1
|
Saunders H, Holloran S, Trinca G, Artigues A, Villar M, Tinoco J, Dias WB, Werner L, Chowanec E, Heard A, Chalise P, Slawson C, Hagan C. Site specific O-GlcNAcylation of progesterone receptor (PR) supports PR attenuation of interferon stimulated genes (ISGs) and tumor growth in breast cancer. J Biol Chem 2024:107886. [PMID: 39395796 DOI: 10.1016/j.jbc.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Hormone receptor (HR) positive breast cancer, defined by expression of estrogen (ER) and/or progesterone (PR) receptor expression, is the most commonly diagnosed type of breast cancer. PR alters the transcriptional landscape to support tumor growth in concert with or independent of ER. Thus, understanding the mechanisms regulating PR function are critical to developing new strategies to treat HR+ breast cancer. O-GlcNAc is a post-translational modification responsible for nutrient sensing that modulates protein function. Although PR is heavily post-translationally modified, through phosphorylation and O-GlcNAcylation, specific sites of O-GlcNAcylation on PR and how they regulate PR action, have not been investigated. Using established PR-expressing breast cancer cell lines, we mapped several sites of O-GlcNAcylation on PR. RNA-sequencing after PR O-GlcNAc site mutagenesis revealed site-specific O-GlcNAcylation of PR is critical for ligand-independent suppression of interferon signaling, a regulatory function of PR in breast cancer. Furthermore, O-GlcNAcylation of PR enhances PR-driven tumor growth in vivo. We have delineated one contributing mechanism to PR function in breast cancer that impacts tumor growth, and provided additional insight into the mechanism through which PR attenuates interferon signaling.
Collapse
Affiliation(s)
- Harmony Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sean Holloran
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Gloria Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Maite Villar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Julio Tinoco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Wagner Barbosa Dias
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Lauryn Werner
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Eilidh Chowanec
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Amanda Heard
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160.
| | - Christy Hagan
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160.
| |
Collapse
|
2
|
Seyrek K, Ivanisenko NV, König C, Lavrik IN. Modulation of extrinsic apoptotic pathway by intracellular glycosylation. Trends Cell Biol 2024; 34:728-741. [PMID: 38336591 DOI: 10.1016/j.tcb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
The importance of post-translational modifications (PTMs), particularly O-GlcNAcylation, of cytoplasmic proteins in apoptosis has been neglected for quite a while. Modification of cytoplasmic proteins by a single N-acetylglucosamine sugar is a dynamic and reversible PTM exhibiting properties more like phosphorylation than classical O- and N-linked glycosylation. Due to the sparse information existing, we have only limited understanding of how GlcNAcylation affects cell death. Deciphering the role of GlcNAcylation in cell fate may provide further understanding of cell fate decisions. This review focus on the modulation of extrinsic apoptotic pathway via GlcNAcylation carried out by O-GlcNAc transferase (OGT) or by other bacterial effector proteins.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
3
|
El Hajjar L, Page A, Bridot C, Cantrelle FX, Landrieu I, Smet-Nocca C. Regulation of Glycogen Synthase Kinase-3β by Phosphorylation and O-β-Linked N-Acetylglucosaminylation: Implications on Tau Protein Phosphorylation. Biochemistry 2024; 63:1513-1533. [PMID: 38788673 DOI: 10.1021/acs.biochem.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Glycogen synthase kinase 3 (GSK3) plays a pivotal role in signaling pathways involved in insulin metabolism and the pathogenesis of neurodegenerative disorders. In particular, the GSK3β isoform is implicated in Alzheimer's disease (AD) as one of the key kinases involved in the hyperphosphorylation of tau protein, one of the neuropathological hallmarks of AD. As a constitutively active serine/threonine kinase, GSK3 is inactivated by Akt/PKB-mediated phosphorylation of Ser9 in the N-terminal disordered domain, and for most of its substrates, requires priming (prephosphorylation) by another kinase that targets the substrate to a phosphate-specific pocket near the active site. GSK3 has also been shown to be post-translationally modified by O-linked β-N-acetylglucosaminylation (O-GlcNAcylation), with still unknown functions. Here, we have found that binding of Akt inhibits GSK3β kinase activity on both primed and unprimed tau substrates. Akt-mediated Ser9 phosphorylation restores the GSK3β kinase activity only on primed tau, thereby selectively inactivating GSK3β toward unprimed tau protein. Additionally, we have shown that GSK3β is highly O-GlcNAcylated at multiple sites within the kinase domain and the disordered N- and C-terminal domains, including Ser9. In contrast to Akt-mediated regulation, neither the O-GlcNAc transferase nor O-GlcNAcylation significantly alters GSK3β kinase activity, but high O-GlcNAc levels reduce Ser9 phosphorylation by Akt. Reciprocally, Akt phosphorylation downregulates the overall O-GlcNAcylation of GSK3β, indicating a crosstalk between both post-translational modifications. Our results indicate that specific O-GlcNAc profiles may be involved in the phosphorylation-dependent Akt-mediated regulation of GSK3β kinase activity.
Collapse
Affiliation(s)
- Léa El Hajjar
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Adeline Page
- Protein Science Facility, SFR Biosciences Univ Lyon, ENS de Lyon, CNRS UAR3444, Inserm US8, Université Claude Bernard Lyon 1, 50 Avenue Tony Garnier, Lyon F-69007, France
| | - Clarisse Bridot
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - François-Xavier Cantrelle
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Isabelle Landrieu
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Caroline Smet-Nocca
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| |
Collapse
|
4
|
Shi RR, He TQ, Lin MS, Xu J, Gu JH, Xu H. O-GlcNAcylation in ischemic diseases. Front Pharmacol 2024; 15:1377235. [PMID: 38783961 PMCID: PMC11113977 DOI: 10.3389/fphar.2024.1377235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Protein glycosylation is an extensively studied field, with the most studied forms being oxygen or nitrogen-linked N-acetylglucosamine (O-GlcNAc or N-GlcNAc) glycosylation. Particular residues on proteins are targeted by O-GlcNAcylation, which is among the most intricate post-translational modifications. Significantly contributing to an organism's proteome, it influences numerous factors affecting protein stability, function, and subcellular localization. It also modifies the cellular function of target proteins that have crucial responsibilities in controlling pathways related to the central nervous system, cardiovascular homeostasis, and other organ functions. Under conditions of acute stress, changes in the levels of O-GlcNAcylation of these proteins may have a defensive function. Nevertheless, deviant O-GlcNAcylation nullifies this safeguard and stimulates the advancement of several ailments, the prognosis of which relies on the cellular milieu. Hence, this review provides a concise overview of the function and comprehension of O-GlcNAcylation in ischemia diseases, aiming to facilitate the discovery of new therapeutic targets for efficient treatment, particularly in patients with diabetes.
Collapse
Affiliation(s)
- Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Meng-Si Lin
- Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Nelson ZM, Leonard GD, Fehl C. Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways. J Biol Chem 2024; 300:105615. [PMID: 38159850 PMCID: PMC10831167 DOI: 10.1016/j.jbc.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cells continuously fine-tune signaling pathway proteins to match nutrient and stress levels in their local environment by modifying intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) sugars, an essential process for cell survival and growth. The small size of these monosaccharide modifications poses a challenge for functional determination, but the chemistry and biology communities have together created a collection of precision tools to study these dynamic sugars. This review presents the major themes by which O-GlcNAc influences signaling pathway proteins, including G-protein coupled receptors, growth factor signaling, mitogen-activated protein kinase (MAPK) pathways, lipid sensing, and cytokine signaling pathways. Along the way, we describe in detail key chemical biology tools that have been developed and applied to determine specific O-GlcNAc roles in these pathways. These tools include metabolic labeling, O-GlcNAc-enhancing RNA aptamers, fluorescent biosensors, proximity labeling tools, nanobody targeting tools, O-GlcNAc cycling inhibitors, light-activated systems, chemoenzymatic labeling, and nutrient reporter assays. An emergent feature of this signaling pathway meta-analysis is the intricate interplay between O-GlcNAc modifications across different signaling systems, underscoring the importance of O-GlcNAc in regulating cellular processes. We highlight the significance of O-GlcNAc in signaling and the role of chemical and biochemical tools in unraveling distinct glycobiological regulatory mechanisms. Collectively, our field has determined effective strategies to probe O-GlcNAc roles in biology. At the same time, this survey of what we do not yet know presents a clear roadmap for the field to use these powerful chemical tools to explore cross-pathway O-GlcNAc interactions in signaling and other major biological pathways.
