1
|
Bianco A, Di Sante G, Colò F, De Arcangelis V, Cicia A, Del Giacomo P, De Bonis M, Morganti TG, Carlomagno V, Lucchini M, Minucci A, Calabresi P, Mirabella M. Multiple Sclerosis Onset before and after COVID-19 Vaccination: Can HLA Haplotype Be Determinant? Int J Mol Sci 2024; 25:4556. [PMID: 38674141 PMCID: PMC11050425 DOI: 10.3390/ijms25084556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
A few cases of multiple sclerosis (MS) onset after COVID-19 vaccination have been reported, although the evidence is insufficient to establish causality. The aim of this study is to compare cases of newly diagnosed relapsing-remitting MS before and after the outbreak of the COVID-19 pandemic and the impact of COVID-19 vaccination. Potential environmental and genetic predisposing factors were also investigated, as well as clinical patterns. This is a single-centre retrospective cohort study including all patients who presented with relapsing-remitting MS onset between January 2018 and July 2022. Data on COVID-19 vaccination administration, dose, and type were collected. HLA-DRB1 genotyping was performed in three subgroups. A total of 266 patients received a new diagnosis of relapsing-remitting MS in our centre, 143 before the COVID-19 pandemic (until and including March 2020), and 123 during the COVID-19 era (from April 2020). The mean number of new MS onset cases per year was not different before and during the COVID-19 era and neither were baseline patients' characteristics, type of onset, clinical recovery, or radiological patterns. Fourteen (11.4%) patients who subsequently received a new diagnosis of MS had a history of COVID-19 vaccination within one month before symptoms onset. Patients' characteristics, type of onset, clinical recovery, and radiological patterns did not differ from those of patients with non-vaccine-related new diagnoses of MS. The allele frequencies of HLA-DRB1*15 were 17.6% and 22.2% in patients with non-vaccine-related disease onset before and during the COVID-19 era, respectively, while no case of HLA-DRB1*15 was identified among patients with a new diagnosis of MS post-COVID-19 vaccine. In contrast, HLA-DRB1*08+ or HLA-DRB1*10+ MS patients were present only in this subgroup. Although a causal link between COVID-19 vaccination and relapsing-remitting MS cannot be detected, it is interesting to note and speculate about the peculiarities and heterogeneities underlying disease mechanisms of MS, where the interactions of genetics and the environment could be crucial also for the follow-up and the evaluation of therapeutic options.
Collapse
Affiliation(s)
- Assunta Bianco
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06123 Perugia, Italy
| | - Francesca Colò
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Valeria De Arcangelis
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandra Cicia
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Paola Del Giacomo
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria De Bonis
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Tommaso Giuseppe Morganti
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Vincenzo Carlomagno
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Matteo Lucchini
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Paolo Calabresi
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Massimiliano Mirabella
- Division of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Neurosciences, Centro di Ricerca per la Sclerosi Multipla “Anna Paola Batocchi”, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
2
|
Asmis R, Medrano MT, Chase Huizar C, Griffith WP, Forsthuber TG. Dietary Supplementation with 23-Hydroxy Ursolic Acid Reduces the Severity and Incidence of Acute Experimental Autoimmune Encephalomyelitis (EAE) in a Murine Model of Multiple Sclerosis. Nutrients 2024; 16:348. [PMID: 38337633 PMCID: PMC10856865 DOI: 10.3390/nu16030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
23-Hydroxy ursolic acid (23-OH UA) is a potent atheroprotective and anti-obesogenic phytochemical, with anti-inflammatory and inflammation-resolving properties. In this study, we examined whether dietary 23-OH UA protects mice against the acute onset and progression of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Female C57BL/6 mice were fed either a defined low-calorie maintenance diet (MD) or an MD supplemented with 0.2% wgt/wgt 23-OH UA for 5 weeks prior to actively inducing EAE and during the 30 days post-immunization. We observed no difference in the onset of EAE between the groups of mice, but ataxia and EAE disease severity were suppressed by 52% and 48%, respectively, and disease incidence was reduced by over 49% in mice that received 23-OH UA in their diet. Furthermore, disease-associated weight loss was strikingly ameliorated in 23-OH UA-fed mice. ELISPOT analysis showed no significant differences in frequencies of T cells producing IL-17 or IFN-γ between 23-OH UA-fed mice and control mice, suggesting that 23-OH UA does not appear to regulate peripheral T cell responses. In summary, our findings in EAE mice strongly suggest that dietary 23-OH UA may represent an effective oral adjunct therapy for the prevention and treatment of relapsing-remitting MS.
Collapse
Affiliation(s)
- Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Megan T. Medrano
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| | - Wendell P. Griffith
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.T.M.)
| |
Collapse
|
3
|
Senol H, Ozgun-Acar O, Dağ A, Eken A, Guner H, Aykut ZG, Topcu G, Sen A. Synthesis and Comprehensive in Vivo Activity Profiling of Olean-12-en-28-ol, 3β-Pentacosanoate in Experimental Autoimmune Encephalomyelitis: A Natural Remyelinating and Anti-Inflammatory Agent. JOURNAL OF NATURAL PRODUCTS 2023; 86:103-118. [PMID: 36598820 PMCID: PMC9887603 DOI: 10.1021/acs.jnatprod.2c00798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Multiple sclerosis (MS) treatment has received much attention, yet there is still no certain cure. We herein investigate the therapeutic effect of olean-12-en-28-ol, 3β-pentacosanoate (OPCA) on a preclinical model of MS. First, OPCA was synthesized semisynthetically and characterized. Then, the mice with MOG35-55-induced experimental autoimmune/allergic encephalomyelitis (EAE) were given OPCA along with a reference drug (FTY720). Biochemical, cellular, and molecular analyses were performed in serum and brain tissues to measure anti-inflammatory and neuroprotective responses. OPCA treatment protected EAE-induced changes in mouse brains maintaining blood-brain barrier integrity and preventing inflammation. Moreover, the protein and mRNA levels of MS-related genes such as HLD-DR1, CCL5, TNF-α, IL6, and TGFB1 were significantly reduced in OPCA-treated mouse brains. Notably, the expression of genes, including PLP, MBP, and MAG, involved in the development and structure of myelin was significantly elevated in OPCA-treated EAE. Furthermore, therapeutic OPCA effects included a substantial reduction in pro-inflammatory cytokines in the serum of treated EAE animals. Lastly, following OPCA treatment, the promoter regions for most inflammatory regulators were hypermethylated. These data support that OPCA is a valuable and appealing candidate for human MS treatment since OPCA not only normalizes the pro- and anti-inflammatory immunological bias but also stimulates remyelination in EAE.
Collapse
Affiliation(s)
- Halil Senol
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ozden Ozgun-Acar
- Seed
Breeding & Genetics Application Research Center, Pamukkale University, 20070 Denizli, Turkey
| | - Aydan Dağ
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ahmet Eken
- Department
of Basic Medical Sciences, Faculty of Medicine, Medical Biology Erciyes University, 38039 Kayseri, Turkey
| | - Hüseyin Guner
- Department
of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul 38080 Kayseri, Turkey
| | | | - Gulacti Topcu
- Department
of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Alaattin Sen
- Department
of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul 38080 Kayseri, Turkey
- Department
of Biology, Faculty of Arts & Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| |
Collapse
|
4
|
Bianchimano P, Britton GJ, Wallach DS, Smith EM, Cox LM, Liu S, Iwanowski K, Weiner HL, Faith JJ, Clemente JC, Tankou SK. Mining the microbiota to identify gut commensals modulating neuroinflammation in a mouse model of multiple sclerosis. MICROBIOME 2022; 10:174. [PMID: 36253847 PMCID: PMC9575236 DOI: 10.1186/s40168-022-01364-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The gut microbiome plays an important role in autoimmunity including multiple sclerosis and its mouse model called experimental autoimmune encephalomyelitis (EAE). Prior studies have demonstrated that the multiple sclerosis gut microbiota can contribute to disease, hence making it a potential therapeutic target. In addition, antibiotic treatment has been shown to ameliorate disease in the EAE mouse model of multiple sclerosis. Yet, to this date, the mechanisms mediating these antibiotic effects are not understood. Furthermore, there is no consensus on the gut-derived bacterial strains that drive neuroinflammation in multiple sclerosis. RESULTS Here, we characterized the gut microbiome of untreated and vancomycin-treated EAE mice over time to identify bacteria with neuroimmunomodulatory potential. We observed alterations in the gut microbiota composition following EAE induction. We found that vancomycin treatment ameliorates EAE, and that this protective effect is mediated via the microbiota. Notably, we observed increased abundance of bacteria known to be strong inducers of regulatory T cells, including members of Clostridium clusters XIVa and XVIII in vancomycin-treated mice during the presymptomatic phase of EAE, as well as at disease peak. We identified 50 bacterial taxa that correlate with EAE severity. Interestingly, several of these taxa exist in the human gut, and some of them have been implicated in multiple sclerosis including Anaerotruncus colihominis, a butyrate producer, which had a positive correlation with disease severity. We found that Anaerotruncus colihominis ameliorates EAE, and this is associated with induction of RORγt+ regulatory T cells in the mesenteric lymph nodes. CONCLUSIONS We identified vancomycin as a potent modulator of the gut-brain axis by promoting the proliferation of bacterial species that induce regulatory T cells. In addition, our findings reveal 50 gut commensals as regulator of the gut-brain axis that can be used to further characterize pathogenic and beneficial host-microbiota interactions in multiple sclerosis patients. Our findings suggest that elevated Anaerotruncus colihominis in multiple sclerosis patients may represent a protective mechanism associated with recovery from the disease. Video Abstract.
