1
|
Marvian AT, Strauss T, Tang Q, Tuck BJ, Keeling S, Rüdiger D, Mirzazadeh Dizaji N, Mohammad-Beigi H, Nuscher B, Chakraborty P, Sutherland DS, McEwan WA, Köglsperger T, Zahler S, Zweckstetter M, Lichtenthaler SF, Wurst W, Schwarz S, Höglinger G. Distinct regulation of Tau Monomer and aggregate uptake and intracellular accumulation in human neurons. Mol Neurodegener 2024; 19:100. [PMID: 39736627 DOI: 10.1186/s13024-024-00786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates. However, similarities or differences in neuronal transport mechanisms between Tau species remain elusive. METHOD Monomers, oligomers, and fibrils of recombinant 2N4R Tau were produced and characterized by biochemical and biophysical methods. A neuronal eTau uptake and accumulation assay was developed for human induced pluripotent stem cell-derived neurons (iPSCNs) and Lund human mesencephalic cells (LUHMES)-derived neurons. Mechanisms of uptake and cellular accumulation of eTau species were studied by using small molecule inhibitors of endocytic mechanisms and siRNAs targeting Tau uptake mediators. RESULTS Extracellular Tau aggregates accumulated more than monomers in human neurons, mainly due to the higher efficiency of small fibrillar and soluble oligomeric aggregates in intraneuronal accumulation. A competition assay revealed a distinction in the neuronal accumulation between physiological eTau Monomers and pathology-relevant aggregates, suggesting differential transport mechanisms. Blocking heparan sulfate proteoglycans (HSPGs) with heparin only inhibited the accumulation of eTau aggregates, whereas monomers' uptake remained unaltered. At the molecular level, the downregulation of genes involved in HSPG synthesis exclusively blocked neuronal accumulation of eTau aggregates but not monomers, suggesting its role in the transport of pathologic Tau. Moreover, the knockdown of LRP1, as a receptor of Tau, mainly reduced the accumulation of monomeric form, confirming its involvement in Tau's physiological transport. CONCLUSION These data propose that despite the similarity in the cellular mechanism, the uptake and accumulation of eTau Monomers and aggregates in human neurons are regulated by different molecular mediators. Thus, they address the possibility of targeting the pathological spreading of Tau aggregates without disturbing the probable physiological or non-pathogenic transport of Tau Monomers.
Collapse
Affiliation(s)
- Amir T Marvian
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Tabea Strauss
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
| | - Qilin Tang
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
| | - Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel Rüdiger
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Negar Mirzazadeh Dizaji
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Hossein Mohammad-Beigi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Brigitte Nuscher
- Division of Metabolic Biochemistry, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Gӧttingen, Germany
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas Köglsperger
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Gӧttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Gӧttingen, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Freising, Germany
| | - Sigrid Schwarz
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Haag, Geriatric Clinic Haag, Oberbayern, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Department of Neurology, Hanover Medical School, Hanover, Germany.
- Center for Systems Neuroscience, Hanover, Germany.
| |
Collapse
|
2
|
Volkova E, Pozdnyakov I, Petukhov M, Polezhaeva V. From Molecules to Amoeboid Movement: A New Way for Understanding the Morphology Through Actin-Binding Proteins. Biomolecules 2024; 14:1583. [PMID: 39766290 PMCID: PMC11673790 DOI: 10.3390/biom14121583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Amoebozoa is a group of single-celled organisms that change their shape during locomotion. However, there is a taxon-specific complex of morphological characters inherent in the moving amoebae, known as locomotive forms. Actin is one of the proteins most important for amoeboid movement that, together with actin-binding proteins, construct the architecture of the cytoskeleton in the amoeboid cells. One of the actin-binding proteins is the Arp2/3 complex that provides a connection between actin filaments at an angle of 70°. In this paper, we predicted 3D models of bonded subunits Arp2 and Arp3 for 30 species from different taxa of Amoebozoa based on the publicly available transcriptomic data. Moreover, we predicted the binding free energy (ΔG) of bonded subunits Arp2 and Arp3 for 30 species and tried to link it to the morphology of the locomotive forms of amoebae. The ΔG values are the lowest in amoebae with the broad hyaline area, like Vannella spp. Amoebae that produce thin hyaline projections, like Vexillifera abyssalis, are characterized by intermediate ΔG values. Finally, the highest ΔG values are typical for the group of amoebae that have no conspicuous hyaline areas of the cytoplasm, like Pelomyxa shiedti, or have small hyaline caps, like Arcella intermedia. The presented analysis provides new insights into the molecular mechanisms of shape formation in amoeboid cells.
Collapse
Affiliation(s)
- Ekaterina Volkova
- Zoological Institute RAS, St. Petersburg 199034, Russia; (I.P.); (V.P.)
| | - Igor Pozdnyakov
- Zoological Institute RAS, St. Petersburg 199034, Russia; (I.P.); (V.P.)
| | - Mikhail Petukhov
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Gatchina 188300, Russia;
| | - Valeriia Polezhaeva
- Zoological Institute RAS, St. Petersburg 199034, Russia; (I.P.); (V.P.)
- Institute of Applied Computer Science, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
3
|
Wang C, Zhou G, Guo X, Zhang W, Wu C. Electrical Stimulation Promotes Endocytosis of Magnetic Nanoparticles by Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403381. [PMID: 39126240 DOI: 10.1002/smll.202403381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 08/12/2024]
Abstract
Nanomaterials are increasingly used in biomedical imaging and cancer therapy, and how to improve the endocytosis of nanomaterials by cells is a key issue. The application of alternating current (AC) electrical stimulation to osteosarcoma cells (MG-63) here can increase the cellular endocytosis of Fe3O4 nanoparticles (diameter: 50 nm) by 52.46% via macropinocytosis. This can be ascribed to the decrease in F-actin content and the increase in intracellular Ca2+ concentration. Transmission electron microscope, immunofluorescence staining, western blot, flow cytometry, and inductively coupled plasma emission spectrometer analyses support this interpretation. The application of electrical stimulation decreases the cell viability in magnetic hyperthermia by 47.6% and increases the signal intensity of magnetic resonance imaging by 29%. Similar enhanced endocytosis is observed for breast cancer cells (MCF-7), glioblastoma cells (U-87 MG), melanoma cells (A-375), and bladder cancer cells (TCCSUP), and also for Fe3O4 nanoparticles with the diameters of 20 and 100 nm, and Zn0.54Co0.46Cr0.65Fe1.35O4 nanoparticles with the diameter of 70 nm. It seems the electrical stimulation has the potential to improve the diagnostic and therapeutic effects of magnetic nanoparticles by promoting endocytosis.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Guanlin Zhou
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xu Guo
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wei Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chengwei Wu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Oevel K, Hohensee S, Kumar A, Rosas-Brugada I, Bartolini F, Soykan T, Haucke V. Rho GTPase signaling and mDia facilitate endocytosis via presynaptic actin. eLife 2024; 12:RP92755. [PMID: 38502163 PMCID: PMC10950329 DOI: 10.7554/elife.92755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Neurotransmission at synapses is mediated by the fusion and subsequent endocytosis of synaptic vesicle membranes. Actin has been suggested to be required for presynaptic endocytosis but the mechanisms that control actin polymerization and its mode of action within presynaptic nerve terminals remain poorly understood. We combine optical recordings of presynaptic membrane dynamics and ultrastructural analysis with genetic and pharmacological manipulations to demonstrate that presynaptic endocytosis is controlled by actin regulatory diaphanous-related formins mDia1/3 and Rho family GTPase signaling in mouse hippocampal neurons. We show that impaired presynaptic actin assembly in the near absence of mDia1/3 and reduced RhoA activity is partly compensated by hyperactivation of Rac1. Inhibition of Rac1 signaling further aggravates impaired presynaptic endocytosis elicited by loss of mDia1/3. Our data suggest that interdependent mDia1/3-Rho and Rac1 signaling pathways cooperatively act to facilitate synaptic vesicle endocytosis by controlling presynaptic F-actin.