Collapse
Affiliation(s)
- Zachary M Nelson
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Garry D Leonard
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
6
|
Zafar S, Fatima SI, Schmitz M, Zerr I. Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration. Biomolecules 2024; 14:118. [PMID: 38254718 PMCID: PMC10813409 DOI: 10.3390/biom14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, are identified and characterized by the progressive loss of neurons and neuronal dysfunction, resulting in cognitive and motor impairment. Recent research has shown the importance of PTMs, such as phosphorylation, acetylation, methylation, ubiquitination, sumoylation, nitration, truncation, O-GlcNAcylation, and hydroxylation, in the progression of neurodegenerative disorders. PTMs can alter protein structure and function, affecting protein stability, localization, interactions, and enzymatic activity. Aberrant PTMs can lead to protein misfolding and aggregation, impaired degradation, and clearance, and ultimately, to neuronal dysfunction and death. The main objective of this review is to provide an overview of the PTMs involved in neurodegeneration, their underlying mechanisms, methods to isolate PTMs, and the potential therapeutic targets for these disorders. The PTMs discussed in this article include tau phosphorylation, α-synuclein and Huntingtin ubiquitination, histone acetylation and methylation, and RNA modifications. Understanding the role of PTMs in neurodegenerative diseases may provide new therapeutic strategies for these devastating disorders.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, Islamabad 44000, Pakistan
| | - Shehzadi Irum Fatima
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
7
|
Li J, Xu J, Zhao R, Zhang W, Li P, Zhang W, Wang H, Tang B. Progress of fluorescent probes for protein phosphorylation and glycosylation in atherosclerosis. Chemistry 2024:e202303778. [PMID: 38199979 DOI: 10.1002/chem.202303778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
Exploring the post-translational modification (PTM) of proteins in the course of atherosclerotic disease has important guiding significance for the early warning of atherosclerotic plaque, the development of targeted drugs and the treatment of disease. The advancement advanced detection and imaging methods for phosphorylated and glycosylated proteins is an important tool to further reveal the levels of protein phosphorylation and glycosylation during atherosclerotic plaque formation. We present research strategies for detecting protein phosphorylation and glycosylation from the perspective of fluorescent probes, and discuss the feasibility and future direction of the development of these methods for detecting and imaging phosphorylated and glycosylated proteins in atherosclerotic disease.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jiheng Xu
- School of Materials Science and Engineering, Shandong University, Jinan, 250014, P. R. China
| | - Ruize Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
- Laoshan Laboratory, Qingdao, 266237, P. R. China
| |
Collapse
|
8
|
El Hajjar L, Bridot C, Nguyen M, Cantrelle FX, Landrieu I, Smet-Nocca C. The O-GlcNAc Modification of Recombinant Tau Protein and Characterization of the O-GlcNAc Pattern for Functional Study. Methods Mol Biol 2024; 2754:237-269. [PMID: 38512671 DOI: 10.1007/978-1-0716-3629-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The neuronal microtubule-associated tau protein is characterized in vivo by a large number of post-translational modifications along the entire primary sequence that modulates its function. The primary modification of tau is phosphorylation of serine/threonine or tyrosine residues that is involved in the regulation of microtubule binding and polymerization. In neurodegenerative disorders referred to as tauopathies including Alzheimer's disease, tau is abnormally hyperphosphorylated and forms fibrillar inclusions in neurons progressing throughout different brain area during the course of the disease. The O-β-linked N-acetylglucosamine (O-GlcNAc) is another reversible post-translational modification of serine/threonine residues that is installed and removed by the unique O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA), respectively. This modification was described as a potential modulator of tau phosphorylation and functions in the physiopathology. Moreover, reducing protein O-GlcNAc levels in the brain upon treatment of tauopathy mouse models with an OGA inhibitor reveals a beneficial effect on tau pathology and neurodegeneration. However, whether the role of tau O-GlcNAcylation is responsible of the protective effect against tau toxicity remains to be determined. The production of O-GlcNAc modified recombinant tau protein is a valuable tool for the investigations of the impact of O-GlcNAcylation on tau functions, modulation of interactions with partners and crosstalk with other post-translational modifications, including but not restricted to phosphorylation. We describe here the in vitro O-GlcNAcylation of tau with recombinant OGT for which we provide an expression and purification protocol. The use of the O-GlcNAc tau protein in functional studies requires the analytical characterization of the O-GlcNAc pattern. Here, we describe a method for the O-GlcNAc modification of tau protein with recombinant OGT and the analytical characterization of the resulting O-GlcNAc pattern by a combination of methods for the overall characterization of tau O-GlcNAcylation by chemoenzymatic labeling and mass spectrometry, as well as the quantitative, site-specific pattern by NMR spectroscopy.
Collapse
Affiliation(s)
- Léa El Hajjar
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Clarisse Bridot
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Marine Nguyen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - François-Xavier Cantrelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Isabelle Landrieu
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS, EMR9002 BSI Integrative Structural Biology, Lille, France
- LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease ANR-11-LABX-01), Lille, France
| | - Caroline Smet-Nocca
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
- CNRS EMR9002 Integrative Structural Biology, Lille, France.
| |
Collapse
|
9
|
Kim S, Kim S, Kim S, Kim N, Lee SW, Yi H, Lee S, Sim T, Kwon Y, Lee HS. Affinity-Directed Site-Specific Protein Labeling and Its Application to Antibody-Drug Conjugates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306401. [PMID: 38032124 PMCID: PMC10811483 DOI: 10.1002/advs.202306401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Sooin Kim
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Sanggil Kim
- New Drug Development CenterOsong Medical Innovation Foundation123 Osongsaengmyeong‐ro, Heungdeok‐guCheongjuChungbuk28160Republic of Korea
| | - Sangji Kim
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Sang Won Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Hanbin Yi
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Seungeun Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Taebo Sim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Yongseok Kwon
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
10
|
Barbhuiya TK, Jayarathna DK, Gilmour R, Smet-Nocca C, Gandhi NS. Characterization of Posttranslationally Modified PHF-1 Tau Peptides Using Gaussian Accelerated Molecular Dynamics Simulation. Methods Mol Biol 2024; 2754:3-31. [PMID: 38512658 DOI: 10.1007/978-1-0716-3629-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The microtubule-associated protein, Tau, is an intrinsically disordered protein that plays a crucial role in neurodegenerative diseases like Alzheimer's disease. The posttranslational modifications across the Tau protein domains are involved in regulating Tau protein's function and disease onset. Of the various posttranslational modifications at Ser, Thr, and Tyr sites, O-GlcNAcylation and phosphorylation are the most critical ones, playing a vital role in Tau aggregation and tauopathies. To understand the function, it is essential to characterize the structural changes associated with Tau modification. Previous experimental studies have focused on high-resolution nuclear magnetic resonance techniques to structurally characterize the effect of phosphorylation, O-GlcNAcylation, and combination of both PTMs on Tau conformation in small peptides centered on the PHF-1 epitope from amino acid 392 to 411. The structural characterization using atomistic molecular dynamics simulation of such disordered peptides requires long simulation time, proper sampling method, and utilization of appropriate force fields for accurate determination of conformational ensembles, resembling the experimental data. This chapter details the protocol for the structural characterization of modified Tau peptides using the CHARMM36m force field and enhanced sampling methods like Gaussian accelerated molecular dynamics (GaMD) simulation. We have focused on a detailed explanation of the GaMD method and analyses of molecular dynamics trajectories to explain the relationship between two modifications, phospho- and glyco-, at C-terminus of Tau protein and its stable conformation over the longer simulation timeframes. The analyses involve energetics reweighting, clustering of simulation trajectories, and characterization of secondary structure using circular dichroism data from the simulation. The reader can utilize this protocol to investigate the structures of complex proteins, especially the disordered ones.
Collapse
Affiliation(s)
- Tabassum Khair Barbhuiya
- School of Chemistry and Physics, Faculty of Science, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Cancer and Ageing Research Program, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Dulari K Jayarathna
- School of Chemistry and Physics, Faculty of Science, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Raechelle Gilmour
- School of Chemistry and Physics, Faculty of Science, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Caroline Smet-Nocca
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Neha S Gandhi
- School of Chemistry and Physics, Faculty of Science, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Cancer and Ageing Research Program, Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
11
|
Hashim M, Badruddeen, Akhtar J, Khan MI, Ahmad M, Islam A, Ahmad A. Diabetic Neuropathy: An Overview of Molecular Pathways and Protective Mechanisms of Phytobioactives. Endocr Metab Immune Disord Drug Targets 2024; 24:758-776. [PMID: 37867264 DOI: 10.2174/0118715303266444231008143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Diabetic neuropathy (DN) is a common and debilitating complication of diabetes mellitus that affects the peripheral nerves and causes pain, numbness, and impaired function. The pathogenesis of DN involves multiple molecular mechanisms, such as oxidative stress, inflammation, and pathways of advanced glycation end products, polyol, hexosamine, and protein kinase C. Phytochemicals are natural compounds derived from plants that have various biological activities and therapeutic potential. Flavonoids, terpenes, alkaloids, stilbenes, and tannins are some of the phytochemicals that have been identified as having protective potential for diabetic neuropathy. These compounds can modulate various cellular pathways involved in the development and progression of neuropathy, including reducing oxidative stress and inflammation and promoting nerve growth and repair. In this review, the current evidence on the effects of phytochemicals on DN by focusing on five major classes, flavonoids, terpenes, alkaloids, stilbenes, and tannins, are summarized. This compilation also discusses the possible molecular targets of numerous pathways of DN that these phytochemicals modulate. These phytochemicals may offer a promising alternative or complementary approach to conventional drugs for DN management by modulating multiple pathological pathways and restoring nerve function.
Collapse
Affiliation(s)
- Mohd Hashim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
12
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
13
|
Yue J, Huang R, Lan Z, Xiao B, Luo Z. Abnormal glycosylation in glioma: related changes in biology, biomarkers and targeted therapy. Biomark Res 2023; 11:54. [PMID: 37231524 DOI: 10.1186/s40364-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Glioma is a rapidly growing and aggressive primary malignant tumor of the central nervous system that can diffusely invade the brain tissue around, and the prognosis of patients is not significantly improved by traditional treatments. One of the most general posttranslational modifications of proteins is glycosylation, and the abnormal distribution of this modification in gliomas may shed light on how it affects biological behaviors of glioma cells, including proliferation, migration, and invasion, which may be produced by regulating protein function, cell-matrix and cell‒cell interactions, and affecting receptor downstream pathways. In this paper, from the perspective of regulating protein glycosylation changes and abnormal expression of glycosylation-related proteins (such as glycosyltransferases in gliomas), we summarize how glycosylation may play a crucial role in the discovery of novel biomarkers and new targeted treatment options for gliomas. Overall, the mechanistic basis of abnormal glycosylation affecting glioma progression remains to be more widely and deeply explored, which not only helps to inspire researchers to further explore related diagnostic and prognostic markers but also provides ideas for discovering effective treatment strategies and improving glioma patient survival and prognosis.
Collapse
Affiliation(s)
- Juan Yue
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, 100730, Beijing, China
| | - Zehao Lan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China.
