1
|
Su S, Wahl A, Rugis J, Suresh V, Yule DI, Sneyd J. A mathematical model of ENaC and Slc26a6 regulation by CFTR in salivary gland ducts. Am J Physiol Gastrointest Liver Physiol 2024; 326:G555-G566. [PMID: 38349781 PMCID: PMC11551000 DOI: 10.1152/ajpgi.00168.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Cystic fibrosis (CF) is a genetic disease caused by the mutations of cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis transmembrane conductance regulator gene. Cftr is a critical ion channel expressed in the apical membrane of mouse salivary gland striated duct cells. Although Cftr is primarily a Cl- channel, its knockout leads to higher salivary Cl- and Na+ concentrations and lower pH. Mouse experiments show that the activation of Cftr upregulates epithelial Na+ channel (ENaC) protein expression level and Slc26a6 (a 1Cl-:2[Formula: see text] exchanger of the solute carrier family) activity. Experimentally, it is difficult to predict how much the coregulation effects of CFTR contribute to the abnormal Na+, Cl-, and [Formula: see text] concentrations and pH in CF saliva. To address this question, we construct a wild-type mouse salivary gland model and simulate CFTR knockout by altering the expression levels of CFTR, ENaC, and Slc26a6. By reproducing the in vivo and ex vivo final saliva measurements from wild-type and CFTR knockout animals, we obtain computational evidence that ENaC and Slc26a6 activities are downregulated in CFTR knockout in salivary glands.NEW & NOTEWORTHY This paper describes a salivary gland mathematical model simulating the ion exchange between saliva and the salivary gland duct epithelium. The novelty lies in the implementation of CFTR regulating ENaC and Slc26a6 in a CFTR knockout gland. By reproducing the experimental saliva measurements in wild-type and CFTR knockout glands, the model shows that CFTR regulates ENaC and Slc26a6 anion exchanger in salivary glands. The method could be used to understand the various cystic fibrosis phenotypes.
Collapse
Affiliation(s)
- Shan Su
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Amanda Wahl
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, United States
| | - John Rugis
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Vinod Suresh
- Auckland Biomedical Engineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, United States
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Vitzthum H, Meyer-Schwesinger C, Ehmke H. Novel functions of the anion exchanger AE4 (SLC4A9). Pflugers Arch 2024; 476:555-564. [PMID: 38195948 PMCID: PMC11006790 DOI: 10.1007/s00424-023-02899-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
The kidney plays a crucial role in acid-base homeostasis. In the distal nephron, α-intercalated cells contribute to urinary acid (H+) secretion and β-intercalated cells accomplish urinary base (HCO3-) secretion. β-intercalated cells regulate the acid base status through modulation of the apical Cl-/HCO3- exchanger pendrin (SLC26A4) activity. In this review, we summarize and discuss our current knowledge of the physiological role of the renal transporter AE4 (SLC4A9). The AE4, as cation-dependent Cl-/HCO3- exchanger, is exclusively expressed in the basolateral membrane of β-intercalated cells and is essential for the sensing of metabolic acid-base disturbances in mice, but not for renal sodium reabsorption and plasma volume control. Potential intracellular signaling pathways are discussed that might link basolateral acid-base sensing through the AE4 to apical pendrin activity.
Collapse
Affiliation(s)
- Helga Vitzthum
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Heimo Ehmke
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
3
|
Villaca CBP, Mastracci TL. Pancreatic Crosstalk in the Disease Setting: Understanding the Impact of Exocrine Disease on Endocrine Function. Compr Physiol 2024; 14:5371-5387. [PMID: 39109973 PMCID: PMC11425433 DOI: 10.1002/cphy.c230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The exocrine and endocrine are functionally distinct compartments of the pancreas that have traditionally been studied as separate entities. However, studies of embryonic development, adult physiology, and disease pathogenesis suggest there may be critical communication between exocrine and endocrine cells. In fact, the incidence of the endocrine disease diabetes secondary to exocrine disease/dysfunction ranges from 25% to 80%, depending on the type and severity of the exocrine pathology. Therefore, it is necessary to investigate how exocrine-endocrine "crosstalk" may impact pancreatic function. In this article, we discuss common exocrine diseases, including cystic fibrosis, acute, hereditary, and chronic pancreatitis, and the impact of these exocrine diseases on endocrine function. Additionally, we review how obesity and fatty pancreas influence exocrine function and the impact on cellular communication between the exocrine and endocrine compartments. Interestingly, in all pathologies, there is evidence that signals from the exocrine disease contribute to endocrine dysfunction and the progression to diabetes. Continued research efforts to identify the mechanisms that underlie the crosstalk between various cell types in the pancreas are critical to understanding normal pancreatic physiology as well as disease states. © 2024 American Physiological Society. Compr Physiol 14:5371-5387, 2024.
