt, Atic, Gaa, Galk1, Glb1, Me2, and Hexa. We aimed to uncover the mechanism of AS-IV in the treatment of ischemic brain injury through a comprehensive strategy combining transcriptomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Junjun Yin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Bingying Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| |
Collapse
|
15
|
Proteomics- and Metabolomics-Based Analysis of Metabolic Changes in a Swine Model of Pulmonary Hypertension. Int J Mol Sci 2023; 24:ijms24054870. [PMID: 36902298 PMCID: PMC10003314 DOI: 10.3390/ijms24054870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary vein stenosis (PVS) causes a rare type of pulmonary hypertension (PH) by impacting the flow and pressure within the pulmonary vasculature, resulting in endothelial dysfunction and metabolic changes. A prudent line of treatment in this type of PH would be targeted therapy to relieve the pressure and reverse the flow-related changes. We used a swine model in order to mimic PH after PVS using pulmonary vein banding (PVB) of the lower lobes for 12 weeks to mimic the hemodynamic profile associated with PH and investigated the molecular alterations that provide an impetus for the development of PH. Our current study aimed to employ unbiased proteomic and metabolomic analyses on both the upper and lower lobes of the swine lung to identify regions with metabolic alterations. We detected changes in the upper lobes for the PVB animals mainly pertaining to fatty acid metabolism, reactive oxygen species (ROS) signaling and extracellular matrix (ECM) remodeling and small, albeit, significant changes in the lower lobes for purine metabolism.
Collapse
|
16
|
HPRT1 Deficiency Induces Alteration of Mitochondrial Energy Metabolism in the Brain. Mol Neurobiol 2023; 60:3147-3157. [PMID: 36802322 PMCID: PMC10122629 DOI: 10.1007/s12035-023-03266-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
Alterations in function of hypoxanthine guanine phosphoribosyl transferase (HPRT), one of the major enzymes involved in purine nucleotide exchange, lead to overproduction of uric acid and produce various symptoms of Lesch-Nyhan syndrome (LNS). One of the hallmarks of LNS is maximal expression of HPRT in the central nervous system with the highest activity of this enzyme in the midbrain and basal ganglia. However, the nature of neurological symptoms has yet to be clarified in details. Here, we studied whether HPRT1 deficiency changes mitochondrial energy metabolism and redox balance in murine neurons from the cortex and midbrain. We found that HPRT1 deficiency inhibits complex I-dependent mitochondrial respiration resulting in increased levels of mitochondrial NADH, reduction of the mitochondrial membrane potential, and increased rate of reactive oxygen species (ROS) production in mitochondria and cytosol. However, increased ROS production did not induce oxidative stress and did not decrease the level of endogenous antioxidant glutathione (GSH). Thus, disruption of mitochondrial energy metabolism but not oxidative stress could play a role of potential trigger of brain pathology in LNS.
Collapse
|
17
|
Gessner P, Lum J, Frenguelli BG. The mammalian purine salvage pathway as an exploitable route for cerebral bioenergetic support after brain injury. Neuropharmacology 2023; 224:109370. [PMID: 36493858 DOI: 10.1016/j.neuropharm.2022.109370] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Purine-based molecules play ancient, fundamental, and evolutionarily-conserved roles across life on Earth, ranging from DNA and RNA, to the universal energy currency, ATP. In mammals, the two primary routes for the synthesis of the adenine nucleotides ATP, ADP and AMP, and, as a consequence, the major bioactive metabolite adenosine, are the de novo purine biosynthesis (DNPB) pathway, and the purine salvage pathway (PSP). Of the two, the PSP dominates in both the mammalian brain and heart. This is because the PSP utilizes the breakdown products of ATP, occasioned by the high energy demands of these organs, to rapidly regenerate adenine nucleotides. This resynthesis route, while efficient and energetically favourable, leaves these organs vulnerable to loss of salvageable metabolites, with the potential for protracted depletion of the means to synthesize ATP, and the ability to deploy neuro- and cardioprotective adenosine. Having previously shown that hippocampal cellular ATP and adenosine release can be increased by supplying substrates for the PSP (d-ribose and adenine), we now explore the expression of DNPB and PSP enzymes in hippocampal neurons and astrocytes based on available transcriptomic data. We find that key enzymes of the PSP are expressed at higher levels than those in the DNPB pathway, and that PSP enzymes are expressed at higher levels in neurons than in astrocytes. These data reflect the importance of the PSP in the mammalian brain and imply that pharmacological targeting of the PSP may be particularly beneficial to neurons at times of metabolic stress. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Philipp Gessner
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jenni Lum
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
18
|
Ma Q, Yang Q, Xu J, Zhang X, Kim D, Liu Z, Da Q, Mao X, Zhou Y, Cai Y, Pareek V, Kim HW, Wu G, Dong Z, Song WL, Gan L, Zhang C, Hong M, Benkovic SJ, Weintraub NL, Fulton D, Asara JM, Ben-Sahra I, Huo Y. ATIC-Associated De Novo Purine Synthesis Is Critically Involved in Proliferative Arterial Disease. Circulation 2022; 146:1444-1460. [PMID: 36073366 PMCID: PMC9643655 DOI: 10.1161/circulationaha.121.058901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of arterial diseases, especially in arterial restenosis after angioplasty or stent placement. VSMCs reprogram their metabolism to meet the increased requirements of lipids, proteins, and nucleotides for their proliferation. De novo purine synthesis is one of critical pathways for nucleotide synthesis. However, its role in proliferation of VSMCs in these arterial diseases has not been defined. METHODS De novo purine synthesis in proliferative VSMCs was evaluated by liquid chromatography-tandem mass spectrometry. The expression of ATIC (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase), the critical bifunctional enzyme in the last 2 steps of the de novo purine synthesis pathway, was assessed in VSMCs of proliferative arterial neointima. Global and VSMC-specific knockout of Atic mice were generated and used for examining the role of ATIC-associated purine metabolism in the formation of arterial neointima and atherosclerotic lesions. RESULTS In this study, we found that de novo purine synthesis was increased in proliferative VSMCs. Upregulated purine synthesis genes, including ATIC, were observed in the neointima of the injured vessels and atherosclerotic lesions both in mice and humans. Global or specific knockout of Atic in VSMCs inhibited cell proliferation, attenuating the arterial neointima in models of mouse atherosclerosis and arterial restenosis. CONCLUSIONS These results reveal that de novo purine synthesis plays an important role in VSMC proliferation in arterial disease. These findings suggest that targeting ATIC is a promising therapeutic approach to combat arterial diseases.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiean Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoyu Zhang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhiping Liu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiaoxiao Mao
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yaqi Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yongfeng Cai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vidhi Pareek
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | - Ha Won Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wen-liang Song
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
19
|
Pedley AM, Boylan JP, Chan CY, Kennedy EL, Kyoung M, Benkovic SJ. Purine biosynthetic enzymes assemble into liquid-like condensates dependent on the activity of chaperone protein HSP90. J Biol Chem 2022; 298:101845. [PMID: 35307352 PMCID: PMC9034097 DOI: 10.1016/j.jbc.2022.101845] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/18/2023] Open
Abstract
Enzymes within the de novo purine biosynthetic pathway spatially organize into dynamic intracellular assemblies called purinosomes. The formation of purinosomes has been correlated with growth conditions resulting in high purine demand, and therefore, the cellular advantage of complexation has been hypothesized to enhance metabolite flux through the pathway. However, the properties of this cellular structure are unclear. Here, we define the purinosome in a transient expression system as a biomolecular condensate using fluorescence microscopy. We show that purinosomes, as denoted by formylglycinamidine ribonucleotide synthase granules in purine-depleted HeLa cells, are spherical and appear to coalesce when two come into contact, all liquid-like characteristics that are consistent with previously reported condensates. We further explored the biophysical and biochemical means that drive the liquid-liquid phase separation of these structures. We found that the process of enzyme condensation into purinosomes is likely driven by the oligomeric state of the pathway enzymes and not a result of intrinsic disorder, the presence of low-complexity domains, the assistance of RNA scaffolds, or changes in intracellular pH. Finally, we demonstrate that the heat shock protein 90 KDa helps to regulate the physical properties of the condensate and maintain their liquid-like state inside HeLa cells. We show that disruption of heat shock protein 90 KDa activity induced the transformation of formylglycinamidine ribonucleotide synthase clusters into more irregularly shaped condensates, suggesting that its chaperone activity is essential for purinosomes to retain their liquid-like properties. This refined view of the purinosome offers new insight into how metabolic enzymes spatially organize into dynamic condensates within human cells.