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China.
| |
Collapse
|
14
|
Li J, Qiu Y, Zhang C, Wang H, Bi R, Wei Y, Li Y, Hu B. The role of protein glycosylation in the occurrence and outcome of acute ischemic stroke. Pharmacol Res 2023; 191:106726. [PMID: 36907285 DOI: 10.1016/j.phrs.2023.106726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Acute ischemic stroke (AIS) is a serious and life-threatening disease worldwide. Despite thrombolysis or endovascular thrombectomy, a sizeable fraction of patients with AIS have adverse clinical outcomes. In addition, existing secondary prevention strategies with antiplatelet and anticoagulant drugs therapy are not able to adequately decrease the risk of ischemic stroke recurrence. Thus, exploring novel mechanisms for doing so represents an urgent need for the prevention and treatment of AIS. Recent studies have discovered that protein glycosylation plays a critical role in the occurrence and outcome of AIS. As a common co- and post-translational modification, protein glycosylation participates in a wide variety of physiological and pathological processes by regulating the activity and function of proteins or enzymes. Protein glycosylation is involved in two causes of cerebral emboli in ischemic stroke: atherosclerosis and atrial fibrillation. Following ischemic stroke, the level of brain protein glycosylation becomes dynamically regulated, which significantly affects stroke outcome through influencing inflammatory response, excitotoxicity, neuronal apoptosis, and blood-brain barrier disruption. Drugs targeting glycosylation in the occurrence and progression of stroke may represent a novel therapeutic idea. In this review, we focus on possible perspectives about how glycosylation affects the occurrence and outcome of AIS. We then propose the potential of glycosylation as a therapeutic drug target and prognostic marker for AIS patients in the future.
Collapse
Affiliation(s)
- Jianzhuang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhao Wei
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Demir R, Deveci R. In silico analysis of the possible crosstalk between O-linked β-GlcNAcylation and phosphorylation sites of Disabled 1 adaptor protein in vertebrates. Amino Acids 2023:10.1007/s00726-023-03266-5. [PMID: 37067567 DOI: 10.1007/s00726-023-03266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Disabled 1 (Dab1) is an adaptor protein with essential functions regulated by reelin signaling and affects many biological processes in the nervous system, including cell motility, adhesion, cortical development, maturation, and synaptic plasticity. Posttranslational modifications directly guide the fates of cytoplasmic proteins to complete their functions correctly. Reciprocal crosstalk between O-GlcNAcylation and phosphorylation is a dynamic modification in cytoplasmic proteins. It modulates the functions of the proteins by regulating their interactions with other molecules in response to the continuously changeable cell microenvironment. Although Dab1 contains conserved recognition sites for phosphorylation in their N-terminal protein interaction domain, the O-β-GlcNAcylation and phosphorylation sites of human Dab1 sequence, their reciprocal crosstalk, and potential kinases catalyzing the phosphorylation remain unknown. In this study, we determined potential thirty-seven O-β-GlcNAcylation and sixty-seven phosphorylation sites. Conserved twenty-one residues of these glycosylated sites were also phosphorylated with various kinases, including ATM, CKI, DNAPK, GSK3, PKC, PKG, RSK, cdc2, cdk5, and p38MAPK. In addition, we analyzed these conserved sites at our constructed two- and three-dimensional structures of human Dab1 protein. Dab1 protein models were frequently composed of coil structures as well as α-helix and β-strands. Many of these conserved crosstalk sites between O-β-GlcNAcylation and phosphorylation were localized at the coil region of the protein model. These findings may guide biochemical, genetic, and glyco-biology based on further experiments about the Dab1 signaling process. Understanding these modifications might change the point of view of the Dab1 signaling process and treatment for pathological conditions in neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ramiz Demir
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, 35040,, Izmir, Turkey
- Graduate School of Health Science, Koç University Research Center for Translational Medicine (KUTTAM), Koç University, 34010, Istanbul, Turkey
| | - Remziye Deveci
- Molecular Biology Section, Department of Biology, Faculty of Science, Ege University, Bornova, 35040,, Izmir, Turkey.
| |
Collapse
|
16
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
17
|
Dubey AK, Kumar P, Mandal D, Ravichandiran V, Singh SK. An introduction to dynamic nucleoporins in Leishmania species: Novel targets for tropical-therapeutics. J Parasit Dis 2022; 46:1176-1191. [PMID: 36457769 PMCID: PMC9606170 DOI: 10.1007/s12639-022-01515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
As an ailment, leishmaniasis is still an incessant challenge in neglected tropical diseases and neglected infections of poverty worldwide. At present, the diagnosis and treatment to combat Leishmania tropical infections are not substantial remedies and require advanced & specific research. Therefore, there is a need for a potential novel target to overcome established medicament modalities' limitations in pathogenicity. In this review, we proposed a few ab initio findings in nucleoporins of nuclear pore complex in Leishmania sp. concerning other infectious protists. So, through structural analysis and dynamics studies, we hypothesize the nuclear pore molecular machinery & functionality. The gatekeepers Nups, export of mRNA, mitotic spindle formation are salient features in cellular mechanics and this is regulated by dynamic nucleoporins. Here, diverse studies suggest that Nup93/NIC96, Nup155/Nup144, Mlp1/Mlp2/Tpr of Leishmania Species can be a picked out marker for diagnostic, immune-modulation, and novel drug targets. In silico prediction of nucleoporin-functional interactors such as NUP54/57, RNA helicase, Ubiquitin-protein ligase, Exportin 1, putative T-lymphocyte triggering factor, and 9 uncharacterized proteins suggest few more noble targets. The novel drug targeting to importins/exportins of Leishmania sp. and defining mechanism of Leptomycin-B, SINE compounds, Curcumins, Selinexor can be an arc-light in therapeutics. The essence of the review in Leishmania's nucleoporins is to refocus our research on noble molecular targets for tropical therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-022-01515-0.
Collapse
Affiliation(s)
- Amit Kumar Dubey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
- Parasite Immunology Lab, Microbiology Department, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar 800007 India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - V. Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, Bihar 844102 India
| | - Shubhankar Kumar Singh
- Parasite Immunology Lab, Microbiology Department, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar 800007 India
| |
Collapse
|
18
|
Zhou Y, Li Z, Xu M, Zhang D, Ling J, Yu P, Shen Y. O-GlycNacylation Remission Retards the Progression of Non-Alcoholic Fatty Liver Disease. Cells 2022; 11:cells11223637. [PMID: 36429065 PMCID: PMC9688300 DOI: 10.3390/cells11223637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease spectrum associated with insulin resistance (IR), from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). O-GlcNAcylation is a posttranslational modification, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Abnormal O-GlcNAcylation plays a key role in IR, fat deposition, inflammatory injury, fibrosis, and tumorigenesis. However, the specific mechanisms and clinical treatments of O-GlcNAcylation and NAFLD are yet to be elucidated. The modification contributes to understanding the pathogenesis and development of NAFLD, thus clarifying the protective effect of O-GlcNAcylation inhibition on liver injury. In this review, the crucial role of O-GlcNAcylation in NAFLD (from NAFL to HCC) is discussed, and the effect of therapeutics on O-GlcNAcylation and its potential mechanisms on NAFLD have been highlighted. These inferences present novel insights into the pathogenesis and treatments of NAFLD.
Collapse
Affiliation(s)
- Yicheng Zhou
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang 330031, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jitao Ling
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| |
Collapse
|
19
|
Allmeroth K, Hartman MD, Purrio M, Mesaros A, Denzel MS. Hexosamine pathway activation improves memory but does not extend lifespan in mice. Aging Cell 2022; 21:e13711. [PMID: 36124412 PMCID: PMC9577955 DOI: 10.1111/acel.13711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 02/06/2023] Open
Abstract
Glucosamine feeding and genetic activation of the hexosamine biosynthetic pathway (HBP) have been linked to improved protein quality control and lifespan extension. However, as an energy sensor, the HBP has been implicated in tumor progression and diabetes. Given these opposing outcomes, it is imperative to explore the long-term effects of chronic HBP activation in mammals. Thus, we asked if HBP activation affects metabolism, coordination, memory, and survival in mice. N-acetyl-D-glucosamine (GlcNAc) supplementation in the drinking water had no adverse effect on weight in males but increased weight in young females. Glucose or insulin tolerance was not affected up to 20 months of age. Of note, we observed improved memory in young male mice supplemented with GlcNAc. Survival was not changed by GlcNAc treatment. To assess the effects of genetic HBP activation, we overexpressed the pathway's key enzyme GFAT1 and a constitutively activated mutant form in all mouse tissues. We detected elevated levels of the HBP product UDP-GlcNAc in mouse brains, but did not find any effects on behavior, memory, or survival. Together, while dietary GlcNAc supplementation did not extend survival in mice, it positively affected memory and is generally well tolerated.
Collapse
Affiliation(s)
- Kira Allmeroth
- Max Planck Institute for Biology of AgeingCologneGermany
| | | | - Martin Purrio
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Andrea Mesaros
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Martin S. Denzel
- Max Planck Institute for Biology of AgeingCologneGermany,CECAD ‐ Cluster of ExcellenceUniversity of CologneCologneGermany,Center for Molecular Medicine CologneUniversity of CologneCologneGermany,Altos Labs, Cambridge Institute of ScienceGranta Park, Great AbingtonCambridgeUK
| |
Collapse
|
20
|
Şener Uslupehlivan E, Deveci R, Şahar U, İzzetoğlu S. Glycan analysis of Lamin A/C protein at G2/M and S phases of the cell cycle. Cell Biochem Biophys 2022; 80:689-698. [PMID: 36180658 DOI: 10.1007/s12013-022-01102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
During mitosis, phosphorylation and dephosphorylation of lamins triggers the nuclear envelope disassembly/assembly. However, it hasn't been known whether lamin proteins undergo any modification other than phosphorylation during the cell cycle. Glycosylation of lamin proteins is one of the less studied post-translational modification. Glycosylation and phosphorylation compete for the same positions and interplay between two modifications generate a post-translational code in the cell. Based on this, we hypothesized that glycosylation of lamin A/C protein may be important in the regulation of the structural organization of the nuclear lamina during interphase and mitosis. We analysed the glycan units of lamin A/C protein in lung carcinoma cells synchronized at G2/M and S phases via CapLC-ESI-MS/MS. Besides, the outermost glycan units were determined using lectin blotting and gold-conjugated antibody and lectin staining. TEM studies also allowed us to observe the localization of glycosylated lamin A/C protein. With this study, we determined that lamin A/C protein shows O-glycosylation at G2/M and S phases of the cell cycle. In addition to O-GlcNAcylation and O-GalNAcylation, lamin A/C is found to be contain Gal, Fuc, Man, and Sia sugars at G2/M and S phases for the first time. Having found the glycan units of the lamin A/C protein suggests that glycosylation might have a role in the nuclear organization during the cell cycle.
