1
|
Gronich N. Central Nervous System Medications: Pharmacokinetic and Pharmacodynamic Considerations for Older Adults. Drugs Aging 2024; 41:507-519. [PMID: 38814377 PMCID: PMC11193826 DOI: 10.1007/s40266-024-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Most drugs have not been evaluated in the older population. Recognizing physiological alterations associated with changes in drug disposition and with the ultimate effect, especially in central nervous system-acting drugs, is fundamental. While considering pharmacokinetics, it should be noted that the absorption of most drugs from the gastrointestinal tract does not change in advanced age. There are only few data about the effect of age on the transdermal absorption of medications such as fentanyl. Absorption from an intramuscular injection may be similar in older adults as in younger patients. The distribution of lipophilic drugs (such as diazepam) is increased owing to a relative increase in the percentage of body fat, causing drug accumulation and prolonged drug elimination following cessation. Phase I drug biotransformation is variably decreased in aging, impacting elimination, and hepatic drug clearance has been shown to decrease in older individuals by 10-40% for most drugs studied. Lower doses of phenothiazines, butyrophenones, atypical antipsychotics, antidepressants (citalopram, mirtazapine, and tricyclic antidepressants), and benzodiazepines (such as diazepam) achieve the same extent of exposure. For renally cleared drugs with no prior metabolism (such as gabapentin), the glomerular filtration rate appropriately estimates drug clearance. Important pharmacodynamic changes in older adults include an increased sedative effect of benzodiazepines at a given drug exposure, and a higher sensitivity to mu opiate receptor agonists and to opioid adverse effects. Artificial intelligence, physiologically based pharmacokinetic modeling and simulation, and concentration-effect modeling enabling a differentiation between the pharmacokinetic and the pharmacodynamic effects of aging might help to close some of the gaps in knowledge.
Collapse
Affiliation(s)
- Naomi Gronich
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Clalit Health Services, 7 Michal St, 3436212, Haifa, Israel.
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
2
|
Spitta G, Gleich T, Rosenthal A, Schubert F, Aydin S, Heinz A, Buchert R, Gallinat J. Correlation of striatal dopamine D2/3 receptor availability with GABA level in the anterior cingulate cortex in healthy controls but not in alcohol-dependent subjects and individuals at high risk: A multimodal magnetic resonance spectroscopy and positron emission tomography study. Addict Biol 2024; 29:e13424. [PMID: 38899357 PMCID: PMC11187479 DOI: 10.1111/adb.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The association of impaired dopaminergic neurotransmission with the development and maintenance of alcohol use disorder is well known. More specifically, reduced dopamine D2/3 receptors in the striatum of subjects with alcohol dependence (AD) compared to healthy controls have been found in previous studies. Furthermore, alterations of gamma-aminobutyric acid (GABA) and glutamate (Glu) levels in the anterior cingulate cortex (ACC) of AD subjects have been documented in several studies. However, the interaction between cortical Glu levels and striatal dopamine D2/3 receptors has not been investigated in AD thus far. METHODS This study investigated dopamine D2/3 receptor availability via 18F-fallypride positron emission tomography (PET) and GABA as well as Glu levels via magnetic resonance spectroscopy (MRS) in 19 detoxified AD subjects, 18 healthy controls (low risk, LR) controls and 19 individuals at high risk (HR) for developing AD, carefully matched for sex, age and smoking status. RESULTS We found a significant negative correlation between GABA levels in the ACC and dopamine D2/3 receptor availability in the associative striatum of LR but not in AD or HR individuals. Contrary to our expectations, we did not observe a correlation between Glu concentrations in the ACC and striatal D2/3 receptor availability. CONCLUSIONS The results may reflect potential regulatory cortical mechanisms on mesolimbic dopamine receptors and their disruption in AD and individuals at high risk, mirroring complex neurotransmitter interactions associated with the pathogenesis of addiction. This is the first study combining 18F-fallypride PET and MRS in AD subjects and individuals at high risk.
Collapse
Affiliation(s)
- Gianna Spitta
- Department of Psychiatry and PsychotherapyCharité Campus Mitte (CCM), Charité Universitätsmedizin Berlin, corporate member of Freie Universität and Humboldt Universität BerlinGermany
| | - Tobias Gleich
- Department of Psychiatry and PsychotherapyCharité Campus Mitte (CCM), Charité Universitätsmedizin Berlin, corporate member of Freie Universität and Humboldt Universität BerlinGermany
- Epilepsy‐Center Berlin‐Brandenburg, Institute for Diagnostics of EpilepsyBerlinGermany
| | - Annika Rosenthal
- Department of Psychiatry and PsychotherapyCharité Campus Mitte (CCM), Charité Universitätsmedizin Berlin, corporate member of Freie Universität and Humboldt Universität BerlinGermany
| | | | - Semiha Aydin
- Physikalisch‐Technische Bundesanstalt (PTB)BerlinGermany
| | - Andreas Heinz
- Department of Psychiatry and PsychotherapyCharité Campus Mitte (CCM), Charité Universitätsmedizin Berlin, corporate member of Freie Universität and Humboldt Universität BerlinGermany
- German Center for Mental Health (DZPG) Partner Site Berlin‐PotsdamBerlinGermany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jürgen Gallinat
- Department of Psychiatry and PsychotherapyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| |
Collapse
|
3
|
Shu G, He Y, Suo J, Wu C, Gong X, Xiang Y, Yang W, Cheng J, Wang Y, Chen W, Shen J. Cannabidiol exhibits anxiolytic-like effects and antipsychotic-like effects in mice models. Neurosci Lett 2024; 826:137723. [PMID: 38467272 DOI: 10.1016/j.neulet.2024.137723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Cannabidiol (CBD), a non-psychoactive compound derived from the cannabis plant, has been confirmed to induce anxiolytic-like and antipsychotic-like effects. However, the exact mechanisms remain unclear. This study substantiated CBD's interaction with the 5-HT1A receptor (5-HT1AR) in vitro (CHO cells expressing human 5-HT1AR) and in vivo (rat lower lip retraction test, LLR test). We then assessed the impact of CBD in mice using the stress-induced hyperthermia (SIH) model and the phencyclidine (PCP)-induced negative symptoms of schizophrenia model, respectively. Concurrently, we investigated whether WAY-100635, a typical 5-HT1AR antagonist, could attenuate these effects. Furthermore, the neurotransmitter changes through high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were studied. Results revealed that CBD exhibits selective 5-HT1AR agonists-mediated effects in the rat lower lip retraction test, aligning with the robust agonistic (EC50 = 1.75 μM) profile observed in CHO cells. CBD at 3 mg/kg significantly reduced SIH (ΔT), a response that WAY-100635 abolished. Chronic administration of CBD at 100 mg/kg mitigated the increase in PCP-induced immobility time in the forced swim test (FST) and tail suspension test (TST). Moreover, it induced significant alterations in gamma-aminobutyric acid (GABA) and norepinephrine (NE) levels within the hippocampus (HPC). Thus, we concluded that the 5-HT1AR mediates CBD's anxiolytic-like effects. Additionally, CBD's effects on the negative symptoms of schizophrenia may be linked to changes in GABA and NE levels in the hippocampus. These findings offer novel insights for advancing the exploration of CBD's anxiolytic-like and antipsychotic-like effects.
Collapse
Affiliation(s)
- Guangzhao Shu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yang He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunhui Wu
- Vigonvita Life Sciences Co., Ltd., Shanghai 201210, China
| | - Xudong Gong
- Vigonvita Life Sciences Co., Ltd., Shanghai 201210, China
| | | | - Wenjiao Yang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, And Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiaxin Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiming Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
4
|
Kuvarzin SR, Sukhanov I, Onokhin K, Zakharov K, Gainetdinov RR. Unlocking the Therapeutic Potential of Ulotaront as a Trace Amine-Associated Receptor 1 Agonist for Neuropsychiatric Disorders. Biomedicines 2023; 11:1977. [PMID: 37509616 PMCID: PMC10377193 DOI: 10.3390/biomedicines11071977] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
All antipsychotics currently used in clinic block D2 dopamine receptors. Trace amine-associated receptor 1 is emerging as a new therapeutic target for schizophrenia and several other neuropsychiatric disorders. SEP-363856 (International Nonproprietary Name: Ulotaront) is an investigational antipsychotic drug with a novel mechanism of action that does not involve antagonism of dopamine D2 receptors. Ulotaront is an agonist of trace amine-associated receptor 1 and serotonin 5-HT1A receptors, but can modulate dopamine neurotransmission indirectly. In 2019, the United States Food and Drug Administration granted Breakthrough Therapy Designation for ulotaront for the treatment of schizophrenia. Phase 2 clinical studies indicated that ulotaront can reduce both positive and negative symptoms of schizophrenia without causing the extrapyramidal or metabolic side effects that are inherent to most currently used antipsychotics. At present, it is in phase 3 clinical development for the treatment of schizophrenia and is expected to be introduced into clinical practice in 2023-2024. Clinical studies evaluating the potential efficacy of ulotaront in Parkinson's disease psychosis, generalized anxiety disorder, and major depressive disorder have also been started. The aim of this scoping review is to summarize all currently available preclinical and clinical evidence on the utility of ulotaront in the treatment of schizophrenia. Here, we show the main characteristics and distinctive features of this drug. Perspectives and limitations on the potential use of ulotaront in the pharmacotherapy of several other neuropsychiatric disorders are also discussed.
Collapse
Affiliation(s)
- Savelii R Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov Medical University, 197022 Saint Petersburg, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Accellena Research and Development Inc., 199106 Saint Petersburg, Russia
| | | | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
5
|
Orhan F, Goiny M, Becklén M, Mathé L, Piehl F, Schwieler L, Fatouros-Bergman H, Farde L, Cervenka S, Sellgren CM, Engberg G, Erhardt S. CSF dopamine is elevated in first-episode psychosis and associates to symptom severity and cognitive performance. Schizophr Res 2023; 257:34-40. [PMID: 37271040 DOI: 10.1016/j.schres.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/13/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The hypothesis of dopamine dysfunction in psychosis has evolved since the mid-twentieth century. However, clinical support from biochemical analysis of the transmitter in patients is still missing. The present study assessed dopamine and related metabolites in the cerebrospinal fluid (CSF) of first-episode psychosis (FEP) subjects. METHODS Forty first-episode psychosis subjects and twenty healthy age-matched volunteers were recruited via the Karolinska Schizophrenia Project, a multidisciplinary research consortium that investigates the pathophysiology of schizophrenia. Psychopathology, disease severity, and cognitive performance were rated as well as cerebrospinal fluid concentrations of dopamine and related metabolites were measured using a sensitive high-pressure liquid chromatography assay. RESULTS CSF dopamine was reliably detected in 50 % of healthy controls and in 65 % of first-episode psychosis subjects and significantly higher in first-episode psychosis subjects compared to age-matched healthy controls. No difference in CSF dopamine levels was observed between drug-naive subjects and subjects with short exposure to antipsychotics. The dopamine concentrations were positively associated with illness severity and deficits in executive functioning. CONCLUSIONS Dopamine dysfunction has long been considered a cornerstone of the pathophysiology of schizophrenia, although biochemical support for elevated brain dopamine levels has been lacking. The results of the present study, showing that FEP subjects have increased CSF dopamine levels that correlate to disease symptoms, should fill the knowledge gap in this regard.
Collapse
Affiliation(s)
- Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michel Goiny
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meneca Becklén
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Levida Mathé
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Helena Fatouros-Bergman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Sweden
| | - Lars Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Hlavacova N, Hrivikova K, Karailievova L, Karailiev P, Homberg JR, Jezova D. Altered responsiveness to glutamatergic modulation by MK-801 and to repeated stress of immune challenge in female dopamine transporter knockout rats. Prog Neuropsychopharmacol Biol Psychiatry 2023:110804. [PMID: 37247803 DOI: 10.1016/j.pnpbp.2023.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Chronic stress is a key factor in psychiatric and neurological disorders often worsening disease symptoms. In this study, a unique animal model, the dopamine transporter knockout (DAT-KO) rat exhibiting behavioral signs resembling those occurring in mania, schizophrenia, attention deficit hyperactivity disorder, and obsessive-compulsive disorder was used. We have tested the hypothesis that the hyperdopaminergic state in DAT-KO rats (i) modulates behavioral response to the NMDA antagonist MK-801 (dizocilpine) and (ii) leads to abnormal endocrine and immune activation under subchronic stress induced by an immune challenge. Glutamatergic modulation with MK-801 induced a different behavioral pattern. While the WT rats responded to MK-801 injection with a robust rise in their locomotor activity, the hyperactive DAT-KO rats exhibited reduced locomotion. Signs of chronic stress including increased basal corticosterone and aldosterone but blunted anxiety were demonstrated in rats lacking the DAT. Repeated injections of increasing doses of lipopolysaccharide (LPS, 5 days) did not modify plasma prolactin concentrations which were however significantly lower in DAT-KO than in WT rats. Concentrations of plasma high mobility group box 1 (HMGB1) protein were significantly higher in LPS-treated DAT-KO than in WT rats. The gene expression of interleukin-6 in the anterior pituitary increased under the stress induced by the immune challenge in the WT but not the DAT-KO rats. The most evident differences between the genotypes were revealed in the spleen. The splenic gene expression of interleukin-1β, interleukin-6, and HMGB1 was lower and that of ferritin was higher in DAT-KO compared to WT rats. Obtained results emphasize the functional interaction of the endocrine and immune systems with monoamine and glutamatergic neurotransmission in the mechanisms leading to behavioral alterations and psychiatric disorders associated with dopamine dysfunction.