Collapse
Affiliation(s)
- Kristine Oevel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Svea Hohensee
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University Medical CenterNew York CityUnited States
| | | | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Medical CenterNew York CityUnited States
| | - Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität BerlinBerlinGermany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
5
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
6
|
Rioux DJ, Prosser DC. A CIE change in our understanding of endocytic mechanisms. Front Cell Dev Biol 2023; 11:1334798. [PMID: 38192364 PMCID: PMC10773762 DOI: 10.3389/fcell.2023.1334798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The past six decades have seen major advances in our understanding of endocytosis, ranging from descriptive studies based on electron microscopy to biochemical and genetic characterization of factors required for vesicle formation. Most studies focus on clathrin as the major coat protein; indeed, clathrin-mediated endocytosis (CME) is the primary pathway for internalization. Clathrin-independent (CIE) pathways also exist, although mechanistic understanding of these pathways remains comparatively elusive. Here, we discuss how early studies of CME shaped our understanding of endocytosis and describe recent advances in CIE, including pathways in model organisms that are poised to provide key insights into endocytic regulation.
Collapse
Affiliation(s)
- Daniel J. Rioux
- Life Sciences, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
7
|
Ogunmowo TH, Jing H, Raychaudhuri S, Kusick GF, Imoto Y, Li S, Itoh K, Ma Y, Jafri H, Dalva MB, Chapman ER, Ha T, Watanabe S, Liu J. Membrane compression by synaptic vesicle exocytosis triggers ultrafast endocytosis. Nat Commun 2023; 14:2888. [PMID: 37210439 PMCID: PMC10199930 DOI: 10.1038/s41467-023-38595-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
Compensatory endocytosis keeps the membrane surface area of secretory cells constant following exocytosis. At chemical synapses, clathrin-independent ultrafast endocytosis maintains such homeostasis. This endocytic pathway is temporally and spatially coupled to exocytosis; it initiates within 50 ms at the region immediately next to the active zone where vesicles fuse. However, the coupling mechanism is unknown. Here, we demonstrate that filamentous actin is organized as a ring, surrounding the active zone at mouse hippocampal synapses. Assuming the membrane area conservation is due to this actin ring, our theoretical model suggests that flattening of fused vesicles exerts lateral compression in the plasma membrane, resulting in rapid formation of endocytic pits at the border between the active zone and the surrounding actin-enriched region. Consistent with model predictions, our data show that ultrafast endocytosis requires sufficient compression by exocytosis of multiple vesicles and does not initiate when actin organization is disrupted, either pharmacologically or by ablation of the actin-binding protein Epsin1. Our work suggests that membrane mechanics underlie the rapid coupling of exocytosis to endocytosis at synapses.
Collapse
Affiliation(s)
- Tyler H Ogunmowo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Haoyuan Jing
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Sumana Raychaudhuri
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Grant F Kusick
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Yuuta Imoto
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Shuo Li
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA, US
| | - Kie Itoh
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Ye Ma
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Haani Jafri
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
- Department of Cell and Molecular Biology and the Tulane Brain Institute, Tulane University, New Orleans, LA, US
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, US
- Howard Hughes Medical Institute, Madison, WI, US
| | - Taekjip Ha
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, US
- Howard Hughes Medical Institute, Baltimore, MD, US
| | - Shigeki Watanabe
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| | - Jian Liu
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| |
Collapse
|
8
|
Skruzny M. The endocytic protein machinery as an actin-driven membrane-remodeling machine. Eur J Cell Biol 2022; 101:151267. [PMID: 35970066 DOI: 10.1016/j.ejcb.2022.151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.
Collapse
Affiliation(s)
- Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
9
|
Li D. Role of Spectrin in Endocytosis. Cells 2022; 11:cells11152459. [PMID: 35954302 PMCID: PMC9368487 DOI: 10.3390/cells11152459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoskeletal spectrin is found in (non)erythroid cells. Eukaryotic endocytosis takes place for internalizing cargos from extracellular milieu. The role of spectrin in endocytosis still remains poorly understood. Here, I summarize current knowledge of spectrin function, spectrin-based cytoskeleton and endocytosis of erythrocytes, and highlight how spectrin contributes to endocytosis and working models in different types of cells. From an evolutionary viewpoint, I discuss spectrin and endocytosis in a range of organisms, particularly in plants and yeast where spectrin is absent. Together, the role of spectrin in endocytosis is related to its post-translational modification, movement/rearrangement, elimination (by proteases) and meshwork fencing.
Collapse
Affiliation(s)
- Donghai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Exploration of Deformation of F-Actin during Macropinocytosis by Confocal Microscopy and 3D-Structured Illumination Microscopy. PHOTONICS 2022. [DOI: 10.3390/photonics9070461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Since their invention, confocal microscopy and super-resolution microscopy have become important choices in cell biology research. Macropinocytosis is a critical form of endocytosis. Deformation of the cell membrane is thought to be closely related to the movement of F-actin during macropinocytosis. However, it is still unclear how the morphology of F-actin and the membrane change during this process. In this study, confocal microscopy was utilized for macroscopic time-series imaging of the cell membranes and F-actin in cells induced by phorbol 12-myristate 13-acetate (PMA). Super-resolution structured illumination microscopy (SIM), which can overcome the diffraction limit, was used to demonstrate the morphological characteristics of F-actin filaments. Benefiting from the advantages of SIM in terms of resolution and 3D imaging, we speculated on the regular pattern of the deformation of F-actin during macropinocytosis. The detailed visualization of structures also helped to validate the speculation regarding the role of F-actin filaments in macropinocytosis in previous studies. The results obtained in this study will provide a better understanding of the mechanisms underlying macropinocytosis and endocytosis.
Collapse
|
11
|
Titanium Dioxide (E171) Induces Toxicity in H9c2 Rat Cardiomyoblasts and Ex Vivo Rat Hearts. Cardiovasc Toxicol 2022; 22:713-726. [PMID: 35633469 DOI: 10.1007/s12012-022-09747-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 01/15/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Food-grade TiO2 (E171) is the most widely used additive in the food industry. Existing evidence shows TiO2 nanoparticles reach systemic circulation through biological barriers, penetrate cell membranes, accumulate in cells of different organs, and cause damage; however, their effects on cardiac cells and the development of heart diseases are still unexplored. Therefore, in this work, we tested E171 toxicity in rat cardiomyoblasts and hearts. E171 internalization and impact on cell viability, proliferation, mitochondria, lysosomes, F-actin distribution, and cell morphology were evaluated in H9c2 cells. Additionally, effects of E171 were measured on cardiac function in ex vivo rat hearts. E171 was uptaken by cells and translocated into the cytoplasm. E171 particles changed cell morphology reducing proliferation and metabolic activity. Higher caspase-3 and caspase-9 expression as well as Tunel-positive cells induced by E171 exposure indicate apoptotic death. Mitochondrial and lysosome alterations resulting from mitophagy were detected after 24 and 48 h exposure, respectively. Additionally, high E171 concentrations caused rearrangements of the F-actin cytoskeleton. Finally, hearts exposed to E171 showed impaired cardiac function. These results support E171 toxicity in cardiac cells in vitro altering cardiac function in an ex vivo model, indicating that consumption of this food additive could be toxic and may lead to the development of cardiovascular disease.
Collapse
|
12
|
Mayya C, Naveena AH, Sinha P, Wunder C, Johannes L, Bhatia D. The roles of dynein and myosin VI motor proteins in endocytosis. J Cell Sci 2022; 135:274777. [DOI: 10.1242/jcs.259387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ABSTRACT
Endocytosis is indispensable for multiple cellular processes, including signalling, cell adhesion, migration, as well as the turnover of plasma membrane lipids and proteins. The dynamic interplay and regulation of different endocytic entry routes requires multiple cytoskeletal elements, especially motor proteins that bind to membranes and transport vesicles along the actin and microtubule cytoskeletons. Dynein and kinesin motor proteins transport vesicles along microtubules, whereas myosins drive vesicles along actin filaments. Here, we present a brief overview of multiple endocytic pathways and our current understanding of the involvement of these motor proteins in the regulation of the different cellular entry routes. We particularly focus on structural and mechanistic details of the retrograde motor proteins dynein and myosin VI (also known as MYO6), along with their adaptors, which have important roles in the early events of endocytosis. We conclude by highlighting the key challenges in elucidating the involvement of motor proteins in endocytosis and intracellular membrane trafficking.