Collapse
Affiliation(s)
- Paola Bianchimano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Graham J Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David S Wallach
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma M Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Shirong Liu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Present address: Department of Medical Oncology, Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kacper Iwanowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose C Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie K Tankou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Wang T, Zhu J, Gao L, Wei M, Zhang D, Chen L, Wu H, Ma J, Li L, Zhang N, Wang Y, Xing Q, He L, Hong F, Qin S. Identification of circular RNA biomarkers for Pien Tze Huang treatment of CCl4‑induced liver fibrosis using RNA‑sequencing. Mol Med Rep 2022; 26:309. [PMID: 36004475 PMCID: PMC9437966 DOI: 10.3892/mmr.2022.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Pien Tze Huang (PZH), a common hepatoprotective Traditional Chinese Medicine that has been found to be an effective treatment for carbon tetrachloride-induced hepatic damage, including liver fibrosis. Circular RNAs (circRNAs) serve a crucial role in regulating gene expression levels via circRNA/micro (mi)RNA/mRNA networks in several human diseases and biological processes. However, whether circRNAs are involved in the underlying mechanism of the therapeutic effects of PZH on liver fibrosis remains unclear. Therefore, the aim of the present study was to investigate these effects using circRNA expression profiles from PZH-treated fibrotic livers in model mice. A case-control study on >59,476 circRNAs from CCl4-induced (control group, n=6) and PZH-treated (case group, n=6) mice was performed using circRNA sequencing in liver tissues. PZH treatment resulted in the differential expression of 91 circRNAs, including 58 upregulated and 33 downregulated circRNAs. Furthermore, the construction of competing endogenous networks also indicated that differentially expressed circRNAs acted as miRNA sponges. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of miRNA targets demonstrated that PZH-affected circRNAs were mainly involved in biological processes such as ‘positive regulation of fibroblast proliferation’, ‘cellular response to interleukin-1’ and ‘regulation of DNA-templated transcription in response to stress’ and in a number of important pathways, such as ‘TNF signaling pathway’, ‘PI3K-Akt signaling pathway’, ‘IL-17 signaling pathway’ and ‘MAPK signaling pathway’. To further validate the bioinformatics data, reverse transcription–quantitative PCR was performed on seven miRNA targets in a human hepatic stellate LX-2 cell model. The results suggested that seven of the miRNAs exhibited regulatory patterns that were consistent with those of the transcriptome sequencing results. Kaplan-Meier survival analysis demonstrated that the expression levels of dihydrodiol dehydrogenase and solute carrier family 7, member 11 gene were significantly associated with patient survival, 269 patients with liver hepatocellular carcinoma from The Cancer Genome Atlas database. To the best of our knowledge, this was the first study to provide evidence that PZH affects circRNA expression levels, which may serve important roles in PZH-treated fibrotic liver through the regulation of functional gene expression. In conclusion, the present study provided new insights into the mechanism underlying the pathogenesis of liver fibrosis and identified potential novel, efficient, therapeutic targets against liver injury.
Collapse
Affiliation(s)
- Ting Wang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jinhang Zhu
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Longhui Gao
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Muyun Wei
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Di Zhang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Luan Chen
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hao Wu
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jingsong Ma
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lixing Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Na Zhang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai 201102, P.R. China
| | - Lin He
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Fei Hong
- Fujian Provincial Key Laboratory of Pien Tze Huang Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian 363000, P.R. China
| | - Shengying Qin
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
6
|
Davaanyam D, Kim ID, Lee JK. Intranasal Delivery of RGD-Containing Osteopontin Heptamer Peptide Confers Neuroprotection in the Ischemic Brain and Augments Microglia M2 Polarization. Int J Mol Sci 2021; 22:ijms22189999. [PMID: 34576163 PMCID: PMC8466884 DOI: 10.3390/ijms22189999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Osteopontin (OPN), a phosphorylated glycoprotein, is induced in response to tissue damage and inflammation in various organs, including the brain. In our previous studies, we reported the robust neuroprotective effects of the icosamer OPN peptide OPNpt20, containing arginine-glycine-aspartic acid (RGD) and serine-leucine-alanine-tyrosine (SLAY) motifs, in an animal model of transient focal ischemia and demonstrated that its anti-inflammatory, pro-angiogenic, and phagocytosis inducing functions are responsible for the neuroprotective effects. In the present study, we truncated OPNpt20 to 13 or 7 amino acid peptides containing RGD (R) and/or SLAY (S) motifs (OPNpt13RS, OPNpt7R, OPNpt7RS, and OPNpt7S), and their neuroprotective efficacy was examined in a rat middle cerebral artery occlusion (MCAO) model. Intranasal administration of all four peptides significantly reduced infarct volume; OPNpt7R (VPNGRGD), the 7-amino-acid peptide containing an RGD motif, was determined to be the most potent, with efficacy comparable to that of OPNpt20. Additionally, sensory–motor functional deficits of OPNpt7R-administered MCAO animals were significantly improved, as indicated by the modified neurological severity scores and rotarod test. Notably, the expression of M1 markers was suppressed, whereas that of M2 markers (Arginase 1, CD206, and VEGF) was significantly enhanced in OPNpt7R-treated primary microglia cultures. Inflammation resolution by OPNpt7R was further confirmed in MCAO animals, in which upregulation of anti-inflammatory cytokines (Arg1, IL-10, IL-4, and CD36) and enhanced efferocytosis were detected. Moreover, studies using three mutant peptides (OPNpt7R-RAA or OPNpt7R-RAD, where RGD was replaced with RAA or RAD, respectively, and OPNpt7R-sc containing scrambled sequences) revealed that the RGD motif plays a vital role in conferring neuroprotection. In conclusion, the RGD-containing OPN heptamer OPNpt7R exhibits neuroprotective effects in the post-ischemic brain by suppressing M1 markers and augmenting M2 polarization of microglia and the RGD motif plays a critical role in these activities.
Collapse
|
7
|
Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B, Miller SD. Pre-clinical and Clinical Implications of "Inside-Out" vs. "Outside-In" Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci 2020; 14:599717. [PMID: 33192332 PMCID: PMC7654287 DOI: 10.3389/fncel.2020.599717] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated neurological disorder, characterized by central nervous system (CNS) inflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Although autoimmunity, inflammatory demyelination and neurodegeneration underlie MS, the initiating event has yet to be clarified. Effective disease modifying therapies need to both regulate the immune system and promote restoration of neuronal function, including remyelination. The challenge in developing an effective long-lived therapy for MS requires that three disease-associated targets be addressed: (1) self-tolerance must be re-established to specifically inhibit the underlying myelin-directed autoimmune pathogenic mechanisms; (2) neurons must be protected from inflammatory injury and degeneration; (3) myelin repair must be engendered by stimulating oligodendrocyte progenitors to remyelinate CNS neuronal axons. The combined use of chronic and relapsing remitting experimental autoimmune encephalomyelitis (C-EAE, R-EAE) (“outside-in”) as well as progressive diphtheria toxin A chain (DTA) and cuprizone autoimmune encephalitis (CAE) (“inside-out”) mouse models allow for the investigation and specific targeting of all three of these MS-associated disease parameters. The “outside-in” EAE models initiated by myelin-specific autoreactive CD4+ T cells allow for the evaluation of both myelin-specific tolerance in the absence or presence of neuroprotective and/or remyelinating agents. The “inside-out” mouse models of secondary inflammatory demyelination are triggered by toxin-induced oligodendrocyte loss or subtle myelin damage, which allows evaluation of novel therapeutics that could promote remyelination and neuroprotection in the CNS. Overall, utilizing these complementary pre-clinical MS models will open new avenues for developing therapeutic interventions, tackling MS from the “outside-in” and/or “inside-out”.
Collapse
Affiliation(s)
- Haley E Titus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanan Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Abstract
Microglia dynamically interact with neurons influencing the development, structure, and function of neuronal networks. Recent studies suggest microglia may also influence neuronal activity by physically interacting with axonal domains responsible for action potential initiation and propagation. However, the nature of these microglial process interactions is not well understood. Microglial-axonal contacts are present early in development and persist through adulthood, implicating microglial interactions in the regulation of axonal integrity in both the developing and mature central nervous system. Moreover, changes in microglial-axonal contact have been described in disease states such as multiple sclerosis (MS) and traumatic brain injury (TBI). Depending on the disease state, there are increased associations with specific axonal segments. In MS, there is enhanced contact with the axon initial segment and node of Ranvier, while, in TBI, microglia alter interactions with axons at the site of injury, as well as at the axon initial segment. In this article, we review the interactions of microglial processes with axonal segments, analyzing their associations with various axonal domains and how these interactions may differ between MS and TBI. Furthermore, we discuss potential functional consequences and molecular mechanisms of these interactions and how these may differ among various types of microglial-axonal interactions.
Collapse
Affiliation(s)
- Savannah D Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
9
|
Targeted Krüppel-Like Factor 4 Gene Knock-Out in Retinal Ganglion Cells Improves Visual Function in Multiple Sclerosis Mouse Model. eNeuro 2020; 7:ENEURO.0320-19.2020. [PMID: 32165410 PMCID: PMC7139550 DOI: 10.1523/eneuro.0320-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Axonal demyelination injury and neuronal degeneration are the primary causes of visual disability in multiple sclerosis (MS)-linked optic neuritis patients. Immunomodulatory therapies targeting inflammation have failed to avert the disease progression and no therapies exist to prevent the neuronal deficits seen in MS to date. Neuroprotective strategies targeting oligodendrocytes and astroglia have shown limited success due to a lack of axonal regeneration from injured neurons. In this study, we used the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS to investigate the axonal regenerative approach to improve the neuronal function. Our approach focused on targeted knock-out (KO) of the developmentally regulated axon growth inhibitory Krüppel-like factor 4 (Klf4) gene in retinal ganglion cells (RGCs) of Klf4fl/flmice by intravitreal delivery of AAV2-Cre-ires-EGFP recombinant virus (1) at the time of EAE sensitization and (2) after the onset of optic neuritis-mediated visual defects in the mice. Klf4 gene KO performed simultaneous with EAE sensitization prevented the visual loss as assessed by pattern electroretinograms (PERGs) in the mice and protected the RGCs from EAE-mediated death. More importantly, however, Klf4 gene KO after the onset of optic neuritis also resulted in RGC neuroprotection with additional restoration of their function, thereby improving the visual function outcomes in the EAE model. This study establishes the efficacy of Klf4 targeted knock-down in EAE even after the onset of disease symptoms, and thus should be further explored as a potential treatment strategy for MS/optic neuritis patients.
Collapse
|
10
|
Jordão MJC, Sankowski R, Brendecke SM, Sagar, Locatelli G, Tai YH, Tay TL, Schramm E, Armbruster S, Hagemeyer N, Groß O, Mai D, Çiçek Ö, Falk T, Kerschensteiner M, Grün D, Prinz M. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 2019; 363:363/6425/eaat7554. [DOI: 10.1126/science.aat7554] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
The innate immune cell compartment is highly diverse in the healthy central nervous system (CNS), including parenchymal and non-parenchymal macrophages. However, this complexity is increased in inflammatory settings by the recruitment of circulating myeloid cells. It is unclear which disease-specific myeloid subsets exist and what their transcriptional profiles and dynamics during CNS pathology are. Combining deep single-cell transcriptome analysis, fate mapping, in vivo imaging, clonal analysis, and transgenic mouse lines, we comprehensively characterized unappreciated myeloid subsets in several CNS compartments during neuroinflammation. During inflammation, CNS macrophage subsets undergo self-renewal, and random proliferation shifts toward clonal expansion. Last, functional studies demonstrated that endogenous CNS tissue macrophages are redundant for antigen presentation. Our results highlight myeloid cell diversity and provide insights into the brain’s innate immune system.