Collapse
Affiliation(s)
- Natasa Hlavacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Katarina Hrivikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Lucia Karailievova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Peter Karailiev
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, the Netherlands
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| |
Collapse
|
7
|
Yu H, Ni P, Zhao L, Tian Y, Li M, Li X, Wei W, Wei J, Deng W, Du X, Wang Q, Guo W, Ma X, Coid J, Li T. Decreased plasma neuropeptides in first-episode schizophrenia, bipolar disorder, major depressive disorder: associations with clinical symptoms and cognitive function. Front Psychiatry 2023; 14:1180720. [PMID: 37275985 PMCID: PMC10235770 DOI: 10.3389/fpsyt.2023.1180720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Background There is an urgent need to identify differentiating and disease-monitoring biomarkers of schizophrenia, bipolar disorders (BD), and major depressive disorders (MDD) to improve treatment and management. Methods We recruited 54 first-episode schizophrenia (FES) patients, 52 BD patients, 35 MDD patients, and 54 healthy controls from inpatient and outpatient clinics. α-Melanocyte Stimulating Hormone (α-MSH), β-endorphin, neurotensin, orexin-A, oxytocin, and substance P were investigated using quantitative multiplex assay method. Psychotic symptoms were measured using the Brief Psychiatric Rating Scale (BPRS) and Positive and Negative Syndrome Scale (PANSS), manic symptoms using the Young Mania Rating Scale (YMRS), and depressive symptoms using 17 item-Hamilton Depression Rating Scale (HAMD). We additionally measured cognitive function by using a battery of tests given to all participants. Results α-MSH, neurotensin, orexin-A, oxytocin, and substance P were decreased in the three patient groups compared with controls. Neurotensin outperformed all biomarkers in differentiating patient groups from controls. There were no significant differences for 6 neuropeptides in their ability to differentiate between the three patient groups. Higher neurotensin was associated with better executive function across the entire sample. Lower oxytocin and higher substance p were associated with more psychotic symptoms in FES and BD groups. β-endorphin was associated with early morning wakening symptom in all three patient groups. Conclusion Our research shows decreased circulating neuropeptides have the potential to differentiate severe mental illnesses from controls. These neuropeptides are promising treatment targets for improving clinical symptoms and cognitive function in FES, BD, and MDD.
Collapse
Affiliation(s)
- Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Tian
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingli Li
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinxue Wei
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangdong Du
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiang Wang
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohong Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jeremy Coid
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Consolidation of metabolomic, proteomic, and GWAS data in connective model of schizophrenia. Sci Rep 2023; 13:2139. [PMID: 36747015 PMCID: PMC9901842 DOI: 10.1038/s41598-023-29117-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Despite of multiple systematic studies of schizophrenia based on proteomics, metabolomics, and genome-wide significant loci, reconstruction of underlying mechanism is still a challenging task. Combination of the advanced data for quantitative proteomics, metabolomics, and genome-wide association study (GWAS) can enhance the current fundamental knowledge about molecular pathogenesis of schizophrenia. In this study, we utilized quantitative proteomic and metabolomic assay, and high throughput genotyping for the GWAS study. We identified 20 differently expressed proteins that were validated on an independent cohort of patients with schizophrenia, including ALS, A1AG1, PEDF, VTDB, CERU, APOB, APOH, FASN, GPX3, etc. and almost half of them are new for schizophrenia. The metabolomic survey revealed 18 group-specific compounds, most of which were the part of transformation of tyrosine and steroids with the prevalence to androgens (androsterone sulfate, thyroliberin, thyroxine, dihydrotestosterone, androstenedione, cholesterol sulfate, metanephrine, dopaquinone, etc.). The GWAS assay mostly failed to reveal significantly associated loci therefore 52 loci with the smoothened p < 10-5 were fractionally integrated into proteome-metabolome data. We integrated three omics layers and powered them by the quantitative analysis to propose a map of molecular events associated with schizophrenia psychopathology. The resulting interplay between different molecular layers emphasizes a strict implication of lipids transport, oxidative stress, imbalance in steroidogenesis and associated impartments of thyroid hormones as key interconnected nodes essential for understanding of how the regulation of distinct metabolic axis is achieved and what happens in the conditioned proteome and metabolome to produce a schizophrenia-specific pattern.
Collapse
|
9
|
Omeiza NA, Bakre A, Ben-Azu B, Sowunmi AA, Abdulrahim HA, Chimezie J, Lawal SO, Adebayo OG, Alagbonsi AI, Akinola O, Abolaji AO, Aderibigbe AO. Mechanisms underpinning Carpolobia lutea G. Don ethanol extract's neurorestorative and antipsychotic-like activities in an NMDA receptor antagonist model of schizophrenia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115767. [PMID: 36206872 DOI: 10.1016/j.jep.2022.115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persistent ketamine insults to the central nervous system block NMDA receptors and disrupt putative neurotransmission, oxido-nitrosative, and inflammatory pathways, resulting in schizophrenia-like symptoms in animals. Previously, the ethnomedicinal benefits of Carpolobia lutea against insomnia, migraine headache, and insanity has been documented, but the mechanisms of action remain incomplete. AIM OF THE STUDY Presently, we explored the neuro-therapeutic role of Carpolobia lutea ethanol extract (C. lutea) in ketamine-induced schizophrenia-like symptoms in mice. MATERIALS AND METHODS Sixty-four male Swiss (22 ± 2 g) mice were randomly assigned into eight groups (n = 8/group) and exposed to a reversal ketamine model of schizophrenia. For 14 days, either distilled water (10 mL/kg; p.o.) or ketamine (20 mg/kg; i.p.) was administered, following possible reversal treatments with C. lutea (100, 200, 400, and 800 mg/kg; p.o.), haloperidol (1 mg/kg, p.o.), or clozapine (5 mg/kg; p.o.) beginning on days 8-14. During the experiment, a battery of behavioral characterizations defining schizophrenia-like symptoms were obtained using ANY-maze software, followed by neurochemical, oxido-inflammatory and histological assessments in the mice brains. RESULTS A 7-day reversal treatment with C. lutea reversed predictors of positive, negative and cognitive symptoms of schizophrenia. C. lutea also mitigated ketamine-induced neurochemical derangements as evidenced by modulations of dopamine, glutamate, norepinephrine and serotonin neurotransmission. Also, the increased acetylcholinesterase activity, malondialdehyde nitrite, interleukin-6 and tumor necrosis-factor-α concentrations were reversed by C. lutea accompanied with elevated levels of catalase, superoxide dismutase and reduced glutathione. Furthermore, C. lutea reversed ketamine-induced neuronal alterations in the prefrontal cortex, hippocampus and cerebellum sections of the brain. CONCLUSION These findings suggest that C. lutea reverses the cardinal symptoms of ketamine-induced schizophrenia in a dose-dependent fashion by modulating the oxido-inflammatory and neurotransmitter-related mechanisms.
Collapse
Affiliation(s)
- Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adewale Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sodiq O Lawal
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Neurophysiology Unit, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Abdullateef I Alagbonsi
- Department of Clinical Biology (Physiology), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Rwanda
| | - Olugbenga Akinola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
10
|
Lipopolysaccharide Exacerbates Ketamine-Induced Psychotic-Like Behavior, Oxidative Stress, and Neuroinflammation in Mice: Ameliorative Effect of Diosmin. J Mol Neurosci 2023; 73:129-142. [PMID: 36652038 DOI: 10.1007/s12031-022-02077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023]
Abstract
Schizophrenia, a neuropsychiatric disorder has been associated with aberrant neurotransmission affecting behaviors, social preference, and cognition. Limitations in understanding its pathogenesis via the dopamine hypothesis have engendered other hypotheses such as the glutamate hypothesis. That antagonism of the N-methyl-D-aspartate receptor (NMDAR) elicits schizophrenia-like behaviors indistinguishable from the disorder in animal and human models. There are growing concerns that redox imbalance and neuro-immuno dysfunction may play role in aggravating the symptomologies of this disorder. This 14-day treatment study was designed to investigate the effect of diosmin on lipopolysaccharide (LPS) plus ketamine (NMDAR antagonist). Mice were divided into 4 groups (n = 6). Group 1 was administered 5% DMSO (10 mL/kg, i.p) while group 2-4 received LPS (0.1 mg/kg, i.p) daily for 14 days. Diosmin (50 mg/kg, i.p) and risperidone (0.5 mg/kg, i.p) were given to groups 3 and 4 respectively. Groups 2-4 were given KET (20 mg/kg, i.p.) daily from days 8-14. Behavioral tests were done 30 min after the last dose, and oxidative stress and neuroinflammatory maker were assayed. LPS plus ketamine-induced hyperlocomotion, stereotypy, decreased social preference, and memory impairment. Furthermore, LPS plus-ketamine-induced oxidative stress (reduced GSH, CAT, SOD, and increased MDA and nitrite levels) and marked pro-inflammatory cytokines TNF-α and IL-6 suggesting neuroinflammation. However, diosmin attenuated behavioral deficits and improved memory. Additionally, diosmin potentiated antioxidant level via increased GSH, CAT, and SOD while reducing MDA and nitrite levels. Finally, diosmin reduced TNF-α and IL-6 suggesting anti-neuro-immuno activity. Conclusively, diosmin attenuated LPS plus ketamine-induced behavioral deficits, oxidative stress, neuroinflammation, and improved memory.
Collapse
|
11
|
Mandal PK, Gaur S, Roy RG, Samkaria A, Ingole R, Goel A. Schizophrenia, Bipolar and Major Depressive Disorders: Overview of Clinical Features, Neurotransmitter Alterations, Pharmacological Interventions, and Impact of Oxidative Stress in the Disease Process. ACS Chem Neurosci 2022; 13:2784-2802. [PMID: 36125113 DOI: 10.1021/acschemneuro.2c00420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Psychiatric disorders are one of the leading causes of disability worldwide and affect the quality of life of both individuals and the society. The current understanding of these disorders points toward receptor dysfunction and neurotransmitter imbalances in the brain. Treatment protocols are hence oriented toward normalizing these imbalances and ameliorating the symptoms. However, recent literature has indicated the possible role of depleted levels of antioxidants like glutathione (GSH) as well as an alteration in the levels of the pro-oxidant, iron in the pathogenesis of major psychiatric diseases, viz., schizophrenia (Sz), bipolar disorder (BD), and major depressive disorder (MDD). This review aims to highlight the involvement of oxidative stress (OS) in these psychiatric disorders. An overview of the clinical features, neurotransmitter abnormalities, and pharmacological treatments concerning these psychiatric disorders has also been presented. Furthermore, it attempts to synthesize literature from existing magnetic resonance spectroscopy (MRS) and quantitative susceptibility mapping (QSM) studies for these disorders, assessing GSH and iron, respectively. This manuscript is a sincere attempt to stimulate research discussion to advance the knowledge base for further understanding of the pathoetiology of Sz, BD, and MDD.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India.,The Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3052, Australia
| | - Shradha Gaur
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | | | - Anshika Goel
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| |
Collapse
|
12
|
Slater C, Liu Y, Weiss E, Yu K, Wang Q. The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sci 2022; 12:890. [PMID: 35884697 PMCID: PMC9320657 DOI: 10.3390/brainsci12070890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
The noradrenergic and cholinergic modulation of functionally distinct regions of the brain has become one of the primary organizational principles behind understanding the contribution of each system to the diversity of neural computation in the central nervous system. Decades of work has shown that a diverse family of receptors, stratified across different brain regions, and circuit-specific afferent and efferent projections play a critical role in helping such widespread neuromodulatory systems obtain substantial heterogeneity in neural information processing. This review briefly discusses the anatomical layout of both the noradrenergic and cholinergic systems, as well as the types and distributions of relevant receptors for each system. Previous work characterizing the direct and indirect interaction between these two systems is discussed, especially in the context of higher order cognitive functions such as attention, learning, and the decision-making process. Though a substantial amount of work has been done to characterize the role of each neuromodulator, a cohesive understanding of the region-specific cooperation of these two systems is not yet fully realized. For the field to progress, new experiments will need to be conducted that capitalize on the modular subdivisions of the brain and systematically explore the role of norepinephrine and acetylcholine in each of these subunits and across the full range of receptors expressed in different cell types in these regions.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
- Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Yuxiang Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Evan Weiss
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Kunpeng Yu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| |
Collapse
|
13
|
Grinevich VP, Zakirov AN, Berseneva UV, Gerasimova EV, Gainetdinov RR, Budygin EA. Applying a Fast-Scan Cyclic Voltammetry to Explore Dopamine Dynamics in Animal Models of Neuropsychiatric Disorders. Cells 2022; 11:cells11091533. [PMID: 35563838 PMCID: PMC9100021 DOI: 10.3390/cells11091533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023] Open
Abstract
Progress in the development of technologies for the real-time monitoring of neurotransmitter dynamics has provided researchers with effective tools for the exploration of etiology and molecular mechanisms of neuropsychiatric disorders. One of these powerful tools is fast-scan cyclic voltammetry (FSCV), a technique which has progressively been used in animal models of diverse pathological conditions associated with alterations in dopamine transmission. Indeed, for several decades FSCV studies have provided substantial insights into our understanding of the role of abnormal dopaminergic transmission in pathogenetic mechanisms of drug and alcohol addiction, Parkinson’s disease, schizophrenia, etc. Here we review the applications of FSCV to research neuropsychiatric disorders with particular attention to recent technological advances.