Collapse
Affiliation(s)
- Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jack P Boylan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chung Yu Chan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erin L Kennedy
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
20
|
Alhalabi O, Chen J, Zhang Y, Lu Y, Wang Q, Ramachandran S, Tidwell RS, Han G, Yan X, Meng J, Wang R, Hoang AG, Wang WL, Song J, Lopez L, Andreev-Drakhlin A, Siefker-Radtke A, Zhang X, Benedict WF, Shah AY, Wang J, Msaouel P, Zhang M, Guo CC, Czerniak B, Behrens C, Soto L, Papadimitrakopoulou V, Lewis J, Rinsurongkawong W, Rinsurongkawong V, Lee J, Roth J, Swisher S, Wistuba I, Heymach J, Wang J, Campbell MT, Efstathiou E, Titus M, Logothetis CJ, Ho TH, Zhang J, Wang L, Gao J. MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers. Nat Commun 2022; 13:1797. [PMID: 35379845 PMCID: PMC8980015 DOI: 10.1038/s41467-022-29397-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Methylthioadenosine phosphorylase, an essential enzyme for the adenine salvage pathway, is often deficient (MTAPdef) in tumors with 9p21 loss and hypothetically renders tumors susceptible to synthetic lethality by antifolates targeting de novo purine synthesis. Here we report our single arm phase II trial (NCT02693717) that assesses pemetrexed in MTAPdef urothelial carcinoma (UC) with the primary endpoint of overall response rate (ORR). Three of 7 enrolled MTAPdef patients show response to pemetrexed (ORR 43%). Furthermore, a historic cohort shows 4 of 4 MTAPdef patients respond to pemetrexed as compared to 1 of 10 MTAP-proficient patients. In vitro and in vivo preclinical data using UC cell lines demonstrate increased sensitivity to pemetrexed by inducing DNA damage, and distorting nucleotide pools. In addition, MTAP-knockdown increases sensitivity to pemetrexed. Furthermore, in a lung adenocarcinoma retrospective cohort (N = 72) from the published BATTLE2 clinical trial (NCT01248247), MTAPdef associates with an improved response rate to pemetrexed. Our data demonstrate a synthetic lethal interaction between MTAPdef and de novo purine inhibition, which represents a promising therapeutic strategy for larger prospective trials.
Collapse
Affiliation(s)
- Omar Alhalabi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuxue Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rebecca Slack Tidwell
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jieru Meng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anh G Hoang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei-Lien Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lidia Lopez
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alex Andreev-Drakhlin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Arlene Siefker-Radtke
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinqiao Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - William F Benedict
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amishi Y Shah
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carmen Behrens
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Luisa Soto
- Department of Translational molecular pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vassiliki Papadimitrakopoulou
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeff Lewis
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Waree Rinsurongkawong
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vadeerat Rinsurongkawong
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jack Lee
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jack Roth
- Department of Thoracic and Cardiovascular surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ignacio Wistuba
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Heymach
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Thai H Ho
- Division of Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Jianjun Zhang
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA.
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Abstract
Over the past fifteen years, we have unveiled a new mechanism by which cells achieve greater efficiency in de novo purine biosynthesis. This mechanism relies on the compartmentalization of de novo purine biosynthetic enzymes into a dynamic complex called the purinosome. In this review, we highlight our current understanding of the purinosome with emphasis on its biophysical properties and function and on the cellular mechanisms that regulate its assembly. We propose a model for functional purinosomes in which they consist of at least ten enzymes that localize near mitochondria and carry out de novo purine biosynthesis by metabolic channeling. We conclude by discussing challenges and opportunities associated with studying the purinosome and analogous metabolons. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Vidhi Pareek
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA; .,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
22
|
Semi-mechanistic Modeling of Hypoxanthine, Xanthine, and Uric Acid Metabolism in Asphyxiated Neonates. Clin Pharmacokinet 2022; 61:1545-1558. [PMID: 36040612 PMCID: PMC9652176 DOI: 10.1007/s40262-022-01164-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Previously, we developed a pharmacokinetic-pharmacodynamic model of allopurinol, oxypurinol, and biomarkers, hypoxanthine, xanthine, and uric acid, in neonates with hypoxic-ischemic encephalopathy, in which high initial biomarker levels were observed suggesting an impact of hypoxia. However, the full pharmacodynamics could not be elucidated in our previous study. The current study included additional data from the ALBINO study (NCT03162653) placebo group, aiming to characterize the dynamics of hypoxanthine, xanthine, and uric acid in neonates with hypoxic-ischemic encephalopathy. METHODS Neonates from the ALBINO study who received allopurinol or placebo mannitol were included. An extended population pharmacokinetic-pharmacodynamic model was developed based on the mechanism of purine metabolism, where synthesis, salvage, and degradation via xanthine oxidoreductase pathways were described. The initial level of the biomarkers was a combination of endogenous turnover and high disease-related amounts. Model development was accomplished by nonlinear mixed-effects modeling (NONMEM®, version 7.5). RESULTS In total, 20 neonates treated with allopurinol and 17 neonates treated with mannitol were included in this analysis. Endogenous synthesis of the biomarkers reduced with 0.43% per hour because of precursor exhaustion. Hypoxanthine was readily salvaged or degraded to xanthine with rate constants of 0.5 1/h (95% confidence interval 0.33-0.77) and 0.2 1/h (95% confidence interval 0.09-0.31), respectively. A greater salvage was found in the allopurinol treatment group consistent with its mechanism of action. High hypoxia-induced initial levels of biomarkers were quantified, and were 1.2-fold to 2.9-fold higher in neonates with moderate-to-severe hypoxic-ischemic encephalopathy compared with those with mild hypoxic-ischemic encephalopathy. Half-maximal xanthine oxidoreductase inhibition was achieved with a combined allopurinol and oxypurinol concentration of 0.68 mg/L (95% confidence interval 0.48-0.92), suggesting full xanthine oxidoreductase inhibition during the period studied. CONCLUSIONS This extended pharmacokinetic-pharmacodynamic model provided an adequate description of the complex hypoxanthine, xanthine, and uric acid metabolism in neonates with hypoxic-ischemic encephalopathy, suggesting a positive allopurinol effect on these biomarkers. The impact of hypoxia on their dynamics was characterized, underlining higher hypoxia-related initial exposure with a more severe hypoxic-ischemic encephalopathy status.
Collapse
|
23
|
Jiang Z, Wang C, Wu Z, Chen K, Yang W, Deng H, Song H, Zhou X. Enzymatic deamination of the epigenetic nucleoside N6-methyladenosine regulates gene expression. Nucleic Acids Res 2021; 49:12048-12068. [PMID: 34850126 PMCID: PMC8643624 DOI: 10.1093/nar/gkab1124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
N6-methyladenosine (m6A) modification is the most extensively studied epigenetic modification due to its crucial role in regulating an array of biological processes. Herein, Bsu06560, formerly annotated as an adenine deaminase derived from Bacillus subtilis 168, was recognized as the first enzyme capable of metabolizing the epigenetic nucleoside N6-methyladenosine. A model of Bsu06560 was constructed, and several critical residues were putatively identified via mutational screening. Two mutants, F91L and Q150W, provided a superiorly enhanced conversion ratio of adenosine and N6-methyladenosine. The CRISPR-Cas9 system generated Bsu06560-knockout, F91L, and Q150W mutations from the B. subtilis 168 genome. Transcriptional profiling revealed a higher global gene expression level in BS-F91L and BS-Q150W strains with enhanced N6-methyladenosine deaminase activity. The differentially expressed genes were categorized using GO, COG, KEGG and verified through RT-qPCR. This study assessed the crucial roles of Bsu06560 in regulating adenosine and N6-methyladenosine metabolism, which influence a myriad of biological processes. This is the first systematic research to identify and functionally annotate an enzyme capable of metabolizing N6-methyladenosine and highlight its significant roles in regulation of bacterial metabolism. Besides, this study provides a novel method for controlling gene expression through the mutations of critical residues.