Collapse
Affiliation(s)
- Chaithra Mayya
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| | - A. Hema Naveena
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| | - Pankhuri Sinha
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| | - Christian Wunder
- Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, 26 rue d'Ulm, 75248 Paris CEDEX 05, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, 26 rue d'Ulm, 75248 Paris CEDEX 05, France
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, India
| |
Collapse
|
13
|
Kos J, Mitrović A, Perišić Nanut M, Pišlar A. Lysosomal peptidases – Intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio 2022; 12:708-738. [PMID: 35067006 PMCID: PMC8972049 DOI: 10.1002/2211-5463.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal peptidases are hydrolytic enzymes capable of digesting waste proteins that are targeted to lysosomes via endocytosis and autophagy. Besides intracellular protein catabolism, they play more specific roles in several other cellular processes and pathologies, either within lysosomes, upon secretion into the cell cytoplasm or extracellular space, or bound to the plasma membrane. In cancer, lysosomal peptidases are generally associated with disease progression, as they participate in crucial processes leading to changes in cell morphology, signaling, migration, and invasion, and finally metastasis. However, they can also enhance the mechanisms resulting in cancer regression, such as apoptosis of tumor cells or antitumor immune responses. Lysosomal peptidases have also been identified as hallmarks of aging and neurodegeneration, playing roles in oxidative stress, mitochondrial dysfunction, abnormal intercellular communication, dysregulated trafficking, and the deposition of protein aggregates in neuronal cells. Furthermore, deficiencies in lysosomal peptidases may result in other pathological states, such as lysosomal storage disease. The aim of this review was to highlight the role of lysosomal peptidases in particular pathological processes of cancer and neurodegeneration and to address the potential of lysosomal peptidases in diagnosing and treating patients.
Collapse
Affiliation(s)
- Janko Kos
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Ana Mitrović
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Milica Perišić Nanut
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Anja Pišlar
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
14
|
Sing CN, Yang EJ, Swayne TC, Higuchi-Sanabria R, Tsang CA, Boldogh IR, Pon LA. Imaging the Actin Cytoskeleton in Live Budding Yeast Cells. Methods Mol Biol 2022; 2364:53-80. [PMID: 34542848 PMCID: PMC11060504 DOI: 10.1007/978-1-0716-1661-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Although budding yeast, Saccharomyces cerevisiae, is widely used as a model organism in biological research, studying cell biology in yeast was hindered due to its small size, rounded morphology, and cell wall. However, with improved techniques, researchers can acquire high-resolution images and carry out rapid multidimensional analysis of a yeast cell. As a result, imaging in yeast has emerged as an important tool to study cytoskeletal organization, function, and dynamics. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in live yeast cells.
Collapse
Affiliation(s)
- Cierra N Sing
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Emily J Yang
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Theresa C Swayne
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Catherine A Tsang
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY, USA
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY, USA.
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Das J, Tiwari M, Subramanyam D. Clathrin Light Chains: Not to Be Taken so Lightly. Front Cell Dev Biol 2022; 9:774587. [PMID: 34970544 PMCID: PMC8712872 DOI: 10.3389/fcell.2021.774587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 01/31/2023] Open
Abstract
Clathrin is a cytosolic protein involved in the intracellular trafficking of a wide range of cargo. It is composed of three heavy chains and three light chains that together form a triskelion, the subunit that polymerizes to form a clathrin coated vesicle. In addition to its role in membrane trafficking, clathrin is also involved in various cellular and biological processes such as chromosomal segregation during mitosis and organelle biogenesis. Although the role of the heavy chains in regulating important physiological processes has been well documented, we still lack a complete understanding of how clathrin light chains regulate membrane traffic and cell signaling. This review highlights the importance and contributions of clathrin light chains in regulating clathrin assembly, vesicle formation, endocytosis of selective receptors and physiological and developmental processes.
Collapse
Affiliation(s)
- Jyoti Das
- National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Mahak Tiwari
- National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
16
|
Zhang Y, Li L, Wang J. Role of Ligand Distribution in the Cytoskeleton-Associated Endocytosis of Ellipsoidal Nanoparticles. MEMBRANES 2021; 11:membranes11120993. [PMID: 34940494 PMCID: PMC8705050 DOI: 10.3390/membranes11120993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
Nanoparticle (NP)–cell interaction mediated by receptor–ligand bonds is a crucial phenomenon in pathology, cellular immunity, and drug delivery systems, and relies strongly on the shape of NPs and the stiffness of the cell. Given this significance, a fundamental question is raised on how the ligand distribution may affect the membrane wrapping of non-spherical NPs under the influence of cytoskeleton deformation. To address this issue, in this work we use a coupled elasticity–diffusion model to systematically investigate the role of ligand distribution in the cytoskeleton-associated endocytosis of ellipsoidal NPs for different NP shapes, sizes, cytoskeleton stiffness, and the initial receptor densities. In this model, we have taken into account the effects of receptor diffusion, receptor–ligand binding, cytoskeleton and membrane deformations, and changes in the configuration entropy of receptors. By solving this model, we find that the uptake process can be significantly influenced by the ligand distribution. Additionally, there exists an optimal state of such a distribution, which corresponds to the fastest uptake efficiency and depends on the NP aspect ratio and cytoskeleton stiffness. We also find that the optimal distribution usually needs local ligand density to be sufficiently high at the large curvature region. Furthermore, the optimal state of NP entry into cells can tolerate slight changes to the corresponding optimal distribution of the ligands. The tolerance to such a change is enhanced as the average receptor density and NP size increase. These results may provide guidelines to control NP–cell interactions and improve the efficiency of target drug delivery systems.
Collapse
Affiliation(s)
| | - Long Li
- Correspondence: (L.L.); (J.W.)
| | | |
Collapse
|
17
|
Imaging the Actin Cytoskeleton in Fixed Budding Yeast Cells. Methods Mol Biol 2021; 2364:81-100. [PMID: 34542849 PMCID: PMC10131176 DOI: 10.1007/978-1-0716-1661-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Budding yeast, Saccharomyces cerevisiae, is an appealing model organism to study the organization and function of the actin cytoskeleton. With the advent of techniques to perform high-resolution, multidimensional analysis of the yeast cell, imaging of yeast has emerged as an important tool for research on the cytoskeleton. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in fixed yeast cells with wide-field and super-resolution fluorescence microscopy.
Collapse
|
18
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
19
|
Cheng X, Chen K, Dong B, Yang M, Filbrun SL, Myoung Y, Huang TX, Gu Y, Wang G, Fang N. Dynamin-dependent vesicle twist at the final stage of clathrin-mediated endocytosis. Nat Cell Biol 2021; 23:859-869. [PMID: 34253896 PMCID: PMC8355216 DOI: 10.1038/s41556-021-00713-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Dynamin plays an important role in clathrin-mediated endocytosis (CME) by cutting the neck of nascent vesicles from the cell membrane. Here through using gold nanorods as cargos to image dynamin action during live CME, we show that near the peak of dynamin accumulation, the cargo-containing vesicles always exhibit abrupt, right-handed rotations that finish in a short time (~0.28 s). The large and quick twist, herein named the super twist, is the result of the coordinated dynamin helix action upon GTP hydrolysis. After the super twist, the rotational freedom of the vesicle drastically increases, accompanied with simultaneous or delayed translational movement, indicating that it detaches from the cell membrane. These observations suggest that dynamin-mediated scission involves a large torque generated by coordinated actions of multiple dynamins in the helix, which is the main driving force for vesicle scission.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Meek Yang
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Seth L Filbrun
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Yong Myoung
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Teng-Xiang Huang
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Yan Gu
- The Bristol-Myers Squibb Company, Devens, MA, USA
| | - Gufeng Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, GA, USA. .,State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
20
|
Gihana GM, Cross-Najafi AA, Lacefield S. The mitotic exit network regulates the spatiotemporal activity of Cdc42 to maintain cell size. J Cell Biol 2021; 220:211575. [PMID: 33284320 PMCID: PMC7721911 DOI: 10.1083/jcb.202001016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022] Open
Abstract
During G1 in budding yeast, the Cdc42 GTPase establishes a polar front, along which actin is recruited to direct secretion for bud formation. Cdc42 localizes at the bud cortex and then redistributes between mother and daughter in anaphase. The molecular mechanisms that terminate Cdc42 bud-localized activity during mitosis are poorly understood. We demonstrate that the activity of the Cdc14 phosphatase, released through the mitotic exit network, is required for Cdc42 redistribution between mother and bud. Induced Cdc14 nucleolar release results in premature Cdc42 redistribution between mother and bud. Inhibition of Cdc14 causes persistence of Cdc42 bud localization, which perturbs normal cell size and spindle positioning. Bem3, a Cdc42 GAP, binds Cdc14 and is dephosphorylated at late anaphase in a Cdc14-dependent manner. We propose that Cdc14 dephosphorylates and activates Bem3 to allow Cdc42 inactivation and redistribution. Our results uncover a mechanism through which Cdc14 regulates the spatiotemporal activity of Cdc42 to maintain normal cell size at cytokinesis.