Collapse
Affiliation(s)
- Vladimir P. Grinevich
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Amir N. Zakirov
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Uliana V. Berseneva
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Elena V. Gerasimova
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Raul R. Gainetdinov
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
- Institute of Translational Biomedicine and St. Petersburg State University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, St. Petersburg 199034, Russia
| | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
- Correspondence:
| |
Collapse
|
14
|
Waldman L, Richardson B, Hamilton J, Thanos P. Chronic Oral Olanzapine Treatment but not Haloperidol Decreases [ 3H] MK-801 Binding in the Rat Brain Independent of Dietary Conditions. Neurosci Lett 2022; 781:136657. [PMID: 35483503 DOI: 10.1016/j.neulet.2022.136657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Haloperidol and olanzapine are first and second-generation antipsychotic (neuroleptic) medications approved to treat schizophrenia. Glutamate signaling is known to play an important role in the manifestation of schizophrenia symptoms, as phencyclidine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, replicates and exasperates these symptoms. While initial reports show that neuroleptic treatments can impact aspects of NMDAR expression, there is little attention on the interaction between neuroleptics and dietary conditions. Thus, we examined the impact of chronic haloperidol and olanzapine treatment under both normal and high-fat dietary conditions on NMDAR expression. Adult male rats were treated for 28-days with either oral vehicle, haloperidol (1.5mg/kg), or olanzapine (10mg/kg), and fed either a standard control diet or a high-fat diet. In-vitro receptor autoradiography binding was performed using [3H] MK-801 as a measure of NMDAR expression. Results showed that olanzapine, irrespective of the diet, significantly decreased [3H] MK-801 binding within the cingulate cortex, substantia nigra, insular cortex, piriform cortex, ectorhinal cortex and perirhinal cortex, the forelimb region of the somatosensory cortex, and all quadrants of the caudate-putamen. In contrast, haloperidol treatment did not impact [3H] MK-801 binding, and we also report no effect of diet on [3H] MK-801 binding. These data suggest that the effects seen in olanzapine treatment are not mediated by diet, nor does a 28-day chronic high-fat diet alter [3H] MK-801 binding. Furthermore, these data also importantly support that combined consumption of a high-fat diet and pharmacological treatments are not immediately detrimental to NMDARs and contribute to the expansive literature of precision medicine.
Collapse
Affiliation(s)
- Leah Waldman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Brittany Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Panayotis Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
15
|
Vlcek P, Bob P. Schizophrenia, Bipolar Disorder and Pre-Attentional Inhibitory Deficits. Neuropsychiatr Dis Treat 2022; 18:821-827. [PMID: 35422621 PMCID: PMC9005071 DOI: 10.2147/ndt.s352157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
According to recent findings schizophrenia and bipolar disorder as separate disease entities manifest similarities in neuropsychological functioning. Typical disturbances in both disorders are related to sensory gating deficits characterized by decreased inhibitory functions in responses to various insignificant perceptual signals which are experimentally tested by event related potentials (ERP) and measured P50 wave. In this context, recent findings implicate that disrupted binding and disintegration of consciousness in schizophrenia and bipolar disorder that are related to inhibitory deficits reflected in P50 response may explain similarities in psychotic disturbances in both disorders. With this aim, this review summarizes literature about P50 in both schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Premysl Vlcek
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Bob
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, First Faculty of Medicine, Department of Psychiatry, & Faculty of Medicine Pilsen, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Spark DL, Fornito A, Langmead CJ, Stewart GD. Beyond antipsychotics: a twenty-first century update for preclinical development of schizophrenia therapeutics. Transl Psychiatry 2022; 12:147. [PMID: 35393394 PMCID: PMC8991275 DOI: 10.1038/s41398-022-01904-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Despite 50+ years of drug discovery, current antipsychotics have limited efficacy against negative and cognitive symptoms of schizophrenia, and are ineffective-with the exception of clozapine-against any symptom domain for patients who are treatment resistant. Novel therapeutics with diverse non-dopamine D2 receptor targets have been explored extensively in clinical trials, yet often fail due to a lack of efficacy despite showing promise in preclinical development. This lack of translation between preclinical and clinical efficacy suggests a systematic failure in current methods that determine efficacy in preclinical rodent models. In this review, we critically evaluate rodent models and behavioural tests used to determine preclinical efficacy, and look to clinical research to provide a roadmap for developing improved translational measures. We highlight the dependence of preclinical models and tests on dopamine-centric theories of dysfunction and how this has contributed towards a self-reinforcing loop away from clinically meaningful predictions of efficacy. We review recent clinical findings of distinct dopamine-mediated dysfunction of corticostriatal circuits in patients with treatment-resistant vs. non-treatment-resistant schizophrenia and suggest criteria for establishing rodent models to reflect such differences, with a focus on objective, translational measures. Finally, we review current schizophrenia drug discovery and propose a framework where preclinical models are validated against objective, clinically informed measures and preclinical tests of efficacy map onto those used clinically.
Collapse
Affiliation(s)
- Daisy L Spark
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
17
|
A unified model of the pathophysiology of bipolar disorder. Mol Psychiatry 2022; 27:202-211. [PMID: 33859358 DOI: 10.1038/s41380-021-01091-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
This work provides an overview of the most consistent alterations in bipolar disorder (BD), attempting to unify them in an internally coherent working model of the pathophysiology of BD. Data on immune-inflammatory changes, structural brain abnormalities (in gray and white matter), and functional brain alterations (from neurotransmitter signaling to intrinsic brain activity) in BD were reviewed. Based on the reported data, (1) we hypothesized that the core pathological alteration in BD is a damage of the limbic network that results in alterations of neurotransmitter signaling. Although heterogeneous conditions can lead to such damage, we supposed that the main pathophysiological mechanism is traceable to an immune/inflammatory-mediated alteration of white matter involving the limbic network connections, which destabilizes the neurotransmitter signaling, such as dopamine and serotonin signaling. Then, (2) we suggested that changes in such neurotransmitter signaling (potentially triggered by heterogeneous stressors onto a structurally-damaged limbic network) lead to phasic (and often recurrent) reconfigurations of intrinsic brain activity, from abnormal subcortical-cortical coupling to changes in network activity. We suggested that the resulting dysbalance between networks, such as sensorimotor networks, salience network, and default-mode network, clinically manifest in combined alterations of psychomotricity, affectivity, and thought during the manic and depressive phases of BD. Finally, (3) we supposed that an additional contribution of gray matter alterations and related cognitive deterioration characterize a clinical-biological subgroup of BD. This model may provide a general framework for integrating the current data on BD and suggests novel specific hypotheses, prompting for a better understanding of the pathophysiology of BD.
Collapse
|
18
|
Gotra MY, Keedy SK, Hill SK. Interactive effects of maintenance decay and interference on working memory updating in schizophrenia. Schizophr Res 2022; 239:103-110. [PMID: 34871994 DOI: 10.1016/j.schres.2021.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Deficits in working memory have been identified as a core cognitive impairment in schizophrenia. Prior work has identified a unique pattern of rapidly decreasing accuracy following intact encoding and updating of a single visuospatial target in patients with schizophrenia. Understanding whether these deficits are related to disruption of working memory stores following retrieval or part of a broader maintenance dysfunction may help elucidate the specific subprocesses underlying working memory deficits in schizophrenia. METHODS Participants were 71 patients with a schizophrenia spectrum disorder and 43 healthy controls who completed a working memory paradigm that parametrically varied maintenance demands from 1000 to 8000 ms. RESULTS Patients with a schizophrenia spectrum disorder were comparable to healthy controls at delays of 1000 ms. However, when delays were extended to 2000 and 4000 ms, the patient group showed significantly decreased accuracy. Additionally, the patient group showed a greater decline in accuracy following a second delay. CONCLUSIONS These findings suggest that early encoding of one item is intact in patients with a schizophrenia spectrum disorder, but information rapidly decays from working memory stores with extended delays. Accuracy further decreased when information was retrieved from working memory, suggesting that working memory stores may also be susceptible to disruption from internal stimuli. Thus, working memory stores in patients with a schizophrenia spectrum disorder may be vulnerable to both rapid decay and interference.
Collapse
Affiliation(s)
- Milena Y Gotra
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.
| |
Collapse
|
19
|
Shao X, Liao Y, Gu L, Chen W, Tang J. The Etiology of Auditory Hallucinations in Schizophrenia: From Multidimensional Levels. Front Neurosci 2021; 15:755870. [PMID: 34858129 PMCID: PMC8632545 DOI: 10.3389/fnins.2021.755870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Enormous efforts have been made to unveil the etiology of auditory hallucinations (AHs), and multiple genetic and neural factors have already been shown to have their own roles. Previous studies have shown that AHs in schizophrenia vary from those in other disorders, suggesting that they have unique features and possibly distinguishable mechanisms worthy of further investigation. In this review, we intend to offer a comprehensive summary of current findings related to AHs in schizophrenia from aspects of genetics and transcriptome, neurophysiology (neurometabolic and electroencephalogram studies), and neuroimaging (structural and functional magnetic resonance imaging studies and transcriptome–neuroimaging association study). Main findings include gene polymorphisms, glutamate level change, electroencephalographic alterations, and abnormalities of white matter fasciculi, cortical structure, and cerebral activities, especially in multiple regions, including auditory and language networks. More solid and comparable research is needed to replicate and integrate ongoing findings from multidimensional levels.
Collapse
Affiliation(s)
- Xu Shao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Gu
- RIKEN AIP, Tokyo, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Laignier MR, Lopes-Júnior LC, Santana RE, Leite FMC, Brancato CL. Down Syndrome in Brazil: Occurrence and Associated Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211954. [PMID: 34831710 PMCID: PMC8620277 DOI: 10.3390/ijerph182211954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022]
Abstract
Background: Down syndrome is the most frequent genetic cause of intellectual disability, with an estimated birth prevalence of 14 per 10,000 live births. In Brazil, statistical data on the occurrence of babies born with Down syndrome remain unclear. We aimed to estimate the occurrence of Down syndrome between 2012 and 2018, and to observe its association with maternal, gestational, paternal characteristics, and newborn vitality. Methods: A retrospective study was carried out using secondary data included in the Certificate of Live Birth in a state located in the southeastern region of Brazil. Data analysis was performed in the software Stata 14.1. Pearson’s chi-square test for bivariate analysis, and logistic regression for multivariate analysis were performed, with a 95% confidence interval (CI) and a significance of 5%. Results: We observed that 157 cases of Down syndrome were reported among 386,571 live births, representing an incidence of 4 in 10,000 live births. Down syndrome was associated with maternal age ≥ 35 years, paternal age ≥ 30 years, the performance of six or more prenatal consultations, prematurity, and low birth weight (p < 0.05). Conclusions: Women aged 35 and over were more likely to have children born with Down syndrome. In addition, there is an association of Down syndrome with premature birth, low birth weight, and the number of prenatal consultations (≥6).