Collapse
Affiliation(s)
- Ecem Şener Uslupehlivan
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey
| | - Remziye Deveci
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey
| | - Umut Şahar
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey
| | - Savaş İzzetoğlu
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey.
| |
Collapse
|
21
|
Delivery of Nucleotide Sugars to the Mammalian Golgi: A Very Well (un)Explained Story. Int J Mol Sci 2022; 23:ijms23158648. [PMID: 35955785 PMCID: PMC9368800 DOI: 10.3390/ijms23158648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Nucleotide sugars (NSs) serve as substrates for glycosylation reactions. The majority of these compounds are synthesized in the cytoplasm, whereas glycosylation occurs in the endoplasmic reticulum (ER) and Golgi lumens, where catalytic domains of glycosyltransferases (GTs) are located. Therefore, translocation of NS across the organelle membranes is a prerequisite. This process is thought to be mediated by a group of multi-transmembrane proteins from the SLC35 family, i.e., nucleotide sugar transporters (NSTs). Despite many years of research, some uncertainties/inconsistencies related with the mechanisms of NS transport and the substrate specificities of NSTs remain. Here we present a comprehensive review of the NS import into the mammalian Golgi, which consists of three major parts. In the first part, we provide a historical view of the experimental approaches used to study NS transport and evaluate the most important achievements. The second part summarizes various aspects of knowledge concerning NSTs, ranging from subcellular localization up to the pathologies related with their defective function. In the third part, we present the outcomes of our research performed using mammalian cell-based models and discuss its relevance in relation to the general context.
Collapse
|
22
|
Disaccharide-tag for highly sensitive identification of O-GlcNAc-modified proteins in mammalian cells. PLoS One 2022; 17:e0267804. [PMID: 35604954 PMCID: PMC9126400 DOI: 10.1371/journal.pone.0267804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
O-GlcNAcylation is the only sugar modification for proteins present in the cytoplasm and nucleus and is thought to be involved in the regulation of protein function and localization. Currently, several methods are known for detecting O-GlcNAcylated proteins using monoclonal antibodies or wheat germ agglutinin, but these methods have some limitations in their sensitivity and quantitative comparison. We developed a new disaccharide-tag method to overcome these problems. This is a method in which a soluble GalNAc transferase is expressed intracellularly, extended to a disaccharide of GalNAc-GlcNAc, and detected using a Wisteria japonica agglutinin specific to this disaccharide. We verified the method using human c-Rel protein and also highly sensitively compared the difference in O-GlcNAc modification of intracellular proteins associated with differentiation from embryonic stem cell (ESC) to epiblast-like cells (EpiLC). As one example of such a modification, a novel O-GlcNAc modification was found in the transcription factor Sox2 at residue Ser263, and the modification site could be identified by nano liquid chromatography-mass spectrometry.
Collapse
|
23
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
24
|
Kroef V, Ruegenberg S, Horn M, Allmeroth K, Ebert L, Bozkus S, Miethe S, Elling U, Schermer B, Baumann U, Denzel MS. GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway. eLife 2022; 11:69223. [PMID: 35229715 PMCID: PMC8970586 DOI: 10.7554/elife.69223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) produces the essential metabolite UDP-GlcNAc and plays a key role in metabolism, health, and aging. The HBP is controlled by its rate-limiting enzyme glutamine fructose-6-phosphate amidotransferase (GFPT/GFAT) that is directly inhibited by UDP-GlcNAc in a feedback loop. HBP regulation by GFPT is well studied but other HBP regulators have remained obscure. Elevated UDP-GlcNAc levels counteract the glycosylation toxin tunicamycin (TM), and thus we screened for TM resistance in haploid mouse embryonic stem cells (mESCs) using random chemical mutagenesis to determine alternative HBP regulation. We identified the N-acetylglucosamine deacetylase AMDHD2 that catalyzes a reverse reaction in the HBP and its loss strongly elevated UDP-GlcNAc. To better understand AMDHD2, we solved the crystal structure and found that loss-of-function (LOF) is caused by protein destabilization or interference with its catalytic activity. Finally, we show that mESCs express AMDHD2 together with GFPT2 instead of the more common paralog GFPT1. Compared with GFPT1, GFPT2 had a much lower sensitivity to UDP-GlcNAc inhibition, explaining how AMDHD2 LOF resulted in HBP activation. This HBP configuration in which AMDHD2 serves to balance GFPT2 activity was also observed in other mESCs and, consistently, the GFPT2:GFPT1 ratio decreased with differentiation of human embryonic stem cells. Taken together, our data reveal a critical function of AMDHD2 in limiting UDP-GlcNAc production in cells that use GFPT2 for metabolite entry into the HBP.
Collapse
Affiliation(s)
- Virginia Kroef
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sabine Ruegenberg
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Kira Allmeroth
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | | | - Stephan Miethe
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ulrich Elling
- Vienna Biocenter, Austrian Academy of Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
25
|
Wong YK, Wang J, Lim TK, Lin Q, Yap CT, Shen HM. O-GlcNAcylation promotes fatty acid synthase activity under nutritional stress as a pro-survival mechanism in cancer cells. Proteomics 2022; 22:e2100175. [PMID: 35083852 DOI: 10.1002/pmic.202100175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022]
Abstract
Protein O-GlcNAcylation is a specific form of protein glycosylation that targets a wide range of proteins with important functions. O-GlcNAcylation is known to be deregulated in cancer and has been linked to multiple aspects of cancer pathology. Despite its ubiquity and importance, the current understanding of the role of O-GlcNAcylation in the stress response remains limited. In this study, we performed a quantitative chemical proteomics-based open study of the O-GlcNAcome in HeLa cells, and identified 163 differentially-glycosylated proteins under starvation, involving multiple metabolic pathways. Among them, fatty acid metabolism was found to be targeted and subsequent analysis confirmed that fatty acid synthase (FASN) is O-GlcNAcylated. O-GlcNAcylation led to enhanced de novo fatty acid synthesis activity, and fatty acids contributed to the cytoprotective effects of O-GlcNAcylation under starvation. Moreover, dual inhibition of O-GlcNAcylation and FASN displayed a strong synergistic effect in vitro in inducing cell death in cancer cells. Together, the results from this study provide novel insights into the role of O-GlcNAcylation in the nutritional stress response and suggest the potential of combining inhibition of O-GlcNAcylation and fatty acid synthesis in cancer therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yin-Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Jigang Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.,Cancer Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.,National University Cancer Institute, National University Health System, Singapore, 119074, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.,Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
26
|
Song W, Isaji T, Nakano M, Liang C, Fukuda T, Gu J. O-GlcNAcylation regulates β1,4-GlcNAc-branched N-glycan biosynthesis via the OGT/SLC35A3/GnT-IV axis. FASEB J 2022; 36:e22149. [PMID: 34981577 DOI: 10.1096/fj.202101520r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
N-Linked glycosylation and O-linked N-acetylglucosamine (O-GlcNAc) are important protein post-translational modifications that are orchestrated by a diverse set of gene products. Thus far, the relationship between these two types of glycosylation has remained elusive, and it is unclear whether one influences the other via UDP-GlcNAc, which is a common donor substrate. Theoretically, a decrease in O-GlcNAcylation may increase the products of GlcNAc-branched N-glycans. In this study, via examination by lectin blotting, HPLC, and mass spectrometry analysis, however, we found that the amounts of GlcNAc-branched tri-antennary N-glycans catalyzed by N-acetylglucosaminyltransferase IV (GnT-IV) and tetra-antennary N-glycans were significantly decreased in O-GlcNAc transferase knockdown cells (OGT-KD) compared with those in wild type cells. We examined this specific alteration by focusing on SLC35A3, which is the main UDP-GlcNAc transporter in mammals that is believed to modulate GnT-IV activation. It is interesting that a deficiency of SLC35A3 specifically leads to a decrease in the amounts of GlcNAc-branched tri- and tetra-antennary N-glycans. Furthermore, co-immunoprecipitation experiments have shown that SLC35A3 interacts with GnT-IV, but not with N-acetylglucosaminyltransferase V. Western blot and chemoenzymatic labeling assay have confirmed that OGT modifies SLC35A3 and that O-GlcNAcylation contributes to its stability. Furthermore, we found that SLC35A3-KO enhances cell spreading and suppresses both cell migration and cell proliferation, which is similar to the phenomena observed in the OGT-KD cells. Taken together, these data are the first to demonstrate that O-GlcNAcylation specifically governs the biosynthesis of tri- and tetra-antennary N-glycans via the OGT-SLC35A3-GnT-IV axis.
Collapse
Affiliation(s)
- Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-hiroshima, Japan
| | - Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
27
|
Starace V, Battista M, Brambati M, Cavalleri M, Bertuzzi F, Amato A, Lattanzio R, Bandello F, Cicinelli MV. The role of inflammation and neurodegeneration in diabetic macular edema. Ther Adv Ophthalmol 2021; 13:25158414211055963. [PMID: 34901746 PMCID: PMC8652911 DOI: 10.1177/25158414211055963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of diabetic macular edema (DME) is complex. Persistently high blood glucose activates multiple cellular pathways and induces inflammation, oxidation stress, and vascular dysfunction. Retinal ganglion cells, macroglial and microglial cells, endothelial cells, pericytes, and retinal pigment epithelium cells are involved. Neurodegeneration, characterized by dysfunction or apoptotic loss of retinal neurons, occurs early and independently from the vascular alterations. Despite the increasing knowledge on the pathways involved in DME, only limited therapeutic strategies are available. Besides antiangiogenic drugs and intravitreal corticosteroids, alternative therapeutic options tackling inflammation, oxidative stress, and neurodegeneration have been considered, but none of them has been currently approved.