Collapse
Affiliation(s)
| | - Teresa L Mastracci
- Department of Biology, Indiana University Indianapolis, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Angyal D, Groeneweg TA, Leung A, Desain M, Dulla K, de Jonge HR, Bijvelds MJC. Pro-inflammatory cytokines stimulate CFTR-dependent anion secretion in pancreatic ductal epithelium. Cell Mol Biol Lett 2024; 29:18. [PMID: 38262945 PMCID: PMC10807165 DOI: 10.1186/s11658-024-00537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Loss of CFTR-dependent anion and fluid secretion in the ducts of the exocrine pancreas is thought to contribute to the development of pancreatitis, but little is known about the impact of inflammation on ductal CFTR function. Here we used adult stem cell-derived cell cultures (organoids) obtained from porcine pancreas to evaluate the effects of pro-inflammatory cytokines on CFTR function. METHODS Organoids were cultured from porcine pancreas and used to prepare ductal epithelial monolayers. Monolayers were characterized by immunocytochemistry. Epithelial bicarbonate and chloride secretion, and the effect of IL-1β, IL-6, IFN-γ, and TNF-α on CFTR function was assessed by electrophysiology. RESULTS Immunolocalization of ductal markers, including CFTR, keratin 7, and zonula occludens 1, demonstrated that organoid-derived cells formed a highly polarized epithelium. Stimulation by secretin or VIP triggered CFTR-dependent anion secretion across epithelial monolayers, whereas purinergic receptor stimulation by UTP, elicited CFTR-independent anion secretion. Most of the anion secretory response was attributable to bicarbonate transport. The combination of IL-1β, IL-6, IFN-γ, and TNF-α markedly enhanced CFTR expression and anion secretion across ductal epithelial monolayers, whereas these cytokines had little effect when tested separately. Although TNF-α triggered apoptotic signaling, epithelial barrier function was not significantly affected by cytokine exposure. CONCLUSIONS Pro-inflammatory cytokines enhance CFTR-dependent anion secretion across pancreatic ductal epithelium. We propose that up-regulation of CFTR in the early stages of the inflammatory response, may serve to promote the removal of pathogenic stimuli from the ductal tree, and limit tissue injury.
Collapse
Affiliation(s)
- Dora Angyal
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Tessa A Groeneweg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Anny Leung
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Max Desain
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Kalyan Dulla
- Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Strasse 173, 55216, Ingelheim Am Rhein, Germany
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Gu C, Liu X, Luo L, Chen J, Zhou X, Chen G, Huang X, Yu L, Chen Q, Yang Y, Yang Y. Metal-DNA Nanocomplexes Enhance Chemo-dynamic Therapy by Inhibiting Autophagy-Mediated Resistance. Angew Chem Int Ed Engl 2023; 62:e202307020. [PMID: 37920913 DOI: 10.1002/anie.202307020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Chemo-dynamic therapy (CDT) based on the Fenton or Fenton-like reaction has emerged as a promising approach for cancer treatment. However, autophagy-mediated self-protection mechanisms of cancer cells pose a significant challenge to the efficacy of CDT. Herein, we developed metal-DNA nanocomplexes (DACs-Mn) to enhance CDT via DNAzyme inhibition of autophagy. Specifically, Mn-based catalyst in DACs-Mn was used to generate highly hydroxyl radicals (⋅OH) that kill cancer cells, while the ATG5 DNAzyme incorporated into DACs-Mn inhibited the expression of autophagy-associated proteins, thereby improving the efficacy of CDT. By disrupting the self-protective pathway of cells under severe oxidative stress, this novel approach of DACs-Mn was found to synergistically enhance CDT in both in vitro and in vivo models, effectively amplifying tumor-specific oxidative damage. Notably, the Metal-DNA nanocomplexes can also induce immunogenic cell death (ICD), thereby inhibiting tumor metastasis. Specifically, in a bilateral tumor model in mice, the combined approach of CDT and autophagy inhibition followed by immune checkpoint blockade therapy shown significant potential as a novel and effective treatment modality for primary and metastatic tumors.