Collapse
Affiliation(s)
- Zhuoran Jiang
- The Institute of Advanced Studies, and Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 40072 Wuhan, P.R. China
| | - Chao Wang
- The Institute of Advanced Studies, and Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 40072 Wuhan, P.R. China
| | - Zixin Wu
- The Institute of Advanced Studies, and Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 40072 Wuhan, P.R. China
| | - Kun Chen
- The Institute of Advanced Studies, and Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 40072 Wuhan, P.R. China
| | - Wei Yang
- The Institute of Advanced Studies, and Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 40072 Wuhan, P.R. China
| | - Hexiang Deng
- The Institute of Advanced Studies, and Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 40072 Wuhan, P.R. China
| | - Heng Song
- The Institute of Advanced Studies, and Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 40072 Wuhan, P.R. China
| | - Xiang Zhou
- The Institute of Advanced Studies, and Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 40072 Wuhan, P.R. China
| |
Collapse
|
24
|
Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS. Purinergic signaling in the modulation of redox biology. Redox Biol 2021; 47:102137. [PMID: 34563872 PMCID: PMC8479832 DOI: 10.1016/j.redox.2021.102137] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5'-nucleotidase/CD73) being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine actives P1 G-coupled receptors that, in general, promote the maintenance of redox hemostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Suzuki S, Inoue K, Tamai I, Shirasaka Y. Model Analysis of the Apparent Saturation Kinetics of Purine Nucleobase Uptake in Cells co-Expressing Transporter and Metabolic Enzyme. Pharm Res 2021; 38:1585-1592. [PMID: 34435306 DOI: 10.1007/s11095-021-03086-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE This study aims to understand the effect of salvage enzyme activity on the saturable kinetics of facilitated cellular uptake of purine nucleobase by developing a cellular kinetic model incorporating equilibrative nucleobase transporter 1 (ENBT1) and adenine phosphoribosyltransferase (APRT), with adenine as a model nucleobase. METHODS A cellular kinetic model incorporating the functions of ENBT1 and APRT was developed using Napp software and employed for model-based analysis of the cellular disposition of adenine. RESULTS Simulation analysis using the developed cellular kinetic model could account for the experimentally observed time-dependent changes in the Km(app) value of adenine for ENBT1-mediated uptake. At a long experimental time, the model shows that uptake of adenine is rate-limited by APRT, enabling determination of the Km value for APRT. At early time, the rate-limiting step for adenine uptake is ENBT1-mediated transport, enabling determination of the Km value for ENBT1. Further simulations showed that the effect of experimental time on the Km(app) value for ENBT1-mediated uptake is dependent on the APRT expression level. CONCLUSION Our findings indicate that both enzyme expression levels and experimental time should be considered when using cellular uptake studies to determine the Km values of purine nucleobases for facilitated transporters.
Collapse
Affiliation(s)
- Satoru Suzuki
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Tokyo, 192-0392, Japan
| | - Katsuhisa Inoue
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Tokyo, 192-0392, Japan
| | - Ikumi Tamai
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Tokyo, 192-0392, Japan.
| |
Collapse
|
26
|
Young GH, Lin JT, Cheng YF, Ho CF, Kuok QY, Hsu RC, Liao WR, Chen CC, Chen HM. Modulation of adenine phosphoribosyltransferase-mediated salvage pathway to accelerate diabetic wound healing. FASEB J 2021; 35:e21296. [PMID: 33675115 DOI: 10.1096/fj.202001736rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023]
Abstract
Adenine phosphoribosyltransferase (APRT) is the key enzyme involved in purine salvage by the incorporation of adenine and phosphoribosyl pyrophosphate to provide adenylate nucleotides. To evaluate the role of APRT in the repair processes of cutaneous wounds in healthy skin and in diabetic patients, a diabetic mouse model (db/db) and age-matched wild-type mice were used. Moreover, the topical application of adenine was assessed. In vitro studies, analytical, histological, and immunohistochemical methods were used. Diabetic mice treated with adenine exhibited elevated ATP levels in organismic skin and accelerated wound healing. In vitro studies showed that APRT utilized adenine to rescue cellular ATP levels and proliferation from hydrogen peroxide-induced oxidative damage. HPLC-ESI-MS/MS-based analysis of total adenylate nucleotides in NIH-3T3 fibroblasts demonstrated that adenine addition enlarged the cellular adenylate pool, reduced the adenylate energy charge, and provided additional AMP for the further generation of ATP. These data indicate an upregulation of APRT in skin wounds, highlighting its role during the healing of diabetic wounds through regulation of the nucleotide pool after injury. Furthermore, topical adenine supplementation resulted in an enlargement of the adenylate pool needed for the generation of ATP, an important molecule for wound repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Ru-Chun Hsu
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan
| | | | | | - Han-Min Chen
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan.,Department of Life Science, Institute of Applied Science and Engineering, Catholic Fu-Jen University, New Taipei City, Taiwan
| |
Collapse
|
27
|
IMPDH2 and HPRT expression and a prognostic significance in preoperative and postoperative patients with osteosarcoma. Sci Rep 2021; 11:10887. [PMID: 34035425 PMCID: PMC8149691 DOI: 10.1038/s41598-021-90456-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is one of the most aggressive bone tumors in children and adolescents. Development of effective therapeutic options is still lacking due to the complexity of the genomic background. In previous work, we applied a proteomics-guided drug repurposing to explore potential treatments for osteosarcoma. Our follow-up study revealed an FDA-approved immunosuppressant drug, mycophenolate mofetil (MMF) targeting inosine-5'-phosphate dehydrogenase (IMPDH) enzymes, has an anti-tumor effect that appeared promising for further investigation and clinical trials. Profiling of IMPDH2 and hypoxanthine-guanine phosphoribosyltransferase (HPRT), key purine-metabolizing enzymes, could deepen understanding of the importance of purine metabolism in osteosarcoma and provide evidence for expanded use of MMF in the clinic. In the present study, we investigated levels of IMPDH2, and HPRT in biopsy of 127 cases and post-chemotherapy tissues in 20 cases of high-grade osteosarcoma patients using immunohistochemical (IHC) analysis. Cox regression analyses were performed to determine prognostic significance of all enzymes. The results indicated that low levels of HPRT were significantly associated with a high Enneking stage (P = 0.023) and metastatic status (P = 0.024). Univariate and multivariate analyses revealed that patients with low HPRT expression have shorter overall survival times [HR 1.70 (1.01-2.84), P = 0.044]. Furthermore, high IMPDH2/HPRT ratios were similarly associated with shorter overall survival times [HR 1.67 (1.02-2.72), P = 0.039]. Levels of the enzymes were also examined in post-chemotherapy tissues. The results showed that high IMPDH2 expression was associated with shorter metastasis-free survival [HR 7.42 (1.22-45.06), P = 0.030]. These results suggest a prognostic value of expression patterns of purine-metabolizing enzymes for the pre- and post-chemotherapy period of osteosarcoma treatment.
Collapse
|
28
|
Sutcliffe DJ, Dinasarapu AR, Visser JE, Hoed JD, Seifar F, Joshi P, Ceballos-Picot I, Sardar T, Hess EJ, Sun YV, Wen Z, Zwick ME, Jinnah HA. Induced pluripotent stem cells from subjects with Lesch-Nyhan disease. Sci Rep 2021; 11:8523. [PMID: 33875724 PMCID: PMC8055678 DOI: 10.1038/s41598-021-87955-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Lesch-Nyhan disease (LND) is an inherited disorder caused by pathogenic variants in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase (HGprt). We generated 6 induced pluripotent stem cell (iPSC) lines from 3 individuals with LND, along with 6 control lines from 3 normal individuals. All 12 lines had the characteristics of pluripotent stem cells, as assessed by immunostaining for pluripotency markers, expression of pluripotency genes, and differentiation into the 3 primary germ cell layers. Gene expression profiling with RNAseq demonstrated significant heterogeneity among the lines. Despite this heterogeneity, several anticipated abnormalities were readily detectable across all LND lines, including reduced HPRT1 mRNA. Several unexpected abnormalities were also consistently detectable across the LND lines, including decreases in FAR2P1 and increases in RNF39. Shotgun proteomics also demonstrated several expected abnormalities in the LND lines, such as absence of HGprt protein. The proteomics study also revealed several unexpected abnormalities across the LND lines, including increases in GNAO1 decreases in NSE4A. There was a good but partial correlation between abnormalities revealed by the RNAseq and proteomics methods. Finally, functional studies demonstrated LND lines had no HGprt enzyme activity and resistance to the toxic pro-drug 6-thioguanine. Intracellular purines in the LND lines were normal, but they did not recycle hypoxanthine. These cells provide a novel resource to reveal insights into the relevance of heterogeneity among iPSC lines and applications for modeling LND.