Collapse
Affiliation(s)
- Vincenzo Starace
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battista
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele Cavalleri
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Bertuzzi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Amato
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosangela Lattanzio
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Vittoria Cicinelli
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, via Olgettina 60, 20132 Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
28
|
Weiss M, Anderluh M, Gobec M. Inhibition of O-GlcNAc Transferase Alters the Differentiation and Maturation Process of Human Monocyte Derived Dendritic Cells. Cells 2021; 10:cells10123312. [PMID: 34943826 PMCID: PMC8699345 DOI: 10.3390/cells10123312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
The O-GlcNAcylation is a posttranslational modification of proteins regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase. These enzymes regulate the development, proliferation and function of cells, including the immune cells. Herein, we focused on the role of O-GlcNAcylation in human monocyte derived dendritic cells (moDCs). Our study suggests that inhibition of OGT modulates AKT and MEK/ERK pathways in moDCs. Changes were also observed in the expression levels of relevant surface markers, where reduced expression of CD80 and DC-SIGN, and increased expression of CD14, CD86 and HLA-DR occurred. We also noticed decreased IL-10 and increased IL-6 production, along with diminished endocytotic capacity of the cells, indicating that inhibition of O-GlcNAcylation hampers the transition of monocytes into immature DCs. Furthermore, the inhibition of OGT altered the maturation process of immature moDCs, since a CD14medDC-SIGNlowHLA-DRmedCD80lowCD86high profile was noticed when OGT inhibitor, OSMI-1, was present. To evaluate DCs ability to influence T cell differentiation and polarization, we co-cultured these cells. Surprisingly, the observed phenotypic changes of mature moDCs generated in the presence of OSMI-1 led to an increased proliferation of allogeneic T cells, while their polarization was not affected. Taken together, we confirm that shifting the O-GlcNAcylation status due to OGT inhibition alters the differentiation and function of moDCs in in vitro conditions.
Collapse
Affiliation(s)
- Matjaž Weiss
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.W.); (M.A.)
| | - Marko Anderluh
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.W.); (M.A.)
| | - Martina Gobec
- The Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-4769-636
| |
Collapse
|
29
|
Altered protein O-GlcNAcylation in placentas from mothers with diabetes causes aberrant endocytosis in placental trophoblast cells. Sci Rep 2021; 11:20705. [PMID: 34667181 PMCID: PMC8526670 DOI: 10.1038/s41598-021-00045-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
Women with pre-existing diabetes have an increased risk of poor pregnancy outcomes, including disordered fetal growth, caused by changes to placental function. Here we investigate the possibility that the hexosamine biosynthetic pathway, which utilises cellular nutrients to regulate protein function via post-translationally modification with O-linked N-acetylglucosamine (GlcNAc), mediates the placental response to the maternal metabolic milieu. Mass spectrometry analysis revealed that the placental O-GlcNAcome is altered in women with type 1 (n = 6) or type 2 (n = 6) diabetes T2D (≥ twofold change in abundance in 162 and 165 GlcNAcylated proteins respectively compared to BMI-matched controls n = 11). Ingenuity pathway analysis indicated changes to clathrin-mediated endocytosis (CME) and CME-associated proteins, clathrin, Transferrin (TF), TF receptor and multiple Rabs, were identified as O-GlcNAcylation targets. Stimulating protein O-GlcNAcylation using glucosamine (2.5 mM) increased the rate of TF endocytosis by human placental cells (p = 0.02) and explants (p = 0.04). Differential GlcNAcylation of CME proteins suggests altered transfer of cargo by placentas of women with pre-gestational diabetes, which may contribute to alterations in fetal growth. The human placental O-GlcNAcome provides a resource to aid further investigation of molecular mechanisms governing placental nutrient sensing.
Collapse
|
30
|
Cantrelle FX, Loyens A, Trivelli X, Reimann O, Despres C, Gandhi NS, Hackenberger CPR, Landrieu I, Smet-Nocca C. Phosphorylation and O-GlcNAcylation of the PHF-1 Epitope of Tau Protein Induce Local Conformational Changes of the C-Terminus and Modulate Tau Self-Assembly Into Fibrillar Aggregates. Front Mol Neurosci 2021; 14:661368. [PMID: 34220449 PMCID: PMC8249575 DOI: 10.3389/fnmol.2021.661368] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation of the neuronal microtubule-associated Tau protein plays a critical role in the aggregation process leading to the formation of insoluble intraneuronal fibrils within Alzheimer's disease (AD) brains. In recent years, other posttranslational modifications (PTMs) have been highlighted in the regulation of Tau (dys)functions. Among these PTMs, the O-β-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates Tau phosphorylation and aggregation. We here focus on the role of the PHF-1 phospho-epitope of Tau C-terminal domain that is hyperphosphorylated in AD (at pS396/pS404) and encompasses S400 as the major O-GlcNAc site of Tau while two additional O-GlcNAc sites were found in the extreme C-terminus at S412 and S413. Using high resolution NMR spectroscopy, we showed that the O-GlcNAc glycosylation reduces phosphorylation of PHF-1 epitope by GSK3β alone or after priming by CDK2/cyclin A. Furthermore, investigations of the impact of PTMs on local conformation performed in small peptides highlight the role of S404 phosphorylation in inducing helical propensity in the region downstream pS404 that is exacerbated by other phosphorylations of PHF-1 epitope at S396 and S400, or O-GlcNAcylation of S400. Finally, the role of phosphorylation and O-GlcNAcylation of PHF-1 epitope was probed in in-vitro fibrillization assays in which O-GlcNAcylation slows down the rate of fibrillar assembly while GSK3β phosphorylation stimulates aggregation counteracting the effect of glycosylation.
Collapse
Affiliation(s)
- François-Xavier Cantrelle
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| | - Anne Loyens
- Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, U1172, CHU Lille, INSERM, University of Lille, Lille, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, Lille, France
| | - Oliver Reimann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clément Despres
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France
| | - Neha S Gandhi
- Centre for Genomics and Personalised Health, Cancer and Ageing Research Program, School of Chemistry and Physics, Faculty of Science and Engineering, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Isabelle Landrieu
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| |
Collapse
|
31
|
Ahmad K, Shaikh S, Lee EJ, Lee YH, Choi I. Consequences of Dicarbonyl Stress on Skeletal Muscle Proteins in Type 2 Diabetes. Curr Protein Pept Sci 2021; 21:878-889. [PMID: 31746292 DOI: 10.2174/1389203720666191119100759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/27/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is the largest organ in the body and constitutes almost 40% of body mass. It is also the primary site of insulin-mediated glucose uptake, and skeletal muscle insulin resistance, that is, diminished response to insulin, is characteristic of Type 2 diabetes (T2DM). One of the foremost reasons posited to explain the etiology of T2DM involves the modification of proteins by dicarbonyl stress due to an unbalanced metabolism and accumulations of dicarbonyl metabolites. The elevated concentration of dicarbonyl metabolites (i.e., glyoxal, methylglyoxal, 3-deoxyglucosone) leads to DNA and protein modifications, causing cell/tissue dysfunctions in several metabolic diseases such as T2DM and other age-associated diseases. In this review, we recapitulated reported effects of dicarbonyl stress on skeletal muscle and associated extracellular proteins with emphasis on the impact of T2DM on skeletal muscle and provided a brief introduction to the prevention/inhibition of dicarbonyl stress.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Yong-Ho Lee
- Department of Biomedical Sciences, Daegu Catholic University, Gyeongsan, 38430, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| |
Collapse
|
32
|
Ruegenberg S, Mayr FAMC, Atanassov I, Baumann U, Denzel MS. Protein kinase A controls the hexosamine pathway by tuning the feedback inhibition of GFAT-1. Nat Commun 2021; 12:2176. [PMID: 33846315 PMCID: PMC8041777 DOI: 10.1038/s41467-021-22320-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
The hexosamine pathway (HP) is a key anabolic pathway whose product uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor for glycosylation processes in mammals. It modulates the ER stress response and HP activation extends lifespan in Caenorhabditis elegans. The highly conserved glutamine fructose-6-phosphate amidotransferase 1 (GFAT-1) is the rate-limiting HP enzyme. GFAT-1 activity is modulated by UDP-GlcNAc feedback inhibition and via phosphorylation by protein kinase A (PKA). Molecular consequences of GFAT-1 phosphorylation, however, remain poorly understood. Here, we identify the GFAT-1 R203H substitution that elevates UDP-GlcNAc levels in C. elegans. In human GFAT-1, the R203H substitution interferes with UDP-GlcNAc inhibition and with PKA-mediated Ser205 phosphorylation. Our data indicate that phosphorylation affects the interactions of the two GFAT-1 domains to control catalytic activity. Notably, Ser205 phosphorylation has two discernible effects: it lowers baseline GFAT-1 activity and abolishes UDP-GlcNAc feedback inhibition. PKA controls the HP by uncoupling the metabolic feedback loop of GFAT-1.
Collapse
Affiliation(s)
- Sabine Ruegenberg
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Felix A. M. C. Mayr
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ilian Atanassov
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ulrich Baumann
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Martin S. Denzel
- grid.419502.b0000 0004 0373 6590Max Planck Institute for Biology of Ageing, Cologne, Germany ,grid.6190.e0000 0000 8580 3777CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
33
|
Cong R, Sun L, Yang J, Cui H, Ji X, Zhu J, Gu JH, He B. Protein O-GlcNAcylation alleviates small intestinal injury induced by ischemia-reperfusion and oxygen-glucose deprivation. Biomed Pharmacother 2021; 138:111477. [PMID: 33765582 DOI: 10.1016/j.biopha.2021.111477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/21/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023] Open
Abstract
Protein O-GlcNAcylation is a dynamic post-translational protein modification that regulates fundamental cellular functions in both normal physiology and diseases. The levels of protein O-GlcNAcylation are determined by flux of the hexosamine biosynthetic pathway (HBP), which is a branch of glycolysis, and are directly controlled by a pair of enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). An increase in protein O-GlcNAcylation has been shown to have protective effects on ischemia-related insults in the heart and brain. To determine whether O-GlcNAcylation plays a beneficial role in ischemia-reperfusion (IR)-induced intestinal injury, we used pharmacological manipulation of O-GlcNAc to induce loss- and gain-of-function conditions and evaluated the viability and apoptosis of intestinal epithelioid cells in an in vitro oxygen-glucose deprivation (OGD) model and tissue injury grade in a small intestinal ischemia-reperfusion (SIIR) mouse model. We found that 1) Upregulation of O-GlcNAcylation induced by glucosamine (GlcN, increase in HBP flux) or thiamet G (an OGA inhibitor) enhanced intestinal cell survival in the OGD model. In contrast, downregulation of O-GlcNAcylation induced by DON (due to a reduction in HBP flux) or OMSI-1 (an OGT inhibitor) made the cells more susceptible to hypoxia injury. 2) Reducing the increase in O-GlcNAcylation levels with a combination of either GlcN with DON or thiamet G with OMSI-1 partly canceled its protective effect on OGD-induced cell injury. 3) In the in vivo SIIR mouse model, GlcN augmented intestinal protein O-GlcNAcylation and significantly alleviated intestinal injury by inhibiting cell apoptosis. These results indicate that acute increases in protein O-GlcNAcylation confer protection against intestinal ischemia insults, suggesting that O-GlcNAcylation, as an endogenous stress sensor, could be a universal protective mechanism and could be a potential therapeutic target for intestinal ischemic disease.