Collapse
Affiliation(s)
- Chao Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Lei Luo
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xiao Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Ganghui Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xin Huang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Lu Yu
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Qian Chen
- Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou, 215123, P. R. China) # Chao Gu and Xueliang Liu contributed equally to this work
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| |
Collapse
|
6
|
Dong J, Ruan W, Duan X. Molecular-based phenotype variations in amelogenesis imperfecta. Oral Dis 2023; 29:2334-2365. [PMID: 37154292 DOI: 10.1111/odi.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/03/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Amelogenesis imperfecta (AI) is one of the typical dental genetic diseases in human. It can occur isolatedly or as part of a syndrome. Previous reports have mainly clarified the types and mechanisms of nonsyndromic AI. This review aimed to compare the phenotypic differences among the hereditary enamel defects with or without syndromes and their underlying pathogenic genes. We searched the articles in PubMed with different strategies or keywords including but not limited to amelogenesis imperfecta, enamel defects, hypoplastic/hypomaturation/hypocalcified, syndrome, or specific syndrome name. The articles with detailed clinical information about the enamel and other phenotypes and clear genetic background were used for the analysis. We totally summarized and compared enamel phenotypes of 18 nonsyndromic AI with 17 causative genes and 19 syndromic AI with 26 causative genes. According to the clinical features, radiographic or ultrastructural changes in enamel, the enamel defects were basically divided into hypoplastic and hypomineralized (hypomaturated and hypocalcified) and presented a higher heterogeneity which were closely related to the involved pathogenic genes, types of mutation, hereditary pattern, X chromosome inactivation, incomplete penetrance, and other mechanisms.The gene-specific enamel phenotypes could be an important indicator for diagnosing nonsyndromic and syndromic AI.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenyan Ruan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, National Clinical Research Center for Oral Disease, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Di Molfetta D, Cannone S, Greco MR, Caroppo R, Piccapane F, Carvalho TMA, Altamura C, Saltarella I, Tavares Valente D, Desaphy JF, Reshkin SJ, Cardone RA. ECM Composition Differentially Regulates Intracellular and Extracellular pH in Normal and Cancer Pancreatic Duct Epithelial Cells. Int J Mol Sci 2023; 24:10632. [PMID: 37445810 DOI: 10.3390/ijms241310632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Intracellular pH (pHi) regulation is a challenge for the exocrine pancreas, where the luminal secretion of bicarbonate-rich fluid is accompanied by interstitial flows of acid. This acid-base transport requires a plethora of ion transporters, including bicarbonate transporters and the Na+/H+ exchanger isoform 1 (NHE1), which are dysregulated in Pancreatic Ductal Adenocarcinoma (PDAC). PDAC progression is favored by a Collagen-I rich extracellular matrix (ECM) which exacerbates the physiological interstitial acidosis. In organotypic cultures of normal human pancreatic cells (HPDE), parenchymal cancer cells (CPCs) and cancer stem cells (CSCs) growing on matrices reproducing ECM changes during progression, we studied resting pHi, the pHi response to fluxes of NaHCO3 and acidosis and the role of NHE1 in pHi regulation. Our findings show that: (i) on the physiological ECM, HPDE cells have the most alkaline pHi, followed by CSCs and CPCs, while a Collagen I-rich ECM reverses the acid-base balance in cancer cells compared to normal cells; (ii) both resting pHi and pHi recovery from an acid load are reduced by extracellular NaHCO3, especially in HPDE cells on a normal ECM; (iii) cancer cell NHE1 activity is less affected by NaHCO3. We conclude that ECM composition and the fluctuations of pHe cooperate to predispose pHi homeostasis towards the presence of NaHCO3 gradients similar to that expected in the tumor.
Collapse
Affiliation(s)
- Daria Di Molfetta
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Stefania Cannone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Rosa Caroppo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesca Piccapane
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Diana Tavares Valente
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jean Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
8
|
Xu W, Qadir MMF, Nasteska D, Mota de Sa P, Gorvin CM, Blandino-Rosano M, Evans CR, Ho T, Potapenko E, Veluthakal R, Ashford FB, Bitsi S, Fan J, Bhondeley M, Song K, Sure VN, Sakamuri SSVP, Schiffer L, Beatty W, Wyatt R, Frigo DE, Liu X, Katakam PV, Arlt W, Buck J, Levin LR, Hu T, Kolls J, Burant CF, Tomas A, Merrins MJ, Thurmond DC, Bernal-Mizrachi E, Hodson DJ, Mauvais-Jarvis F. Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells. Cell Rep 2023; 42:112529. [PMID: 37200193 PMCID: PMC10312392 DOI: 10.1016/j.celrep.2023.112529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/20/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male β cells.
Collapse
Affiliation(s)
- Weiwei Xu
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - M M Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Paula Mota de Sa
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Stavroula Bitsi
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Manika Bhondeley
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lina Schiffer
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Wandy Beatty
- Molecular Imaging Facility, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael Wyatt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Daniel E Frigo
- Departments of Cancer Systems Imaging and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaowen Liu
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK; National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TH, UK
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Tomas
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
9
|
Queen A, Bhutto HN, Yousuf M, Syed MA, Hassan MI. Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Semin Cancer Biol 2022; 86:899-913. [PMID: 34998944 DOI: 10.1016/j.semcancer.2022.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
The primary physiological process of respiration produces carbon dioxide (CO2) that reacts with water molecules which subsequently liberates bicarbonate (HCO-3) and protons. Carbonic anhydrases (CAs) are the primary catalyst involved in this conversion. More than 16 isoforms of human CAs show organ or subcellular specific activity. Dysregulation of each CA is associated with multiple pathologies. Out of these members, the overexpression of membrane-bound carbonic anhydrase IX (CAIX) is associated explicitly with hypoxic tumors or various solid cancers. CAIX helps tumors deal with higher CO2 by sequestering it with bicarbonate ions and helping cancer cells to grow in a comparatively hypoxic or acidic environment, thus acting as a pH adaptation switch. CAIX-mediated adaptations in cancer cells include angiogenesis, metabolic alterations, tumor heterogeneity, drug resistance, and regulation of cancer-specific chemokines. This review comprehensively collects and describe the cancer-specific expression mechanism and role of CAIX in cancer growth, progression, heterogeneity, and its structural insight to develop future combinatorial targeted cancer therapies.