Collapse
|
11
|
Insights into the Role of Neuroinflammation in the Pathogenesis of Multiple Sclerosis. J Funct Morphol Kinesiol 2018. [DOI: 10.3390/jfmk3010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
12
|
Liu Y, Gibson SA, Benveniste EN, Qin H. Opportunities for Translation from the Bench: Therapeutic Intervention of the JAK/STAT Pathway in Neuroinflammatory Diseases. Crit Rev Immunol 2018; 35:505-27. [PMID: 27279046 DOI: 10.1615/critrevimmunol.2016015517] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathogenic CD4+ T cells and myeloid cells play critical roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. These immune cells secrete aberrantly high levels of pro-inflammatory cytokines that pathogenically bridge the innate and adaptive immune systems and damage neurons and oligodendrocytes. These cytokines include interleukin-2 (IL-2), IL-6, IL-12, IL-21, IL-23, granulocyte macrophage-colony stimulating factor (GM-CSF), and interferon-γ (IFN-γ). It is, therefore, not surprising that both the dysregulated expression of these cytokines and the subsequent activation of their downstream signaling cascades is a common feature in MS/EAE. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is utilized by numerous cytokines for signal transduction and is essential for the development and regulation of immune responses. Unbridled activation of the JAK/STAT pathway by pro-inflammatory cytokines has been demonstrated to be critically involved in the pathogenesis of MS/EAE. In this review, we discuss recent advancements in our understanding of the involvement of the JAK/STAT signaling pathway in the pathogenesis of MS/EAE, with a particular focus on therapeutic approaches to target the JAK/STAT pathway.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294; Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sara A Gibson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| |
Collapse
|
13
|
Villani S, Zanotta N, Ambrogi F, Comar M, Franciotta D, Dolci M, Cason C, Ticozzi R, Ferrante P, Delbue S. Multiplex array analysis of circulating cytokines and chemokines in natalizumab-treated patients with multiple sclerosis. J Neuroimmunol 2017; 310:91-96. [DOI: 10.1016/j.jneuroim.2017.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/22/2023]
|
14
|
Bloch EM, Reed WF, Lee TH, Montalvo L, Shiboski S, Custer B, Barcellos LF. Male microchimerism in peripheral blood leukocytes from women with multiple sclerosis. CHIMERISM 2017; 2:6-10. [PMID: 21547029 DOI: 10.4161/chim.2.1.15151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 02/08/2011] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Fetal microchimerism (F-MC), the persistence of fetal cells in the mother, is frequently encountered following pregnancy. The high prevalence of F-MC in autoimmune disease prompts consideration of the role for immune tolerance and regulation. This study examines the association between F-MC and multiple sclerosis (MS), an autoimmune disorder, of undetermined etiology. RESULTS 21 out of 51 MS-positive subjects (41%) were classified as positive for F-MC; 4 of 22 (18%) of MS-negative sibling controls, were also positive for MC (p = 0.066). Unanticipated F-MC in controls lead to re-evaluation using 30 female singleton cord blood units (CBUs) as a biological control. Four CBUs were low-level positive. STUDY DESIGN AND METHODS Seventy-three female subjects were assigned to three groups according to disease status and pregnancy history: (1) MS positive (+) women with a history of one male pregnancy before symptom onset (n = 27); (2) MS negative (-) female siblings of MS(+) women with a history of one male pregnancy (n = 22); and (3) MS(+) women that reported never having been pregnant (n = 24). Ten micrograms of genomic DNA obtained from peripheral blood leukocytes of each subject were analyzed for F-MC using allele-specific real-time PCR targeting the SR-Y sequence on the Y-chromosome. MC classification was dichotomous (positive vs. negative) based on PCR results. CONCLUSION The association between F-MC and MS warrants further study to define this relationship. F-MC in women self-reporting as nulligravid, supports previous findings that a significant proportion of pregnancies go undetected. This lead to re-validation of a Y-chromosome based assay for F-MC detection.
Collapse
Affiliation(s)
- Evan M Bloch
- International Research and Training; Blood Systems Research Institute (BSRI); San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Opazo MC, González PA, Flores BD, Venegas LF, Albornoz EA, Cisternas P, Bohmwald K, Nieto PA, Bueno SM, Kalergis AM, Riedel CA. Gestational Hypothyroxinemia Imprints a Switch in the Capacity of Astrocytes and Microglial Cells of the Offspring to React in Inflammation. Mol Neurobiol 2017; 55:4373-4387. [PMID: 28656482 DOI: 10.1007/s12035-017-0627-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
Hypothyroxinemia (Hpx) is a highly frequent condition characterized by low thyroxine (T4) and normal 3,3',5'-triiodothyronine (T3) and thyroid stimulating hormone (TSH) levels in the blood. Gestational Hpx is closely related to cognitive impairment in the human offspring. In animal models gestational Hpx causes impairment at glutamatergic synapsis, spatial learning, and the susceptibility to suffer strong autoimmune diseases like experimental autoimmune encephalomyelitis (EAE). However, the mechanisms underlying these phenotypes are unknown. On the other hand, it has been shown that astrocytes and microglia affect the outcome of EAE. In fact, the activation of astrocytes and microglia in the central nervous system (CNS) contributes to EAE progression. Thus, in this work, the reactivity of astrocytes and microglia from rats gestated in Hpx was evaluated aiming to understand whether these cells are targets of gestational Hpx. Interestingly, microglia derived from the offspring gestated in Hpx were less reactive compared to microglia derived from offspring gestated in euthyroidism. Instead, astrocytes derived from the offspring gestated in Hpx were significantly more reactive than the astrocytes from the offspring gestated in euthyroidism. This work contributes with novel information regarding the effects of gestational Hpx over astrocytes and microglia in the offspring. It suggests that astrocyte could react strongly to an inflammatory insult inducing neuronal death in the CNS.
Collapse
Affiliation(s)
- María C Opazo
- Laboratorio de Biología Celular y Farmacología, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Laboratorio de Biología Celular y Farmacología, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Betsi D Flores
- Laboratorio de Biología Celular y Farmacología, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F Venegas
- Laboratorio de Biología Celular y Farmacología, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A Albornoz
- Laboratorio de Biología Celular y Farmacología, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Cisternas
- Laboratorio de Biología Celular y Farmacología, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Laboratorio de Biología Celular y Farmacología, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile. .,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Zhao J, Hu H, Wan Y, Zhang Y, Zheng L, Hong Z. Pien Tze Huang Gan Bao ameliorates carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats. Exp Ther Med 2017; 13:1820-1826. [PMID: 28565773 PMCID: PMC5443228 DOI: 10.3892/etm.2017.4174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/18/2016] [Indexed: 01/26/2023] Open
Abstract
Liver damage results from a variety of insults, including hepatitis and chemical toxicity from alcohol, drugs and other toxins. The present study evaluated the hepatoprotective effects and potential mechanisms of action of the Traditional Chinese Medicine Pien Tze Huang Gan Bao (GB) in a rat model of carbon tetrachloride (CCl4)-induced liver injury. Sixty male Sprague-Dawley rats were randomly divided into six different groups: i) Control, ii) CCl4 injury model and groups treated with iii) silymarin as a positive drug control, iv) 150 mg/kg GB, v) 300 mg/kg GB and vi) 600 mg/kg GB. Control rats received no treatment, while the remaining ones were intraperitoneally injected with CCl4 (2 ml/kg) to induce acute liver disease. Silymarin or GB was orally administered prior to CCl4 treatment in various treatment groups for 7 days. Animals were sacrificed 24 h post-CCl4 injection. It was revealed that GB significantly reduced serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma glutamyl transpeptidase and total bilirubin levels in the serum induced by CCl4. BG also prevented CCl4-induced changes in liver tissues, as revealed by histopathological analysis. CCl4-induced reductions in endogenous liver antioxidant enzyme activities of superoxide dismutase, glutathione and glutathione peroxidase as well as increases in malondialdehyde and thiobarbituric acid reactive substances were inhibited by GB treatment. Activated NF-κB in liver tissues was also significantly increased by CCl4, which was attenuated by GB as indicated by immunohistochemical and PCR analysis. Furthermore, CCl4-mediated increases in the inflammatory factors tumor necrosis factor-alpha and interleukin-1β secretion into the serum and their expression in liver tissues were reversed following GB treatment, as revealed by ELISA and PCR, respectively. These findings suggested that GB protects against CCl4-induced hepatic injury, inflammation and oxidative damage in rats and may be useful in future clinical application of liver injury and disease.
Collapse
Affiliation(s)
- Jinyan Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Haixia Hu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yun Wan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuchen Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liangpu Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhenfeng Hong
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
17
|
Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor. Sci Rep 2017; 7:42496. [PMID: 28195200 PMCID: PMC5307354 DOI: 10.1038/srep42496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022] Open
Abstract
The present work focuses on the dynamical aspects of cross-reactivity between myelin based protein (MBP) self-peptide and two microbial peptides (UL15, PMM) for Hy.1B11 T-cell receptor (TCR). This same TCR was isolated from a patient suffering from multiple sclerosis (MS). The study aims at highlighting the chemical interactions underlying recognition mechanisms between TCR and the peptides presented by Major Histocompatibility Complex (MHC) proteins, which form a crucial component in adaptive immune response against foreign antigens. Since the ability of a TCR to recognize different peptide antigens presented by MHC depends on its cross-reactivity, we used molecular dynamics methods to obtain atomistic detail on TCR-peptide-MHC complexes. Our results show how the dynamical basis of Hy.1B11 TCR’s cross-reactivity is rooted in a similar bridging interaction pattern across the TCR-peptide-MHC interface. Our simulations confirm the importance of TCR CDR3α E98 residue interaction with MHC and a predominant role of P6 peptide residue in MHC binding affinity. Altogether, our study provides energetic and dynamical insights into factors governing peptide recognition by the cross-reactive Hy.1B11 TCR, found in MS patient.