Collapse
Affiliation(s)
- Mariana Rabello Laignier
- Nursing Department at the Health Sciences Center, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil; (L.C.L.-J.); (F.M.C.L.)
- Correspondence:
| | - Luís Carlos Lopes-Júnior
- Nursing Department at the Health Sciences Center, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil; (L.C.L.-J.); (F.M.C.L.)
| | - Raquel Esperidon Santana
- Associação de Pais, Amigos e Pessoas com Síndrome de Down do Espírito Santo, Vitória 29075-910, Brazil; (R.E.S.); (C.L.B.)
| | - Franciéle Marabotti Costa Leite
- Nursing Department at the Health Sciences Center, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil; (L.C.L.-J.); (F.M.C.L.)
| | - Carolina Laura Brancato
- Associação de Pais, Amigos e Pessoas com Síndrome de Down do Espírito Santo, Vitória 29075-910, Brazil; (R.E.S.); (C.L.B.)
| |
Collapse
|
21
|
Rashid H, Ahmed T. Gender dimorphic effect of dopamine D2 and muscarinic cholinergic receptors on memory retrieval. Psychopharmacology (Berl) 2021; 238:2225-2234. [PMID: 33891128 DOI: 10.1007/s00213-021-05847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Episodic memory retrieval is fundamental for daily activities of humans and animals. Muscarinic cholinergic signaling is important for memory functioning and shows gender-dependent response in episodic memory retrieval. Dopamine D2 receptors influence memory formation and retrieval by influencing cholinergic signaling in the brain. This study aimed to determine the gender-dependent effects of D2 and muscarinic activity on memory retrieval. Male and female mice were trained for Morris water maze test and contextual fear conditioning. Memory retrieval was assessed following sub-chronic treatment (for 5 days) with D2 antagonist (risperidone 2.5 mg/kg) alone or in combination with scopolamine (1 mg/kg) or donepezil (1 mg/kg). Open field test was performed prior to the retrieval test to evaluate effects of risperidone treatment on locomotor activity and exploratory behavior. Risperidone co-treatment with donepezil impaired spatial memory retrieval in males only. Muscarinic and D2 simultaneous antagonism tend to impair fear retrieval in males but significantly enhanced retrieval of fear memories in female mice. These results suggest that D2 signaling influence muscarinic receptor activity during memory retrieval in gender-dependent manner.
Collapse
Affiliation(s)
- Habiba Rashid
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Department of Anatomy, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
22
|
Coura CPDM, Fragoso VMDS, Valdez ECN, Paulino ET, Silva D, Cortez CM. Study on the interaction of three classical drugs used in psychiatry in albumin through spectrofluorimetric modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119638. [PMID: 33780894 DOI: 10.1016/j.saa.2021.119638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Comparative study of haloperidol (HPD), biperiden (BPD) and clonazepam (CNZ) interactions with human and bovine serum albumin was performed based on fluorescence quenching analysis. We used mathematical modeling comparing spectrofluorimetric data to obtain information on the possibility of competition among three drugs by sites binding. Results showed that the three drugs studied have high affinity for albumin and suggest the existence of two site classes in HSA for HPD and only one class for BPD and CNZ, in the range of concentrations tested for each drug. Among them, only HPD forms complex with HSA. Comparing normalized quenching plots suggested that the primary sites in HSA and BSA for HPD and CNZ are located at subdomain IB, whereas BPD would bind in the subdomain IIA. Considering the competition for binding sites in HSA, titrations of HPD-HSA complex by BPD and CNZ, as well as the titration of HSA solution containing CNZ titrated by BPD, show that although the three drugs do not compete with each other for binding sites, their interaction with HSA can cause conformational change in the protein, and to increase or decrease the accessibility to binding sites for other drug. This may mean alteration in the free plasma drug concentrations.
Collapse
Affiliation(s)
| | - Viviane Muniz da Silva Fragoso
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro 21045-900, Brazil.
| | | | - Erica Tex Paulino
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro 21045-900, Brazil.
| | - Dilson Silva
- Rio de Janeiro State University, Av. Manoel de Abreu, 444, Rio de Janeiro 20550-171, Brazil; Department of Applied Mathematics, Rio de Janeiro State University, Rua São Francisco Xavier, 524, Rio de Janeiro 20559-900, Brazil.
| | - Célia Martins Cortez
- Rio de Janeiro State University, Av. Manoel de Abreu, 444, Rio de Janeiro 20550-171, Brazil; Department of Applied Mathematics, Rio de Janeiro State University, Rua São Francisco Xavier, 524, Rio de Janeiro 20559-900, Brazil.
| |
Collapse
|
23
|
Nitta A, Izuo N, Hamatani K, Inagaki R, Kusui Y, Fu K, Asano T, Torii Y, Habuchi C, Sekiguchi H, Iritani S, Muramatsu SI, Ozaki N, Miyamoto Y. Schizophrenia-Like Behavioral Impairments in Mice with Suppressed Expression of Piccolo in the Medial Prefrontal Cortex. J Pers Med 2021; 11:jpm11070607. [PMID: 34206873 PMCID: PMC8304324 DOI: 10.3390/jpm11070607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022] Open
Abstract
Piccolo, a presynaptic cytomatrix protein, plays a role in synaptic vesicle trafficking in the presynaptic active zone. Certain single-nucleotide polymorphisms of the Piccolo-encoding gene PCLO are reported to be associated with mental disorders. However, a few studies have evaluated the relationship between Piccolo dysfunction and psychotic symptoms. Therefore, we investigated the neurophysiological and behavioral phenotypes in mice with Piccolo suppression in the medial prefrontal cortex (mPFC). Downregulation of Piccolo in the mPFC reduced regional synaptic proteins, accompanied with electrophysiological impairments. The Piccolo-suppressed mice showed an enhanced locomotor activity, impaired auditory prepulse inhibition, and cognitive dysfunction. These abnormal behaviors were partially ameliorated by the antipsychotic drug risperidone. Piccolo-suppressed mice received mild social defeat stress showed additional behavioral despair. Furthermore, the responses of these mice to extracellular glutamate and dopamine levels induced by the optical activation of mPFC projection in the dorsal striatum (dSTR) were inhibited. Similarly, the Piccolo-suppressed mice showed decreased depolarization-evoked glutamate and -aminobutyric acid elevations and increased depolarization-evoked dopamine elevation in the dSTR. These suggest that Piccolo regulates neurotransmission at the synaptic terminal of the projection site. Reduced neuronal connectivity in the mPFC-dSTR pathway via suppression of Piccolo in the mPFC may induce behavioral impairments observed in schizophrenia.
Collapse
Affiliation(s)
- Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
- Correspondence: ; Tel.: +81-76-415-8822 (ext. 8823); Fax: +81-76-415-8826
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| | - Kohei Hamatani
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| | - Ryo Inagaki
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| | - Yuka Kusui
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| | - Kequan Fu
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Takashi Asano
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| | - Youta Torii
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (Y.T.); (C.H.); (H.S.); (S.I.); (N.O.)
| | - Chikako Habuchi
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (Y.T.); (C.H.); (H.S.); (S.I.); (N.O.)
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (Y.T.); (C.H.); (H.S.); (S.I.); (N.O.)
| | - Shuji Iritani
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (Y.T.); (C.H.); (H.S.); (S.I.); (N.O.)
| | - Shin-ichi Muramatsu
- Open Innovation Center, Division of Neurological Gene Therapy, Jichi Medical University, Shimotsuke 329-0498, Japan;
- Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (Y.T.); (C.H.); (H.S.); (S.I.); (N.O.)
| | - Yoshiaki Miyamoto
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (N.I.); (K.H.); (R.I.); (Y.K.); (K.F.); (T.A.); (Y.M.)
| |
Collapse
|
24
|
Maingret F, Groc L. Characterization of the Functional Cross-Talk between Surface GABA A and Dopamine D5 Receptors. Int J Mol Sci 2021; 22:4867. [PMID: 34064454 PMCID: PMC8125140 DOI: 10.3390/ijms22094867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/17/2023] Open
Abstract
The γ-aminobutyric acid type A receptor (GABAAR) plays a major role in fast inhibitory synaptic transmission and is highly regulated by the neuromodulator dopamine. In this aspect, most of the attention has been focused on the classical intracellular signaling cascades following dopamine G-protein-coupled receptor activation. Interestingly, the GABAAR and dopamine D5 receptor (D5R) have been shown to physically interact in the hippocampus, but whether a functional cross-talk occurs is still debated. In the present study, we use a combination of imaging and single nanoparticle tracking in live hippocampal neurons to provide evidence that GABAARs and D5Rs form dynamic surface clusters. Disrupting the GABAAR-D5R interaction with a competing peptide leads to an increase in the diffusion coefficient and the explored area of both receptors, and a drop in immobile synaptic GABAARs. By means of patch-clamp recordings, we show that this fast lateral redistribution of surface GABAARs correlates with a robust depression in the evoked GABAergic currents. Strikingly, it also shifts in time the expression of long-term potentiation at glutamatergic synapses. Together, our data both set the plasma membrane as the primary stage of a functional interplay between GABAAR and D5R, and uncover a non-canonical role in regulating synaptic transmission.
Collapse
Affiliation(s)
- François Maingret
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, 33076 Bordeaux, France;
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, 33076 Bordeaux, France;
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| |
Collapse
|
25
|
D’Ambrosio E, Jauhar S, Kim S, Veronese M, Rogdaki M, Pepper F, Bonoldi I, Kotoula V, Kempton MJ, Turkheimer F, Kwon JS, Kim E, Howes OD. The relationship between grey matter volume and striatal dopamine function in psychosis: a multimodal 18F-DOPA PET and voxel-based morphometry study. Mol Psychiatry 2021; 26:1332-1345. [PMID: 31690805 PMCID: PMC7610423 DOI: 10.1038/s41380-019-0570-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 01/26/2023]
Abstract
A leading hypothesis for schizophrenia and related psychotic disorders proposes that cortical brain disruption leads to subcortical dopaminergic dysfunction, which underlies psychosis in the majority of patients who respond to treatment. Although supported by preclinical findings that prefrontal cortical lesions lead to striatal dopamine dysregulation, the relationship between prefrontal structural volume and striatal dopamine function has not been tested in people with psychosis. We therefore investigated the in vivo relationship between striatal dopamine synthesis capacity and prefrontal grey matter volume in treatment-responsive patients with psychosis, and compared them to treatment non-responsive patients, where dopaminergic mechanisms are not thought to be central. Forty patients with psychosis across two independent cohorts underwent 18F-DOPA PET scans to measure dopamine synthesis capacity (indexed as the influx rate constant Kicer) and structural 3T MRI. The PET, but not MR, data have been reported previously. Structural images were processed using DARTEL-VBM. GLM analyses were performed in SPM12 to test the relationship between prefrontal grey matter volume and striatal Kicer. Treatment responders showed a negative correlation between prefrontal grey matter and striatal dopamine synthesis capacity, but this was not evident in treatment non-responders. Specifically, we found an interaction between treatment response, whole striatal dopamine synthesis capacity and grey matter volume in left (pFWE corr. = 0.017) and right (pFWE corr. = 0.042) prefrontal cortex. We replicated the finding in right prefrontal cortex in the independent sample (pFWE corr. = 0.031). The summary effect size was 0.82. Our findings are consistent with the long-standing hypothesis of dysregulation of the striatal dopaminergic system being related to prefrontal cortex pathology in schizophrenia, but critically also extend the hypothesis to indicate it can be applied to treatment-responsive schizophrenia only. This suggests that different mechanisms underlie the pathophysiology of treatment-responsive and treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Enrico D’Ambrosio
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Sameer Jauhar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Trust, London
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Maria Rogdaki
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
| | - Fiona Pepper
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Ilaria Bonoldi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Vasileia Kotoula
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Matthew J Kempton
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Jun Soo Kwon
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euitae Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK. .,Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
| |
Collapse
|
26
|
Suh BK, Lee SA, Park C, Suh Y, Kim SJ, Woo Y, Nhung TTM, Lee SB, Mun DJ, Goo BS, Choi HS, Kim SJ, Park SK. Schizophrenia-associated dysbindin modulates axonal mitochondrial movement in cooperation with p150 glued. Mol Brain 2021; 14:14. [PMID: 33461576 PMCID: PMC7814725 DOI: 10.1186/s13041-020-00720-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/23/2020] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial movement in neurons is finely regulated to meet the local demand for energy and calcium buffering. Elaborate transport machinery including motor complexes is required to deliver and localize mitochondria to appropriate positions. Defects in mitochondrial transport are associated with various neurological disorders without a detailed mechanistic information. In this study, we present evidence that dystrobrevin-binding protein 1 (dysbindin), a schizophrenia-associated factor, plays a critical role in axonal mitochondrial movement. We observed that mitochondrial movement was impaired in dysbindin knockout mouse neurons. Reduced mitochondrial motility caused by dysbindin deficiency decreased the density of mitochondria in the distal part of axons. Moreover, the transport and distribution of mitochondria were regulated by the association between dysbindin and p150glued. Furthermore, altered mitochondrial distribution in axons led to disrupted calcium dynamics, showing abnormal calcium influx in presynaptic terminals. These data collectively suggest that dysbindin forms a functional complex with p150glued that regulates axonal mitochondrial transport, thereby affecting presynaptic calcium homeostasis.