Collapse
Affiliation(s)
| | | | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
21
|
Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021; 172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.
Collapse
Affiliation(s)
- J Deprez
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Engelen
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
22
|
Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Arch Toxicol 2021; 95:2065-2079. [PMID: 33847777 DOI: 10.1007/s00204-021-03044-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
Mycotoxin contamination in foods is a major risk factor for human and animal health due to its prevalence in cereals and their by-products. Deoxynivalenol (DON), mainly produced by Fusarium genera, is the most common mycotoxin detected in cereal products. Deoxynivalenol disrupts intestinal barrier function and decreases protein levels of tight junction proteins (TJP). However, the overall mechanism by which DON regulates specific TJP turnover and epithelial cell integrity remains unclear. Herein, we show that DON (2 μM) decreases the protein stability and accelerates the degradation of TJP in the lysosome. Interestingly, pretreatment of cells with dynasore (a dynamin-dependent endocytosis inhibitor) protected against DON-induced degradation of claudin-3 and 4. Immunofluorescence analysis also shows that the decreased membrane presence of claudin-4 and ZO-1 induced by DON is reversible with dynamin inhibition, whereas the pretreatment with cytochalasin D (an actin-dependent endocytosis inhibitor) reverses the degradation of claudin-1 and 4 induced by DON. We also show that the endocytosis and degradation of claudin-1 is regulated by p38 mitogen-activated protein kinase (MAPK), whereas the endocytosis of claudin-4 and ZO-1 is mediated by c-Jun-N-terminal kinase (JNK). Resveratrol, with JNK inhibitory activity, also prevents the endocytosis and degradation of claudin-4 and ZO-1 and protects against DON-induced decrease in transepithelial electrical resistance (TEER) and increase in FITC-dextran permeability. Collectively, this study, for the first time, shows that DON accelerates the endocytosis and degradation of TJP and this is regulated by the activation of p38 MAPK and JNK signaling pathways. Therefore, natural bioactive compounds with p38 MAPK and JNK inhibitory activities may be effective in preventing the DON-induced TJP disruption and preserve gut barrier function in vivo.
Collapse
|
23
|
Elsadek LA, Matthews JH, Nishimura S, Nakatani T, Ito A, Gu T, Luo D, Salvador-Reyes LA, Paul VJ, Kakeya H, Luesch H. Genomic and Targeted Approaches Unveil the Cell Membrane as a Major Target of the Antifungal Cytotoxin Amantelide A. Chembiochem 2021; 22:1790-1799. [PMID: 33527693 DOI: 10.1002/cbic.202000685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Amantelide A, a polyhydroxylated macrolide isolated from a marine cyanobacterium, displays broad-spectrum activity against mammalian cells, bacterial pathogens, and marine fungi. We conducted comprehensive mechanistic studies to identify the molecular targets and pathways affected by amantelide A. Our investigations relied on chemical structure similarities with compounds of known mechanisms, yeast knockout mutants, yeast chemogenomic profiling, and direct biochemical and biophysical methods. We established that amantelide A exerts its antifungal action by binding to ergosterol-containing membranes followed by pore formation and cell death, a mechanism partially shared with polyene antifungals. Binding assays demonstrated that amantelide A also binds to membranes containing epicholesterol or mammalian cholesterol, thus suggesting that the cytotoxicity to mammalian cells might be due to its affinity to cholesterol-containing membranes. However, membrane interactions were not completely dependent on sterols. Yeast chemogenomic profiling suggested additional direct or indirect effects on actin. Accordingly, we performed actin polymerization assays, which suggested that amantelide A also promotes actin polymerization in cell-free systems. However, the C-33 acetoxy derivative amantelide B showed a similar effect on actin dynamics in vitro but no significant activity against yeast. Overall, these studies suggest that the membrane effects are the most functionally relevant for amantelide A mechanism of action.
Collapse
Affiliation(s)
- Lobna A Elsadek
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - James H Matthews
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Shinichi Nishimura
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahiro Nakatani
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Airi Ito
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Danmeng Luo
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Lilibeth A Salvador-Reyes
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, 1100, Philippines
| | - Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Ft., Pierce, FL 34949, USA
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| |
Collapse
|
24
|
Wu XS, Subramanian S, Zhang Y, Shi B, Xia J, Li T, Guo X, El-Hassar L, Szigeti-Buck K, Henao-Mejia J, Flavell RA, Horvath TL, Jonas EA, Kaczmarek LK, Wu LG. Presynaptic Kv3 channels are required for fast and slow endocytosis of synaptic vesicles. Neuron 2021; 109:938-946.e5. [PMID: 33508244 PMCID: PMC7979485 DOI: 10.1016/j.neuron.2021.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 01/25/2023]
Abstract
Since their discovery decades ago, the primary physiological and pathological effects of potassium channels have been attributed to their ion conductance, which sets membrane potential and repolarizes action potentials. For example, Kv3 family channels regulate neurotransmitter release by repolarizing action potentials. Here we report a surprising but crucial function independent of potassium conductance: by organizing the F-actin cytoskeleton in mouse nerve terminals, the Kv3.3 protein facilitates slow endocytosis, rapid endocytosis, vesicle mobilization to the readily releasable pool, and recovery of synaptic depression during repetitive firing. A channel mutation that causes spinocerebellar ataxia inhibits endocytosis, vesicle mobilization, and synaptic transmission during repetitive firing by disrupting the ability of the channel to nucleate F-actin. These results unmask novel functions of potassium channels in endocytosis and vesicle mobilization crucial for sustaining synaptic transmission during repetitive firing. Potassium channel mutations that impair these "non-conducting" functions may thus contribute to generation of diverse neurological disorders.
Collapse
Affiliation(s)
- Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Shobana Subramanian
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Bo Shi
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA; Biological Sciences Graduate Program, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20740, USA
| | - Jessica Xia
- Division of Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Tiansheng Li
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Xiaoli Guo
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Lynda El-Hassar
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Klara Szigeti-Buck
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jorge Henao-Mejia
- Department of Immunobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Ma R, Berro J. Endocytosis against high turgor pressure is made easier by partial coating and freely rotating base. Biophys J 2021; 120:1625-1640. [PMID: 33675763 DOI: 10.1016/j.bpj.2021.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 02/02/2023] Open
Abstract
During clathrin-mediated endocytosis, a patch of flat plasma membrane is deformed into a vesicle. In walled cells, such as plants and fungi, the turgor pressure is high and pushes the membrane against the cell wall, thus hindering membrane internalization. In this work, we study how a patch of membrane is deformed against turgor pressure by force and by curvature-generating proteins. We show that a large amount of force is needed to merely start deforming the membrane and an even larger force is needed to pull a membrane tube. The magnitude of these forces strongly depends on how the base of the membrane is constrained and how the membrane is coated with curvature-generating proteins. In particular, these forces can be reduced by partially, but not fully, coating the membrane patch with curvature-generating proteins. Our theoretical results show excellent agreement with experimental data.
Collapse
Affiliation(s)
- Rui Ma
- Department of Physics, Xiamen University, Xiamen, China; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut.
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
26
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
27
|
Li S, Ghosh C, Xing Y, Sun Y. Phosphatidylinositol 4,5-bisphosphate in the Control of Membrane Trafficking. Int J Biol Sci 2020; 16:2761-2774. [PMID: 33061794 PMCID: PMC7545710 DOI: 10.7150/ijbs.49665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositides are membrane lipids generated by phosphorylation on the inositol head group of phosphatidylinositol. By specifically distributed to distinct subcellular membrane locations, different phosphoinositide species play diverse roles in modulating membrane trafficking. Among the seven known phosphoinositide species, phosphatidylinositol 4,5-bisphosphate (PI4,5P2) is the one species most abundant at the plasma membrane. Thus, the PI4,5P2 function in membrane trafficking is first identified in controlling plasma membrane dynamic-related events including endocytosis and exocytosis. However, recent studies indicate that PI4,5P2 is also critical in many other membrane trafficking events such as endosomal trafficking, hydrolases sorting to lysosomes, autophagy initiation, and autophagic lysosome reformation. These findings suggest that the role of PI4,5P2 in membrane trafficking is far beyond just plasma membrane. This review will provide a concise synopsis of how PI4,5P2 functions in multiple membrane trafficking events. PI4,5P2, the enzymes responsible for PI4,5P2 production at specific subcellular locations, and distinct PI4,5P2 effector proteins compose a regulation network to control the specific membrane trafficking events.