Collapse
Affiliation(s)
- Diane J Sutcliffe
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Ashok R Dinasarapu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jasper E Visser
- Department of Neurology, Cognition and Behavior, Donders Institute for Brain, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurology, Amphia Hospital, Breda, The Netherlands
| | - Joery den Hoed
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Fatemeh Seifar
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA
| | - Piyush Joshi
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Irene Ceballos-Picot
- Laboratoire de Biochimie Métabolomique Et Protéomique, Hôpital Universitaire Necker, Paris, France
| | - Tejas Sardar
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Ellen J Hess
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA. 30322, USA
| | - Zhexing Wen
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
29
|
Wang LL, Chen AP, Li JY, Sun Z, Yan SL, Xu KY. Mechanism of the Effect of High-Intensity Training on Urinary Metabolism in Female Water Polo Players Based on UHPLC-MS Non-Targeted Metabolomics Technique. Healthcare (Basel) 2021; 9:381. [PMID: 33915709 PMCID: PMC8067095 DOI: 10.3390/healthcare9040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To study the changes in urine metabolism in female water polo players before and after high-intensity training by using ultra-high performance liquid chromatography-mass spectrometry, and to explore the biometabolic characteristics of urine after training and competition. METHODS Twelve young female water polo players (except goalkeepers) from Shanxi Province were selected. A 4-week formal training was started after 1 week of acclimatization according to experimental requirements. Urine samples (5 mL) were collected before formal training, early morning after 4 weeks of training, and immediately after 4 weeks of training matches, and labeled as T1, T2, and T3, respectively. The samples were tested by LC-MS after pre-treatment. XCMS, SIMCA-P 14.1, and SPSS16.0 were used to process the data and identify differential metabolites. RESULTS On comparing the immediate post-competition period with the pre-training period (T3 vs. T1), 24 differential metabolites involved in 16 metabolic pathways were identified, among which niacin and niacinamide metabolism and purine metabolism were potential post-competition urinary metabolic pathways in the untrained state of the athletes. On comparing the immediate post-competition period with the post-training period (T3 vs. T2), 10 metabolites involved in three metabolic pathways were identified, among which niacin and niacinamide metabolism was a potential target urinary metabolic pathway for the athletes after training. Niacinamide, 1-methylnicotinamide, 2-pyridone, L-Gln, AMP, and Hx were involved in two metabolic pathways before and after the training. CONCLUSION Differential changes in urine after water polo games are due to changes in the metabolic pathways of niacin and niacinamide.
Collapse
Affiliation(s)
- Lei-lei Wang
- College of Physicial Education, Shanxi University, Taiyuan 030006, China; (L.-l.W.); (S.-l.Y.); (K.-y.X.)
| | - An-ping Chen
- College of Physicial Education, Shanxi University, Taiyuan 030006, China; (L.-l.W.); (S.-l.Y.); (K.-y.X.)
| | - Jian-ying Li
- College of Physicial Education, Shanxi University, Taiyuan 030006, China; (L.-l.W.); (S.-l.Y.); (K.-y.X.)
| | - Zhuo Sun
- Department of health and Natural Sciences, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland;
| | - Shi-liang Yan
- College of Physicial Education, Shanxi University, Taiyuan 030006, China; (L.-l.W.); (S.-l.Y.); (K.-y.X.)
| | - Kai-yuan Xu
- College of Physicial Education, Shanxi University, Taiyuan 030006, China; (L.-l.W.); (S.-l.Y.); (K.-y.X.)
| |
Collapse
|
30
|
Saini N, Virdee M, Helfrich KK, Kwan STC, Smith SM. Global metabolomic profiling reveals hepatic biosignatures that reflect the unique metabolic needs of late-term mother and fetus. Metabolomics 2021; 17:23. [PMID: 33550560 PMCID: PMC8543356 DOI: 10.1007/s11306-021-01773-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Gestational disorders including preeclampsia, growth restriction and diabetes are characterized, in part, by altered metabolic interactions between mother and fetus. Understanding their functional relevance requires metabolic characterization under normotypic conditions. METHODS We performed untargeted metabolomics on livers of pregnant, late-term C57Bl/6J mice (N = 9 dams) and their fetuses (pooling 4 fetuses/litter), using UPLC-MS/MS. RESULTS Multivariate analysis of 730 hepatic metabolites revealed that maternal and fetal metabolite profiles were highly compartmentalized, and were significantly more similar within fetuses (ρaverage = 0.81), or within dams (ρaverage = 0.79), than within each maternal-fetal dyad (ρaverage = - 0.76), suggesting that fetal hepatic metabolism is under distinct and equally tight metabolic control compared with its respective dam. The metabolite profiles were consistent with known differences in maternal-fetal metabolism. The reduced fetal glucose reflected its limited capacity for gluconeogenesis and dependence upon maternal plasma glucose pools. The fetal decreases in essential amino acids and elevations in their alpha-keto acid carnitine conjugates reflects their importance as secondary fuel sources to meet fetal energy demands. Whereas, contrasting elevations in fetal serine, glycine, aspartate, and glutamate reflects their contributions to endogenous nucleotide synthesis and fetal growth. Finally, the elevated maternal hepatic lipids and glycerol were consistent with a catabolic state that spares glucose to meet competing maternal-fetal energy demands. CONCLUSIONS The metabolite profile of the late-term mouse dam and fetus is consistent with prior, non-rodent analyses utilizing plasma and urine. These data position mouse as a suitable model for mechanistic investigation into how maternal-fetal metabolism adapts (or not) to gestational stressors.
Collapse
Affiliation(s)
- Nipun Saini
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Manjot Virdee
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Kaylee K Helfrich
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Sze Ting Cecilia Kwan
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Susan M Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA.
| |
Collapse
|
31
|
Li J, Zhang X, Fan WY, Yao MC, Sheng GP. Dissolved organic matter dominating the photodegradation of free DNA bases in aquatic environments. WATER RESEARCH 2020; 179:115885. [PMID: 32402864 DOI: 10.1016/j.watres.2020.115885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/13/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Free DNA bases are widely present in the environments, and can be utilized by bacteria for their nucleic acids synthesis or as nutrition sources. In sunlit natural waters, these free bases probably undergo photodegradation which would change the bioavailable bases contents. Though the photodegradation of DNA has been investigated, the photodegradation behaviors of free bases may be quite different from those of DNA-confined bases in consideration of their different chemical environments. Herein, the photodegradation of four free bases (guanine, adenine, thymine and cytosine) was investigated. Results show that direct photodegradation of free bases in phosphate buffer caused by UV was slow. However, the photodegradation of these free bases were greatly enhanced in dissolved organic matter (DOM) solution. In the presence of 10-50 mg/L DOM, the photodegradation rates of free bases were increased by 1.85-14.6 times compared to the controls without DOM. DOM could result in indirect photodegradation by producing hydroxyl radical (•OH) and singlet oxygen (1O2) under irradiation, and this indirect photodegradation enhanced and dominated the free bases photodegradation. The •OH was involved in all four bases photodegradation, while the 1O2 only participated in guanine photodegradation. In phosphate buffer, the fastest photodegradation bases were pyrimidine, however, guanine became the fastest photodegradation base in DOM solution due to the selective oxidation of guanine by 1O2. In summary, DOM may be a determinant for free bases photodegradation in natural waters and thereby deeply influence free bases fates in aquatic environments.
Collapse
Affiliation(s)
- Jing Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Wen-Yuan Fan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Mu-Cen Yao
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
32
|
Doigneaux C, Pedley AM, Mistry IN, Papayova M, Benkovic SJ, Tavassoli A. Hypoxia drives the assembly of the multienzyme purinosome complex. J Biol Chem 2020; 295:9551-9566. [PMID: 32439803 PMCID: PMC7363121 DOI: 10.1074/jbc.ra119.012175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/18/2020] [Indexed: 01/20/2023] Open
Abstract
The purinosome is a dynamic metabolic complex composed of enzymes responsible for de novo purine biosynthesis, whose formation has been associated with elevated purine demand. However, the physiological conditions that govern purinosome formation in cells remain unknown. Here, we report that purinosome formation is up-regulated in cells in response to a low-oxygen microenvironment (hypoxia). We demonstrate that increased purinosome assembly in hypoxic human cells requires the activation of hypoxia inducible factor 1 (HIF-1) and not HIF-2. Hypoxia-driven purinosome assembly was inhibited in cells lacking 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), a single enzyme in de novo purine biosynthesis, and in cells treated with a small molecule inhibitor of ATIC homodimerization. However, despite the increase in purinosome assembly in hypoxia, we observed no associated increase in de novo purine biosynthesis in cells. Our results indicate that this was likely due to a reduction in mitochondrial one-carbon metabolism, resulting in reduced mitochondrion-derived one-carbon units needed for de novo purine biosynthesis. The findings of our study further clarify and deepen our understanding of purinosome formation by revealing that this process does not solely depend on cellular purine demand.