Collapse
Affiliation(s)
- Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Cana Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Weill Institute of Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, USA
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyun Sun Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - So Jung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
27
|
Abstract
OBJECTIVES The primary objective was to conduct a meta-analysis of studies comparing the GABA levels of schizophrenia patients (SZP) and healthy controls (HC) using proton magnetic resonance spectroscopy (1H-MRS) in the frontal cortex (FC) and its sub-regions. METHODS We included studies published in English language that used 1H-MRS from MRI scanners having at-least 3 Tesla (3 T) magnetic field strength to measure GABA levels in SZP (n = 699) and HC (n = 718) in FC and its sub-regions. The outcome measures were the means and standard deviations of GABA levels and outcome measure was calculated using a random-effect model. RESULTS In FC, medial prefrontal cortex (MPFC) and dorsolateral prefrontal cortex (DLPFC), there were no significant group differences. On excluding the outlier studies, the GABA levels were lower in patients with schizophrenia compared to healthy controls in FC (Hedges' g = -0.2; p = 0.02). In ACC, significant group difference was noted in GABA levels (Hedges' g = -0.25; p = 0.03) with patients values being lower that is more pronounced in the first episode schizophrenia patients (Hedges' g: -0.41; p = 0.003). CONCLUSIONS The available 1H-MRS studies suggest hypo-GABA ergia specifically in ACC and hint towards possible hypo GABA-ergic state in the FC. However, limitations of the analysis should be considered while interpreting the results.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Bhavika Vajawat
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Naren P Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
28
|
Avram M, Brandl F, Knolle F, Cabello J, Leucht C, Scherr M, Mustafa M, Koutsouleris N, Leucht S, Ziegler S, Sorg C. Aberrant striatal dopamine links topographically with cortico-thalamic dysconnectivity in schizophrenia. Brain 2020; 143:3495-3505. [PMID: 33155047 DOI: 10.1093/brain/awaa296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant dopamine function in the dorsal striatum and aberrant intrinsic functional connectivity (iFC) between distinct cortical networks and thalamic nuclei are among the most consistent large-scale brain imaging findings in schizophrenia. A pathophysiological link between these two alterations is suggested by theoretical models based on striatal dopamine's topographic modulation of cortico-thalamic connectivity within cortico-basal-ganglia-thalamic circuits. We hypothesized that aberrant striatal dopamine links topographically with aberrant cortico-thalamic iFC, i.e. aberrant associative striatum dopamine is associated with aberrant iFC between the salience network and thalamus, and aberrant sensorimotor striatum dopamine with aberrant iFC between the auditory-sensorimotor network and thalamus. Nineteen patients with schizophrenia during remission of psychotic symptoms and 19 age- and sex-comparable control subjects underwent simultaneous fluorodihydroxyphenyl-l-alanine PET (18F-DOPA-PET) and resting state functional MRI (rs-fMRI). The influx constant kicer based on 18F-DOPA-PET was used to measure striatal dopamine synthesis capacity; correlation coefficients between rs-fMRI time series of cortical networks and thalamic regions of interest were used to measure iFC. In the salience network-centred system, patients had reduced associative striatum dopamine synthesis capacity, which correlated positively with decreased salience network-mediodorsal-thalamus iFC. This correlation was present in both patients and healthy controls. In the auditory-sensorimotor network-centred system, patients had reduced sensorimotor striatum dopamine synthesis capacity, which correlated positively with increased auditory-sensorimotor network-ventrolateral-thalamus iFC. This correlation was present in patients only. Results demonstrate that reduced striatal dopamine synthesis capacity links topographically with cortico-thalamic intrinsic dysconnectivity in schizophrenia. Data suggest that aberrant striatal dopamine and cortico-thalamic dysconnectivity are pathophysiologically related within dopamine-modulated cortico-basal ganglia-thalamic circuits in schizophrenia.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Franziska Knolle
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jorge Cabello
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Claudia Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Martin Scherr
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Mona Mustafa
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry, University Hospital, LMU Munich, Munich, 81377, Germany.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AB, UK
| | - Stefan Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychosis studies, King's College London, UK
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| |
Collapse
|
29
|
Loureiro CM, Fachim HA, Corsi-Zuelli F, Shuhama R, Joca S, Menezes PR, Dalton CF, Del-Ben CM, Louzada-Junior P, Reynolds GP. Epigenetic-mediated N-methyl-D-aspartate receptor changes in the brain of isolated reared rats. Epigenomics 2020; 12:1983-1997. [PMID: 33242253 DOI: 10.2217/epi-2020-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: We investigated: Grin1, Grin2a, Grin2b DNA methylation; NR1 and NR2 mRNA/protein in the prefrontal cortex (PFC); and hippocampus of male Wistar rats exposed to isolation rearing. Materials & methods: Animals were kept isolated or grouped (n = 10/group) from weaning for 10 weeks. Tissues were dissected for RNA/DNA extraction and N-methyl-D-aspartate receptor subunits were analyzed using quantitative reverse transcription (RT)-PCR, ELISA and pyrosequencing. Results: Isolated-reared animals had: decreased mRNA in PFC for all markers, increased NR1 protein in hippocampus and hypermethylation of Grin1 in PFC and Grin2b in hippocampus, compared with grouped rats. Associations between mRNA/protein and DNA methylation were found for both brain areas. Conclusion: This study indicates that epigenetic DNA methylation may underlie N-methyl-D-aspartate receptor mRNA/protein expression alterations caused by isolation rearing.
Collapse
Affiliation(s)
- Camila Marcelino Loureiro
- Department of Internal Medicine, Division of Clinical Immunology. Ribeirão Preto Medical School, University of São Paulo, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Helene Aparecida Fachim
- Department of Endocrinology & Metabolism, Salford Royal Foundation Trust, Salford, UK.,Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Fabiana Corsi-Zuelli
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Rosana Shuhama
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Sâmia Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Cristina Marta Del-Ben
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Paulo Louzada-Junior
- Department of Internal Medicine, Division of Clinical Immunology. Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
30
|
Wang J, Yu W, Gao Q, Ju C, Wang K. Prefrontal inhibition of neuronal K v 7 channels enhances prepulse inhibition of acoustic startle reflex and resistance to hypofrontality. Br J Pharmacol 2020; 177:4720-4733. [PMID: 32839968 PMCID: PMC7520443 DOI: 10.1111/bph.15236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Dysfunction of the prefrontal cortex (PFC) is involved in the cognitive deficits in neuropsychiatric diseases, such as schizophrenia, characterized by deficient neurotransmission known as NMDA receptor hypofrontality. Thus, enhancing prefrontal activity may alleviate hypofrontality‐induced cognitive deficits. To test this hypothesis, we investigated the effect of forebrain‐specific suppression or pharmacological inhibition of native Kv7/KCNQ/M‐current on glutamatergic hypofrontality induced by the NMDA receptor antagonist MK‐801. Experimental Approach The forebrain‐specific inhibition of native M‐current was generated by transgenic expression, in mice, of a dominant‐negative pore mutant G279S of Kv7.2/KCNQ2 channels that suppresses channel function. A mouse model of cognitive impairment was established by single i.p. injection of 0.1 mg·kg−1 MK‐801. Mouse models of prepulse inhibition (PPI) of acoustic startle reflex and Y‐maze spontaneous alternation test were used for evaluation of cognitive behaviour. Hippocampal brain slice recordings of LTP were used to assess synaptic plasticity. Hippocampus and cortex were dissected for detecting protein expression using western blot analysis. Key Results Genetic suppression of Kv7 channel function in the forebrain or pharmacological inhibition of Kv7 channels by the specific blocker XE991 enhanced PPI and also alleviated MK‐801 induced cognitive decline. XE991 also attenuated MK‐801‐induced LTP deficits and increased basal synaptic transmissions. Western blot analysis revealed that inhibiting Kv7 channels resulted in elevation of pAkt1 and pGSK‐3β expressions in both hippocampus and cortex. Conclusions and Implications Both genetic and pharmacological inhibition of Kv7 channels alleviated PPI and cognitive deficits. Mechanistically, inhibition of Kv7 channels promotes synaptic transmission and activates Akt1/GSK‐3β signalling.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Wenwen Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Qin Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
31
|
Wang K, Smolker HR, Brown MS, Snyder HR, Hankin BL, Banich MT. Association of γ-aminobutyric acid and glutamate/glutamine in the lateral prefrontal cortex with patterns of intrinsic functional connectivity in adults. Brain Struct Funct 2020; 225:1903-1919. [PMID: 32803293 PMCID: PMC8765125 DOI: 10.1007/s00429-020-02084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 05/04/2020] [Indexed: 01/04/2023]
Abstract
This study examined how levels of neurotransmitters in the lateral prefrontal cortex (LPFC), a region underlying higher-order cognition, are related to the brain's intrinsic functional organization. Using magnetic resonance spectroscopy (MRS), GABA+ and Glx (glutamate + glutamine) levels in the left dorsal (DLPFC) and left ventral (VLPFC) lateral prefrontal cortex were obtained in a sample of 64 female adults (mean age = 48.5). We measured intrinsic connectivity via resting-state fMRI in three ways: (a) via seed-based connectivity for each of the two spectroscopy voxels; (b) via the spatial configurations of 17 intrinsic networks defined by a well-known template; and (c) via examination of the temporal inter-relationships between these intrinsic networks. The results showed that different neurotransmitter indexes (Glx-specific, GABA+-specific, Glx-GABA+ average and Glx-GABA+ ratio) were associated with distinct patterns of intrinsic connectivity. Neurotransmitter levels in the left LPFC are mainly associated with connectivity of right hemisphere prefrontal (e.g., DLPFC) or striatal (e.g., putamen) regions, two areas of the brain connected to LPFC via large white matter tracts. While the directions of these associations were mixed, in most cases, higher Glx levels are related to reduced connectivity. Prefrontal neurotransmitter levels are also associated with the degree of connectivity between non-prefrontal regions. These results suggest robust relationships between the brain's intrinsic functional organization and local neurotransmitters in the LPFC which may be constrained by white matter neuroanatomy.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, No. 55 West Zhongshan Avenue, Guangzhou, 510631, Guangdong, China.
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO, 80309-0344, USA.
| | - Harry R Smolker
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO, 80309-0344, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, E230 Muenzinger Hall, UCB 345, Boulder, CO, 80309-0345, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80303, USA
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, 12401 E 17th Place, Aurora, CO, 80045, USA
| | - Hannah R Snyder
- Department of Psychology, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Benjamin L Hankin
- Psychology Department, University of Illinois-Urbana Champaign, 603 E. Daniel Street, Champaign, IL, 61820, USA
| | - Marie T Banich
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO, 80309-0344, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder, E230 Muenzinger Hall, UCB 345, Boulder, CO, 80309-0345, USA.
| |
Collapse
|
32
|
Afonso AC, Pacheco FD, Canever L, Wessler PG, Mastella GA, Godoi AK, Hubbe I, Bischoff LM, Bialecki AVS, Zugno AI. Schizophrenia-like behavior is not altered by melatonin supplementation in rodents. AN ACAD BRAS CIENC 2020; 92:e20190981. [PMID: 32844989 DOI: 10.1590/0001-3765202020190981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022] Open
Abstract
An emerging area in schizophrenia research focuses on the impact of immunomodulatory drugs such as melatonin, which have played important roles in many biological systems and functions, and appears to be promising. The objective was to evaluate the effect of melatonin on behavioral parameters in an animal model of schizophrenia. For this, Wistar rats were divided and used in two different protocols. In the prevention protocol, the animals received 1 or 10mg/kg of melatonin or water for 14 days, and between the 8th and 14th day they received ketamine or saline. In the reversal protocol, the opposite occurred. On the 14th day, the animals underwent behavioral tests: locomotor activity and prepulse inhibition task. In both protocols, the results revealed that ketamine had effects on locomotor activity and prepulse inhibition, confirming the validity of ketamine construction as a good animal model of schizophrenia. However, at least at the doses used, melatonin was not able to reverse/prevent ketamine damage. More studies are necessary to evaluate the role of melatonin as an adjuvant treatment in psychiatric disorders.