Collapse
Affiliation(s)
- Aarfa Queen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Humaira Naaz Bhutto
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
10
|
Fu H, Sun H, Kong H, Lou B, Chen H, Zhou Y, Huang C, Qin L, Shan Y, Dai S. Discoveries in Pancreatic Physiology and Disease Biology Using Single-Cell RNA Sequencing. Front Cell Dev Biol 2022; 9:732776. [PMID: 35141228 PMCID: PMC8819087 DOI: 10.3389/fcell.2021.732776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transcriptome analysis is used to study gene expression in human tissues. It can promote the discovery of new therapeutic targets for related diseases by characterizing the endocrine function of pancreatic physiology and pathology, as well as the gene expression of pancreatic tumors. Compared to whole-tissue RNA sequencing, single-cell RNA sequencing (scRNA-seq) can detect transcriptional activity within a single cell. The scRNA-seq had an invaluable contribution to discovering previously unknown cell subtypes in normal and diseased pancreases, studying the functional role of rare islet cells, and studying various types of cells in diabetes as well as cancer. Here, we review the recent in vitro and in vivo advances in understanding the pancreatic physiology and pathology associated with single-cell sequencing technology, which may provide new insights into treatment strategy optimization for diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Haotian Fu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bin Lou
- Department of Surgery, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Hao Chen
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilin Zhou
- Department of Biology, Boston University, Boston, MA, United States
| | - Chaohao Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| | - Yunfeng Shan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| | - Shengjie Dai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| |
Collapse
|
11
|
Hopson P, Smadi Y, Mehta V, Patel S, Mehta D, Horvath K. Assessment of exocrine pancreatic function in children and adolescents with direct and indirect testing. Front Pediatr 2022; 10:908542. [PMID: 36452348 PMCID: PMC9704773 DOI: 10.3389/fped.2022.908542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
The exocrine pancreas plays an important role in digestion. Understanding of the physiology and regulation of exocrine function provides insight into disease processes and basis of functional testing. Specifically, exocrine pancreatic insufficiency (EPI) can cause maldigestion and thus a proper assessment of exocrine pancreatic function is important. There are indirect and direct methods for evaluating pancreatic function. Indirect methods are varied and include stool, serum, urine, and breath tests. Fecal elastase is a commonly used indirect test today. Direct methods involve stimulated release of pancreatic fluid that is collected from the duodenum and analyzed for enzyme activity. The most used direct test today is the endoscopic pancreatic function test. Indirect pancreatic function testing is limited in identifying cases of mild to moderate EPI, and as such in these cases, direct testing has higher sensitivity and specificity in diagnosing EPI. This review provides a comprehensive guide to indirect and direct pancreatic function tests as well as an in-depth look at exocrine pancreatic function including anatomy, physiology, and regulatory mechanisms.
Collapse
Affiliation(s)
- Puanani Hopson
- Department of Children Center, Pediatric and Adolescent Medicine, Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Yamen Smadi
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Vijay Mehta
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Samit Patel
- Pediatric Gastroenterology & Nutrition of Tampa Bay, Tampa Bay, FL, United States
| | - Devendra Mehta
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Karoly Horvath
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| |
Collapse
|
12
|
Angyal D, Bijvelds MJC, Bruno MJ, Peppelenbosch MP, de Jonge HR. Bicarbonate Transport in Cystic Fibrosis and Pancreatitis. Cells 2021; 11:cells11010054. [PMID: 35011616 PMCID: PMC8750324 DOI: 10.3390/cells11010054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
CFTR, the cystic fibrosis (CF) gene-encoded epithelial anion channel, has a prominent role in driving chloride, bicarbonate and fluid secretion in the ductal cells of the exocrine pancreas. Whereas severe mutations in CFTR cause fibrosis of the pancreas in utero, CFTR mutants with residual function, or CFTR variants with a normal chloride but defective bicarbonate permeability (CFTRBD), are associated with an enhanced risk of pancreatitis. Recent studies indicate that CFTR function is not only compromised in genetic but also in selected patients with an acquired form of pancreatitis induced by alcohol, bile salts or smoking. In this review, we summarize recent insights into the mechanism and regulation of CFTR-mediated and modulated bicarbonate secretion in the pancreatic duct, including the role of the osmotic stress/chloride sensor WNK1 and the scaffolding protein IRBIT, and current knowledge about the role of CFTR in genetic and acquired forms of pancreatitis. Furthermore, we discuss the perspectives for CFTR modulator therapy in the treatment of exocrine pancreatic insufficiency and pancreatitis and introduce pancreatic organoids as a promising model system to study CFTR function in the human pancreas, its role in the pathology of pancreatitis and its sensitivity to CFTR modulators on a personalized basis.