Collapse
Affiliation(s)
- Suhua Li
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chinmoy Ghosh
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yanli Xing
- Department of Otolaryngology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
28
|
Walsh MB, Janzen E, Wingrove E, Hosseinibarkooie S, Muela NR, Davidow L, Dimitriadi M, Norabuena EM, Rubin LL, Wirth B, Hart AC. Genetic modifiers ameliorate endocytic and neuromuscular defects in a model of spinal muscular atrophy. BMC Biol 2020; 18:127. [PMID: 32938453 PMCID: PMC7495824 DOI: 10.1186/s12915-020-00845-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022] Open
Abstract
Background Understanding the genetic modifiers of neurodegenerative diseases can provide insight into the mechanisms underlying these disorders. Here, we examine the relationship between the motor neuron disease spinal muscular atrophy (SMA), which is caused by reduced levels of the survival of motor neuron (SMN) protein, and the actin-bundling protein Plastin 3 (PLS3). Increased PLS3 levels suppress symptoms in a subset of SMA patients and ameliorate defects in SMA disease models, but the functional connection between PLS3 and SMN is poorly understood. Results We provide immunohistochemical and biochemical evidence for large protein complexes localized in vertebrate motor neuron processes that contain PLS3, SMN, and members of the hnRNP F/H family of proteins. Using a Caenorhabditis elegans (C. elegans) SMA model, we determine that overexpression of PLS3 or loss of the C. elegans hnRNP F/H ortholog SYM-2 enhances endocytic function and ameliorates neuromuscular defects caused by decreased SMN-1 levels. Furthermore, either increasing PLS3 or decreasing SYM-2 levels suppresses defects in a C. elegans ALS model. Conclusions We propose that hnRNP F/H act in the same protein complex as PLS3 and SMN and that the function of this complex is critical for endocytic pathways, suggesting that hnRNP F/H proteins could be potential targets for therapy development.
Collapse
Affiliation(s)
- Melissa B Walsh
- Department of Neuroscience, Brown University, 185 Meeting Street, Mailbox GL-N, Providence, RI, 02912, USA
| | - Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Emily Wingrove
- Department of Neuroscience, Brown University, 185 Meeting Street, Mailbox GL-N, Providence, RI, 02912, USA
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Natalia Rodriguez Muela
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lance Davidow
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Maria Dimitriadi
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hertfordshire, UK
| | - Erika M Norabuena
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lee L Rubin
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Anne C Hart
- Department of Neuroscience, Brown University, 185 Meeting Street, Mailbox GL-N, Providence, RI, 02912, USA.
| |
Collapse
|
29
|
Hoban K, Lux SY, Poprawski J, Zhang Y, Shepherdson J, Castiñeira PG, Pesari S, Yao T, Prosser DC, Norris C, Wendland B. ESCRT-dependent protein sorting is required for the viability of yeast clathrin-mediated endocytosis mutants. Traffic 2020; 21:430-450. [PMID: 32255230 PMCID: PMC11376963 DOI: 10.1111/tra.12731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Endocytosis regulates many processes, including signaling pathways, nutrient uptake, and protein turnover. During clathrin-mediated endocytosis (CME), adaptors bind to cytoplasmic regions of transmembrane cargo proteins, and many endocytic adaptors are also directly involved in the recruitment of clathrin. This clathrin-associated sorting protein family includes the yeast epsins, Ent1/2, and AP180/PICALM homologs, Yap1801/2. Mutant strains lacking these four adaptors, but expressing an epsin N-terminal homology (ENTH) domain necessary for viability (4Δ+ENTH), exhibit endocytic defects, such as cargo accumulation at the plasma membrane (PM). This CME-deficient strain provides a sensitized background ideal for revealing cellular components that interact with clathrin adaptors. We performed a mutagenic screen to identify alleles that are lethal in 4Δ+ENTH cells using a colony-sectoring reporter assay. After isolating candidate synthetic lethal genes by complementation, we confirmed that mutations in VPS4 led to inviability of a 4Δ+ENTH strain. Vps4 mediates the final step of endosomal sorting complex required for transport (ESCRT)-dependent trafficking, and we found that multiple ESCRTs are also essential in 4Δ+ENTH cells, including Snf7, Snf8 and Vps36. Deletion of VPS4 from an end3Δ strain, another CME mutant, similarly resulted in inviability, and upregulation of a clathrin-independent endocytosis pathway rescued 4Δ+ENTH vps4Δ cells. Loss of Vps4 from an otherwise wild-type background caused multiple cargoes to accumulate at the PM because of an increase in Rcy1-dependent recycling of internalized protein to the cell surface. Additionally, vps4Δ rcy1Δ mutants exhibited deleterious growth phenotypes. Together, our findings reveal previously unappreciated effects of disrupted ESCRT-dependent trafficking on endocytic recycling and the PM.
Collapse
Affiliation(s)
- Kyle Hoban
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Samantha Y Lux
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joanna Poprawski
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yorke Zhang
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - James Shepherdson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pedro G Castiñeira
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sanjana Pesari
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tony Yao
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Derek C Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Carolyn Norris
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Rodríguez-Fernández JL, Criado-García O. The Chemokine Receptor CCR7 Uses Distinct Signaling Modules With Biased Functionality to Regulate Dendritic Cells. Front Immunol 2020; 11:528. [PMID: 32351499 PMCID: PMC7174648 DOI: 10.3389/fimmu.2020.00528] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Chemotaxis is a molecular mechanism that confers leukocytes the ability to detect gradients of chemoattractants. Chemokine receptors are well-known regulators of chemotaxis in leukocytes; however, they can regulate several other activities in these cells. This information has been often neglected, probably due to the paramount role of chemotaxis in the immune system and in biology. Therefore, the experimental data available on the mechanisms used by chemokine receptors to regulate other functions of leukocytes is sparse. The results obtained in the study of the chemokine receptor CCR7 in dendritic cells (DCs) provide interesting information on this issue. CCR7 guides the DCs from the peripheral tissues to the lymph nodes, where these cells control T cell activation. CCR7 can regulate DC chemotaxis, survival, migratory speed, cytoarchitecture, and endocytosis. Biochemical and functional analyses show: first, that CCR7 uses in DCs the PI3K/Akt pathway to control survival, the MAPK pathway to control chemotaxis, and the RhoA pathways to regulate actin dynamics, which in turn controls migratory speed, cytoarchitecture, and endocytosis; second, that these three signaling pathways behave as modules with a high degree of independence; and third, that although each one of these routes can regulate several functions in different settings, CCR7 promotes in DCs a functional bias in each pathway. The data uncover an interesting mechanism used by CCR7 to regulate the DCs, entailing multifunctional signaling pathways organized in modules with biased functionality. A similar mechanism could be used by other chemoattractant receptors to regulate the functions of leukocytes.