Collapse
|
18
|
Nimmagadda VKC, Makar TK, Chandrasekaran K, Sagi AR, Ray J, Russell JW, Bever CT. SIRT1 and NAD+ precursors: Therapeutic targets in multiple sclerosis a review. J Neuroimmunol 2016; 304:29-34. [PMID: 27474445 DOI: 10.1016/j.jneuroim.2016.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
Abstract
Neurodegeneration is an important determinant of disability in multiple sclerosis (MS) but while currently approved treatments reduce inflammation, they have not been shown to reduce neurodegeneration. SIRT1, a NAD dependent protein deacetylase, has been implicated in the pathogenesis of neurodegeneration in neurological diseases including MS. We have studied the role of SIRT1 in experimental autoimmune encephalomyelitis (EAE) and found evidence for a neuroprotective role. In this review we summarize the most recent findings from the use of SIRT1 activators and SIRT1 overexpression in transgenic mice. These data support provide a rational for the use of SIRT1 activators in MS.
Collapse
Affiliation(s)
- Vamshi K C Nimmagadda
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Tapas K Makar
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA; VA Multiple Sclerosis Center of Excellence East, Baltimore, MD 21201, USA
| | | | - Avinash Rao Sagi
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA
| | - Jayanta Ray
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA
| | - James W Russell
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Christopher T Bever
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA; VA Multiple Sclerosis Center of Excellence East, Baltimore, MD 21201, USA.
| |
Collapse
|
19
|
Plaisted WC, Zavala A, Hingco E, Tran H, Coleman R, Lane TE, Loring JF, Walsh CM. Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis. PLoS One 2016; 11:e0157620. [PMID: 27310015 PMCID: PMC4911106 DOI: 10.1371/journal.pone.0157620] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs) derived from human embryonic stem cells (hESCs) in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs) that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs). Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs) concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- Cell Differentiation
- Cell- and Tissue-Based Therapy/methods
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Coronavirus Infections/therapy
- Coronavirus Infections/virology
- Disease Models, Animal
- Embryoid Bodies/cytology
- Embryoid Bodies/immunology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/therapy
- Hepatitis, Viral, Animal/virology
- Human Embryonic Stem Cells/cytology
- Human Embryonic Stem Cells/immunology
- Humans
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Murine hepatitis virus/growth & development
- Murine hepatitis virus/pathogenicity
- Myelin Sheath/immunology
- Neural Stem Cells/cytology
- Neural Stem Cells/immunology
- Neural Stem Cells/transplantation
- Organ Specificity
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Warren C. Plaisted
- Department of Molecular Biology & Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine, California, United States of America
| | - Angel Zavala
- Department of Molecular Biology & Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine, California, United States of America
| | - Edna Hingco
- Department of Molecular Biology & Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine, California, United States of America
| | - Ha Tran
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ronald Coleman
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas E. Lane
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (CMW); (JFL); (TEL)
| | - Jeanne F. Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (CMW); (JFL); (TEL)
| | - Craig M. Walsh
- Department of Molecular Biology & Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine, California, United States of America
- * E-mail: (CMW); (JFL); (TEL)
| |
Collapse
|
20
|
Volpi C, Mondanelli G, Pallotta MT, Vacca C, Iacono A, Gargaro M, Albini E, Bianchi R, Belladonna ML, Celanire S, Mordant C, Heroux M, Royer-Urios I, Schneider M, Vitte PA, Cacquevel M, Galibert L, Poli SM, Solari A, Bicciato S, Calvitti M, Antognelli C, Puccetti P, Orabona C, Fallarino F, Grohmann U. Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells. Neuropharmacology 2015; 102:59-71. [PMID: 26522434 PMCID: PMC4720030 DOI: 10.1016/j.neuropharm.2015.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/05/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
Abstract
Metabotropic glutamate receptor 4 (mGluR4) possesses immune modulatory properties in vivo, such that a positive allosteric modulator (PAM) of the receptor confers protection on mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). ADX88178 is a newly-developed, one such mGluR4 modulator with high selectivity, potency, and optimized pharmacokinetics. Here we found that application of ADX88178 in the RR-EAE model system converted disease into a form of mild—yet chronic—neuroinflammation that remained stable for over two months after discontinuing drug treatment. In vitro, ADX88178 modulated the cytokine secretion profile of dendritic cells (DCs), increasing production of tolerogenic IL-10 and TGF-β. The in vitro effects required activation of a Gi-independent, alternative signaling pathway that involved phosphatidylinositol-3-kinase (PI3K), Src kinase, and the signaling activity of indoleamine 2,3-dioxygenase 1 (IDO1). A PI3K inhibitor as well as small interfering RNA targeting Ido1—but not pertussis toxin, which affects Gi protein-dependent responses—abrogated the tolerogenic effects of ADX88178-conditioned DCs in vivo. Thus our data indicate that, in DCs, highly selective and potent mGluR4 PAMs such as ADX88178 may activate a Gi-independent, long-lived regulatory pathway that could be therapeutically exploited in chronic autoimmune diseases such as multiple sclerosis. ADX88178, a selective mGluR4 PAM, exerts long-term therapeutic effects in RR-EAE. ADX88178 activates a noncanonical mGluR4 signaling in DCs. ADX88178 induces a tolerogenic functional phenotype in DCs via immunoregulatory IDO1. Highly selective mGluR4 PAMs may represent novel drugs in chronic neuroinflammation.
Collapse
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Maria T Pallotta
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Alberta Iacono
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Elisa Albini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Maria L Belladonna
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Sylvain Celanire
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Céline Mordant
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Madeleine Heroux
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Isabelle Royer-Urios
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Manfred Schneider
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Pierre-Alain Vitte
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Mathias Cacquevel
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Laurent Galibert
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Sonia-Maria Poli
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Aldo Solari
- Department of Economics, Management, and Statistics, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| |
Collapse
|
21
|
Jin YC, Lee H, Kim SW, Kim ID, Lee HK, Lee Y, Han PL, Lee JK. Intranasal Delivery of RGD Motif-Containing Osteopontin Icosamer Confers Neuroprotection in the Postischemic Brain via αvβ3 Integrin Binding. Mol Neurobiol 2015; 53:5652-63. [PMID: 26482372 DOI: 10.1007/s12035-015-9480-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
Osteopontin (OPN) is a phosphorylated glycoprotein possessing an arginine-glycine-aspartate (RGD)-motif, which binds to several cell surface integrins and mediates a wide range of cellular processes. Inductions of OPN have been reported in the postischemic brain, and the neuroprotective effects of OPN have been demonstrated in animal models of stroke. In the present study, we showed a robust neuroprotective effect of RGD-containing icosamer OPN peptide (OPNpt20) in a rat model of focal cerebral ischemia (middle cerebral artery occlusion, MCAO). Intranasally administered OPNpt20 reduced mean infarct volume by 79.7 % compared to the treatment-naïve MCAO control animals and markedly ameliorated neurological deficits. In addition, OPNpt20 significantly suppressed the inductions of iNOS and of inflammatory markers in postischemic brains and in primary microglial cultures, demonstrating anti-inflammatory effects. Administration of a mutant peptide, in which RGD was replaced by arginine-alanine-alanine (RAA), failed to suppress infarct volumes in MCAO animals and co-administration of OPNpt20 with anti-αvβ3 integrin antibody failed to suppress iNOS induction in primary microglia culture, indicating that the RGD motif in OPNpt20 and endogenous αvβ3 integrin play critical roles. Furthermore, pull-down assay revealed a direct binding between OPNpt20 and αvβ3 integrin in primary microglia culture. Together, these results indicate that RGD-containing OPN icosamer has therapeutic potential in the postischemic brain and αvβ3 integrin-mediated anti-inflammatory effect might be an underlying mechanism.
Collapse
Affiliation(s)
- Yin-Chuan Jin
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, South Korea
| | - Seung-Woo Kim
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, South Korea
| | - Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, South Korea
| | - Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, South Korea
| | - Yunjin Lee
- Department of Brain and Cognitive Science, Ewha Womans University, Seoul, South Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Science, Ewha Womans University, Seoul, South Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea. .,Medical Research Center, Inha University School of Medicine, Inchon, South Korea.
| |
Collapse
|
22
|
Interleukin-7 is required for CD4(+) T cell activation and autoimmune neuroinflammation. Clin Immunol 2015; 161:260-9. [PMID: 26319414 DOI: 10.1016/j.clim.2015.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022]
Abstract
IL-7 is known to be vital for T cell homeostasis but has previously been presumed to be dispensable for TCR-induced activation. Here, we show that IL-7 is critical for the initial activation of CD4(+) T cells in that it provides some of the necessary early signaling components, such as activated STAT5 and Akt. Accordingly, short-term in vivo IL-7Rα blockade inhibited the activation and expansion of autoantigen-specific CD4(+) T cells and, when used to treat experimental autoimmune encephalomyelitis (EAE), prevented and ameliorated disease. Our studies demonstrate that IL-7 signaling is a prerequisite for optimal CD4(+) T cell activation and that IL-7R antagonism may be effective in treating CD4(+) T cell-mediated neuroinflammation and other autoimmune inflammatory conditions.
Collapse
|
23
|
Gadani SP, Walsh JT, Lukens JR, Kipnis J. Dealing with Danger in the CNS: The Response of the Immune System to Injury. Neuron 2015; 87:47-62. [PMID: 26139369 PMCID: PMC4491143 DOI: 10.1016/j.neuron.2015.05.019] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fighting pathogens and maintaining tissue homeostasis are prerequisites for survival. Both of these functions are upheld by the immune system, though the latter is often overlooked in the context of the CNS. The mere presence of immune cells in the CNS was long considered a hallmark of pathology, but this view has been recently challenged by studies demonstrating that immunological signaling can confer pivotal neuroprotective effects on the injured CNS. In this review, we describe the temporal sequence of immunological events that follow CNS injury. Beginning with immediate changes at the injury site, including death of neural cells and release of damage-associated molecular patterns (DAMPs), and progressing through innate and adaptive immune responses, we describe the cascade of inflammatory mediators and the implications of their post-injury effects. We conclude by proposing a revised interpretation of immune privilege in the brain, which takes beneficial neuro-immune communications into account.