Collapse
Affiliation(s)
- Ruochen Cong
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Linlin Sun
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jushun Yang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Hengxiang Cui
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Xin Ji
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Zhu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Bosheng He
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China; Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
34
|
Stephen HM, Praissman JL, Wells L. Generation of an Interactome for the Tetratricopeptide Repeat Domain of O-GlcNAc Transferase Indicates a Role for the Enzyme in Intellectual Disability. J Proteome Res 2021; 20:1229-1242. [PMID: 33356293 PMCID: PMC8577549 DOI: 10.1021/acs.jproteome.0c00604] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The O-GlcNAc transferase (OGT) modifies nuclear and cytoplasmic proteins with β-N-acetyl-glucosamine (O-GlcNAc). With thousands of O-GlcNAc-modified proteins but only one OGT encoded in the mammalian genome, a prevailing question is how OGT selects its substrates. Prior work has indicated that the tetratricopeptide repeat (TPR) domain of OGT is involved in substrate selection. Furthermore, several variants of OGT causal for X-linked intellectual disability (XLID) occur in the TPR domain. Therefore, we adapted the BioID labeling method to identify interactors of a TPR-BirA* fusion protein in HeLa cells. We identified 115 interactors representing known and novel O-GlcNAc-modified proteins and OGT interactors (raw data deposited in MassIVE, Dataset ID MSV000085626). The interactors are enriched in known OGT processes (e.g., chromatin remodeling) as well as processes in which OGT has yet to be implicated (e.g., pre-mRNA processing). Importantly, the identified TPR interactors are linked to several disease states but most notably are enriched in pathologies featuring intellectual disability that may underlie the mechanism by which mutations in OGT lead to XLID. This interactome for the TPR domain of OGT serves as a jumping-off point for future research exploring the role of OGT, the TPR domain, and its protein interactors in multiple cellular processes and disease mechanisms, including intellectual disability.
Collapse
Affiliation(s)
- Hannah M. Stephen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| | - Jeremy L. Praissman
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| |
Collapse
|
35
|
Chatham JC, Young ME, Zhang J. Reprint of: Role of O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins in diabetic cardiovascular complications. Curr Opin Pharmacol 2020; 54:209-220. [PMID: 33278716 DOI: 10.1016/j.coph.2020.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The post-translational modification of serine and threonine residues of proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates diverse cellular processes in the cardiovascular system. UDP-GlcNAc is a substrate for O-GlcNAc transferase, which catalyzes the attachment of O-GlcNAc to proteins. O-GlcNAcase catalyzes the removal of O-GlcNAc from proteins. UDP-GlcNAc is the end product of the hexosamine biosynthesis pathway, which is regulated primarily by glucose-6-phosphate-Glutamine:fructose-6-phosphate amidotransferase (GFAT). GFAT catalyzes the formation of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. Whereas O-GlcNAc is essential for cell viability, sustained increases in O-GlcNAc levels have been implicated in the etiology of many chronic diseases and is associated with glucose toxicity and diabetic complications in various organs including the cardiovascular system. This review provides an overview of the regulation of protein O-GlcNAcylation followed by a discussion of potential mechanisms by which dysregulation in O-GlcNAc cycling contributes to the adverse effects of diabetes on the cardiovascular system.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States; Birmingham VA Medical Center, Birmingham, AL, United States
| |
Collapse
|
36
|
Li F, Yang G, Tachikawa H, Shao K, Yang Y, Gao XD, Nakanishi H. Identification of novel O-GlcNAc transferase substrates using yeast cells expressing OGT. J GEN APPL MICROBIOL 2020; 67:33-41. [PMID: 33229814 DOI: 10.2323/jgam.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
O-GlcNAc modification mediated by O-GlcNAc transferase (OGT) is a reversible protein modification in which O-GlcNAc moieties are attached to target proteins in the cytosol, nucleus, and mitochondria. O-GlcNAc moieties attached to proteins can be removed by O-GlcNAcase (OGA). The addition of an O-GlcNAc moiety can influence several aspects of protein function, and aberrant O-GlcNAc modification is linked to a number of diseases. While OGT and OGA are conserved across eukaryotic cells, yeasts lack these enzymes. Previously, we reported that protein O-GlcNAc modification occurred in the budding yeast Saccharomyces cerevisiae when OGT was ectopically expressed. Because yeast cells lack OGA, O-GlcNAc moieties are stably attached to target proteins. Thus, the yeast system may be useful for finding novel OST substrates. By proteomic analysis, we identified 468 O-GlcNAcylated proteins in yeast cells expressing human OGT. Among these proteins, 13 have human orthologues that show more than 30% identity to their corresponding yeast orthologue, and possible glycosylation residues are conserved in these human orthologues. In addition, the orthologues have not been reported as substrates of OGT. We verified that some of these human orthologues are O-GlcNAcylated in cultured human cells. These proteins include an ubiquitin-conjugating enzyme, UBE2D1, and an eRF3-similar protein, HBS1L. Thus, the yeast system would be useful to find previously unknown O-GlcNAcylated proteins and regulatory mechanisms.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Hiroyuki Tachikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Kankai Shao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Yan Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| |
Collapse
|
37
|
Increased O-GlcNAcylation induces myocardial hypertrophy. In Vitro Cell Dev Biol Anim 2020; 56:735-743. [PMID: 32996013 DOI: 10.1007/s11626-020-00503-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 01/15/2023]
Abstract
Myocardial hypertrophy is a common precursor of many diseases, and it can lead to myocardial ischemia and weaken cardiac contractility. High-sugar diets and diabetes are high risk factors for cardiac hypertrophy. O-GlcNAcylation, a dynamic and ubiquitous post-translational glycosylation of proteins on serine/threonine residues, has been usually considered as a nutrient sensor. Hyperglycemia, hyperlipidemia, and hyperinsulinemia lead to an enhancement of protein O-GlcNAcylation; however, whether excessive O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of proteins in cardiomyocytes causes cardiac hypertrophy remains unclear. In this study, we treated cultured primary cardiomyocytes or mice with streptozotocin (STZ) or PUGNAc, two inhibitors of O-GlcNAcase (OGA) to elevate cellular O-GlcNAcylation. We found that increased O-GlcNAcylation induced hypertrophy-like changes by detecting cardiomyocyte morphology or measuring the thickness of mice left ventricular wall with HE staining. The mRNA levels of cardiac hypertrophy-related genes, atrial natriuretic peptide (ANP) and β-myosin heavy chain (β-MHC), are increased in drug treatment groups. We further found that the increase of O-GlcNAcylation upregulated the activity of cAMP response element-binding protein (CREB) in cultured primary cells and in vivo by detecting the phosphorylation level of CREB by Western blot and the mRNA levels of CREB downstream targets C-fos and C-jun by RT-qPCR. These results suggest that the increased O-GlcNAcylation in cardiomyocytes is associated with cardiac hypertrophy both in cultured cells and in vivo, which provides possible intervention targets and approaches for the clinical treatment of myocardial hypertrophy triggered by high carbohydrate diets.