Collapse
Affiliation(s)
- José Luis Rodríguez-Fernández
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Olga Criado-García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
31
|
Tumolo JM, Hepowit NL, Joshi SS, MacGurn JA. A Snf1-related nutrient-responsive kinase antagonizes endocytosis in yeast. PLoS Genet 2020; 16:e1008677. [PMID: 32191698 PMCID: PMC7176151 DOI: 10.1371/journal.pgen.1008677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/22/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Endocytosis is regulated in response to changing environmental conditions to adjust plasma membrane (PM) protein composition for optimal cell growth. Protein networks involved in cargo capture and sorting, membrane sculpting and deformation, and vesicle scission have been well-characterized, but less is known about the networks that sense extracellular cues and relay signals to trigger endocytosis of specific cargo. Hal4 and Hal5 are yeast Snf1-related kinases that were previously reported to regulate nutrient transporter stability by an unknown mechanism. Here we demonstrate that loss of Hal4 and Hal5 activates endocytosis of many different kinds of PM proteins, including Art1-mediated and Art1-independent endocytic events. Acute inhibition of Hal5 in the absence of Hal4 triggers rapid endocytosis, suggesting that Hal kinases function in a nutrient-sensing relay upstream of the endocytic response. Interestingly, Hal5 localizes to the PM, but shifts away from the cell surface in response to stimulation with specific nutrients. We propose that Hal5 functions as a nutrient-responsive regulator of PM protein stability, antagonizing endocytosis and promoting stability of endocytic cargos at the PM in nutrient-limiting conditions. Cellular homeostasis, a fundamental requirement for all living organisms, is maintained in part through evolutionarily conserved mechanisms that regulate the abundance and activity of ion and nutrient transporters at the cell surface. These mechanisms often incorporate signaling networks that sense changes in the environment and relay signals to alter protein composition at the plasma membrane, often by inducing endocytosis of specific transporters in order to adjust and optimize transport activities at the cell surface. Here, we investigate two kinases in yeast–Hal4 and Hal5 –that are related to the yeast and human AMP sensing kinases. Loss of both Hal4 and Hal5 was previously reported to result in destabilization of ion and nutrient transporters by an unknown mechanism. Our data indicates that Hal kinases function broadly in the regulation of many different classes of endocytic cargo. Hal5 localizes to the plasma membrane in a manner that is responsive to nutrient availability and acute loss of Hal5 activity triggers rapid internalization of endocytic cargo. By uncovering a role for Hal5 as a nutrient-responsive regulator of endocytosis, this research sheds light on how signaling molecules regulate membrane trafficking events to coordinate adaptive growth responses.
Collapse
Affiliation(s)
- Jessica M. Tumolo
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nathaniel L. Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Samika S. Joshi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
32
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
33
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
34
|
Dendritic Spines in Alzheimer's Disease: How the Actin Cytoskeleton Contributes to Synaptic Failure. Int J Mol Sci 2020; 21:ijms21030908. [PMID: 32019166 PMCID: PMC7036943 DOI: 10.3390/ijms21030908] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by Aβ-driven synaptic dysfunction in the early phases of pathogenesis. In the synaptic context, the actin cytoskeleton is a crucial element to maintain the dendritic spine architecture and to orchestrate the spine’s morphology remodeling driven by synaptic activity. Indeed, spine shape and synaptic strength are strictly correlated and precisely governed during plasticity phenomena in order to convert short-term alterations of synaptic strength into long-lasting changes that are embedded in stable structural modification. These functional and structural modifications are considered the biological basis of learning and memory processes. In this review we discussed the existing evidence regarding the role of the spine actin cytoskeleton in AD synaptic failure. We revised the physiological function of the actin cytoskeleton in the spine shaping and the contribution of actin dynamics in the endocytosis mechanism. The internalization process is implicated in different aspects of AD since it controls both glutamate receptor membrane levels and amyloid generation. The detailed understanding of the mechanisms controlling the actin cytoskeleton in a unique biological context as the dendritic spine could pave the way to the development of innovative synapse-tailored therapeutic interventions and to the identification of novel biomarkers to monitor synaptic loss in AD.
Collapse
|
35
|
Akamatsu M, Vasan R, Serwas D, Ferrin MA, Rangamani P, Drubin DG. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. eLife 2020; 9:49840. [PMID: 31951196 PMCID: PMC7041948 DOI: 10.7554/elife.49840] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Force generation by actin assembly shapes cellular membranes. An experimentally constrained multiscale model shows that a minimal branched actin network is sufficient to internalize endocytic pits against membrane tension. Around 200 activated Arp2/3 complexes are required for robust internalization. A newly developed molecule-counting method determined that ~200 Arp2/3 complexes assemble at sites of clathrin-mediated endocytosis in human cells. Simulations predict that actin self-organizes into a radial branched array with growing ends oriented toward the base of the pit. Long actin filaments bend between attachment sites in the coat and the base of the pit. Elastic energy stored in bent filaments, whose presence was confirmed by cryo-electron tomography, contributes to endocytic internalization. Elevated membrane tension directs more growing filaments toward the base of the pit, increasing actin nucleation and bending for increased force production. Thus, spatially constrained actin filament assembly utilizes an adaptive mechanism enabling endocytosis under varying physical constraints. The outer membrane of a cell is a tight but elastic barrier that controls what enters or leaves the cell. Large molecules typically cannot cross this membrane unaided. Instead, to enter the cell, they must be packaged into a pocket of the membrane that is then pulled inside. This process, called endocytosis, shuttles material into a cell hundreds of times a minute. Endocytosis relies on molecular machines that assemble and disassemble at the membrane as required. One component, a protein called actin, self-assembles near the membrane into long filaments with many repeated subunits. These filaments grow against the membrane, pulling it inwards. But it was not clear how actin filaments organize in such a way that allows them to pull on the membrane with enough force – and without a template to follow. Akamatsu et al. set about identifying how actin operates during endocytosis by using computer simulations that were informed by measurements made in living cells. The simulations included information about the location of actin and other essential molecules, along with the details of how these molecules work individually and together. Akamatsu et al. also developed a method to count the numbers of molecules of a key protein at individual sites of endocytosis. High-resolution imaging was then used to create 3D pictures of actin and endocytosis in action in human cells grown in the laboratory. The analysis showed the way actin filaments arrange themselves depends on the starting positions of a few key molecules that connect to actin. Imaging confirmed that, like a pole-vaulting pole, the flexible actin filaments bend to store energy and then release it to pull the membrane inwards during endocytosis. Finally, the simulations predicted that the collection of filaments adapts its shape and size in response to the resistance of the elastic membrane. This makes the system opportunistic and adaptable to the unpredictable environment within cells.
Collapse
Affiliation(s)
- Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - Daniel Serwas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael A Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
36
|
Zhang C, Liu XD. Transcriptomic Analysis Suggests Genes Expressed Stage-Independently and Stage-Dependently Modulating the Wing Dimorphism of the Brown Planthopper. Genes (Basel) 2019; 11:E19. [PMID: 31878073 PMCID: PMC7017061 DOI: 10.3390/genes11010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Wing dimorphism is considered as an adaptive trait of insects. Brown planthoppers (BPHs) Nilaparvata lugens, a serious pest of rice, are either macropterous or brachypterous. Genetic and environmental factors are both likely to control wing morph determination in BPHs, but the hereditary law and genes network are still unknown. Here, we investigated changes in gene expression levels between macropterous and brachypterous BPHs by creating artificially bred morphotype lines. The nearly pure-bred strains of macropterous and brachypterous BPHs were established, and their transcriptomes and gene expression levels were compared. Over ten-thousand differentially expressed genes (DEGs) between macropterous and brachypterous strains were found in the egg, nymph, and adult stages, and the three stages shared 6523 DEGs. The regulation of actin cytoskeleton, focal adhesion, tight junction, and adherens junction pathways were consistently enriched with DEGs across the three stages, whereas insulin signaling pathway, metabolic pathways, vascular smooth muscle contraction, platelet activation, oxytocin signaling pathway, sugar metabolism, and glycolysis/gluconeogenesis were significantly enriched by DEGs in a specific stage. Gene expression trend profiles across three stages were different between the two strains. Eggs, nymphs, and adults from the macropterous strain were distinguishable from the brachypterous based on gene expression levels, and genes that were related to wing morphs were differentially expressed between wing strains or strain × stage. A proposed mode based on genes and environments to modulate the wing dimorphism of BPHs was provided.