Collapse
Affiliation(s)
- Sachin P Gadani
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - James T Walsh
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
24
|
Luna-Luna M, Medina-Urrutia A, Vargas-Alarcón G, Coss-Rovirosa F, Vargas-Barrón J, Pérez-Méndez Ó. Adipose Tissue in Metabolic Syndrome: Onset and Progression of Atherosclerosis. Arch Med Res 2015; 46:392-407. [PMID: 26009250 DOI: 10.1016/j.arcmed.2015.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/25/2022]
Abstract
Metabolic syndrome (MetS) should be considered a clinical entity when its different symptoms share a common etiology: obesity/insulin resistance as a result of a multi-organ dysfunction. The main interest in treating MetS as a clinical entity is that the addition of its components drastically increases the risk of atherosclerosis. In MetS, the adipose tissue plays a central role along with an unbalanced gut microbiome, which has become relevant in recent years. Once visceral adipose tissue (VAT) increases, dyslipidemia and endothelial dysfunction follow as additive risk factors. However, when the nonalcoholic fatty liver is present, risk of a cardiovascular event is highly augmented. Epicardial adipose tissue (EAT) seems to increase simultaneously with the VAT. In this context, the former may play a more important role in the development of the atherosclerotic plaque than the latter. Hence, EAT may act as a paracrine tissue vis-à-vis the coronary arteries favoring the local inflammation and the atheroma calcification.
Collapse
Affiliation(s)
- María Luna-Luna
- Department of Molecular Biology, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología, Mexico City, Mexico; Study Group of Atherosclerosis, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | - Jesús Vargas-Barrón
- Echocardiography, Instituto Nacional de Cardiología, Mexico City, Mexico; Study Group of Atherosclerosis, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Óscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología, Mexico City, Mexico; Study Group of Atherosclerosis, Instituto Nacional de Cardiología, Mexico City, Mexico.
| |
Collapse
|
25
|
Mezger M, Göbel K, Kraft P, Meuth SG, Kleinschnitz C, Langer HF. Platelets and vascular inflammation of the brain. Hamostaseologie 2015; 35:244-51. [PMID: 25987266 DOI: 10.5482/hamo-14-11-0071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/04/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED There is emerging evidence that platelets have an important role in inflammation beyond their involvement in hemostasis. Platelets can contribute to inflammatory reactions via crosstalk both with immune cells and endothelial cells. Inflamed vessels are characterized by the presence of activated endothelial cells. These activated endothelial cells upregulate receptors necessary for leukocyte recruitment, but also for the adhesion of platelets. Subsequently, immune cells can bind to platelets through adhesion receptors presented on the platelet surface, thus supporting leukocyte recruitment to the vessel wall. There are several neurological diseases associated with vascular inflammation including multiple sclerosis (MS) and stroke. Increased markers of platelet activation could be demonstrated in patients suffering from MS compared to healthy individuals. Reports from murine models indicate that platelets may be of importance for disease progression and severity by mediating leukocyte recruitment as one potential underlying mechanism. Blocking platelet function disease severity was considerably ameliorated. Moreover, processes of tissue remodelling may be influenced by platelet derived mediators. Whether a role of platelets for vascular inflammation can be extrapolated to further neurological diseases will have to be investigated in further in depth experimental and clinical trials. CONCLUSION Platelets and platelet associated mechanisms may offer novel starting points to understand neurovascular diseases from a different point of view and to develop novel approaches to access the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - H F Langer
- Harald Langer, MD Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität Tübingen, Germany, E-mail:
| |
Collapse
|
26
|
Tsakiri A, Ravanidis S, Lagoudaki R, Poulatsidou KN, Svane IM, Frederiksen JL, Grigoriadis N. Neuroprotective and anti-inflammatory mechanisms are activated early in optic neuritis. Acta Neurol Scand 2015; 131:305-12. [PMID: 25565254 DOI: 10.1111/ane.12344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the expression of different immunological mediators in blood and CSF in patients with acute ON and to estimate whether they were implicated in pro- or anti-inflammatory or even regulatory reactions in comparison with a healthy control group (HC). METHODS Sixty-four patients between 18 and 59 years of age suffering by acute ON, onset of <4 weeks, were included in the study. Visual tests and brain magnetic resonance imaging (MRI) were performed in ON. Blood and CSF samples were collected from untreated patients and from a gender- and age-matched voluntary HC (n = 32). The mRNA expression of distinct cytokines and neurotrophic factors was assessed by semi/quantitative real-time PCR (RT-PCR). RESULTS Brain- and glial cell-derived neurotrophic factor (BDNF and GDNF) and interleukin 10 (IL-10) expression was significantly increased in the CSF compared to the blood in both ON and HC (P < 0.001). In the CSF increased levels of BDNF and GDNF of the ON group were positively correlated with the presence of oligoclonal bands (OB). Additionally, patients with gadolinium (gd+) lesions on brain MRI showed increased levels of IL-5 in blood (P = 0.03). CONCLUSION Our data indicate that both immuno-regulatory and neuroprotective mechanisms may potentially take place relatively early in the course of the ON. The presence of neurotrophic factors in healthy CSF and their overexpression already during the acute phase of ON supports the alertness of CNS defence mechanisms ready to be activated during degenerative events, such as destruction of the myelin.
Collapse
Affiliation(s)
- A. Tsakiri
- Department of Neurology; Glostrup Hospital; University of Copenhagen; Glostrup Denmark
| | - S. Ravanidis
- 2nd Department of Neurology; AHEPA University Hospital; Thessaloniki Macedonia Greece
| | - R. Lagoudaki
- 2nd Department of Neurology; AHEPA University Hospital; Thessaloniki Macedonia Greece
| | - K.-N. Poulatsidou
- 2nd Department of Neurology; AHEPA University Hospital; Thessaloniki Macedonia Greece
| | - I. M. Svane
- Department of Haematology and Oncology; Center for Cancer Immune Therapy; Herlev Hospital; University of Copenhagen; Herlev Denmark
| | - J. L. Frederiksen
- Department of Neurology; Glostrup Hospital; University of Copenhagen; Glostrup Denmark
| | - N. Grigoriadis
- 2nd Department of Neurology; AHEPA University Hospital; Thessaloniki Macedonia Greece
| |
Collapse
|
27
|
Lin D, Lei L, Zhang Y, Hu B, Bao G, Liu Y, Song Y, Liu C, Wu Y, Zhao L, Yu X, Liu H. Secreted IL-1α promotes T-cell activation and expansion of CD11b+Gr1+cells in carbon tetrachloride-induced liver injury in mice. Eur J Immunol 2015; 45:2084-98. [DOI: 10.1002/eji.201445195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/05/2015] [Accepted: 04/10/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Dandan Lin
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Lei Lei
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Yinsheng Zhang
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Bo Hu
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Guangming Bao
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Yonghao Liu
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Yuan Song
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Chunliang Liu
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Yan Wu
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Lixiang Zhao
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Xiao Yu
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
| | - Haiyan Liu
- Laboratory of Cellular and Molecular Tumor Immunology; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University; Suzhou Jiangsu China
- Cyrus Tang Hematology Center; Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology and Key Laboratory of Thrombosis and Hemostasis Ministry of Health; Suzhou Jiangsu China
| |
Collapse
|
28
|
Rahimi A, Faizi M, Talebi F, Noorbakhsh F, Kahrizi F, Naderi N. Interaction between the protective effects of cannabidiol and palmitoylethanolamide in experimental model of multiple sclerosis in C57BL/6 mice. Neuroscience 2015; 290:279-87. [PMID: 25637488 DOI: 10.1016/j.neuroscience.2015.01.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 01/01/2015] [Accepted: 01/10/2015] [Indexed: 01/10/2023]
Abstract
Cannabinoids (CBs) have recently been approved to exert broad anti-inflammatory activities in experimental models of multiple sclerosis (MS). It has been demonstrated that these compounds could also have effects on neurodegeneration, demyelination, and autoimmune processes occurring in the pathology of MS. However, the clinical use of CBs is limited by their psychoactive effects. Among cannabinoid compounds, cannabidiol (CBD) and palmitoylethanolamide (PEA) have no psychotropic activities. We induced experimental autoimmune encephalomyelitis (EAE), a model of MS, by injecting myelin oligodendrocyte glycoprotein (MOG) to C57BL/6 mice. We assessed the effects of CBD, PEA, and co-administration of CBD and PEA on neurobehavioral scores, immune cell infiltration, demyelination, axonal injury, and the expression of inflammatory cytokines by using histochemistry methods and real-time RT-PCR. Treatment with either CBD (5mg/kg) or PEA (5mg/kg) during disease onset reduced the severity of the neurobehavioral scores of EAE. This effect of CBD and PEA was accompanied by diminished inflammation, demyelination, axonal damage and inflammatory cytokine expression while concurrent administration of CBD (5mg/kg) and PEA (5mg/kg) was not as effective as treatment with either drug per se. These results suggest that, CBD and PEA, non-psychoactive CBs, attenuate neurobehavioral deficits, histological damage, and inflammatory cytokine expression in MOG-immunized animals. However, there is an antagonistic interaction between CBD and PEA in protection against MOG-induced disease.
Collapse
Affiliation(s)
- A Rahimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Talebi
- Khatam-Al-Anbia Hospital, Shefa Neuroscience Research Center, Tehran, Iran
| | - F Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - F Kahrizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Bloch EM, Reed WF, Lee TH, Montalvo L, Shiboski S, Custer B, Barcellos L. Male microchimerism in peripheral blood leukocytes from women with multiple sclerosis. CHIMERISM 2014. [DOI: 10.4161/chim.15151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, Kidd G, Zorlu MM, Sun N, Hu W, Liu L, Lee JC, Taylor SE, Uehlein L, Dixon D, Gu J, Floruta CM, Zhu M, Charo IF, Weiner HL, Ransohoff RM. Differential roles of microglia and monocytes in the inflamed central nervous system. ACTA ACUST UNITED AC 2014; 211:1533-49. [PMID: 25002752 PMCID: PMC4113947 DOI: 10.1084/jem.20132477] [Citation(s) in RCA: 598] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phagocytic monocyte-derived macrophages associate with the nodes of Ranvier and initiate demyelination while microglia clear debris and display a suppressed metabolic gene signature in EAE. In the human disorder multiple sclerosis (MS) and in the model experimental autoimmune encephalomyelitis (EAE), macrophages predominate in demyelinated areas and their numbers correlate to tissue damage. Macrophages may be derived from infiltrating monocytes or resident microglia, yet are indistinguishable by light microscopy and surface phenotype. It is axiomatic that T cell–mediated macrophage activation is critical for inflammatory demyelination in EAE, yet the precise details by which tissue injury takes place remain poorly understood. In the present study, we addressed the cellular basis of autoimmune demyelination by discriminating microglial versus monocyte origins of effector macrophages. Using serial block-face scanning electron microscopy (SBF-SEM), we show that monocyte-derived macrophages associate with nodes of Ranvier and initiate demyelination, whereas microglia appear to clear debris. Gene expression profiles confirm that monocyte-derived macrophages are highly phagocytic and inflammatory, whereas those arising from microglia demonstrate an unexpected signature of globally suppressed cellular metabolism at disease onset. Distinguishing tissue-resident macrophages from infiltrating monocytes will point toward new strategies to treat disease and promote repair in diverse inflammatory pathologies in varied organs.