Collapse
|
13
|
Park JH, Park J, Park Y, Kang JM, Ryu DS, Kyung J, Jang JK, Hwang C, Shim IK, Song HY, Yang SG, Kim SC. Acetazolamide-eluting biodegradable tubular stent prevents pancreaticojejunal anastomotic leakage. J Control Release 2021; 335:650-659. [PMID: 34118337 DOI: 10.1016/j.jconrel.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Postoperative pancreatic fistula at the early stage can lead to auto-digestion, which may delay the recovery of the pancreaticojejunal (PJ) anastomosis. The efficacy and safety of an acetazolamide-eluting biodegradable tubular stent (AZ-BTS) for the prevention of self-digestion and intra-abdominal inflammatory diseases caused by pancreatic juice leakage after PJ anastomosis in a porcine model were investigated. The AZ-BTS was successfully fabricated using a multiple dip-coating process. Then, the drug amount and release profile were analyzed. The therapeutic effects of AZ were examined in vitro using two kinds of pancreatic cancer cell lines, AsPC-1 and PANC-1. The efficacy of AZ-BTS was assessed in a porcine PJ leakage model, with animals were each assigned to a leakage group, a BTS group and an AZ-BTS group. The overall mortality rates in these three groups were 44.4%, 16.6%, and 0%, respectively. Mean α-amylase concentrations were significantly higher in the leakage and BTS groups than in the AZ-BTS group on day 2-5 (p < 0.05 each all). The luminal diameters and areas of the pancreatic duct were significantly larger in the leakage group than in the BTS and AZ-BTS groups (p < 0.05 each all). These findings indicate that AZ-BTS can significantly suppress intra-abdominal inflammatory diseases caused by pancreatic juice leakage and also prevent late stricture formation at the PJ anastomotic site in a porcine model.
Collapse
Affiliation(s)
- Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Jieun Park
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, 366 Seohae-Daero, Jung-Gu, Incheon 22332, Republic of Korea
| | - Yejong Park
- Division of Hepatobiliary Pancreas Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeon Min Kang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Dae Sung Ryu
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Jeongsu Kyung
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, 366 Seohae-Daero, Jung-Gu, Incheon 22332, Republic of Korea
| | - Jong Keon Jang
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - In Kyong Shim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Ho-Young Song
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Department of Radiology, UT Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, 366 Seohae-Daero, Jung-Gu, Incheon 22332, Republic of Korea.
| | - Song Cheol Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Division of Hepatobiliary Pancreas Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea.
| |
Collapse
|
14
|
Wang J, Wang W, Wang H, Tuo B. Physiological and Pathological Functions of SLC26A6. Front Med (Lausanne) 2021; 7:618256. [PMID: 33553213 PMCID: PMC7859274 DOI: 10.3389/fmed.2020.618256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
Solute Carrier Family 26 (SLC26) is a conserved anion transporter family with 10 members in human (SLC26A1-A11, A10 being a pseudogene). All SLC26 genes except for SLC26A5 (prestin) are versatile anion exchangers with notable ability to transport a variety of anions. SLC26A6 has the most extensive exchange functions in the SLC26 family and is widely expressed in various organs and tissues of mammals. SLC26A6 has some special properties that make it play a particularly important role in ion homeostasis and acid-base balance. In the past few years, the function of SLC26A6 in the diseases has received increasing attention. SLC26A6 not only participates in the development of intestinal and pancreatic diseases but also serves a significant role in mediating nephrolithiasis, fetal skeletal dysplasia and arrhythmia. This review aims to explore the role of SLC26A6 in physiology and pathophysiology of relative mammalian organs to guide in-depth studies about related diseases of human.
Collapse
Affiliation(s)
- Juan Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenkang Wang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi City), Zunyi Medical University, Zunyi, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
15
|
Schnipper J, Dhennin-Duthille I, Ahidouch A, Ouadid-Ahidouch H. Ion Channel Signature in Healthy Pancreas and Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:568993. [PMID: 33178018 PMCID: PMC7596276 DOI: 10.3389/fphar.2020.568993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer-related deaths in United States and Europe. It is predicted that PDAC will become the second leading cause of cancer-related deaths during the next decades. The development of PDAC is not well understood, however, studies have shown that dysregulated exocrine pancreatic fluid secretion can contribute to pathologies of exocrine pancreas, including PDAC. The major roles of healthy exocrine pancreatic tissue are secretion of enzymes and bicarbonate rich fluid, where ion channels participate to fine-tune these biological processes. It is well known that ion channels located in the plasma membrane regulate multiple cellular functions and are involved in the communication between extracellular events and intracellular signaling pathways and can function as signal transducers themselves. Hereby, they contribute to maintain resting membrane potential, electrical signaling in excitable cells, and ion homeostasis. Despite their contribution to basic cellular processes, ion channels are also involved in the malignant transformation from a normal to a malignant phenotype. Aberrant expression and activity of ion channels have an impact on essentially all hallmarks of cancer defined as; uncontrolled proliferation, evasion of apoptosis, sustained angiogenesis and promotion of invasion and migration. Research indicates that certain ion channels are involved in the aberrant tumor growth and metastatic processes of PDAC. The purpose of this review is to summarize the important expression, localization, and function of ion channels in normal exocrine pancreatic tissue and how they are involved in PDAC progression and development. As ion channels are suggested to be potential targets of treatment they are furthermore suggested to be biomarkers of different cancers. Therefore, we describe the importance of ion channels in PDAC as markers of diagnosis and clinical factors.