Collapse
Affiliation(s)
- Arlindo C Afonso
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Felipe D Pacheco
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lara Canever
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patricia G Wessler
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo A Mastella
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Amanda K Godoi
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Isabela Hubbe
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Laura M Bischoff
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alex Victor S Bialecki
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
33
|
Huang LC, Lin SH, Tseng HH, Chen KC, Yang YK. The integrated model of glutamate and dopamine hypothesis for schizophrenia: Prediction and personalized medicine for prevent potential treatment-resistant patients. Med Hypotheses 2020; 143:110159. [PMID: 32795840 DOI: 10.1016/j.mehy.2020.110159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/20/2022]
Abstract
Treatment-resistant schizophrenia (TRS) is one of the subgroups of schizophrenia of which little is known with regard to its optimal mechanism. Treatment response, either as full remission of symptoms or prediction by biomarker, is important in psychiatry. We have proposed a model that integrates dopaminergic and glutamatergic systems with the biological interactions of TRS patients. We hypothesize that the subgroups of schizophrenia may be determined by glutamatergic and dopaminergic concentrations prior to medical treatment. This hypothesis implies that higher glutamatergic concentration in the brain with normalized or decreased dopamine synthesis capacity may explain aspects of TRS as observed in clinical medical practice, neuroimaging measurements, and brain stimulations. According to this hypothesis, the ability to prescribe a proper medication combination, to predict the outcome in first-episode psychosis, and personalized medicine for chronic schizophrenia patients can be applied into practice. This represents an initial step in explaining psychosis due to the valence of two neurotransmitters. Future studies are needed to examine the validity of this mechanism.
Collapse
Affiliation(s)
- Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, Chia-Yi Branch, Taichung Veteran General Hospital, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan; Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.
| |
Collapse
|
34
|
Fountoulakis KN, Moeller HJ, Kasper S, Tamminga C, Yamawaki S, Kahn R, Tandon R, Correll CU, Javed A. The report of the joint WPA/CINP workgroup on the use and usefulness of antipsychotic medication in the treatment of schizophrenia. CNS Spectr 2020; 26:1-25. [PMID: 32594935 DOI: 10.1017/s1092852920001546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This is a report of a joint World Psychiatric Association/International College of Neuropsychopharmacology (WPA/CINP) workgroup concerning the risk/benefit ratio of antipsychotics in the treatment of schizophrenia. It utilized a selective but, within topic, comprehensive review of the literature, taking into consideration all the recently discussed arguments on the matter and avoiding taking sides when the results in the literature were equivocal. The workgroup's conclusions suggested that antipsychotics are efficacious both during the acute and the maintenance phase, and that the current data do not support the existence of a supersensitivity rebound psychosis. Long-term treated patients have better overall outcome and lower mortality than those not taking antipsychotics. Longer duration of untreated psychosis and relapses are modestly related to worse outcome. Loss of brain volume is evident already at first episode and concerns loss of neuropil volume rather than cell loss. Progression of volume loss probably happens in a subgroup of patients with worse prognosis. In humans, antipsychotic treatment neither causes nor worsens volume loss, while there are some data in favor for a protective effect. Schizophrenia manifests 2 to 3 times higher mortality vs the general population, and treatment with antipsychotics includes a number of dangers, including tardive dyskinesia and metabolic syndrome; however, antipsychotic treatment is related to lower mortality, including cardiovascular mortality. In conclusion, the literature strongly supports the use of antipsychotics both during the acute and the maintenance phase without suggesting that it is wise to discontinue antipsychotics after a certain period of time. Antipsychotic treatment improves long-term outcomes and lowers overall and specific-cause mortality.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans-Jurgen Moeller
- Department of Psychiatry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Siegfried Kasper
- Universitätsklinik für Psychiatrie und Psychotherapie, Medizinische Universität Wien, Vienna, Austria
| | - Carol Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Rene Kahn
- Department of Psychiatry and Behavioral Health System, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rajiv Tandon
- Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Christoph U Correll
- Department of Psychiatry, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, New York, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Afzal Javed
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Pakistan Psychiatric Research Centre, Fountain House, Lahore, Pakistan
| |
Collapse
|
35
|
A Highly Sensitive Amperometric Glutamate Oxidase Microbiosensor Based on a Reduced Graphene Oxide/Prussian Blue Nanocube/Gold Nanoparticle Composite Film-Modified Pt Electrode. SENSORS 2020; 20:s20102924. [PMID: 32455706 PMCID: PMC7284453 DOI: 10.3390/s20102924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
A simple method that relies only on an electrochemical workstation has been investigated to fabricate a highly sensitive glutamate microbiosensor for potential neuroscience applications. In this study, in order to develop the highly sensitive glutamate electrode, a 100 µm platinum wire was modified by the electrochemical deposition of gold nanoparticles, Prussian blue nanocubes, and reduced graphene oxide sheets, which increased the electroactive surface area; and the chitosan layer, which provided a suitable environment to bond the glutamate oxidase. The optimization of the fabrication procedure and analytical conditions is described. The modified electrode was characterized using field emission scanning electron microscopy, impedance spectroscopy, and cyclic voltammetry. The results exhibited its excellent sensitivity for glutamate detection (LOD = 41.33 nM), adequate linearity (50 nM-40 µM), ascendant reproducibility (RSD = 4.44%), and prolonged stability (more than 30 repetitive potential sweeps, two-week lifespan). Because of the important role of glutamate in neurotransmission and brain function, this small-dimension, high-sensitivity glutamate electrode is a promising tool in neuroscience research.
Collapse
|
36
|
Sanna F, Bratzu J, Serra MP, Leo D, Quartu M, Boi M, Espinoza S, Gainetdinov RR, Melis MR, Argiolas A. Altered Sexual Behavior in Dopamine Transporter (DAT) Knockout Male Rats: A Behavioral, Neurochemical and Intracerebral Microdialysis Study. Front Behav Neurosci 2020; 14:58. [PMID: 32372926 PMCID: PMC7185326 DOI: 10.3389/fnbeh.2020.00058] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Central dopamine plays a key role in sexual behavior. Recently, a Dopamine Transporter knockout (DAT KO) rat has been developed, which displays several behavioral dysfunctions that have been related to increased extracellular dopamine levels and altered dopamine turnover secondary to DAT gene silencing. This prompted us to characterize the sexual behavior of these DAT KO rats and their heterozygote (HET) and wild type (WT) counterparts in classical copulatory tests with a sexually receptive female rat and to verify if and how the acquisition of sexual experience changes along five copulatory tests in these rat lines. Extracellular dopamine and glutamic acid concentrations were also measured in the dialysate obtained by intracerebral microdialysis from the nucleus accumbens (Acb) shell of DAT KO, HET and WT rats, which underwent five copulatory tests, when put in the presence of an inaccessible sexually receptive female rat and when copulation was allowed. Markers of neurotropism (BDNF, trkB), neural activation (Δ-FosB), functional (Arc and PSA-NCAM) and structural synaptic plasticity (synaptophysin, syntaxin-3, PSD-95) were also measured in the ventral tegmental area (VTA), Acb (shell and core) and medial prefrontal cortex (mPFC) by Western Blot assays. The results indicate that the sexual behavior of DAT KO vs. HET and WT rats shows peculiar differences, mainly due to a more rapid acquisition of stable sexual activity levels and to higher levels of sexual motivation and activity. These differences occurred with differential changes in dopamine and glutamic acid concentrations in Acb dialysates during sexual behavior, with lower increases of dopamine and glutamic acid in DAT KO vs. WT and HET rats, and a lower expression of the markers investigated, mainly in the mPFC, in DAT KO vs. WT rats. Together these findings confirm a key role of dopamine in sexual behavior and provide evidence that the permanently high levels of dopamine triggered by DAT gene silencing cause alterations in both the frontocortical glutamatergic neurons projecting to the Acb and VTA and in the mesolimbic dopaminergic neurons, leading to specific brain regional changes in trophic support and neuroplastic processes, which may have a role in the sexual behavior differences found among the three rat genotypes.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy
| | - Jessica Bratzu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, Section of Citomorphology, University of Cagliari, Cagliari, Italy
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Citomorphology, University of Cagliari, Cagliari, Italy
| | - Marianna Boi
- Department of Biomedical Sciences, Section of Citomorphology, University of Cagliari, Cagliari, Italy
| | - Stefano Espinoza
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy.,Institute of Neuroscience, National Research Council, Cagliari Section, Cagliari, Italy
| |
Collapse
|
37
|
Rahman T, Weickert CS, Harms L, Meehan C, Schall U, Todd J, Hodgson DM, Michie PT, Purves-Tyson T. Effect of Immune Activation during Early Gestation or Late Gestation on Inhibitory Markers in Adult Male Rats. Sci Rep 2020; 10:1982. [PMID: 32029751 PMCID: PMC7004984 DOI: 10.1038/s41598-020-58449-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
People with schizophrenia exhibit deficits in inhibitory neurons and cognition. The timing of maternal immune activation (MIA) may present distinct schizophrenia-like phenotypes in progeny. We investigated whether early gestation [gestational day (GD) 10] or late gestation (GD19) MIA, via viral mimetic polyI:C, produces deficits in inhibitory neuron indices (GAD1, PVALB, SST, SSTR2 mRNAs) within cortical, striatal, and hippocampal subregions of male adult rat offspring. In situ hybridisation revealed that polyI:C offspring had: (1) SST mRNA reductions in the cingulate cortex and nucleus accumbens shell, regardless of MIA timing; (2) SSTR2 mRNA reductions in the cortex and striatum of GD19, but not GD10, MIA; (3) no alterations in cortical or striatal GAD1 mRNA of polyI:C offspring, but an expected reduction of PVALB mRNA in the infralimbic cortex, and; (4) no alterations in inhibitory markers in hippocampus. Maternal IL-6 response negatively correlated with adult offspring SST mRNA in cortex and striatum, but not hippocampus. These results show lasting inhibitory-related deficits in cortex and striatum in adult offspring from MIA. SST downregulation in specific cortical and striatal subregions, with additional deficits in somatostatin-related signalling through SSTR2, may contribute to some of the adult behavioural changes resulting from MIA and its timing.
Collapse
Affiliation(s)
- Tasnim Rahman
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Lauren Harms
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Crystal Meehan
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Division of Psychology, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Ulrich Schall
- Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Juanita Todd
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Deborah M Hodgson
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Patricia T Michie
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Tertia Purves-Tyson
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia. .,Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
38
|
Venkataramaiah C. Modulations in the ATPases during ketamine-induced schizophrenia and regulatory effect of "3-(3, 4-dimethoxy phenyl) -1- (4-methoxyphenyl) prop-2-en-1-one": an in vivo and in silico studies. J Recept Signal Transduct Res 2020; 40:148-156. [PMID: 32009493 DOI: 10.1080/10799893.2020.1720242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Schizophrenia is a devastating illness and displays a wide range of psychotic symptoms. Accumulating evidence indicate impairment of bioenergetic pathways including energy storage and usage in the pathogenesis of schizophrenia. Although well-established synthetic drugs are being used for the management of schizophrenia, most of them have several adverse effects. Hence, natural products derived from medicinal plants represent a continuous major source for ethnomedicine-derived pharmaceuticals for different neurological disorders including schizophrenia. In the present study, we have investigated the neuroprotective effect of the novel bioactive compound i.e. "3-(3,4-dimethoxy phenyl) -1- (4-methoxyphenyl) prop-2-en-1-one" of Celastrus paniculata against ketamine-induced schizophrenia with particular reference to the activities of ATPase using in vivo and in silico methods. Ketamine-induced schizophrenia caused significant reduction in the activities of all three ATPases (Na+/K+, Ca2+ and Mg2+) in different regions of brain which reflects the decreased turnover of ATP, presumably due to the inhibition of oxidoreductase system and uncoupling of the same from the electron transport system. On par with the reference compound, clozapine, the activity levels of all three ATPases were restored to normal after pretreatment with the compound suggesting recovery of energy loss that was occurred during ketamine-induced schizophrenia. Besides, the compound has shown strong interaction and exhibited highest binding energies against all the three ATPases with a lowest inhibition constant value than the clozapine. The results of the present study clearly imply that the compound exhibit significant neuroprotective and antischizophrenic effect by modulating bioenergietic pathways that were altered during induced schizophrenia.