Collapse
Affiliation(s)
- Cyrielle Doigneaux
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ishna N Mistry
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Monika Papayova
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
33
|
Furuhashi M, Koyama M, Higashiura Y, Murase T, Nakamura T, Matsumoto M, Sakai A, Ohnishi H, Tanaka M, Saitoh S, Moniwa N, Shimamoto K, Miura T. Differential regulation of hypoxanthine and xanthine by obesity in a general population. J Diabetes Investig 2020; 11:878-887. [PMID: 31916414 PMCID: PMC7378426 DOI: 10.1111/jdi.13207] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/15/2019] [Accepted: 01/02/2020] [Indexed: 01/11/2023] Open
Abstract
AIMS/INTRODUCTION Uric acid is synthesized by oxidation of hypoxanthine and xanthine using a catalyzing enzyme, xanthine oxidoreductase (XOR), which can be a source of reactive oxygen species. Plasma XOR activity is a metabolic biomarker associated with obesity, hyperuricemia, liver dysfunction and insulin resistance. However, it has recently been reported that XOR activity in fat tissue is low in humans, unlike in rodents, and that hypoxanthine is secreted from human fat tissue. MATERIALS AND METHODS The associations of obesity with hypoxanthine, xanthine and plasma XOR activity were investigated in 484 participants (men/women: 224/260) of the Tanno-Sobetsu Study. RESULTS Levels of hypoxanthine, xanthine and plasma XOR activity were significantly higher in men than in women. In 59 participants with hyperuricemia, 11 (men/women: 11/0) participants were being treated with an XOR inhibitor and had a significantly higher level of xanthine, but not hypoxanthine, than that in participants without treatment. In all of the participants, hypoxanthine concentration in smokers was significantly higher than that in non-smokers. Stepwise and multivariate regression analyses showed that body mass index, smoking habit and xanthine were independent predictors of hypoxanthine after adjustment of age, sex and use of antihyperuricemic drugs. Whereas, alanine transaminase, hypoxanthine and plasma XOR activity were independent predictors for xanthine, and alanine transaminase, triglycerides and xanthine were independent predictors for plasma XOR activity. CONCLUSIONS The concentration of hypoxanthine, but not that of xanthine, is independently associated with obesity and smoking habit, indicating differential regulation of hypoxanthine and xanthine in a general population.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of General MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Public HealthSapporo Medical University School of MedicineSapporoJapan
| | - Yukimura Higashiura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | | | | | - Megumi Matsumoto
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Akiko Sakai
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Public HealthSapporo Medical University School of MedicineSapporoJapan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Shigeyuki Saitoh
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Division of Medical and Behavioral SubjectsDepartment of NursingSapporo Medical University School of Health SciencesSapporoJapan
| | - Norihito Moniwa
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | | | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
34
|
Cader MZ, de Almeida Rodrigues RP, West JA, Sewell GW, Md-Ibrahim MN, Reikine S, Sirago G, Unger LW, Iglesias-Romero AB, Ramshorn K, Haag LM, Saveljeva S, Ebel JF, Rosenstiel P, Kaneider NC, Lee JC, Lawley TD, Bradley A, Dougan G, Modis Y, Griffin JL, Kaser A. FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell 2020; 180:278-295.e23. [PMID: 31978345 PMCID: PMC6978800 DOI: 10.1016/j.cell.2019.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/18/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5′-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling. An unbiased LC-MS screen reveals FAMIN as a purine nucleoside enzyme FAMIN combines adenosine phosphorylase with ADA-, PNP-, and MTAP-like activities FAMIN enables a purine nucleotide cycle (PNC) preventing cytoplasmic acidification The FAMIN-dependent PNC balances the glycolysis-mitochondrial redox interface
Collapse
Affiliation(s)
- M Zaeem Cader
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Rodrigo Pereira de Almeida Rodrigues
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Muhammad N Md-Ibrahim
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephanie Reikine
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Giuseppe Sirago
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lukas W Unger
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ana Belén Iglesias-Romero
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Katharina Ramshorn
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lea-Maxie Haag
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Svetlana Saveljeva
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Jana-Fabienne Ebel
- Institute of Clinical Molecular Biology, Christian Albrechts University, Campus Kiel, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University, Campus Kiel, 24105 Kiel, Germany
| | - Nicole C Kaneider
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Allan Bradley
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Yorgo Modis
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
35
|
Takenaka R, Yasujima T, Furukawa J, Hishikawa Y, Yamashiro T, Ohta K, Inoue K, Yuasa H. Functional Analysis of the Role of Equilibrative Nucleobase Transporter 1 (ENBT1/SLC43A3) in Adenine Transport in HepG2 Cells. J Pharm Sci 2020; 109:2622-2628. [PMID: 32339528 DOI: 10.1016/j.xphs.2020.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
Equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) has recently been identified as a purine-selective nucleobase transporter. Although it is highly expressed in the liver, its role in nucleobase transport has not been confirmed yet in hepatocytes or any relevant cell models. We, therefore, examined its role in adenine transport in the HepG2 cell line as a human hepatocyte model. The uptake of [3H]adenine in HepG2 cells was highly saturable, indicating the involvement of carrier-mediated transport. The carrier-mediated transport component, for which the Michaelis constant was estimated to be 0.268 μM, was sensitive to decynium-22, an ENBT1 inhibitor, with the half maximal inhibitory concentration of 2.59 μM, which was comparable to that of 2.30 μM for [3H]adenine uptake by ENBT1 in its transient transfectant human embryonic kidney 293 cells. Although equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and ENT2/SLC29A2 are also known to be able to transport adenine, [3H]adenine uptake in HepG2 cells was not inhibited by the ENT1/2-specific inhibitor of either dipyridamole or nitrobenzylthioinosine. Finally, [3H]adenine uptake was extensively reduced by silencing of ENBT1 by RNA interference in the hepatocyte model. All these results, taken together, suggest the predominant role of ENBT1 in the uptake of adenine in HepG2 cells.
Collapse
Affiliation(s)
- Risa Takenaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Junji Furukawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yosuke Hishikawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takahiro Yamashiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kinya Ohta
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
36
|
Campagnaro GD, de Koning HP. Purine and pyrimidine transporters of pathogenic protozoa - conduits for therapeutic agents. Med Res Rev 2020; 40:1679-1714. [PMID: 32144812 DOI: 10.1002/med.21667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Purines and pyrimidines are essential nutrients for any cell. Most organisms are able to synthesize their own purines and pyrimidines, but this ability was lost in protozoans that adapted to parasitism, leading to a great diversification in transporter activities in these organisms, especially for the acquisition of amino acids and nucleosides from their hosts throughout their life cycles. Many of these transporters have been shown to have sufficiently different substrate affinities from mammalian transporters, making them good carriers for therapeutic agents. In this review, we summarize the knowledge obtained on purine and pyrimidine activities identified in protozoan parasites to date and discuss their importance for the survival of these parasites and as drug carriers, as well as the perspectives of developments in the field.
Collapse
Affiliation(s)
- Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| |
Collapse
|
37
|
Mender I, Batten K, Peyton M, Vemula A, Cornelius C, Girard L, Gao B, Minna JD, Shay JW. SLC43A3 Is a Biomarker of Sensitivity to the Telomeric DNA Damage Mediator 6-Thio-2'-Deoxyguanosine. Cancer Res 2020; 80:929-936. [PMID: 31948943 PMCID: PMC7056593 DOI: 10.1158/0008-5472.can-19-2257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 01/18/2023]
Abstract
Cell membrane transporters facilitate the passage of nucleobases and nucleosides for nucleotide synthesis and metabolism, and are important for the delivery of nucleoside analogues used in anticancer drug therapy. Here, we investigated if cell membrane transporters are involved in the cellular uptake of the nucleoside analogue DNA damage mediator 6-thio-2'-deoxyguanosine (6-thio-dG). A large panel of non-small cell lung cancer (NSCLC) cell lines (73 of 77) were sensitive to 6-thio-dG; only four NSCLC lines were resistant to 6-thio-dG. When analyzed by microarray and RNA sequencing, the resistant NSCLC cell lines clustered together, providing a molecular signature for patients that may not respond to 6-thio-dG. Significant downregulation of solute carrier family 43 A3 (SLC43A3), an equilibrative nucleobase transporter, was identified as a candidate in this molecular resistance signature. High levels of SLC43A3 mRNA predicted sensitivity to 6-thio-dG and therefore SLC43A3 could serve as a promising biomarker for 6-thio-dG sensitivity in patients with NSCLC. SIGNIFICANCE: These findings identify a biomarker of resistance to the telomeric DNA damage mediator 6-thio-2'-deoxyguanosine.