Collapse
|
38
|
Chatham JC, Young ME, Zhang J. Role of O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins in diabetic cardiovascular complications. Curr Opin Pharmacol 2020; 57:1-12. [PMID: 32937226 DOI: 10.1016/j.coph.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
The post-translational modification of serine and threonine residues of proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates diverse cellular processes in the cardiovascular system. UDP-GlcNAc is a substrate for O-GlcNAc transferase, which catalyzes the attachment of O-GlcNAc to proteins. O-GlcNAcase catalyzes the removal of O-GlcNAc from proteins. UDP-GlcNAc is the end product of the hexosamine biosynthesis pathway, which is regulated primarily by glucose-6-phosphate-Glutamine:fructose-6-phosphate amidotransferase (GFAT). GFAT catalyzes the formation of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. Whereas O-GlcNAc is essential for cell viability, sustained increases in O-GlcNAc levels have been implicated in the etiology of many chronic diseases and is associated with glucose toxicity and diabetic complications in various organs including the cardiovascular system. This review provides an overview of the regulation of protein O-GlcNAcylation followed by a discussion of potential mechanisms by which dysregulation in O-GlcNAc cycling contributes to the adverse effects of diabetes on the cardiovascular system.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States; Birmingham VA Medical Center, Birmingham, AL, United States
| |
Collapse
|
39
|
Affiliation(s)
- Hayden Wilkinson
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
40
|
Xu S, Sun F, Wu R. A Chemoenzymatic Method Based on Easily Accessible Enzymes for Profiling Protein O-GlcNAcylation. Anal Chem 2020; 92:9807-9814. [PMID: 32574038 PMCID: PMC7437014 DOI: 10.1021/acs.analchem.0c01284] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O-GlcNAcylation has gradually been recognized as a critically important protein post-translational modification in mammalian cells. Besides regulation of gene expression, its crosstalk with protein phosphorylation is vital for cell signaling. Despite its importance, comprehensive analysis of O-GlcNAcylation is extraordinarily challenging due to the low abundances of many O-GlcNAcylated proteins and the complexity of biological samples. Here, we developed a novel chemoenzymatic method based on a wild-type galactosyltransferase and uridine diphosphate galactose (UDP-Gal) for global and site-specific analysis of protein O-GlcNAcylation. This method integrates enzymatic reactions and hydrazide chemistry to enrich O-GlcNAcylated peptides. All reagents used are more easily accessible and cost-effective as compared to the engineered enzyme and click chemistry reagents. Biological triplicate experiments were performed to validate the effectiveness and the reproducibility of this method, and the results are comparable with the previous chemoenzymatic method using the engineered enzyme and click chemistry. Moreover, because of the promiscuity of the galactosyltransferase, 18 unique O-glucosylated peptides were identified on the EGF domain from nine proteins. Considering that effective and approachable methods are critical to advance glycoscience research, the current method without any sample restrictions can be widely applied for global analysis of protein O-GlcNAcylation in different samples.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Naseri R, Navabi SJ, Samimi Z, Mishra AP, Nigam M, Chandra H, Olatunde A, Tijjani H, Morais-Urano RP, Farzaei MH. Targeting Glycoproteins as a therapeutic strategy for diabetes mellitus and its complications. Daru 2020; 28:333-358. [PMID: 32006343 PMCID: PMC7095136 DOI: 10.1007/s40199-020-00327-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Glycoproteins are organic compounds formed from proteins and carbohydrates, which are found in many parts of the living systems including the cell membranes. Furthermore, impaired metabolism of glycoprotein components plays the main role in the pathogenesis of diabetes mellitus. The aim of this study is to investigate the influence of glycoprotein levels in the treatment of diabetes mellitus. METHODS All relevant papers in the English language were compiled by searching electronic databases, including Scopus, PubMed and Cochrane library. The keywords of glycoprotein, diabetes mellitus, glycan, glycosylation, and inhibitor were searched until January 2019. RESULTS Glycoproteins are pivotal elements in the regulation of cell proliferation, growth, maturation and signaling pathways. Moreover, they are involved in drug binding, drug transportation, efflux of chemicals and stability of therapeutic proteins. These functions, structure, composition, linkages, biosynthesis, significance and biological effects are discussed as related to their use as a therapeutic strategy for the treatment of diabetes mellitus and its complications. CONCLUSIONS The findings revealed several chemical and natural compounds have significant beneficial effects on glycoprotein metabolism. The comprehension of glycoprotein structure and functions are very essential and inevitable to enhance the knowledge of glycoengineering for glycoprotein-based therapeutics as may be required for the treatment of diabetes mellitus and its associated complications. Graphical abstract.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Jafar Navabi
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, Hemwati Nandan Bahuguna Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Manisha Nigam
- Department of Biochemistry, Hemwati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Harish Chandra
- Department of Microbiology, Gurukul Kangri Vishwavidhyalya, Haridwar, Uttarakhand, 249404, India
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Habibu Tijjani
- Natural Product Research Laboratory, Department of Biochemistry, Bauchi State University, Gadau, Nigeria
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brasil
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
42
|
Spatiotemporal gating of SIRT1 functions by O-GlcNAcylation is essential for liver metabolic switching and prevents hyperglycemia. Proc Natl Acad Sci U S A 2020; 117:6890-6900. [PMID: 32152092 DOI: 10.1073/pnas.1909943117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inefficient physiological transitions are known to cause metabolic disorders. Therefore, investigating mechanisms that constitute molecular switches in a central metabolic organ like the liver becomes crucial. Specifically, upstream mechanisms that control temporal engagement of transcription factors, which are essential to mediate physiological fed-fast-refed transitions are less understood. SIRT1, a NAD+-dependent deacetylase, is pivotal in regulating hepatic gene expression and has emerged as a key therapeutic target. Despite this, if/how nutrient inputs regulate SIRT1 interactions, stability, and therefore downstream functions are still unknown. Here, we establish nutrient-dependent O-GlcNAcylation of SIRT1, within its N-terminal domain, as a crucial determinant of hepatic functions. Our findings demonstrate that during a fasted-to-refed transition, glycosylation of SIRT1 modulates its interactions with various transcription factors and a nodal cytosolic kinase involved in insulin signaling. Moreover, sustained glycosylation in the fed state causes nuclear exclusion and cytosolic ubiquitin-mediated degradation of SIRT1. This mechanism exerts spatiotemporal control over SIRT1 functions by constituting a previously unknown molecular relay. Of note, loss of SIRT1 glycosylation discomposed these interactions resulting in aberrant gene expression, mitochondrial dysfunctions, and enhanced hepatic gluconeogenesis. Expression of nonglycosylatable SIRT1 in the liver abrogated metabolic flexibility, resulting in systemic insulin resistance, hyperglycemia, and hepatic inflammation, highlighting the physiological costs associated with its overactivation. Conversely, our study also reveals that hyperglycosylation of SIRT1 is associated with aging and high-fat-induced obesity. Thus, we establish that nutrient-dependent glycosylation of SIRT1 is essential to gate its functions and maintain physiological fitness.
Collapse
|
43
|
Rani L, Mittal J, Mallajosyula SS. Effect of Phosphorylation and O-GlcNAcylation on Proline-Rich Domains of Tau. J Phys Chem B 2020; 124:1909-1918. [PMID: 32065850 DOI: 10.1021/acs.jpcb.9b11720] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The microtubule-associated protein Tau (MAPT) is a phosphoprotein in neurons of the brain. Aggregation of Tau is the leading cause of tauopathies such as Alzheimer's disease. Tau undergoes several post-translational modifications of which phosphorylation and O-GlcNAcylation are key chemical modifications. Tau aggregates into paired helical filaments and neurofibrillary tangles upon hyperphosphorylation, whereas O-GlcNAcylation stabilizes the soluble form of Tau. How specific phosphorylation and/or O-GlcNAcylation events influence Tau conformations remains largely unknown due to the disordered nature of Tau. In this study, we have investigated the phosphorylation- and O-GlcNAcylation-induced conformational effects on a Tau segment (Tau225-246) from the proline-rich domain (P2), by performing metadynamics simulations. We study two different phosphorylation patterns: Tau225-246, phosphorylated at T231 and S235, and Tau225-246, phosphorylated at T231, S235, S237, and S238. We also study O-GlcNAcylation at T231 and S235. We find that phosphorylation leads to the formation of strong salt-bridge contacts with adjacent lysine and arginine residues, which disrupts the native β-sheet structure observed in Tau225-246. We also observe the formation of a transient α-helix (238SAKSRLQ244) when Tau225-246 is phosphorylated at four sites. In contrast, O-GlcNAcylation shows only modest structural effects, and the resultant structure resembles the native form of the peptide. Our studies suggest the opposing structural effects of both protein post-translational modifications (PTMs) and the importance of salt bridges in governing the conformational preferences upon phosphorylation, highlighting the role of proximal arginine and lysine upon hyperphosphorylation.
Collapse
Affiliation(s)
- Lata Rani
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar382355, Gujarat, India
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Sairam S Mallajosyula
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar382355, Gujarat, India
| |
Collapse
|
44
|
Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel MS. Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun 2020; 11:687. [PMID: 32019926 PMCID: PMC7000685 DOI: 10.1038/s41467-020-14524-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/14/2020] [Indexed: 01/03/2023] Open
Abstract
Glutamine fructose-6-phosphate amidotransferase (GFAT) is the key enzyme in the hexosamine pathway (HP) that produces uridine 5′-diphospho-N-acetyl-d-glucosamine (UDP-GlcNAc), linking energy metabolism with posttranslational protein glycosylation. In Caenorhabditis elegans, we previously identified gfat-1 gain-of-function mutations that elevate UDP-GlcNAc levels, improve protein homeostasis, and extend lifespan. GFAT is highly conserved, but the gain-of-function mechanism and its relevance in mammalian cells remained unclear. Here, we present the full-length crystal structure of human GFAT-1 in complex with various ligands and with important mutations. UDP-GlcNAc directly interacts with GFAT-1, inhibiting catalytic activity. The longevity-associated G451E variant shows drastically reduced sensitivity to UDP-GlcNAc inhibition in enzyme activity assays. Our structural and functional data point to a critical role of the interdomain linker in UDP-GlcNAc inhibition. In mammalian cells, the G451E variant potently activates the HP. Therefore, GFAT-1 gain-of-function through loss of feedback inhibition constitutes a potential target for the treatment of age-related proteinopathies. Mutations in the hexosamine pathway key enzyme glutamine fructose-6-phosphate amidotransferase (GFAT-1) improve protein quality control and extend C. elegans lifespan. Here the authors present the crystal structures of full-length human GFAT-1 alone and with bound ligands and perform activity assays, which show that gain-of-function in the longevity-associated G451E variant is caused by a loss of feedback regulation.
Collapse
Affiliation(s)
- Sabine Ruegenberg
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany.,University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany
| | - Moritz Horn
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Christian Pichlo
- University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany
| | - Kira Allmeroth
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Ulrich Baumann
- University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany.
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany. .,CECAD-Cluster of Excellence, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
45
|
Deng Z, Yi X, Chu J, Zhuang Y. A study on enhanced O-glycosylation strategy for improved production of recombinant human chorionic gonadotropin in Chinese hamster ovary cells. J Biotechnol 2019; 306:159-168. [PMID: 31604106 DOI: 10.1016/j.jbiotec.2019.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 11/20/2022]
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein hormone that exists as a heterodimer comprised of an α subunit and β subunit linked with disulfide bridges. The β subunit contains four O-glycosylation sites. Previous studies have found that the translation of mRNA to polypeptides of the β subunit was a severely limiting step for the expression of recombinant hCG protein in Chinese hamster ovary (CHO) cells. The effects of O-glycosylation on recombinant hCG protein expression were assessed by adding O-glycan precursors and overexpressing and knocking down key regulatory genes of O-glycan precursor synthesis and O-glycan sugar chain synthesis or hydrolases. The results indicated that O-glycosylation was indeed limiting in the expression of recombinant hCG protein, and N-acetylgalactosamine (GalNAc) was the major limiting precursor. Glutamine-fructose-6-phosphate transaminase 2 (Gfat2) and Uridine diphosphate-glucose pyrophosphorylase 2 (Ugp2), key regulatory genes of O-glycan precursor synthesis, were overexpressed. Ugp2 overexpression significantly increased the recombinant hCG protein level by 1.92 times compared to that of the control. The LC-MS/MS analysis and Phaseolus vulgaris leucoagglutinin (PHA-L) lectin blot analysis showed that Ugp2 overexpression significantly increased the total galactosylation levels of intracellular proteins and the O-glycosylation of recombinant hCG protein. The stability of the hCG protein to trypsin digestion was also enhanced. Ugp2 is the major limiting enzyme of the O-glycan precursor synthesis in recombinant hCG protein production. Furthermore, the effects and mechanisms of the key genes of O-glycan sugar chain synthesis and hydrolases such as polypeptide N-acetylgalactosaminyltransferase1 (Galnt1), Core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase (C1galt1), O-linked N-acetylglucosamine transferase (Ogt) and Hexosaminidase (Hex), were evaluated. The results indicated that Galnt1 overexpression increased the recombinant hCG protein level by 1.57 times and improved the total galactosylation of intracellular proteins, O-glycosylation and the stability of recombinant hCG protein. Galnt1 is the major limiting enzyme of O-glycan sugar chain synthesis. Overexpression of Ugp2 and Galnt1 simultaneously improved the recombinant hCG protein level by 2.44 times, and both had synergistic effects. Based on the results of overexpression of Galnt1, the major limiting gene of O-Glycan chain synthesis, the precursors GalNAc and Gal were added and increased the recombinant hCG protein level by 3.68 times. This study revealed the major limiting factors of O-glycosylation of recombinant hCG protein in CHO cells and proposed an effective expression regulation strategy.