Collapse
Affiliation(s)
- Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France.,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
16
|
Tóth-Molnár E, Ding C. New insight into lacrimal gland function: Role of the duct epithelium in tear secretion. Ocul Surf 2020; 18:595-603. [DOI: 10.1016/j.jtos.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
|
17
|
Shin DH, Kim M, Kim Y, Jun I, Jung J, Nam JH, Cheng MH, Lee MG. Bicarbonate permeation through anion channels: its role in health and disease. Pflugers Arch 2020; 472:1003-1018. [PMID: 32621085 DOI: 10.1007/s00424-020-02425-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
Many anion channels, frequently referred as Cl- channels, are permeable to different anions in addition to Cl-. As the second-most abundant anion in the human body, HCO3- permeation via anion channels has many important physiological roles. In addition to its classical role as an intracellular pH regulator, HCO3- also controls the activity and stability of dissolved proteins in bodily fluids such as saliva, pancreatic juice, intestinal fluid, and airway surface liquid. Moreover, HCO3- permeation through these channels affects membrane potentials that are the driving forces for transmembrane transport of solutes and water in epithelia and affect neuronal excitability in nervous tissue. Consequently, aberrant HCO3- transport via anion channels causes a number of human diseases in respiratory, gastrointestinal, genitourinary, and neuronal systems. Notably, recent studies have shown that the HCO3- permeabilities of several anion channels are not fixed and can be altered by cellular stimuli, findings which may have both physiological and pathophysiological significance. In this review, we summarize recent progress in understanding the molecular mechanisms and the physiological roles of HCO3- permeation through anion channels. We hope that the present discussions can stimulate further research into this very important topic, which will provide the basis for human disorders associated with aberrant HCO3- transport.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Minjae Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yonjung Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ikhyun Jun
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
- The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jinsei Jung
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Kyungju, 780-714, Republic of Korea
| | - Mary Hongying Cheng
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
18
|
Singh AK, Yu X. Tissue-Specific Carcinogens as Soil to Seed BRCA1/2-Mutant Hereditary Cancers. Trends Cancer 2020; 6:559-568. [PMID: 32336659 DOI: 10.1016/j.trecan.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Despite their ubiquitous expression, the inheritance of monoallelic germline mutations in breast cancer susceptibility gene type 1 or 2 (BRCA1/2) poses tissue-specific variations in cancer risks and primarily associate with familial breast and ovarian cancers. The molecular basis of this tissue-specific tumor incidence remains unknown and intriguing to cancer researchers. A plethora of recent reports support the idea that several nongenetic factors present in the tissue microenvironment could induce tumors in the mutant BRCA1/2 background. This Opinion article summarizes the recent advances on tissue-specific carcinogens and their complex crosstalk with the compromised DNA repair machinery of BRCA1/2-mutant cells. Finally, we present our perspective on the therapeutic and chemopreventive interpretations of these developments.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
19
|
Takahashi T, Miao Y, Kang F, Dolai S, Gaisano HY. Susceptibility Factors and Cellular Mechanisms Underlying Alcoholic Pancreatitis. Alcohol Clin Exp Res 2020; 44:777-789. [PMID: 32056245 DOI: 10.1111/acer.14304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Alcohol is a major cause of acute and chronic pancreatitis. There have been some recent advances in the understanding of the mechanisms underlying alcoholic pancreatitis, which include perturbation in mitochondrial function and autophagy and ectopic exocytosis, with some of these cellular events involving membrane fusion soluble N-ethylmaleimide-sensitive factor receptor protein receptor proteins. Although new insights have been unraveled recently, the precise mechanisms remain complex, and their finer details have yet to be established. The overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also the stellate cells and duct cells. Why only some are more susceptible to pancreatitis and with increased severity, while others are not, would suggest that there may be undefined protective factors or mechanisms that enhance recovery and regeneration after injury. Furthermore, there are confounding influences of lifestyle factors such as smoking and diet, and genetic background. Whereas alcohol and smoking cessation and a generally healthy lifestyle are intuitively the advice given to these patients afflicted with alcoholic pancreatitis in order to reduce disease recurrence and progression, there is as yet no specific treatment. A more complete understanding of the pathogenesis of pancreatitis from which novel therapeutic targets could be identified will have a great impact, particularly with the stubbornly high fatality (>30%) of severe pancreatitis. This review focuses on the susceptibility factors and underlying cellular mechanisms of alcohol injury on the exocrine pancreas.