Collapse
Affiliation(s)
- Ilgen Mender
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberly Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aishwarya Vemula
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Crystal Cornelius
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
38
|
Klaasen RA, Bergan S, Bremer S, Hole K, Nordahl CB, Andersen AM, Midtvedt K, Skauby MH, Vethe NT. Pharmacodynamic assessment of mycophenolic acid in resting and activated target cell population during the first year after renal transplantation. Br J Clin Pharmacol 2020; 86:1100-1112. [PMID: 31925806 PMCID: PMC7256122 DOI: 10.1111/bcp.14218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Aims To explore the pharmacodynamics of mycophenolic acid (MPA) through inosine monophosphate dehydrogenase (IMPDH) capacity measurement and purine levels in peripheral blood mononuclear cells (PBMC) longitudinally during the first year after renal transplantation (TX). Methods PBMC were isolated from renal recipients 0–4 days prior to and 6–9 days, 5–7 weeks and 1 year after TX (before and 1.5 hours after dose). IMPDH capacity and purine (guanine and adenine) levels were measured in stimulated and nonstimulated PBMC. Results Twenty‐nine patients completed the follow‐up period, of whom 24 received MPA. In stimulated PBMC, the IMPDH capacity (pmol 10−6 cells min−1) was median (interquartile range) 127 (95.8–147) before TX and thereafter 44.9 (19.2–93.2) predose and 12.1 (4.64–23.6) 1.5 hours postdose across study days after TX. The corresponding IMPDH capacity in nonstimulated PBMC was 5.71 (3.79–6.93), 3.35 (2.31–5.62) and 2.71 (1.38–4.08), respectively. Predose IMPDH capacity in nonstimulated PBMC increased with time, reaching pre‐TX values at 1 year. In stimulated PBMC, both purines were reduced before (median 39% reduction across days after TX) and after (69% reduction) dose compared to before TX. No alteration in the purine levels was observed in nonstimulated PBMC. Patients needing dose reductions during the first year had lower pre‐dose IMPDH capacity in nonstimulated PBMC (1.87 vs 3.00 pmol 10−6 cells min−1, P = .049) at 6–9 days. Conclusion The inhibitory effect of MPA was stronger in stimulated PBMC. Nonstimulated PBMC became less sensitive to MPA during the first year after TX. Early IMPDH capacity appeared to be predictive of dose reductions.
Collapse
Affiliation(s)
| | - Stein Bergan
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Sara Bremer
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kristine Hole
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | | | | | - Karsten Midtvedt
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Morten Heier Skauby
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Anderson JT, Huang KM, Lustberg MB, Sparreboom A, Hu S. Solute Carrier Transportome in Chemotherapy-Induced Adverse Drug Reactions. Rev Physiol Biochem Pharmacol 2020; 183:177-215. [PMID: 32761456 DOI: 10.1007/112_2020_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics. These proteins are highly expressed in the gastrointestinal tract and eliminating organs such as the liver and kidney, and are considered to be of particular importance in governing drug absorption and elimination. Many of the same transporters are also expressed in a wide variety of organs targeted by clinically important anticancer drugs, directly affect cellular sensitivity to these agents, and indirectly influence treatment-related side effects. Furthermore, targeted intervention strategies involving the use of transport inhibitors have been recently developed, and have provided promising lead candidates for combinatorial therapies associated with decreased toxicity. Gaining a better understanding of the complex interplay between transporter-mediated on-target and off-target drug disposition will help guide the further development of these novel treatment strategies to prevent drug accumulation in toxicity-associated organs, and improve the safety of currently available treatment modalities. In this report, we provide an update on this rapidly emerging field with particular emphasis on anticancer drugs belonging to the classes of taxanes, platinum derivatives, nucleoside analogs, and anthracyclines.
Collapse
Affiliation(s)
- Jason T Anderson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Maryam B Lustberg
- Department of Medical Oncology, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
40
|
Changes in Saliva Analytes Correlate with Horses' Behavioural Reactions to An Acute Stressor: A Pilot Study. Animals (Basel) 2019; 9:ani9110993. [PMID: 31752194 PMCID: PMC6912570 DOI: 10.3390/ani9110993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Emotionality is an individual characteristic defined as the propensity to respond to stress-inducing stimuli such as fear-inducing objects or social separation. Evaluation of emotionality in horses is important as it may impact their learning performance. Although emotionality is usually assessed by measuring behavioural patterns, biomarkers could provide additional information about stress response, especially with respect to its temporal dynamics. In this study, behavioural responses were measured as well as a panel of salivary biomarkers related to stress, including salivary alpha-amylase, lipase, total esterase, butyrylcholinesterase, adenosine deaminase, and cortisol, in riding horses after acute experimental stress (the sudden opening of an umbrella). We found significant changes in most of the salivary biomarkers evaluated after the induced stress, where increases in butyrylcholinesterase were more closely related to behavioural responses to acute stress and low salivary alpha-amylase values were more closely related to quietness behaviours. Therefore, this preliminary research provides information about the relationship between behaviour patterns and biomarkers of stress in saliva in horses, and opens the possibility of wider use of selected biomarkers in saliva, such as butyrylcholinesterase or alpha-amylase, for the evaluation of acute stress in horses. Abstract Acute stress induces an array of behavioural reactions in horses that vary between individuals. Attempts to relate behavioural patterns and physiological responses have not always given clear-cut results. Here, we measured the changes in a panel of salivary components: salivary alpha-amylase (sAA), lipase, total esterase (TEA), butyrylcholinesterase (BChE), adenosine deaminase (ADA), and cortisol, and their potential link with horses’ behaviours after acute stress. Saliva samples were collected in nine riding horses subjected to a test consisting of opening an umbrella. Saliva sampling was obtained at a basal time point in the stall (T1), in the test indoor arena (T2), at a time of stress (T3), and 30 min (T4) and 60 min (T5) later. The horses’ behaviour was recorded at T3 for 1 min. sAA, lipase, TEA, and BChE showed significant changes along time, increasing at T3 for BChE, and decreasing at T4 for sAA and BChE. Butyrylcholinesterase appeared to be the most reliable predictor of behavioural responses, as it correlated with the index of emotionality, of laterality, and the occurrence of alarm signals, while sAA decreased when horses expressed quieter behaviours. These first results bring promising lines for novel, more precise physiological markers of acute stress in horses that can bridge the gap between behaviour and physiology.
Collapse
|
41
|
Fujii K, Kubo A, Miyashita K, Sato M, Hagiwara A, Inoue H, Ryuzaki M, Tamaki M, Hishiki T, Hayakawa N, Kabe Y, Itoh H, Suematsu M. Xanthine oxidase inhibitor ameliorates postischemic renal injury in mice by promoting resynthesis of adenine nucleotides. JCI Insight 2019; 4:124816. [PMID: 31723053 PMCID: PMC6948864 DOI: 10.1172/jci.insight.124816] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023] Open
Abstract
Although oxidative stress plays central roles in postischemic renal injury, region-specific alterations in energy and redox metabolism caused by short-duration ischemia remain unknown. Imaging mass spectrometry enabled us to reveal spatial heterogeneity of energy and redox metabolites in the postischemic murine kidney. After 10-minute ischemia and 24-hour reperfusion (10mIR), in the cortex and outer stripes of the outer medulla, ATP substantially decreased, but not in the inner stripes of the outer medulla and inner medulla. 10mIR caused renal injury with elevation of fractional excretion of sodium, although histological damage by oxidative stress was limited. Ischemia-induced NADH elevation in the cortex indicated prolonged production of reactive oxygen species by xanthine oxidase (XOD). However, consumption of reduced glutathione after reperfusion suggested the amelioration of oxidative stress. An XOD inhibitor, febuxostat, which blocks the degradation pathway of adenine nucleotides, promoted ATP recovery and exerted renoprotective effects in the postischemic kidney. Because effects of febuxostat were canceled by silencing of the hypoxanthine phosphoribosyl transferase 1 gene in cultured tubular cells, mechanisms for the renoprotective effects appear to involve the purine salvage pathway, which uses hypoxanthine to resynthesize adenine nucleotides, including ATP. These findings suggest a novel therapeutic approach for acute ischemia/reperfusion renal injury with febuxostat through salvaging high-energy adenine nucleotides.