Collapse
Affiliation(s)
- Ryo Yamasaki
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Haiyan Lu
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Oleg Butovsky
- Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115
| | - Nobuhiko Ohno
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Anna M Rietsch
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Ron Cialic
- Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115
| | - Pauline M Wu
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Camille E Doykan
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Jessica Lin
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106 Ohio State University College of Medicine, Columbus, OH 43210
| | - Anne C Cotleur
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Grahame Kidd
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Musab M Zorlu
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106 Hacettepe University Faculty of Medicine, 06100 Ankara, Turkey
| | - Nathan Sun
- Vanderbilt University, Nashville, TN 37235
| | - Weiwei Hu
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106 Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - LiPing Liu
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Jar-Chi Lee
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Sarah E Taylor
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Lindsey Uehlein
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106 Ohio State University College of Medicine, Columbus, OH 43210
| | - Debra Dixon
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106 Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106
| | - Jinyu Gu
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Crina M Floruta
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106 Baylor University, Waco, TX 77030
| | - Min Zhu
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106
| | - Israel F Charo
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, San Francisco, CA 94158
| | - Howard L Weiner
- Center for Neurological Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115
| | - Richard M Ransohoff
- Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106Neuroinflammation Research Center and Department of Neurosciences, Lerner Research Institute; Department of Quantitative Health Sciences; and Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106 Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106
| |
Collapse
|
31
|
Blink SE, Caldis MW, Goings GE, Harp CT, Malissen B, Prinz I, Xu D, Miller SD. γδ T cell subsets play opposing roles in regulating experimental autoimmune encephalomyelitis. Cell Immunol 2014; 290:39-51. [PMID: 24860937 DOI: 10.1016/j.cellimm.2014.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/21/2014] [Accepted: 04/28/2014] [Indexed: 12/29/2022]
Abstract
γδ T cells are resident in cerebrospinal fluid and central nervous system (CNS) lesions of multiple sclerosis (MS) patients, but as multifaceted cells exhibiting innate and adaptive characteristics, their function remains unknown. Previous studies in experimental autoimmune encephalomyelitis (EAE) are contradictory and identified these cells as either promoting or suppressing disease pathogenesis. This study examines distinct γδ T cell subsets during EAE and indicates they mediate differential functions in CNS inflammation and demyelination resulting in pathogenesis or protection. We identified two γδ subsets in the CNS, Vγ1(+) and Vγ4(+), with distinct cytokine profiles and tissue specificity. Anti-γδ T cell receptor (TCR) monoclonal antibody (mAb) administration results in activation and downregulation of surface TCR, rendering the cells undetectable, but with opposing effects: anti-Vγ4 treatment exacerbates disease whereas anti-Vγ1 treatment is protective. The Vγ4(+) subset produces multiple pro-inflammatory cytokines including high levels of IL-17, and accounts for 15-20% of the interleukin-17 (IL-17) producing cells in the CNS, but utilize a variant transcriptional program than CD4(+) Th17 cells. In contrast, the Vγ1 subset produces CCR5 ligands, which may promote regulatory T cell differentiation. γδ T cell subsets thus play distinct and opposing roles during EAE, providing an explanation for previous reports and suggesting selective targeting to optimize regulation as a potential therapy for MS.
Collapse
Affiliation(s)
- Sarah E Blink
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Matthew W Caldis
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Gwendolyn E Goings
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Christopher T Harp
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Institut National de la Santé et de la Recherche Médicale, U631, Centre National de la Recherche Scientifique, UMR6102, 13288 Marseille, France
| | - Immo Prinz
- Hannover Medical School, Institute for Immunology, 30625 Hannover, Germany
| | - Dan Xu
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
32
|
Affiliation(s)
- Lawrence Steinman
- Departments of Pediatrics, Neurology and Neurological Sciences, Stanford University, Stanford, California 94305;
| |
Collapse
|
33
|
Regulatory T-cell vaccination independent of auto-antigen. Exp Mol Med 2014; 46:e82. [PMID: 24626168 PMCID: PMC3972794 DOI: 10.1038/emm.2014.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 12/21/2022] Open
Abstract
To date, efforts to treat autoimmune diseases have primarily focused on the disease symptoms rather than on the cause of the disease. In large part, this is attributed to not knowing the responsible auto-antigens (auto-Ags) for driving the self-reactivity coupled with the poor success of treating autoimmune diseases using oral tolerance methods. Nonetheless, if tolerogenic approaches or methods that stimulate regulatory T (Treg) cells can be devised, these could subdue autoimmune diseases. To forward such efforts, our approach with colonization factor antigen I (CFA/I) fimbriae is to establish bystander immunity to ultimately drive the development of auto-Ag-specific Treg cells. Using an attenuated Salmonella vaccine expressing CFA/I fimbriae, fimbriae-specific Treg cells were induced without compromising the vaccine's capacity to protect against travelers' diarrhea or salmonellosis. By adapting the vaccine's anti-inflammatory properties, it was found that it could also dampen experimental inflammatory diseases resembling multiple sclerosis (MS) and rheumatoid arthritis. Because of this bystander effect, disease-specific Treg cells are eventually induced to resolve disease. Interestingly, this same vaccine could elicit the required Treg cell subset for each disease. For MS-like disease, conventional CD25+ Treg cells are stimulated, but for arthritis CD39+ Treg cells are induced instead. This review article will examine the potential of treating autoimmune diseases without having previous knowledge of the auto-Ag using an innocuous antigen to stimulate Treg cells via the production of transforming growth factor-β and interleukin-10.
Collapse
|
34
|
IŞIK N, YILDIZ MANUKYAN N, AYDIN CANTÜRK İ, CANDAN F, ÜNSAL ÇAKMAK A, SARU HAN DİRESKENELİ G. Genetic Susceptibility to Multiple Sclerosis: The Role of FOXP3 Gene Polymorphism. Noro Psikiyatr Ars 2014; 51:69-73. [PMID: 28360598 PMCID: PMC5370262 DOI: 10.4274/npa.y7098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/12/2013] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION It is well recognized that both genetic and environmental factors play an important role in the pathogenesis of multiple sclerosis (MS). Immune pathogenesis of MS focuses on pathogenic CD4+ T lymphocytes. CD4+CD25+ regulatory T cells have suppressive function in this cell group. FOXP3 (forkhead boxP3) transcription factor is a key structure in the development and function of regulatory cells. Functional alterations in FOXP3 gene expression have been observed in various autoimmune diseases. METHODS We screened a non-synonymous coding single nucleotide polymorphism (exon +2710 C/T) (rs2232369) of human FOXP3 gene in 148 MS patients (118 with Relapsing Remitting MS, 30 with Secondary Progressive MS) and 102 age- and sex-matched healthy controls. The association of polymorphisms with susceptibility, and course of the disease was evaluated. RESULTS We could not detect any single nucleotide polymorphism in MS patients, however, polymorphic allele was detected in 3% of the control group. Consequently, a genetic association between the FOXP3 gene polymorphism and MS was not revealed. CONCLUSION The distribution of this polymorphism has not been screened in any other MS populations before. Although we could not succeed to find any association between susceptibility to MS and screened FOXP3 gene polymorphisms, we suggest that this particular polymorphism is not appropriate for these kind of studies in the future.
Collapse
Affiliation(s)
- Nihal IŞIK
- Clinic of Neurology, Medeniyet University Göztepe Training and Research Hospital, İstanbul, Turkey
| | - Nüket YILDIZ MANUKYAN
- Clinic of Neurology, Ministry Health Fatih Sultan Mehmet Training and Research Hospital, İstanbul, Turkey
| | - İlknur AYDIN CANTÜRK
- Clinic of Neurology, Medeniyet University Göztepe Training and Research Hospital, İstanbul, Turkey
| | - Fatma CANDAN
- Clinic of Neurology, Medeniyet University Göztepe Training and Research Hospital, İstanbul, Turkey
| | - Ayşen ÜNSAL ÇAKMAK
- Clinic of Neurology, Medeniyet University Göztepe Training and Research Hospital, İstanbul, Turkey
| | | |
Collapse
|
35
|
Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol Med 2014; 20:179-87. [DOI: 10.1016/j.molmed.2013.11.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 01/09/2023]
|
36
|
Kishore A, Biswas K, N VR, Shunmugam R, Sarma JD. Functionalized single walled carbon nanotubes facilitate efficient differentiation of neuroblastoma cells in vitro. RSC Adv 2014. [DOI: 10.1039/c4ra09540e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-walled carbon nanotubes (SWNTs) have been increasingly used as scaffolds for neuronal growth and differentiation.
Collapse
Affiliation(s)
- Abhinoy Kishore
- Department of Biological Sciences
- Indian Institute of Science Education and Research-Kolkata (IISER-K)
- Nadia, India
| | - Kaushiki Biswas
- Department of Biological Sciences
- Indian Institute of Science Education and Research-Kolkata (IISER-K)
- Nadia, India
| | - Vijaykameswara Rao N
- Polymer Research Center
- Department of Chemical Sciences
- Indian Institute of Science Education and Research-Kolkata (IISER-K)
- Nadia, India
| | - Raja Shunmugam
- Polymer Research Center
- Department of Chemical Sciences
- Indian Institute of Science Education and Research-Kolkata (IISER-K)
- Nadia, India
| | - Jayasri Das Sarma
- Department of Biological Sciences
- Indian Institute of Science Education and Research-Kolkata (IISER-K)
- Nadia, India
| |
Collapse
|
37
|
Goldmann T, Wieghofer P, Müller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 2013; 16:1618-26. [PMID: 24077561 DOI: 10.1038/nn.3531] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/05/2013] [Indexed: 12/13/2022]
Abstract
Microglia are brain macrophages and, as such, key immune-competent cells that can respond to environmental changes. Understanding the mechanisms of microglia-specific responses during pathologies is hence vital for reducing disease burden. The definition of microglial functions has so far been hampered by the lack of genetic in vivo approaches that allow discrimination of microglia from closely related peripheral macrophage populations in the body. Here we introduce a mouse experimental system that specifically targets microglia to examine the role of a mitogen-associated protein kinase kinase kinase (MAP3K), transforming growth factor (TGF)-β-activated kinase 1 (TAK1), during autoimmune inflammation. Conditional depletion of TAK1 in microglia only, not in neuroectodermal cells, suppressed disease, significantly reduced CNS inflammation and diminished axonal and myelin damage by cell-autonomous inhibition of the NF-κB, JNK and ERK1/2 pathways. Thus, we found TAK1 to be pivotal in CNS autoimmunity, and we present a tool for future investigations of microglial function in the CNS.