Collapse
Affiliation(s)
- Toshimasa Takahashi
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Yifan Miao
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Fei Kang
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Subhankar Dolai
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Herbert Y Gaisano
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Cao L, Yuan Z, Liu M, Stock C. (Patho-)Physiology of Na +/H + Exchangers (NHEs) in the Digestive System. Front Physiol 2020; 10:1566. [PMID: 32009977 PMCID: PMC6974801 DOI: 10.3389/fphys.2019.01566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are expressed in virtually all human tissues and organs. Two major tasks of those NHE isoforms that are located in plasma membranes are cell volume control by Na+-uptake and cellular pH regulation by H+-extrusion. Several NHEs, particularly NHE 1–4 and 8, are involved in the pathogenesis of diseases of the digestive system such as inflammatory bowel disease (ulcerative colitis, Crohn’s disease) and gastric and colorectal tumorigenesis. In the present review, we describe the physiological purposes, possible malfunctions and pathophysiological effects of the different NHE isoforms along the alimentary canal from esophagus to colon, including pancreas, liver and gallbladder. Particular attention is paid to the functions of NHEs in injury repair and to the role of NHE1 in Barrett’s esophagus. The impact of NHEs on gut microbiota and intestinal mucosal integrity is also dealt with. As the hitherto existing findings are not always consistent, sometimes even controversial, they are compared and critically discussed.
Collapse
Affiliation(s)
- Li Cao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christian Stock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
21
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
22
|
Racz R, Nagy A, Rakonczay Z, Dunavari EK, Gerber G, Varga G. Defense Mechanisms Against Acid Exposure by Dental Enamel Formation, Saliva and Pancreatic Juice Production. Curr Pharm Des 2019; 24:2012-2022. [PMID: 29769002 PMCID: PMC6225347 DOI: 10.2174/1381612824666180515125654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
The pancreas, the salivary glands and the dental enamel producing ameloblasts have marked developmental, structural and functional similarities. One of the most striking similarities is their bicarbonate-rich secretory product, serving acid neutralization. An important difference between them is that while pancreatic juice and saliva are delivered into a lumen where they can be collected and analyzed, ameloblasts produce locally precipitating hydroxyapatite which cannot be easily studied. Interestingly, the ion and protein secretion by the pancreas, the salivary glands, and maturation ameloblasts are all two-step processes, of course with significant differences too. As they all have to defend against acid exposure by producing extremely large quantities of bicarbonate, the failure of this function leads to deteriorating consequences. The aim of the present review is to describe and characterize the defense mechanisms of the pancreas, the salivary glands and enamel-producing ameloblasts against acid exposure and to compare their functional capabilities to do this by producing bicarbonate.
Collapse
Affiliation(s)
- Robert Racz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Akos Nagy
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Erika Katalin Dunavari
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Gabor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Kim Y, Jun I, Shin DH, Yoon JG, Piao H, Jung J, Park HW, Cheng MH, Bahar I, Whitcomb DC, Lee MG. Regulation of CFTR Bicarbonate Channel Activity by WNK1: Implications for Pancreatitis and CFTR-Related Disorders. Cell Mol Gastroenterol Hepatol 2019; 9:79-103. [PMID: 31561038 PMCID: PMC6889609 DOI: 10.1016/j.jcmgh.2019.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022]
Abstract
BACKGRAOUD & AIMS Aberrant epithelial bicarbonate (HCO3-) secretion caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is associated with several diseases including cystic fibrosis and pancreatitis. Dynamically regulated ion channel activity and anion selectivity of CFTR by kinases sensitive to intracellular chloride concentration ([Cl-]i) play an important role in epithelial HCO3- secretion. However, the molecular mechanisms of how [Cl-]i-dependent mechanisms regulate CFTR are unknown. METHODS We examined the mechanisms of the CFTR HCO3- channel regulation by [Cl-]i-sensitive kinases using an integrated electrophysiological, molecular, and computational approach including whole-cell, outside-out, and inside-out patch clamp recordings and molecular dissection of WNK1 and CFTR proteins. In addition, we analyzed the effects of pancreatitis-causing CFTR mutations on the WNK1-mediated regulation of CFTR. RESULTS Among the WNK1, SPAK, and OSR1 kinases that constitute a [Cl-]i-sensitive kinase cascade, the expression of WNK1 alone was sufficient to increase the CFTR bicarbonate permeability (PHCO3/PCl) and conductance (GHCO3) in patch clamp recordings. Molecular dissection of the WNK1 domains revealed that the WNK1 kinase domain is responsible for CFTR PHCO3/PCl regulation by direct association with CFTR, while the surrounding N-terminal regions mediate the [Cl-]i-sensitivity of WNK1. Furthermore, the pancreatitis-causing R74Q and R75Q mutations in the elbow helix 1 of CFTR hampered WNK1-CFTR physical associations and reduced WNK1-mediated CFTR PHCO3/PCl regulation. CONCLUSION The CFTR HCO3- channel activity is regulated by [Cl-]i and a WNK1-dependent mechanism. Our results provide new insights into the regulation of the ion selectivity of CFTR and the pathogenesis of CFTR-related disorders.