Collapse
Affiliation(s)
- Kentaro Fujii
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Akiko Kubo
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazutoshi Miyashita
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Masaaki Sato
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Aika Hagiwara
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Hiroyuki Inoue
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Masaki Ryuzaki
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Masanori Tamaki
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
- Department of Nephrology, Graduate School of Medical Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Noriyo Hayakawa
- Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology and Metabolism and Nephrology, Department of Internal Medicine and
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
42
|
Milanese C, Bombardieri CR, Sepe S, Barnhoorn S, Payán-Goméz C, Caruso D, Audano M, Pedretti S, Vermeij WP, Brandt RMC, Gyenis A, Wamelink MM, de Wit AS, Janssens RC, Leen R, van Kuilenburg ABP, Mitro N, Hoeijmakers JHJ, Mastroberardino PG. DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering. Nat Commun 2019; 10:4887. [PMID: 31653834 PMCID: PMC6814737 DOI: 10.1038/s41467-019-12640-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 09/22/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses. ERCC1 is involved in a number of DNA repair pathways including nucleotide excision repair. Here the authors showed that reduced transcription in Ercc1-deficient mouse livers and cells increases ATP levels, suppressing glycolysis and rerouting glucose into the pentose phosphate shunt that generates reductive stress.
Collapse
Affiliation(s)
- Chiara Milanese
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cíntia R Bombardieri
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sara Sepe
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - César Payán-Goméz
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Wilbert P Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Akos Gyenis
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Mirjam M Wamelink
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands
| | - Annelieke S de Wit
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - René Leen
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Oncode Institute, Princess Máxima Center, Utrecht, Netherlands
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands. .,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
43
|
Ravi GRR, Biswal J, Kanagarajan S, Jeyakanthan J. Exploration of N5-CAIR Mutase Novel Inhibitors from Pyrococcus horikoshii OT3: A Computational Study. J Comput Biol 2019; 26:457-472. [PMID: 30785305 DOI: 10.1089/cmb.2018.0248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In bacterial and archaeal purine biosynthetic pathways, sixth step involves utilization of enzyme PurE, catalyzing the translation of aminoimidazole ribonucleotide to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) with carbon dioxide. The formation of CAIR takes place through an unstable intermediate N5-CAIR, played by two enzymes-N5-CAIR synthetase (PurK) and N5-CAIR mutase (PurE) that further catalyzes the reaction of N5-CAIR to CAIR. In this study, N5-CAIR mutase (PH0320) from Pyrococcus horikoshii OT3 (PurE) was considered. The three-dimensional structure of Pyrococcus horikoshii OT3 was modeled based on the structure of PurE from Escherichia coli. The modeled structure was subjected to molecular dynamics simulation up to 100 ns, and least energy structure from the simulation was subjected to virtual screening and induced fit docking to identify the best potent leads. A total of five best antagonists were identified based on their affinity and mode of binding leading with conserved residues Ser18, Ser20, Asp21, Ser45, Ala46, His47, Arg48, Ala72, Gly73, Ala75, and His77 promotes the activity of Ph-N5-CAIR mutase. In addition to molecular dynamics, absorption, digestion, metabolism, and excretion properties, binding free energy and density functional theory calculations of compounds were carried out. Based on analyses, compound from National Cancer Institute (NCI) database, NCI_826 was adjudged as the best potent lead molecule and could be suggested as the suitable inhibitor of N5-CAIR mutase.
Collapse
Affiliation(s)
- Guru Raj Rao Ravi
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Jayashree Biswal
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Sureka Kanagarajan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| |
Collapse
|
44
|
Johnson TA, Jinnah HA, Kamatani N. Shortage of Cellular ATP as a Cause of Diseases and Strategies to Enhance ATP. Front Pharmacol 2019; 10:98. [PMID: 30837873 PMCID: PMC6390775 DOI: 10.3389/fphar.2019.00098] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
Germline mutations in cellular-energy associated genes have been shown to lead to various monogenic disorders. Notably, mitochondrial disorders often impact skeletal muscle, brain, liver, heart, and kidneys, which are the body’s top energy-consuming organs. However, energy-related dysfunctions have not been widely seen as causes of common diseases, although evidence points to such a link for certain disorders. During acute energy consumption, like extreme exercise, cells increase the favorability of the adenylate kinase reaction 2-ADP -> ATP+AMP by AMP deaminase degrading AMP to IMP, which further degrades to inosine and then to purines hypoxanthine -> xanthine -> urate. Thus, increased blood urate levels may act as a barometer of extreme energy consumption. AMP deaminase deficient subjects experience some negative effects like decreased muscle power output, but also positive effects such as decreased diabetes and improved prognosis for chronic heart failure patients. That may reflect decreased energy consumption from maintaining the pool of IMP for salvage to AMP and then ATP, since de novo IMP synthesis requires burning seven ATPs. Similarly, beneficial effects have been seen in heart, skeletal muscle, or brain after treatment with allopurinol or febuxostat to inhibit xanthine oxidoreductase, which catalyzes hypoxanthine -> xanthine and xanthine -> urate reactions. Some disorders of those organs may reflect dysfunction in energy-consumption/production, and the observed beneficial effects related to reinforcement of ATP re-synthesis due to increased hypoxanthine levels in the blood and tissues. Recent clinical studies indicated that treatment with xanthine oxidoreductase inhibitors plus inosine had the strongest impact for increasing the pool of salvageable purines and leading to increased ATP levels in humans, thereby suggesting that this combination is more beneficial than a xanthine oxidoreductase inhibitor alone to treat disorders with ATP deficiency.
Collapse
Affiliation(s)
| | - H A Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
45
|
Chakravarthi BVSK, Rodriguez Pena MDC, Agarwal S, Chandrashekar DS, Hodigere Balasubramanya SA, Jabboure FJ, Matoso A, Bivalacqua TJ, Rezaei K, Chaux A, Grizzle WE, Sonpavde G, Gordetsky J, Netto GJ, Varambally S. A Role for De Novo Purine Metabolic Enzyme PAICS in Bladder Cancer Progression. Neoplasia 2018; 20:894-904. [PMID: 30121007 PMCID: PMC6098199 DOI: 10.1016/j.neo.2018.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Genomic and transcriptome sequencing of bladder cancer (BLCA) has identified multiple molecular alterations during cancer progression. Many of these identified genetic and epigenetic changes play a role in the progression of this disease. Studies have identified molecular subtypes in muscle-invasive bladder cancer (MIBC) with different sensitivities to frontline therapy suggesting the heterogeneity in these tumors and the importance of molecular characterization of MIBC to provide effective treatment. Specifically, it has become increasingly evident, as demonstrated by The Cancer Genome Atlas project, that metabolic enzymes are commonly dysregulated in BLCA. Elevated expression of multiple metabolic enzymes is due to the increased demand from rapidly proliferating BLCA cells requiring extensive nucleotide synthesis. Cancer cells utilize the de novo purine and pyrimidine biosynthetic pathway as a source of their nucleotide needs. In this study, we show that phosphoribosyl aminoimidazole succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine biosynthetic pathway, is significantly overexpressed in BLCA. Immunohistochemical staining of paraffin-embedded tissue sections showed that PAICS is overexpressed in MIBC. Furthermore, we found that tumor suppressor miR-128 negatively regulated PAICS expression by binding to its 3′-untranslated region. We also found that PAICS induces EMT by positively regulating SNAI1 and by a reduction in E-cadherin expression. Additionally, our in vitro functional studies and in vivo chicken chorioallantoic membrane assay show that PAICS plays a critical role in BLCA cell proliferation, invasion, and tumor growth. Collectively, our data suggest that targeting PAICS may provide a therapeutic option in BLCA.