Collapse
Affiliation(s)
- Chintha Venkataramaiah
- Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
39
|
Tian L, You HZ, Wu H, Wei Y, Zheng M, He L, Liu JY, Guo SZ, Zhao Y, Zhou RL, Hu X. iTRAQ-based quantitative proteomic analysis provides insight for molecular mechanism of neuroticism. Clin Proteomics 2019; 16:38. [PMID: 31719821 PMCID: PMC6839193 DOI: 10.1186/s12014-019-9259-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background Neuroticism is a core personality trait and a major risk factor for several mental and physical diseases, particularly in females, who score higher on neuroticism than men, on average. However, a better understanding of the expression profiles of proteins in the circulating blood of different neurotic female populations may help elucidate the intrinsic mechanism of neurotic personality and aid prevention strategies on mental and physical diseases associated with neuroticism. Methods In our study, female subjects were screened for inclusion by the Eysenck Personality Questionnaire (EPQ), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI) scales and routine physical examination. Subjects who passed the examination and volunteered to participate were grouped by neuroticism using EPQ scores (0 and 1 = low neuroticism group; > 5 = high neuroticism group). Proteins in serum samples of the two neuroticism groups were identified using isobaric tags for relative and absolute quantification (iTRAQ) technology. Results A total of 410 proteins exhibited significant differences between high and low neuroticism, 236 proteins were significantly upregulated and 174 proteins were significantly downregulated. Combine the results of GO and KEGG enrichment analysis of differences proteins between high and low neuroticism with the PPI network, it could be observed that the Alpha-synuclein (SNCA), ATP7A protein (ATP7A), Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 (GNG2), cyclin-dependent kinase 6 (CDK6), myeloperoxidase (MPO), azurocidin (AZU1), Histone H2B type 1-H (HIST1H2BH), Integrin alpha-M (ITGAM) and Matrix metalloproteinase-9 (MMP9) might participate in the intrinsic mechanism of neuroticism by regulating response to catecholamine stimulus, catecholamine metabolic process, limbic system development and transcriptional misregulation in cancer pathway. Conclusions Our study revealed the characteristics of the neurotic personality proteome, which might be intrinsic mechanism of the neurotic population.
Collapse
Affiliation(s)
- Lei Tian
- 1School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Hong-Zhao You
- 2Department of Endocrinology, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037 China
| | - Hao Wu
- 1School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yu Wei
- 1School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Min Zheng
- 1School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Lei He
- 1School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Jin-Ying Liu
- 1School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Shu-Zhen Guo
- 1School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yan Zhao
- 1School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Ren-Lai Zhou
- 3School of Psychology, Beijing Normal University, Beijing, 100875 China
| | - Xingang Hu
- 4Beijing University of Chinese Medicine Third Hospital, Beijing, 100029 China
| |
Collapse
|
40
|
Trantham-Davidson H, Lavin A. Loss of dysbindin-1 affects GABAergic transmission in the PFC. Psychopharmacology (Berl) 2019; 236:3291-3300. [PMID: 31201475 PMCID: PMC6832803 DOI: 10.1007/s00213-019-05285-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
It has been shown that dystrobrevin-binding protein 1 gene that encodes the protein dysbindin-1 is associated with risk for cognitive deficits, and studies have shown decreases in glutamate and correlated decreases in dysbindin-1 protein in the prefrontal cortex (PFC) and hippocampus of post-mortem tissue from schizophrenia patients. The PFC and the hippocampus have been shown to play a fundamental role in cognition, and studies in dysbindin-1 null mice have shown alterations in NMDAR located in pyramidal neurons as well as perturbation in LTP and cognitive deficits. The balance between excitatory and inhibitory transmission is crucial for normal cognitive functions; however, there is a dearth of information regarding the effects of loss of dysbindin-1 in GABAergic transmission. Using in vitro whole-cell clamp recordings, Western blots, and immunohistochemistry, we report here that dysbindin-1-deficient mice exhibit a significant decrease in the frequency of sIPSCs and in the amplitude of mIPSCs and significant decreases in PV staining and protein level. These results suggest that loss of dysbindin-1 affects GABAergic transmission at pre- and postsynaptic level and decreases parvalbumin markers.
Collapse
Affiliation(s)
| | - A Lavin
- Department of Neuroscience, MUSC, Charleston, SC, 29425, USA.
| |
Collapse
|
41
|
Effects of ketamine on prepubertal Wistar rats: Implications on behavioral parameters for Childhood‐Onset Schizophrenia. Int J Dev Neurosci 2019; 79:49-53. [DOI: 10.1016/j.ijdevneu.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
|
42
|
Leung CCY, Gadelrab R, Ntephe CU, McGuire PK, Demjaha A. Clinical Course, Neurobiology and Therapeutic Approaches to Treatment Resistant Schizophrenia. Toward an Integrated View. Front Psychiatry 2019; 10:601. [PMID: 31551822 PMCID: PMC6735262 DOI: 10.3389/fpsyt.2019.00601] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Despite considerable psychotherapeutic advancement since the discovery of chlorpromazine, almost one third of patients with schizophrenia remain resistant to dopamine-blocking antipsychotics, and continue to be exposed to unwanted and often disabling side effects, but little if any clinical benefit. Even clozapine, the superior antipsychotic treatment, is ineffective in approximately half of these patients. Thus treatment resistant schizophrenia (TRS), continues to present a major therapeutic challenge to psychiatry. The main impediment to finding novel treatments is the lack of understanding of precise molecular mechanisms leading to TRS. Not only has the neurobiology been enigmatic for decades, but accurate and early detection of patients who are at risk of not responding to dopaminergic blockade remains elusive. Fortunately, recent work has started to unravel some of the neurobiological mechanisms underlying treatment resistance, providing long awaited answers, at least to some extent. Here we focus on the scientific advances in the field, from the clinical course of TRS to neurobiology and available treatment options. We specifically emphasize emerging evidence from TRS imaging and genetic literature that implicates dysregulation in several neurotransmitters, particularly dopamine and glutamate, and in addition genetic and neural alterations that concertedly may lead to the formation of TRS. Finally, we integrate available findings into a putative model of TRS, which may provide a platform for future studies in a bid to open the avenues for subsequent development of effective therapeutics.
Collapse
Affiliation(s)
- Cheryl Cheuk-Yan Leung
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Romayne Gadelrab
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | | | - Philip K. McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Arsime Demjaha
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
43
|
Tam FYK, Suen YN, Hui CLM, Woo HSY, Chang WC, Chan SKW, Lee EHM, Chen EYH. Spontaneous eye blink in patients with psychosis in perceptions of stimulus salience. Schizophr Res 2019; 209:275-277. [PMID: 31153671 DOI: 10.1016/j.schres.2019.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 11/25/2022]
Affiliation(s)
| | - Yi Nam Suen
- Department of Psychiatry, University of Hong Kong, Hong Kong, China.
| | | | | | - Wing Chung Chang
- Department of Psychiatry, University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | - Sherry Kit Wa Chan
- Department of Psychiatry, University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | | | - Eric Yu Hai Chen
- Department of Psychiatry, University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Wang X, Sun M, Gan L, Chen W. MK212, a 5-hydroxytryptamine 2C receptor agonist, inhibits conditioned avoidance responses independent of blocking endogenous dopamine release in rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:16-22. [PMID: 30145182 DOI: 10.1016/j.pnpbp.2018.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/31/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Although it is widely accepted that 5-hydroxytryptamine (5-HT) 2C receptor agonists produce antipsychotic effects by reducing endogenous dopamine release from presynaptic neurons, no direct evidence supports this. The aim of the present study was to investigate whether the antipsychotic effects induced by 5-HT2C receptor agonists are dependent on the inhibition of endogenous dopamine release. We developed a novel conditioned avoidance response paradigm to test this hypothesis. In this assay, rats in which dopamine was depleted by reserpine failed to show conditioned avoidance responses, and the acute administration of quinpirole reversed the disruption of avoidance responses induced by reserpine. This suggests that animals successfully showed conditioned avoidance responses independent of endogenous dopamine release under these experimental conditions. Our results revealed that MK212 (0.5 mg/kg) reduced avoidance responses triggered by quinpirole in dopamine-depleted rats. Therefore, 5-HT2C receptor agonists can inhibit conditioned avoidance responses independent of blocking endogenous dopamine release. Furthermore, the 5-HT2C receptor agonist, MK212, decreased the extracellular concentration of glutamate in the nucleus accumbens, indicating that this mechanism may be critical for the antipsychotic effects of 5-HT2C receptor agonists.
Collapse
Affiliation(s)
- Xiaqing Wang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Meng Sun
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Lu Gan
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Weihai Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
45
|
van den Brink WJ, Hartman R, van den Berg D, Flik G, Gonzalez‐Amoros B, Koopman N, Elassais‐Schaap J, van der Graaf PH, Hankemeier T, de Lange EC. Blood-Based Biomarkers of Quinpirole Pharmacology: Cluster-Based PK/PD and Metabolomics to Unravel the Underlying Dynamics in Rat Plasma and Brain. CPT Pharmacometrics Syst Pharmacol 2019; 8:107-117. [PMID: 30680960 PMCID: PMC6389346 DOI: 10.1002/psp4.12370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A key challenge in the development of central nervous system drugs is the availability of drug target specific blood-based biomarkers. As a new approach, we applied cluster-based pharmacokinetic/pharmacodynamic (PK/PD) analysis in brain extracellular fluid (brainECF ) and plasma simultaneously after 0, 0.17, and 0.86 mg/kg of the dopamine D2/3 agonist quinpirole (QP) in rats. We measured 76 biogenic amines in plasma and brainECF after single and 8-day administration, to be analyzed by cluster-based PK/PD analysis. Multiple concentration-effect relations were observed with potencies ranging from 0.001-383 nM. Many biomarker responses seem to distribute over the blood-brain barrier (BBB). Effects were observed for dopamine and glutamate signaling in brainECF , and branched-chain amino acid metabolism and immune signaling in plasma. Altogether, we showed for the first time how cluster-based PK/PD could describe a systems-response across plasma and brain, thereby identifying potential blood-based biomarkers. This concept is envisioned to provide an important connection between drug discovery and early drug development.
Collapse
Affiliation(s)
- Willem J. van den Brink
- Division of Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Robin Hartman
- Division of Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Dirk‐Jan van den Berg
- Division of Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | | | - Belén Gonzalez‐Amoros
- Division of Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Nanda Koopman
- Division of Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Jeroen Elassais‐Schaap
- Division of Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Piet Hein van der Graaf
- Division of Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
- Certara QSPCanterbury Innovation HouseCanterburyUK
| | - Thomas Hankemeier
- Division of Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Elizabeth C.M. de Lange
- Division of Systems Biomedicine and PharmacologyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
46
|
Gréa H, Bouchet D, Rogemond V, Hamdani N, Le Guen E, Tamouza R, Darrau E, Passerieux C, Honnorat J, Leboyer M, Groc L. Human Autoantibodies Against N-Methyl-D-Aspartate Receptor Modestly Alter Dopamine D1 Receptor Surface Dynamics. Front Psychiatry 2019; 10:670. [PMID: 31572244 PMCID: PMC6754069 DOI: 10.3389/fpsyt.2019.00670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/19/2019] [Indexed: 01/03/2023] Open
Abstract
Circulating autoantibodies directed against extracellular domains of the glutamatergic N-methyl-D-aspartate receptors (NMDAR-Ab) elicit psychotic symptoms in humans and behavioral deficits in animal models. Recent advances suggest that NMDAR-Ab exert their pathogenic action by altering the trafficking of NMDAR, which results in a synaptic NMDAR hypofunction consistent with the consensual glutamatergic hypothesis of psychotic disorders. Yet, dysfunction in the dopaminergic signaling is also proposed to be at the core of psychotic disorders. Since NMDAR and dopamine D1 receptors (D1R) form membrane signaling complexes, we investigated whether NMDAR-Ab purified from patients with NMDAR-encephalitis or schizophrenia impaired D1R surface dynamics. As previous data demonstrated that NMDAR-Ab, at least from NMDAR-encephalitis patients, mainly bind to hippocampal NMDAR, we used single nanoparticle imaging to track D1R specifically at the surface of hippocampal neurons that were exposed to either purified G type immunoglobulins (IgGs) from NMDAR-Ab seropositive patients suffering from NMDAR-encephalitis or schizophrenia, or control IgGs from healthy NMDAR-Ab seropositive or seronegative subjects. We report that overnight incubation with NMDAR-Ab from patients, but not from healthy carriers, decreased the surface dynamics of D1R compared with NMDAR-Ab seronegative IgGs. This decrease was abolished, and even reversed, in D1R mutant that cannot physically interact with NMDAR. Overall, our data indicate that NMDAR-Ab from patients with psychotic symptoms alter the trafficking of D1R, likely through the surface crosstalk between NMDAR and D1R.