Collapse
Affiliation(s)
- Zhe Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200137, China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200137, China.
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200137, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200137, China
| |
Collapse
|
46
|
Guo J, Zhang G, Ma J, Zhao C, Xue Q, Wang J, Liu W, Liu K, Wang H, Liu N, Song Q, Li J. Detection and identification of O-GlcNAc-modified proteins using 6-azido-6-deoxy-N-acetyl-galactosamine. Org Biomol Chem 2019; 17:4326-4334. [PMID: 30976765 DOI: 10.1039/c9ob00516a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An unnatural monosaccharide with a C6-azide, Ac36AzGalNAc, has been developed as a potent and selective probe for O-GlcNAc-modified proteins. Combined with click chemistry, we demonstrate that Ac36AzGalNAc can robustly label O-GlcNAc glycosylation in a wide range of cell lines. Meanwhile, cell imaging and LC-MS/MS proteomics verify its selective activity on O-GlcNAc. More importantly, the protocol presented here provides a general methodology for tracking, capturing and identifying unnatural monosaccharide modified proteins in cells or cell lysates.
Collapse
Affiliation(s)
- Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Curcumin Ameliorates Nonalcoholic Fatty Liver Disease through Inhibition of O-GlcNAcylation. Nutrients 2019; 11:nu11112702. [PMID: 31717261 PMCID: PMC6893521 DOI: 10.3390/nu11112702] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The cause of progression to non-alcoholic fatty liver disease (NAFLD) is not fully understood. In the present study, we aimed to investigate how curcumin, a natural phytopolyphenol pigment, ameliorates NAFLD. Initially, we demonstrated that curcumin dramatically suppresses fat accumulation and hepatic injury induced in methionine and choline-deficient (MCD) diet mice. The severity of hepatic inflammation was alleviated by curcumin treatment. To identify the proteins involved in the pathogenesis of NAFLD, we also characterized the hepatic proteome in MCD diet mice. As a result of two-dimensional proteomic analysis, it was confirmed that thirteen proteins including antioxidant protein were differentially expressed in hepatic steatosis. However, the difference in expression was markedly improved by curcumin treatment. Interestingly, eight of the identified proteins are known to undergo O-GlcNAcylation modification. Thus, we further focused on elucidating how the regulation of O-linked β-N-acetylglucosamine (O-GlcNAc) modification is associated with the progression of hepatic steatosis leading to hepatitis in MCD diet mice. In parallel with lipid accumulation and inflammation, the MCD diet significantly up-regulated hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) via ER stress. Curcumin treatment alleviates the severity of hepatic steatosis by relieving the dependence of O-GlcNAcylation on nuclear factor-κB (NF-κB) in inflammation signaling. Conversely, the expressions of superoxide dismutase 1 (SOD1) and SIRT1 were significantly upregulated by curcumin treatment. In conclusion, curcumin inhibits O-GlcNAcylation pathway, leading to antioxidant responses in non-alcoholic steatohepatitis (NASH) mice. Therefore, curcumin will be a promising therapeutic agent for diseases involving hyper-O-GlcNAcylation, including cancer.
Collapse
|
48
|
Tao PF, Huang HC. Regulation of AβPP Glycosylation Modification and Roles of Glycosylation on AβPP Cleavage in Alzheimer's Disease. ACS Chem Neurosci 2019; 10:2115-2124. [PMID: 30802027 DOI: 10.1021/acschemneuro.8b00574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of senile plaques in the gray matter of the brain is one of the major pathologic features of Alzheimer's disease (AD), and amyloid-β (Aβ) is the main component of extracellular deposits of the senile plaques. Aβ derives from amyloid-β precursor protein (AβPP) cleaved by β-secretase (BACE1) and γ-secretase, and the abnormal cleavage of AβPP is an important event leading to overproduction and aggregation of Aβ species. After translation, AβPP undergoes post-translational modifications (PTMs) including glycosylation and phosphorylation in the endoplasmic reticulum (ER) and Golgi apparatus, and these modifications play an important role in regulating the cleavage of this protein. In this Review, we summarize research progress on the modification of glycosylation, especially O-GlcNAcylation and mucin-type O-linked glycosylation (also known as O-GalNAcylation), on the regulation of AβPP cleavage and on the influence of AβPP's glycosylation in the pathogenesis of AD.
Collapse
Affiliation(s)
- Peng-Fei Tao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| |
Collapse
|
49
|
Whitehead M, Wickremasinghe S, Osborne A, Van Wijngaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther 2018; 18:1257-1270. [PMID: 30408422 PMCID: PMC6299358 DOI: 10.1080/14712598.2018.1545836] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Diabetic retinopathy (DR) is the leading cause of vision loss in the working age population of the developed world. DR encompasses a complex pathology, and one that is reflected in the variety of currently available treatments, which include laser photocoagulation, glucocorticoids, vitrectomy and agents which neutralize vascular endothelial growth factor (VEGF). Whilst these options demonstrate modest clinical benefits, none is yet to fully attenuate clinical progression or reverse damage to the retina. This has led to an interest in developing novel therapies for the condition, such as mediators of angiopoietin signaling axes, immunosuppressants, nonsteroidal anti-inflammatory drugs (NSAIDs), oxidative stress inhibitors and vitriol viscosity inhibitors. Further, preclinical research suggests that gene therapy treatment for DR could provide significant benefits over existing treatments options. AREAS COVERED Here we review the pathophysiology of DR and provide an overview of currently available treatments. We then outline recent advances made towards improved patient outcomes and highlight the potential of the gene therapy paradigm to revolutionize DR management. EXPERT OPINION Whilst significant progress has been made towards our understanding of DR, further research is required to enable the development of a detailed spatiotemporal model of the disease. In addition, we hope that improvements in our knowledge of the condition facilitate therapeutic innovations that continue to address unmet medical need and improve patient outcomes, with a focus on the development of targeted medicines.
Collapse
Affiliation(s)
- Michael Whitehead
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Van Wijngaarden
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Eye Department, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Wellcome Trust – MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
50
|
Pan Z, Di S, Shi B, Jiang H, Shi Z, Liu Y, Wang Y, Luo H, Yu M, Wu X, Li Z. Increased antitumor activities of glypican-3-specific chimeric antigen receptor-modified T cells by coexpression of a soluble PD1-CH3 fusion protein. Cancer Immunol Immunother 2018; 67:1621-1634. [PMID: 30078052 PMCID: PMC11028056 DOI: 10.1007/s00262-018-2221-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 07/27/2018] [Indexed: 12/16/2022]
Abstract
Our recent clinical study demonstrated that glypican-3 (GPC3)-specific chimeric antigen receptor-modified T (CAR-T) cells are a promising treatment for hepatocellular carcinoma (HCC). However, the interaction of programmed cell death 1 (PD-1) and PD-L1-mediated T-cell inhibition is involved in immune evasion in a wide range of solid tumors, including HCC. To overcome this problem, we introduced a fusion protein composed of a PD-1 extracellular domain and CH3 from IgG4 into GPC3-specific CAR-T cells (GPC3-28Z) to block the PD-1/PD-L1 pathway. GPC3-specific CAR-T cells carrying the PD-1-CH3 fusion protein (sPD1) specifically recognized and lysed GPC3-positive HCC cells. The proliferation capacity of GPC3-28Z-sPD1 T cells after weekly stimulation with target cells was much higher than that of control GPC3-28Z T cells. Additionally, the coexpression of sPD1 could protect CAR-T cells from exhaustion when incubated with target cells, as phosphorylated AKT and Bcl-xL expression levels were higher in GPC3-28Z-sPD1 T cells than in GPC3-28Z cells. Importantly, in two HCC tumor xenograft models, GPC3-28Z-sPD1 T cells displayed a significantly higher tumor suppression capacity than GPC3-28Z T cells. In addition, an increased number of CD3+ T cells in the circulation and tumors and increased granzyme B levels and decreased Ki67 expression levels in the tumors were observed in the mice treated with GPC3-28Z-sPD1 T cells. Together, these data indicated that GPC3-specific CAR-T cells carrying sPD1 show promise as a treatment for patients with HCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/prevention & control
- Cells, Cultured
- Glypicans/immunology
- Glypicans/metabolism
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/prevention & control
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Protein Domains
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zeyan Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln. 2200, XieTu Road, Shanghai, 200032, China
| | - Shengmeng Di
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln. 2200, XieTu Road, Shanghai, 200032, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln. 2200, XieTu Road, Shanghai, 200032, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln. 2200, XieTu Road, Shanghai, 200032, China
| | | | - Ying Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln. 2200, XieTu Road, Shanghai, 200032, China
| | - Yi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln. 2200, XieTu Road, Shanghai, 200032, China
| | - Hong Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln. 2200, XieTu Road, Shanghai, 200032, China
| | - Min Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln. 2200, XieTu Road, Shanghai, 200032, China
| | - Xiuqi Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln. 2200, XieTu Road, Shanghai, 200032, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln. 2200, XieTu Road, Shanghai, 200032, China.
- CARsgen Therapeutics, Shanghai, China.
| |
Collapse
|