Collapse
Affiliation(s)
- Tobias Goldmann
- 1] Institute of Neuropathology, University of Freiburg, Freiburg, Germany. [2]
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mao P, Manczak M, Shirendeb UP, Reddy PH. MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2322-31. [PMID: 24055980 DOI: 10.1016/j.bbadis.2013.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/26/2013] [Accepted: 09/12/2013] [Indexed: 11/24/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are involved in the progression and pathogenesis of multiple sclerosis (MS). MitoQ is a mitochondria-targeted antioxidant that has a neuroprotective role in several mitochondrial and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Here we sought to determine the possible effects of a systematic administration of MitoQ as a therapy, using an experimental autoimmune encephalomyelitis (EAE) mouse model. We studied the beneficial effects of MitoQ in EAE mice that mimic MS like symptoms by treating EAE mice with MitoQ and pretreated C57BL6 mice with MitoQ plus EAE induction. We found that pretreatment and treatment of EAE mice with MitoQ reduced neurological disabilities associated with EAE. We also found that both pretreatment and treatment of the EAE mice with MitoQ significantly suppressed inflammatory markers of EAE, including the inhibition of inflammatory cytokines and chemokines. MitoQ treatments reduced neuronal cell loss in the spinal cord, a factor underlying motor disability in EAE mice. The neuroprotective role of MitoQ was confirmed by a neuron-glia co-culture system designed to mimic the mechanism of MS and EAE in vitro. We found that axonal inflammation and oxidative stress are associated with impaired behavioral functions in the EAE mouse model and that treatment with MitoQ can exert protective effects on neurons and reduce axonal inflammation and oxidative stress. These protective effects are likely via multiple mechanisms, including the attenuation of the robust immune response. These results suggest that MitoQ may be a new candidate for the treatment of MS.
Collapse
Affiliation(s)
- Peizhong Mao
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
39
|
Arru G, Leoni S, Pugliatti M, Mei A, Serra C, Delogu LG, Manetti R, Dolei A, Sotgiu S, Mameli G. Natalizumab inhibits the expression of human endogenous retroviruses of the W family in multiple sclerosis patients: a longitudinal cohort study. Mult Scler 2013; 20:174-82. [DOI: 10.1177/1352458513494957] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Several viruses were reported as co-factors triggering the pathogenesis of multiple sclerosis (MS), including the endogenous retroviruses of the HERV-W family, that were also proposed as biomarkers of disease progression and therapy outcome. Objective: The objective of this article is to clarify whether in MS patients treatment with natalizumab has effects on MSRV/syncytin-1/HERV-W expression and the possible relationship with disease outcome. Methods: Peripheral blood mononuclear cells were collected from 22 patients with relapsing–remitting disease, at entry and after three, six and 12 months of treatment with natalizumab. The cell subpopulations and the expression of MSRV env/syncytin-1/HERV-W env were analyzed by flow cytometry and by discriminatory env-specific RT-PCR assays. Results: By flow cytometry the relative amounts of T, NK and monocyte subpopulations were shown to remain fairly constant. A relative increase of B lymphocytes was observed at three to six months ( p = 0.033). The MSRV env and syncitin-1 transcripts were reduced at six to 12 months of therapy ( p = 0.0001). Accordingly, at month 12, the plasma-membrane levels of the HERV-W env protein were reduced ( p = 0.0001). B cells, NK and monocytes but not T cells expressed the HERV-W env protein. None of the patients relapsed during therapy. Conclusion: Effective therapy with natalizumab downregulates MSRV/syncytin-1/HERV-W expression.
Collapse
Affiliation(s)
- Giannina Arru
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Stefania Leoni
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Maura Pugliatti
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Alessandra Mei
- Department of Biomedical Sciences and Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Italy
| | - Caterina Serra
- Department of Biomedical Sciences and Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Italy
| | | | - Roberto Manetti
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Antonina Dolei
- Department of Biomedical Sciences and Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Italy
| | - Stefano Sotgiu
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Giuseppe Mameli
- Department of Biomedical Sciences and Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Italy
| |
Collapse
|
40
|
Podojil JR, Miller SD. Targeting the B7 family of co-stimulatory molecules: successes and challenges. BioDrugs 2013; 27:1-13. [PMID: 23329394 DOI: 10.1007/s40259-012-0001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As more patient data is cross-referenced with animal models of disease, the primary focus on T(h)1 autoreactive effector cell function in autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis, has shifted towards the role of T(h)17 autoreactive effector cells and the ability of regulatory T cells (T(reg)) to modulate the pro-inflammatory autoimmune response. Therefore, the currently favored hypothesis is that a delicate balance between T(h)1/17 effector cells and T(reg) cell function is critical in the regulation of inflammatory autoimmune disease. An intensive area of research with regard to the T(h)1/17:T(reg) cell balance is the utilization of blockade and/or ligation of various co-stimulatory or co-inhibitory molecules, respectively, during ongoing disease to skew the immune response toward a more tolerogenic/regulatory state. Currently, FDA-approved therapies for multiple sclerosis patients are all aimed at the suppression of immune cell function. The other favored method of treatment is a modulation or deletion of autoreactive immune cells via short-term blockade of activating co-stimulatory receptors via treatment with fusion proteins such as CTLA4-Ig and CTLA4-FasL. Based on the initial success of CTLA4-Ig, there are additional fusion proteins that are currently under development. Examples of the more recently identified B7/CD28 family members are PD-L1, PD-L2, inducible co-stimulatory molecule-ligand (ICOS-L), B7-H3, and B7-H4, all of which may emerge as potential fusion protein therapeutics, each with unique, yet often overlapping functions. The expression of both stimulatory and inhibitory B7 molecules seems to play an essential role in modulating immune cell function through a variety of mechanisms, which is supported by findings that suggest each B7 molecule has developed its own indispensable niche in the immune system. As more data are generated, the diagnostic and therapeutic potential of the above B7 family-member-derived fusion proteins becomes ever more apparent. Besides defining the biology of these B7/CD28 family members in vivo, additional difficulty in the development of these therapies lies in maintaining the normal immune functions of recognition and reaction to non-self-antigens following viral or bacterial infection in the patient. Further complicating the clinical translation of these therapies, the mechanism of action identified for a particular reagent may depend upon the method of immune-cell activation and the subset of immune cells targeted in the study.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Tarry 6-718, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | | |
Collapse
|
41
|
Langer HF, Chavakis T. Platelets and neurovascular inflammation. Thromb Haemost 2013; 110:888-93. [PMID: 23636306 DOI: 10.1160/th13-02-0096] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/25/2013] [Indexed: 01/24/2023]
Abstract
Platelets participate in haemostasis and in thrombus formation in health and disease. Moreover, they contribute to inflammation and cooperate with immune cells in a magnitude of inflammatory/immune responses. Although the inflammatory response has been recognised to be critical in neuronal diseases such as Alzheimer's disease or multiple sclerosis and its mouse counterpart, experimental autoimmune encephalomyelitis, the participation of platelets in these diseases is poorly investigated so far. Emerging studies, however, point to an interesting crosstalk between platelets and neuroinflammation. For instance, when the integrity of the blood brain barrier is compromised, platelets may be relevant for endothelial inflammation, as well as recruitment and activation of inflammatory cells, thereby potentially contributing to central nervous tissue pathogenesis. This review summarises recent insights in the role of platelets for neurovascular inflammation and addresses potential underlying mechanisms, by which platelets may affect the pathophysiology of neurovascular diseases.
Collapse
Affiliation(s)
- H F Langer
- Harald F. Langer, MD, Department of Cardiology and Cardiovascular Medicine, University Clinic of Tuebingen, Tuebingen, Germany, E-mail:
| | | |
Collapse
|
42
|
Serres S, Bristow C, de Pablos RM, Merkler D, Soto MS, Sibson NR, Anthony DC. Magnetic resonance imaging reveals therapeutic effects of interferon-beta on cytokine-induced reactivation of rat model of multiple sclerosis. J Cereb Blood Flow Metab 2013; 33:744-53. [PMID: 23423190 PMCID: PMC3652701 DOI: 10.1038/jcbfm.2013.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 11/09/2022]
Abstract
Interferon-β (IFN-β) drugs are considered to derive their beneficial effects on multiple sclerosis (MS) progression via their antiinflammatory properties, but the precise mechanism of action remains unclear. Here, we sought to discover how IFN-β impacts on inflammation-associated aggravation of MS-like lesions in rat. Animals with dormant focal experimental allergic encephalomyelitis (EAE) lesions were challenged intravenously with a replication-deficient adenovirus vector carrying interleukin (IL)-1β cDNA (AdIL-1β). Aggravation of inflammation and demyelination within the focal EAE lesion was observed after AdIL-1β injection with associated changes in tissue structure detected by diffusion and magnetization transfer imaging. Postgadolinium-DTPA T1-weighted images revealed contrast enhancement in the ipsilateral meninges, indicating breakdown of the blood-cerebrospinal fluid barrier, and increased left/right regional cerebral blood volume ratio was also observed after AdIL-1β injection. To determine the role of IFN-β on reactivation of the EAE lesion, rats were treated with therapeutic doses of IFN-β and focal EAE lesions showed significantly reduced reactivation in response to systemic AdIL-1β injection. In conclusion, these findings indicate a central role for peripheral IL-1β expression in the mechanism of MS lesion reactivation and that the therapeutic effects of IFN-β may, at least in part, reflect suppression of the effects of peripheral inflammation on MS lesion pathogenesis.