Collapse
Affiliation(s)
- Hélène Gréa
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Delphine Bouchet
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Véronique Rogemond
- NeuroMyoGene Institute, INSERM U1217/CNRS UMR 5310, Lyon, France.,French Reference Center of Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France.,Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Nora Hamdani
- Université Paris Est Créteil, Psychiatry Department, Groupe Hospitalier Universitaire Henri Mondor, AP-HP, DHU PePSY, Créteil, France.,Université Paris Est Créteil, Life Science and Health Department, INSERM IMRB U955, Créteil, France.,INSERM, IMRB U955, Translational Psychiatry laboratory, Créteil, France.,FondaMental foundation, Créteil, France
| | - Emmanuel Le Guen
- Université Paris Est Créteil, Psychiatry Department, Groupe Hospitalier Universitaire Henri Mondor, AP-HP, DHU PePSY, Créteil, France.,Université Paris Est Créteil, Life Science and Health Department, INSERM IMRB U955, Créteil, France.,INSERM, IMRB U955, Translational Psychiatry laboratory, Créteil, France.,FondaMental foundation, Créteil, France
| | - Ryad Tamouza
- Université Paris Est Créteil, Psychiatry Department, Groupe Hospitalier Universitaire Henri Mondor, AP-HP, DHU PePSY, Créteil, France.,Université Paris Est Créteil, Life Science and Health Department, INSERM IMRB U955, Créteil, France.,INSERM, IMRB U955, Translational Psychiatry laboratory, Créteil, France.,FondaMental foundation, Créteil, France
| | - Estelle Darrau
- Université Paris Est Créteil, Life Science and Health Department, INSERM IMRB U955, Créteil, France
| | - Christine Passerieux
- FondaMental foundation, Créteil, France.,Université de Versaillles Saint Quentin en Yvelines, HandiRESP laboratory (EA4047), Health Science Department Simone Veil, Montigny le Bretonneux, France.,Versailles Hospital, Department of Adult Psychiatry, Le Chesnay, France
| | - Jérôme Honnorat
- NeuroMyoGene Institute, INSERM U1217/CNRS UMR 5310, Lyon, France.,French Reference Center of Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France.,Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Marion Leboyer
- Université Paris Est Créteil, Psychiatry Department, Groupe Hospitalier Universitaire Henri Mondor, AP-HP, DHU PePSY, Créteil, France.,Université Paris Est Créteil, Life Science and Health Department, INSERM IMRB U955, Créteil, France.,INSERM, IMRB U955, Translational Psychiatry laboratory, Créteil, France.,FondaMental foundation, Créteil, France
| | - Laurent Groc
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,CNRS, IINS UMR 5297, Bordeaux, France
| |
Collapse
|
47
|
Tahir RA, Wu H, Javed N, Khalique A, Khan SAF, Mir A, Ahmed MS, Barreto GE, Qing H, Ashraf GM, Sehgal SA. Pharmacoinformatics and molecular docking reveal potential drug candidates against Schizophrenia to target TAAR6. J Cell Physiol 2018; 234:13263-13276. [PMID: 30569503 DOI: 10.1002/jcp.27999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 11/10/2022]
Abstract
Schizophrenia (SZ) is a complex disabling disorder that leads to the mental disability and afflicts 1% of the world's total population and placed in top ten medical disorders. In current work, bioinformatics analyses were carried out on Trace amine (TA)-associated receptor 6 (TAAR6) to recognize the potential drugs and compounds against SZ. Comparative modeling and threading-based approaches were utilized for the structure prediction of TAAR6. Fifty-nine predicted structures were evaluated by various model assessment techniques and final model having only eight amino acids in the outlier region and 98.5% overall quality factor was chosen for further pharmacoinformatics and molecular docking analyses. From an extensive literature review, 11 Food and Drug Administration (FDA) approved drugs were analyzed by computational techniques and Aripiprazole was found as the most effective drug against SZ by targeting TAAR6. Here, we report five novel molecules which exhibited the highest binding affinity, effective drug properties, and interestingly, observed better results than the approved selected drugs against SZ by targeting TAAR6. The docking analyses revealed that Arg-92, Trp-98, Gln-191, Thr-192, Ala-290, Cys-291, Tyr-293, and Glu-294 residues were observed as critical interacting residues in receptor-ligand interactions. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, Lipinski rule of five, highest binding affinity coupled with virtual screening (VS), and pharmacophore modeling approach illustrated that aripiprazole (-8.6 kcal/mol) and TAAR6_0094 (-9.3 kcal/mol) are potential inhibitors for targeting TAAR6. It is suggested that schizophrenic patients have to use Aripiprazole for the medication of SZ by targeting TAAR6 and develop effective therapies by utilizing scrutinized novel compound.
Collapse
Affiliation(s)
- Rana Adnan Tahir
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China.,Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan
| | - Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Naima Javed
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan
| | - Anila Khalique
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | | | - Asif Mir
- Department of Bioinformatics and Biotechnology, International Islamic University Islamabad, Islamabad, Pakistan
| | - Muhammad Saad Ahmed
- Department of Biological Engineering/Institute of Biotransformation and Synthetic Biosystem, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheikh Arslan Sehgal
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Characterization of Brain Dysfunction Induced by Bacterial Lipopeptides That Alter Neuronal Activity and Network in Rodent Brains. J Neurosci 2018; 38:10672-10691. [PMID: 30381406 DOI: 10.1523/jneurosci.0825-17.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/24/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
The immunopathological states of the brain induced by bacterial lipoproteins have been well characterized by using biochemical and histological assays. However, these studies have limitations in determining functional states of damaged brains involving aberrant synaptic activity and network, which makes it difficult to diagnose brain disorders during bacterial infection. To address this, we investigated the effect of Pam3CSK4 (PAM), a synthetic bacterial lipopeptide, on synaptic dysfunction of female mice brains and cultured neurons in parallel. Our functional brain imaging using PET with [18F]fluorodeoxyglucose and [18F] flumazenil revealed that the brain dysfunction induced by PAM is closely aligned to disruption of neurotransmitter-related neuronal activity and functional correlation in the region of the limbic system rather than to decrease of metabolic activity of neurons in the injection area. This finding was verified by in vivo tissue experiments that analyzed synaptic and dendritic alterations in the regions where PET imaging showed abnormal neuronal activity and network. Recording of synaptic activity also revealed that PAM reorganized synaptic distribution and decreased synaptic plasticity in hippocampus. Further study using in vitro neuron cultures demonstrated that PAM decreased the number of presynapses and the frequency of miniature EPSCs, which suggests PAM disrupts neuronal function by damaging presynapses exclusively. We also showed that PAM caused aggregation of synapses around dendrites, which may have caused no significant change in expression level of synaptic proteins, whereas synaptic number and function were impaired by PAM. Our findings could provide a useful guide for diagnosis and treatment of brain disorders specific to bacterial infection.SIGNIFICANCE STATEMENT It is challenging to diagnose brain disorders caused by bacterial infection because neural damage induced by bacterial products involves nonspecific neurological symptoms, which is rarely detected by laboratory tests with low spatiotemporal resolution. To better understand brain pathology, it is essential to detect functional abnormalities of brain over time. To this end, we investigated characteristic patterns of altered neuronal integrity and functional correlation between various regions in mice brains injected with bacterial lipopeptides using PET with a goal to apply new findings to diagnosis of brain disorder specific to bacterial infection. In addition, we analyzed altered synaptic density and function using both in vivo and in vitro experimental models to understand how bacterial lipopeptides impair brain function and network.
Collapse
|
49
|
Wood CM, Wafford KA, McCarthy AP, Hewes N, Shanks E, Lodge D, Robinson ESJ. Investigating the role of mGluR2 versus mGluR3 in antipsychotic-like effects, sleep-wake architecture and network oscillatory activity using novel Han Wistar rats lacking mGluR2 expression. Neuropharmacology 2018; 140:246-259. [PMID: 30005976 PMCID: PMC6137075 DOI: 10.1016/j.neuropharm.2018.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/28/2018] [Accepted: 07/09/2018] [Indexed: 01/23/2023]
Abstract
Group II metabotropic glutamate receptors (mGluR2 and mGluR3) are implicated in a number of psychiatric disorders. They also control sleep-wake architecture and may offer novel therapeutic targets. However, the roles of the mGluR2 versus mGluR3 subtypes are not well understood. Here, we have taken advantage of the recently described mutant strain of Han Wistar rats, which do not express mGluR2 receptors, to investigate behavioural, sleep and EEG responses to mGluR2/3 ligands. The mGluR2/3 agonist, LY354740 (10 mg/kg), reversed amphetamine- and phencyclidine-induced locomotion and rearing behaviours in control Wistar but not in mGluR2 lacking Han Wistar rats. In control Wistar but not in Han Wistar rats the mGluR2/3 agonist LY379268 (3 & 10 mg/kg) induced REM sleep suppression with dose-dependent effects on wake and NREM sleep. By contrast, the mGluR2/3 antagonist LY3020371 (3 & 10 mg/kg) had wake-promoting effects in both rat strains, albeit smaller in the mGluR2-lacking Han Wistar rats, indicating both mGluR2 and mGluR3-mediated effects on wakefulness. LY3020371 enhanced wake cortical oscillations in the theta (4–9 Hz) and gamma (30–80 Hz) range in both Wistar and Han Wistar rat strains, whereas LY379268 reduced theta and gamma oscillations in control Wistar rats, with minimal effects in Han Wistar rats. Together these studies illustrate the significant contribution of mGluR2 to the antipsychotic-like, sleep and EEG effects of drugs acting on group II mGluRs. However, we also provide evidence of a role for mGluR3 activity in the control of sleep and wake cortical theta and gamma oscillations.
Collapse
Affiliation(s)
- Christian M Wood
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | - Keith A Wafford
- Neuroscience Division, Eli Lilly & Co. Ltd., Windlesham, GU20 6PH, United Kingdom
| | - Andrew P McCarthy
- Neuroscience Division, Eli Lilly & Co. Ltd., Windlesham, GU20 6PH, United Kingdom
| | - Nicola Hewes
- Neuroscience Division, Eli Lilly & Co. Ltd., Windlesham, GU20 6PH, United Kingdom
| | - Elaine Shanks
- Neuroscience Division, Eli Lilly & Co. Ltd., Windlesham, GU20 6PH, United Kingdom
| | - David Lodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| |
Collapse
|
50
|
Wesołowska A, Partyka A, Jastrzębska-Więsek M, Kołaczkowski M. The preclinical discovery and development of cariprazine for the treatment of schizophrenia. Expert Opin Drug Discov 2018; 13:779-790. [PMID: 29722587 DOI: 10.1080/17460441.2018.1471057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cariprazine is approved in the United States and Europe for the treatment of manic or mixed episodes associated with bipolar I disorder and for the treatment of schizophrenia in adult patients. It is typically administered orally once a day (a dose range 1.5 - 6 mg/day), does require titration, and may be given with or without food. It has a half-life of 2 - 4 days with an active metabolite that has a terminal half-life of 2 - 3 weeks. Areas covered: This review article focuses on the preclinical discovery of cariprazine providing details regarding its pharmacological, behavioral, and neurochemical mechanisms and its contribution to clinical therapeutic benefits. This article is based on the available literature with respect to the preclinical and clinical findings and product labels of cariprazine. Expert opinion: Cariprazine shows highest affinity toward D3 receptors, followed by D2, 5-HT2B, and 5-HT1A receptors. It also shows moderate affinity toward σ1, 5-HT2A, and histamine H1 receptors. Long-term administration of cariprazine altered the abundance of dopamine, serotonin, and glutamate receptor subtypes in different brain regions. All these mechanisms of cariprazine may contribute toward its unique preclinical profile and its clinically observed benefits in the treatment of schizophrenia, bipolar mania, and possibly other psychiatric disorders.
Collapse
Affiliation(s)
- Anna Wesołowska
- a Department of Clinical Pharmacy , Jagiellonian University Medical College , Kraków , Poland
| | - Anna Partyka
- a Department of Clinical Pharmacy , Jagiellonian University Medical College , Kraków , Poland
| | | | - Marcin Kołaczkowski
- b Department of Pharmaceutical Chemistry , Jagiellonian University Medical College , Kraków , Poland
| |
Collapse
|