Collapse
Affiliation(s)
- Balabhadrapatruni V S K Chakravarthi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Andres Matoso
- Department of Pathology, Urology and Oncology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins University Greenberg Bladder Cancer Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Johns Hopkins University Greenberg Bladder Cancer Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Alcides Chaux
- Department of Scientific Research, Norte University, Asunción, Paraguay
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guru Sonpavde
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer Gordetsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
46
|
Borsetti F, Dal Piaz F, D'Alessio F, Stefan A, Brandimarti R, Sarkar A, Datta A, Montón Silva A, den Blaauwen T, Alberto M, Spisni E, Hochkoeppler A. Manganese is a Deinococcus radiodurans growth limiting factor in rich culture medium. MICROBIOLOGY-SGM 2018; 164:1266-1275. [PMID: 30052171 DOI: 10.1099/mic.0.000698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To understand the effects triggered by Mn2+ on Deinococcus radiodurans, the proteome patterns associated with different growth phases were investigated. In particular, under physiological conditions we tested the growth rate and the biomass yield of D. radiodurans cultured in rich medium supplemented or not with MnCl2. The addition of 2.5-5.0 µM MnCl2 to the medium neither altered the growth rate nor the lag phase, but significantly increased the biomass yield. When higher MnCl2 concentrations were used (10-250 µM), biomass was again found to be positively affected, although we did observe a concentration-dependent lag phase increase. The in vivo concentration of Mn2+ was determined in cells grown in rich medium supplemented or not with 5 µM MnCl2. By atomic absorption spectroscopy, we estimated 0.2 and 0.75 mM Mn2+ concentrations in cells grown in control and enriched medium, respectively. We qualitatively confirmed this observation using a fluorescent turn-on sensor designed to selectively detect Mn2+in vivo. Finally, we investigated the proteome composition of cells grown for 15 or 19 h in medium to which 5 µM MnCl2 was added, and we compared these proteomes with those of cells grown in the control medium. The presence of 5 µM MnCl2 in the culture medium was found to alter the pI of some proteins, suggesting that manganese affects post-translational modifications. Further, we observed that Mn2+ represses enzymes linked to nucleotide recycling, and triggers overexpression of proteases and enzymes linked to the metabolism of amino acids.
Collapse
Affiliation(s)
- Francesca Borsetti
- 1Department of Biology, Geology and Environmental Sciences, University of Bologna, Via Selmi 3, 40125 Bologna, Italy
| | - Fabrizio Dal Piaz
- 2Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano SA, Italy
| | - Federico D'Alessio
- 3Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alessandra Stefan
- 3Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.,4CSGI, University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
| | - Renato Brandimarti
- 3Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Anindita Sarkar
- 5Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ankona Datta
- 5Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Alejandro Montón Silva
- 6Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tanneke den Blaauwen
- 6Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Mucchi Alberto
- 7Department of Industrial Chemistry "Toson Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Enzo Spisni
- 1Department of Biology, Geology and Environmental Sciences, University of Bologna, Via Selmi 3, 40125 Bologna, Italy
| | - Alejandro Hochkoeppler
- 4CSGI, University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy.,3Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
47
|
Abstract
Nucleobases are water-soluble compounds that need specific transporters to cross biological membranes. Cumulative evidence based on studies using animal tissues and cells indicates that the carrier-mediated transport systems for purine and pyrimidine nucleobases can be classified into the following two types: concentrative transport systems that mediate nucleobase transport depending on the sodium ion concentration gradient; and other systems that mediate facilitated diffusion depending on the concentration gradient of the substrate. Recently, several molecular transporters that are involved in both transport systems have been identified. The function and activity of these transporters could be of pharmacological significance considering the roles that they play not only in nucleotide synthesis and metabolism but also in the pharmacokinetics and delivery of a variety of nucleobase analogues used in anticancer and antiviral drug therapy. The present review provides an overview of the recent advances in our understanding of the molecular basis of nucleobase transport systems, focusing on the transporters that mediate purine nucleobases, and discusses the involvement of intracellular metabolism in purine nucleobase transport and chemotherapy using ganciclovir.
Collapse
Affiliation(s)
- Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
48
|
Pedley AM, Karras GI, Zhang X, Lindquist S, Benkovic SJ. Role of HSP90 in the Regulation of de Novo Purine Biosynthesis. Biochemistry 2018; 57:3217-3221. [PMID: 29553718 DOI: 10.1021/acs.biochem.8b00140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite purines making up one of the largest classes of metabolites in a cell, little is known about the regulatory mechanisms that facilitate efficient purine production. Under conditions resulting in high purine demand, enzymes within the de novo purine biosynthetic pathway cluster into multienzyme assemblies called purinosomes. Purinosome formation has been linked to molecular chaperones HSP70 and HSP90; however, the involvement of these molecular chaperones in purinosome formation remains largely unknown. Here, we present a new-found biochemical mechanism for the regulation of de novo purine biosynthetic enzymes mediated through HSP90. HSP90-client protein interaction assays were employed to identify two enzymes within the de novo purine biosynthetic pathway, PPAT and FGAMS, as client proteins of HSP90. Inhibition of HSP90 by STA9090 abrogated these interactions and resulted in a decrease in the level of available soluble client protein while having no significant effect on their interactions with HSP70. These findings provide a mechanism to explain the dependence of purinosome assembly on HSP90 activity. The combined efforts of molecular chaperones in the maturation of PPAT and FGAMS result in purinosome formation and are likely essential for enhancing the rate of purine production to meet intracellular purine demand.
Collapse
Affiliation(s)
- Anthony M Pedley
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Georgios I Karras
- Whitehead Institute for Biomedical Research , Cambridge , Massachusetts 02142 , United States
| | - Xin Zhang
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research , Cambridge , Massachusetts 02142 , United States.,Department of Biology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States.,Howard Hughes Medical Institute , Cambridge , Massachusetts 02142 , United States
| | - Stephen J Benkovic
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
49
|
Williamson J, Petralia RS, Wang YX, Mattson MP, Yao PJ. Purine Biosynthesis Enzymes in Hippocampal Neurons. Neuromolecular Med 2017; 19:518-524. [PMID: 28866774 PMCID: PMC6085884 DOI: 10.1007/s12017-017-8466-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/29/2017] [Indexed: 01/26/2023]
Abstract
Despite reports implicating disrupted purine metabolism in causing a wide spectrum of neurological defects, the mechanistic details of purine biosynthesis in neurons are largely unknown. As an initial step in filling that gap, we examined the expression and subcellular distribution of three purine biosynthesis enzymes (PFAS, PAICS and ATIC) in rat hippocampal neurons. Using immunoblotting and high-resolution light and electron microscopic analysis, we find that all three enzymes are broadly distributed in hippocampal neurons with pools of these enzymes associated with mitochondria. These findings suggest a potential link between purine metabolism and mitochondrial function in neurons and provide an impetus for further studies.
Collapse
Affiliation(s)
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, Bethesda, MD, 20892, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
50
|
Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine. J Bacteriol 2017; 199:JB.00204-17. [PMID: 28583948 DOI: 10.1128/jb.00204-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/30/2017] [Indexed: 12/18/2022] Open
Abstract
In recent years, biofilms have become a central subject of research in the fields of microbiology, medicine, agriculture, and systems biology, among others. The sociomicrobiology of multispecies biofilms, however, is still poorly understood. Here, we report a screening system that allowed us to identify soil bacteria which induce architectural changes in biofilm colonies when cocultured with Bacillus subtilis We identified the soil bacterium Lysinibacillus fusiformis M5 as an inducer of wrinkle formation in B. subtilis colonies mediated by a diffusible signaling molecule. This compound was isolated by bioassay-guided chromatographic fractionation. The elicitor was identified to be the purine hypoxanthine using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. We show that the induction of wrinkle formation by hypoxanthine is not dependent on signal recognition by the histidine kinases KinA, KinB, KinC, and KinD, which are generally involved in phosphorylation of the master regulator Spo0A. Likewise, we show that hypoxanthine signaling does not induce the expression of biofilm matrix-related operons epsABCDEFGHIJKLMNO and tasA-sipW-tapA Finally, we demonstrate that the purine permease PbuO, but not PbuG, is necessary for hypoxanthine to induce an increase in wrinkle formation of B. subtilis biofilm colonies. Our results suggest that hypoxanthine-stimulated wrinkle development is not due to a direct induction of biofilm-related gene expression but rather is caused by the excess of hypoxanthine within B. subtilis cells, which may lead to cell stress and death.IMPORTANCE Biofilms are a bacterial lifestyle with high relevance regarding diverse human activities. Biofilms can be beneficial, for instance, in crop protection. In nature, biofilms are commonly found as multispecies communities displaying complex social behaviors and characteristics. The study of interspecies interactions will thus lead to a better understanding and use of biofilms as they occur outside laboratory conditions. Here, we present a screening method suitable for the identification of multispecies interactions and showcase L. fusiformis as a soil bacterium that is able to live alongside B. subtilis and modify the architecture of its biofilms.
Collapse
|