Collapse
Affiliation(s)
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
37
|
Sun Y, Schöneberg J, Chen X, Jiang T, Kaplan C, Xu K, Pollard TD, Drubin DG. Direct comparison of clathrin-mediated endocytosis in budding and fission yeast reveals conserved and evolvable features. eLife 2019; 8:50749. [PMID: 31829937 PMCID: PMC6908435 DOI: 10.7554/elife.50749] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Conserved proteins drive clathrin-mediated endocytosis (CME), which from yeast to humans involves a burst of actin assembly. To gain mechanistic insights into this process, we performed a side-by-side quantitative comparison of CME in two distantly related yeast species. Though endocytic protein abundance in S. pombe and S. cerevisiae is more similar than previously thought, membrane invagination speed and depth are two-fold greater in fission yeast. In both yeasts, accumulation of ~70 WASp molecules activates the Arp2/3 complex to drive membrane invagination. In contrast to budding yeast, WASp-mediated actin nucleation plays an essential role in fission yeast endocytosis. Genetics and live-cell imaging revealed core CME spatiodynamic similarities between the two yeasts, although the assembly of two zones of actin filaments is specific for fission yeast and not essential for CME. These studies identified conserved CME mechanisms and species-specific adaptations with broad implications that are expected to extend from yeast to humans.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xuyan Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Tommy Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Charlotte Kaplan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Thomas D Pollard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Department of Cell Biology, Yale University, New Haven, United States.,Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
38
|
MacQuarrie CD, Mangione MC, Carroll R, James M, Gould KL, Sirotkin V. The S. pombe adaptor protein Bbc1 regulates localization of Wsp1 and Vrp1 during endocytic actin patch assembly. J Cell Sci 2019; 132:jcs233502. [PMID: 31391237 PMCID: PMC6771142 DOI: 10.1242/jcs.233502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
Arp2/3 complex-nucleated branched actin networks provide the key force necessary for endocytosis. The Arp2/3 complex is activated by nucleation-promoting factors including the Schizosaccharomyces pombe Wiskott-Aldrich syndrome protein (Wsp1) and myosin-1 (Myo1). There are >40 known yeast endocytic proteins with distinct spatial and temporal localizations and functions; however, it is still unclear how these proteins work together to drive endocytosis. Here, we used quantitative live-cell imaging to determine the function of the uncharacterized S. pombe protein Bbc1. We discovered that Myo1 interacts with and recruits Bbc1 to sites of endocytosis. Bbc1 competes with the verprolin Vrp1 for localization to patches and association with Myo1, thus releasing Vrp1 and its binding partner Wsp1 from Myo1. Normally Myo1 remains at the base of the endocytic invagination and Vrp1-Wsp1 internalizes with the endocytic vesicle. However, in the absence of Bbc1, a portion of Vrp1-Wsp1 remains with Myo1 at the base of the invagination, and endocytic structures internalize twice as far. We propose that Bbc1 disrupts a transient interaction of Myo1 with Vrp1 and Wsp1 and thereby limits Arp2/3 complex-mediated nucleation of actin branches at the plasma membrane.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Cameron Dale MacQuarrie
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert Carroll
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael James
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
39
|
Asfaw KG, Liu Q, Maisch J, Münch SW, Wehl I, Bräse S, Bogeski I, Schepers U, Nick P. A Peptoid Delivers CoQ-derivative to Plant Mitochondria via Endocytosis. Sci Rep 2019; 9:9839. [PMID: 31285457 PMCID: PMC6614412 DOI: 10.1038/s41598-019-46182-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/21/2019] [Indexed: 11/09/2022] Open
Abstract
Controlled delivery of molecules interfering specifically with target activities in a cell of interest can be a powerful tool for experimental manipulation, because it can be administered at a defined time point and does not require genetic transformation, which in some systems is difficult and time consuming. Peptides as versatile tools that can be tailored for binding numerous binding partners, are of special interest. However, their passage through membranes, their intracellular targeting, and their sensitivity to proteases is limiting. The use of peptoids, where cationic amino-acid side chains are linked to nitrogen (rather than to carbon) of the peptide bond, can circumvent these limitations, because they are not cleavable by proteases. In the current work, we provide a proof-of-concept that such Trojan Peptoids, the plant PeptoQ, can be used to target a functional cargo (i.e. a rhodamine-labelled peptoid and a coenzyme Q10 derivative) into mitochondria of tobacco BY-2 cells as experimental model. We show that the uptake is specific for mitochondria, rapid, dose-dependent, and requires clathrin-mediated endocytosis, as well as actin filaments, while microtubules seem to be dispensable. Viability of the treated cells is not affected, and they show better survival under salt stress, a condition that perturbs oxidative homeostasis in mitochondria. In congruence with improved homeostasis, we observe that the salt induced accumulation of superoxide is mitigated and even inverted by pretreatment with PeptoQ. Using double labelling with appropriate fluorescent markers, we show that targeting of this Trojan Peptoid to the mitochondria is not based on a passage through the plasma membrane (as thought hitherto), but on import via endocytotic vesicles and subsequent accumulation in the mitochondrial intermembrane space, from where it can enter the matrix, e.g. when the permeability of the inner membrane is increased under salt stress.
Collapse
Affiliation(s)
- Kinfemichael Geressu Asfaw
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Jan Maisch
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stephan W Münch
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1 D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1 D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, 37073, Göttingen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| |
Collapse
|
40
|
Degreif D, Cucu B, Budin I, Thiel G, Bertl A. Lipid determinants of endocytosis and exocytosis in budding yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1005-1016. [DOI: 10.1016/j.bbalip.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/23/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023]
|
41
|
Shi X, Duan F, Lin L, Xu Q, Xu T, Zhang R. WIP-1 and DBN-1 promote scission of endocytic vesicles by bridging actin and Dynamin-1 in the C. elegans intestine. J Cell Sci 2019; 132:jcs.228023. [PMID: 31118234 DOI: 10.1242/jcs.228023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
There has been a consensus that actin plays an important role in scission of the clathrin-coated pits (CCPs) together with large GTPases of the dynamin family in metazoan cells. However, the recruitment, regulation and functional interdependence of actin and dynamin during this process remain inadequately understood. Here, based on small-scale screening and in vivo live-imaging techniques, we identified a novel set of molecules underlying CCP scission in the multicellular organism Caenorhabditis elegans We found that loss of Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP-1) impaired CCP scission in a manner that is independent of the C. elegans homolog of WASP/N-WASP (WSP-1) and is mediated by direct binding to G-actin. Moreover, the cortactin-binding domain of WIP-1 serves as the binding interface for DBN-1 (also known in other organisms as Abp1), another actin-binding protein. We demonstrate that the interaction between DBN-1 and F-actin is essential for Dynamin-1 (DYN-1) recruitment at endocytic sites. In addition, the recycling regulator RME-1, a homolog of mammalian Eps15 homology (EH) domain-containing proteins, is increasingly recruited at the arrested endocytic intermediates induced by F-actin loss or DYN-1 inactivation, which further stabilizes the tubular endocytic intermediates. Our study provides new insights into the molecular network underlying F-actin participation in the scission of CCPs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xuemeng Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fengyun Duan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Long Lin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qifeng Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China .,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
42
|
Huerta-García E, Ramos-Godinez MDP, López-Saavedra A, Alfaro-Moreno E, Gómez-Crisóstomo NP, Colín-Val Z, Sánchez-Barrera H, López-Marure R. Internalization of Titanium Dioxide Nanoparticles Is Mediated by Actin-Dependent Reorganization and Clathrin- and Dynamin-Mediated Endocytosis in H9c2 Rat Cardiomyoblasts. Chem Res Toxicol 2019; 32:578-588. [DOI: 10.1021/acs.chemrestox.8b00284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Elizabeth Huerta-García
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma Tabasco, Comalcalco, Tabasco 86040, México
| | | | | | - Ernesto Alfaro-Moreno
- Man-Technology-Environment research centre (MTM), Örebro University and Institute of Environmental Health, Karolinska Institute, SE-70182 Örebro, Sweden
| | | | - Zaira Colín-Val
- Departamento de Fisiología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México 14080, México
| | - Helen Sánchez-Barrera
- Departamento de Fisiología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México 14080, México
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México 14080, México
| |
Collapse
|
43
|
Tang X, Li X, Zhai F, Xing J, Sheng X, Zhan W. Analysis and identification of tyrosine phosphorylated proteins in hemocytes of Litopenaeus vannamei infected with WSSV. FISH & SHELLFISH IMMUNOLOGY 2018; 82:84-91. [PMID: 30098445 DOI: 10.1016/j.fsi.2018.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Previous studies have demonstrated that protein tyrosine phosphorylation plays an important role in WSSV infection. In the present work, in order to further elucidate the potential role of protein tyrosine phosphorylation in white spot syndrome virus (WSSV) infection. The expression variation of tyrosine phosphorylated proteins in hemocytes of shrimp (Litopenaeus vannamei) after WSSV infection were examined by flow cytometric immunofluorescence assay (FCIFA) and enzyme linked immunosorbent assay (ELISA), and results showed that the level of protein tyrosine phosphorylation in hemocytes fluctuated significantly after WSSV infection and exhibited two peaks at 6 and 24 h post infection (hpi). Meanwhile, tyrosine phosphorylated proteins in hemocytes after WSSV infection were also detected by cell immunofluorescence, and results showed that the fluorescence intensity in hemocytes was altered with the course of WSSV infection and showed stronger fluorescent signals at 6 and 24 hpi compared to other time points. Furthermore, two dimensional gel electrophoresis (2-DE) and 2-DE western blotting were applied to identify the differentially expressed tyrosine phosphorylated proteins in hemocytes before and after WSSV infection. The result of 2-DE western blotting showed that there were nine tyrosine phosphorylated proteins in the hemocytes of healthy shrimp, whereas twenty-one tyrosine phosphorylated proteins were detected in the hemocytes of shrimp at 6hpi. Then, the differential tyrosine phosphorylated proteins were analyzed by Mass Spectrometry (MS), and eight of them were identified to be sodium/potassium-transporting ATPase subunit alpha, ubiquitin/ribosomal L40 fusion protein, actin-D, phosphopyruvate hydratase, beta-actin, ATP synthase subunit beta, receptor for activated protein kinase c1 and protein disulfide-isomerase. Moreover, the expression levels of sodium/potassium-transporting ATPase subunit alpha, ubiquitin/ribosomal L40 fusion protein, phosphopyruvate hydratase, ATP synthase subunit beta, receptor for activated protein kinase c1 and protein disulfide-isomerase were examined to be up-regulated post WSSV infection by quantitative real-time RT-PCR. Taken together, these results demonstrated that protein tyrosine phosphorylation was involved in the process of WSSV infection, which might play an important role in the immune response to WSSV infection in shrimp.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiaoai Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Fude Zhai
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
44
|
Chaytow H, Huang YT, Gillingwater TH, Faller KME. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 2018; 75:3877-3894. [PMID: 29872871 PMCID: PMC6182345 DOI: 10.1007/s00018-018-2849-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin-proteasome system. In this review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environment of the cell.