Collapse
Affiliation(s)
- Sébastien Serres
- Department of Oncology, CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Claire Bristow
- Department of Oncology, CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Rocío M de Pablos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Doron Merkler
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
- Department of Neuropathology, Georg-August University, Göttingen, Germany
| | - Manuel Sarmiento Soto
- Department of Oncology, CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | - Nicola R Sibson
- Department of Oncology, CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
43
|
Seki N, Maeda Y, Kataoka H, Sugahara K, Chiba K. Role of Sphingosine 1-Phosphate (S1P) Receptor 1 in Experimental Autoimmune Encephalomyelitis —I. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.48089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Isaksson M, Lundgren BA, Ahlgren KM, Kämpe O, Lobell A. Conditional DC depletion does not affect priming of encephalitogenic Th cells in EAE. Eur J Immunol 2012; 42:2555-63. [PMID: 22806332 DOI: 10.1002/eji.201142239] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 06/18/2012] [Accepted: 07/06/2012] [Indexed: 12/15/2022]
Abstract
EAE, an animal model for multiple sclerosis, is a Th17- and Th1-cell-mediated auto-immune disease, but the mechanisms leading to priming of encephalitogenic T cells in autoimmune neuroinflammation are poorly understood. To investigate the role of dendritic cells (DCs) in the initiation of autoimmune Th17- and Th1-cell responses and EAE, we used mice transgenic for a simian diphtheria toxin receptor (DTR) expressed under the control of the murine CD11c promoter (CD11c-DTR mice o nC57BL/6 background).EAE was induced by immunization with myelin oligodendrocyte glycoprotein (MOG) protein in CFA. DCs were depleted on the day before and 8 days after MOG immunization. The mean clinical EAE score was only mildly reduced in DC-depleted mice when DCs were ablated before EAE induction. The frequency of activated Th cells was not altered, and MOG-induced Th17 or Th1-cell responses were not altered, in the spleens of DC-depleted mice. Similar results were obtained if DCs were ablated the first 10 days after MOG immunization with repeated DC depletions. Unexpectedly, transient depletion of DCs did not affect priming or differentiation of MOG-induced Th17 and Th1-cell responses or the incidence of EAE. Thus, the mechanism of priming of Th cells in EAE remains to be elucidated.
Collapse
Affiliation(s)
- Magnus Isaksson
- Department of Medical Sciences, Uppsala University, University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
45
|
Adabi Mohazab R, Javadi-Paydar M, Delfan B, Dehpour AR. Possible involvement of PPAR-gamma receptor and nitric oxide pathway in the anticonvulsant effect of acute pioglitazone on pentylenetetrazole-induced seizures in mice. Epilepsy Res 2012; 101:28-35. [DOI: 10.1016/j.eplepsyres.2012.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/18/2012] [Accepted: 02/26/2012] [Indexed: 11/28/2022]
|
46
|
Bassyouni IH, Bassyouni RH, Ibrahim NH, Soliman AF. Elevated serum osteopontin levels in chronic hepatitis C virus infection: association with autoimmune rheumatologic manifestations. J Clin Immunol 2012; 32:1262-9. [PMID: 22730056 DOI: 10.1007/s10875-012-9727-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022]
Abstract
Owing to the suggested role of osteopontin (OPN) in inflammation, autoimmunity and fibrosis, we investigated their serum concentrations in chronic hepatitis C virus (HCV) infected patients with and without autoimmune manifestations and correlated those levels to clinical manifestations and the histological severity of hepatic fibrosis. A total of 70 chronic HCV-infected patients (35 with and 35 without autoimmune rheumatic manifestations) were compared with 35 healthy volunteers matched for age and gender. Epidemiological, clinical, immunochemical and virological data were prospectively collected. OPN serum levels were assessed by an Enzyme Linked Immunosorbant Assay. The mean serum OPN levels were higher in HCV patients with autoimmune rheumatologic manifestations and in patients without; than that for the normal controls (p = 0.000). The mean OPN values progressively increased by increasing severity of liver fibrosis (p = 0.009). Multivariate analysis revealed that the presence of rheumatologic manifestations had the highest predictive value (b = 7.141, Beta = 0.414, p = 0.000) followed by liver fibrosis (b = 4.522, Beta = 0.444, p = 0.000) on the variation of OPN levels in our HCV patients. Among the group of patients with HCV and rheumatologic involvement, OPN serum levels were higher in patients with positive cryoglobulin and rheumatoid factor than in those without, and with systemic vasculitis than in those without. Correlation analysis didn't reveal any statistical significance of OPN with age, serum albumin, aminotransferases and viral load. Our data suggests OPN as a promising marker for HCV associated autoimmune rheumatologic involvement, particularly with regard to development of vasculitis and cryoglobinemia. In addition, it could serve as a biomarker to evaluate the severity of liver damages in HCV infected subjects.
Collapse
Affiliation(s)
- Iman H Bassyouni
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, Cairo, Egypt, 12613.
| | | | | | | |
Collapse
|
47
|
Comi C, Fleetwood T, Dianzani U. The role of T cell apoptosis in nervous system autoimmunity. Autoimmun Rev 2012; 12:150-6. [PMID: 22504460 DOI: 10.1016/j.autrev.2011.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 12/20/2022]
Abstract
Fas is a transmembrane receptor involved in the death program of several cell lines, including T lymphocytes. Deleterious mutations hitting genes involved in the Fas pathway cause the autoimmune lymphoprolipherative syndrome (ALPS). Moreover, defective Fas function is involved in the development of common autoimmune diseases, including autoimmune syndromes hitting the nervous system, such as multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). In this review, we first explore some peculiar aspects of Fas mediated apoptosis in the central versus peripheral nervous system (CNS, PNS); thereafter, we analyze what is currently known on the role of T cell apoptosis in both MS and CIDP, which, in this regard, may be seen as two faces of the same coin. In fact, we show that, in both diseases, defective Fas mediated apoptosis plays a crucial role favoring disease development and its chronic evolution.
Collapse
Affiliation(s)
- C Comi
- Department of Clinical and Experimental Medicine, Section of Neurology, Amedeo Avogadro University, Novara, Italy.
| | | | | |
Collapse
|
48
|
Malekzadeh A, de Groot V, Beckerman H, van Oosten BW, Blankenstein MA, Teunissen C. Challenges in multi-plex and mono-plex platforms for the discovery of inflammatory profiles in neurodegenerative diseases. Methods 2012; 56:508-13. [DOI: 10.1016/j.ymeth.2012.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 01/10/2023] Open
|
49
|
Shafaroodi H, Moezi L, Ghorbani H, Zaeri M, Hassanpour S, Hassanipour M, Dehpour AR. Sub-chronic treatment with pioglitazone exerts anti-convulsant effects in pentylenetetrazole-induced seizures of mice: The role of nitric oxide. Brain Res Bull 2012; 87:544-50. [PMID: 22366335 DOI: 10.1016/j.brainresbull.2012.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Pioglitazone delayed the development of seizure responses and shortened the duration of convulsion of genetically epileptic EL mice. The anti-epileptic effect of pioglitazone was attributed partly through the reduction of inflammatory responses and preventing apoptosis. There are also some reports showing that some pioglitazone effects mediate through nitric oxide. In this study we evaluated sub-chronic pioglitazone effects in two models of intravenous and intraperitoneal pentylenetetrazole-induced clonic seizures in mice. MATERIALS AND METHODS Different doses of pioglitazone were administered orally for 10 days in different groups of male mice. L-NAME, a non selective inhibitor of nitric oxide synthase, aminoguanidine, a selective inhibitor of inducible nitric oxide synthase, or L-arginine, a nitric oxide donor, was administered acutely or sub-chronically to evaluate the role of nitric oxide in pioglitazone anti-seizure effects. RESULTS We demonstrated that sub-chronic administration of pioglitazone exerted anti-convulsant effects in both models of intravenous and intraperitoneal pentylenetetrazole. Acute and sub-chronic pre-administration of L-NAME prevented the anti-convulsant effect of pioglitazone in both models of intravenous and intraperitoneal pentylenetetrazole. Aminoguanidine did not alter the anti-convulsant effect of pioglitazone in two models of intravenous and intraperitoneal pentylenetetrazole. Both acute and sub-chronic pre-treatment of mice with L-arginine exerted anti-convulsant effect when administered with a non effective dose of pioglitazone in intraperitoneal method. In intravenous method, acute administration of L-arginine with a non-effective dose of pioglitazone enhanced the seizure clonic latency. CONCLUSION Taken together, sub-chronic pioglitazone treatment exerts anti-convulsant effects in intravenous and intraperitoneal pentylenetetrazole-induced seizures of mice probably through induction of constitutive nitric oxide synthase.
Collapse
Affiliation(s)
- Hamed Shafaroodi
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Branch and Pharmaceutical Sciences Research Center, Islamic Azad University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
50
|
Wen SR, Liu GJ, Feng RN, Gong FC, Zhong H, Duan SR, Bi S. Increased levels of IL-23 and osteopontin in serum and cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 2012; 244:94-6. [PMID: 22329905 DOI: 10.1016/j.jneuroim.2011.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 11/25/2022]
Abstract
Osteopontin (OPN) and interleukin-23 (IL-23) are pro-inflammatory cytokines proposed to play central roles to the development of multiple sclerosis (MS). The aim of this study was to evaluate levels of OPN, IL-23 and other inflammatory cytokines and investigate their relationships in serum and cerebrospinal fluid (CSF) in patients with MS. Fifty one MS patients and 48 patients with non-inflammatory neurological diseases (NIND) were recruited from clinic. The levels of OPN, IL-23, IL-17, IL-6, and tumor necrosis factor-alpha (TNF-alpha) in serum and CSF were determined in each participant. Compared with NIND group, MS patients had significantly elevated levels of OPN, IL-23, IL-17 and TNF-alpha in CSF, and elevated levels of IL-23, IL-17 and TNF-alpha in serum (All P<0.001). In MS patients, OPN and IL-23 were positively correlated with IL-17 (r=0.302, P=0.019; r=0.417, P=0.001, respectively); and IL-23 was positively correlated with EDSS (r=0.329, P=0.019). Both OPN and IL-23 may play pivotal role in development of MS and might be specific markers and therapeutic targets for MS.
Collapse
Affiliation(s)
- Shi-Rong Wen
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | | | | | | | | | | | | |
Collapse
|