Collapse
Affiliation(s)
- Helena Chaytow
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
| | - Kiterie M E Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
45
|
Ueda EI, Kashiwazaki J, Inoué S, Mabuchi I. Fission yeast Adf1 is necessary for reassembly of actin filaments into the contractile ring during cytokinesis. Biochem Biophys Res Commun 2018; 506:330-338. [DOI: 10.1016/j.bbrc.2018.07.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/31/2018] [Indexed: 01/27/2023]
|
46
|
Live-cell imaging of early coat protein dynamics during clathrin-mediated endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1566-1578. [PMID: 30077636 DOI: 10.1016/j.bbamcr.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/23/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
Clathrin-mediated endocytosis is an essential process that is mediated by the stepwise appearance or disappearance of many different proteins at the plasma membrane. In the budding yeast, these proteins are categorized into at least five modules, according to their spatiotemporal dynamics. Among them, the dynamics of proteins in the late coat module are well characterized, but those in the early coat module still remain unclear because of the lack of a suitable fluorescent marker with sufficient brightness to allow analysis. To examine the dynamics of early coat proteins, in this study we tagged four representative early coat proteins with 3GFP, and expressed them in a single cell. This cell exhibited a significant increase in the fluorescence intensity of early coat proteins relative to that of each 3GFP-tagged protein. Using this strain, we performed a detailed analysis of early coat proteins, including their precise lifetime, changes in fluorescence intensity, and motility on the plasma membrane. We found that early coat proteins move on the plasma membrane before internalization. Additionally, we expressed these 3GFP-tagged proteins in mutants with deletion of genes related to endocytosis, and found four mutants - end3Δ, las17Δ, sla2Δ, and clc1Δ- in which the lifetime of early coat proteins was markedly increased. Interestingly, deletion of the CLC1 gene dramatically reduced the internalization of early coat proteins whereas internalization of actin patches was largely unchanged, suggesting that the clc1Δ mutant might have a defect in the link between the early coat and actin modules.
Collapse
|
47
|
Tamura M. Production of Human β-Actin Using a Bacterial Expression System with a Cold Shock Vector. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2018; 93:e61. [PMID: 30011131 DOI: 10.1002/cpps.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Actin is one of the most abundant proteins in the cytoplasm of eukaryotic cells and plays important roles in a variety of cellular functions. However, it has been difficult to produce actin in substantial amounts using bacterial expression systems. In this article, a new method is described for the production of recombinant actin in bacterial cells. Human β-actin (His-tagged) can be expressed using a cold shock vector, pCold, in a bacterial expression system and then separated with a Ni-chelating resin, followed by a polymerization/depolymerization cycle or column chromatography with the Ni-chelating resin. The purified recombinant β-actin shows normal polymerization ability compared with commercially available β-actin purified from human platelets. This article also describes the preparation of mutant actin(G168R). This purified mutant exhibits impaired polymerization ability. The system and procedures described here will provide a useful method for the production of actin isoforms and their mutants. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Minoru Tamura
- School of Science and Engineering-Applied Chemistry, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
48
|
Treppiedi D, Jobin ML, Peverelli E, Giardino E, Sungkaworn T, Zabel U, Arosio M, Spada A, Mantovani G, Calebiro D. Single-Molecule Microscopy Reveals Dynamic FLNA Interactions Governing SSTR2 Clustering and Internalization. Endocrinology 2018; 159:2953-2965. [PMID: 29931263 DOI: 10.1210/en.2018-00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/14/2018] [Indexed: 11/19/2022]
Abstract
The cytoskeletal protein filamin A (FLNA) has been suggested to play an important role in the responsiveness of GH-secreting pituitary tumors to somatostatin receptor subtype 2 (SSTR2) agonists by regulating SSTR2 expression and signaling. However, the underlying mechanisms are unknown. In this study, we use fast multicolor single-molecule microscopy to image individual SSTR2 and FLNA molecules at the surface of living cells with unprecedented spatiotemporal resolution. We find that SSTR2 and FLNA undergo transient interactions, which occur preferentially along actin fibers and contribute to restraining SSTR2 diffusion. Agonist stimulation increases the localization of SSTR2 along actin fibers and, subsequently, SSTR2 clustering and recruitment to clathrin-coated pits (CCPs). Interfering with FLNA-SSTR2 binding with a dominant-negative FLNA fragment increases SSTR2 mobility, hampers the formation and alignment of SSTR2 clusters along actin fibers, and impairs both SSTR2 recruitment to CCPs and SSTR2 internalization. These findings indicate that dynamic SSTR2-FLNA interactions critically control the nanoscale localization of SSTR2 at the plasma membrane and are required for coupling SSTR2 clustering to internalization. These mechanisms explain the critical role of FLNA in the control of SSTR2 expression and signaling and suggest the possibility of targeting SSTR2-FLNA interactions for the therapy of pharmacologically resistant GH-secreting pituitary tumors.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Erika Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Titiwat Sungkaworn
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| |
Collapse
|
49
|
Bartnicki-Garcia S, Garduño-Rosales M, Delgado-Alvarez DL, Mouriño-Pérez RR. Experimental measurement of endocytosis in fungal hyphae. Fungal Genet Biol 2018; 118:32-36. [PMID: 30017938 DOI: 10.1016/j.fgb.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 11/15/2022]
Abstract
The present study examines the notion that polarized exocytosis in the tips of growing hyphae creates an excess of plasma membrane and thus the need for its removal by endocytosis. To measure endocytosis experimentally, we developed a photobleaching (FRAP) procedure to count endocytic events in hyphae of Neurospora crassa carrying a fluorescent tag on the actin-binding protein fimbrin (FIM-1-GFP). Given 40 nm as the average diameter of endocytic vesicles, we calculated that about 12.5% of the plasma membrane discharged in the apex becomes endocytosed in the subapex. According to our calculations, the GFP-tagged hyphae of N. crassa, measured under the constrained conditions of confocal microscopic examination, needed about 8800 vesicles/min to extend their plasma membrane or about 9800/min, if we include predicted demands for cell wall growth and extracellular secretion. Our findings support the notion that exocytosis and endocytosis operate in tandem with the latter serving as a compensatory process to remove any excess of plasma membrane generated by the intense exocytosis in the hyphal tips. Presumably, this tandem arrangement evolved to support the hallmark features of fungi namely rapid cell extension and abundant secretion of hydrolytic enzymes.
Collapse
Affiliation(s)
- Salomon Bartnicki-Garcia
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Marisela Garduño-Rosales
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Diego Luis Delgado-Alvarez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico
| | - Rosa Reyna Mouriño-Pérez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Mexico.
| |
Collapse
|
50
|
Kim EJY, Korotkevich E, Hiiragi T. Coordination of Cell Polarity, Mechanics and Fate in Tissue Self-organization. Trends Cell Biol 2018; 28:541-550. [DOI: 10.1016/j.tcb.2018.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|