Collapse
Affiliation(s)
- Yonjung Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ikhyun Jun
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea,Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Hoon Shin
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jihoon G. Yoon
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - He Piao
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsei Jung
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Mary Hongying Cheng
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ivet Bahar
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David C. Whitcomb
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea,Correspondence Address correspondence to: Min Goo Lee, Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul 03722, Korea. fax: +82 2 313 1894.
| |
Collapse
|
24
|
Frost F, Kacprowski T, Rühlemann M, Bülow R, Kühn JP, Franke A, Heinsen FA, Pietzner M, Nauck M, Völker U, Völzke H, Aghdassi AA, Sendler M, Mayerle J, Weiss FU, Homuth G, Lerch MM. Impaired Exocrine Pancreatic Function Associates With Changes in Intestinal Microbiota Composition and Diversity. Gastroenterology 2019; 156:1010-1015. [PMID: 30391469 DOI: 10.1053/j.gastro.2018.10.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/10/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Changes in intestinal microbiome composition are associated with inflammatory, metabolic, and malignant disorders. We studied how exocrine pancreatic function affects intestinal microbiota. METHODS We performed 16S ribosomal RNA gene sequencing analysis of stool samples from 1795 volunteers from the population-based Study of Health in Pomerania who had no history of pancreatic disease. We also measured fecal pancreatic elastase by enzyme-linked immunosorbent assay and performed quantitative imaging of secretin-stimulated pancreatic fluid secretion. Associations of exocrine pancreatic function with microbial diversity or individual genera were calculated by permutational analysis of variance or linear regression, respectively. RESULTS Differences in pancreatic elastase levels associated with significantly (P < .0001) greater changes in microbiota diversity than with participant age, body mass index, sex, smoking, alcohol consumption, or dietary factors. Significant changes in the abundance of 30 taxa, such as an increase in Prevotella (q < .0001) and a decrease of Bacteroides (q < .0001), indicated a shift from a type-1 to a type-2 enterotype. Changes in pancreatic fluid secretion alone were also associated with changes in microbial diversity (P = .0002), although to a lesser degree. CONCLUSIONS In an analysis of fecal samples from 1795 volunteers, pancreatic acinar cell, rather than duct cell, function is presently the single most significant host factor to be associated with changes in intestinal microbiota composition.
Collapse
Affiliation(s)
- Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Tim Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jens-Peter Kühn
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany; Institute of Radiology, University Medicine, Carl-Gustav-Carus University, Dresden, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany; Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
25
|
Virreira M, Jin L, Djerbib S, De Deken X, Miot F, Massart C, Svoboda M, Van Sande J, Beauwens R, Dumont JE, Boom A. Expression, Localization, and Regulation of the Sodium Bicarbonate Cotransporter NBCe1 in the Thyroid. Thyroid 2019; 29:290-301. [PMID: 30526387 DOI: 10.1089/thy.2017.0576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The intrafollicular space of thyroid follicles is the storage compartment for thyroid hormones. Its pH has been established at around 7.6 at least after thyrotropin (TSH) stimulation. This alkaline intrafollicular pH is thought to be critical for iodide coupling to thyroglobulin and internalization of iodinated thyroglobulin. At least in mice, this alkalinization requires the expression of pendrin (Slc26a4) within the apical membrane, and a lack of pendrin results in acidic follicular lumen pH. Yet, the mechanism importing HCO3- into the cytoplasm is unknown. This study investigated whether the rather ubiquitous sodium bicarbonate cotransporter NBCe1 (SLC4A4) might play this role. It also examined which variant was expressed and where it was localized in both rat and human thyroid tissue. Lastly, the dependence of its expression on TSH was studied. METHODS Reverse transcription polymerase chain reaction, immunofluorescence, and Western blotting were used to test whether TSH stimulated NBCe1 protein expression in vivo. Subcellular localization of NBCe1 was performed using immunofluorescence in both rat and human thyroid. Cultured thyroid cells were also used to attempt to define how TSH affects NBCe1 expression. RESULTS Only transcripts of the NBCe1-B variant were detected in both rat and human thyroid. Of interest, NBCe1-C was not detected in human tissues, not even in the brain. On immunofluorescence microscopy, the immunostaining of NBCe1 mainly appeared in the basolateral membrane upon stimulation with TSH. This TSH induction of basolateral membrane expression of NBCe1 protein was confirmed in vivo in rat thyroid and in vitro on human thyroid slices. CONCLUSIONS This study demonstrates the expression of the sodium bicarbonate cotransporter NBCe1-B in rat and human thyroid. Additionally, the data suggest that TSH blocks the degradation of NBCe1 protein by trafficking it to the basolateral membrane. Hence, TSH increases NBCe1 half-life without increasing its synthesis.
Collapse
Affiliation(s)
- Myrna Virreira
- 1 Laboratoire de Physiologie Cellulaire et Moléculaire; de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Ling Jin
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Sami Djerbib
- 1 Laboratoire de Physiologie Cellulaire et Moléculaire; de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Xavier De Deken
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Françoise Miot
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Claude Massart
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Michal Svoboda
- 3 Laboratoire Chimie Biologique et de la Nutrition; de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Jacqueline Van Sande
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Renaud Beauwens
- 1 Laboratoire de Physiologie Cellulaire et Moléculaire; de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Jacques-Emile Dumont
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Alain Boom
- 4 Laboratoire d'Histologie, de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Feng XY, Yang J, Zhang X, Zhu J. Gastrointestinal non-motor dysfunction in Parkinson's disease model rats with 6-hydroxydopamine. Physiol Res 2019; 68:295-303. [PMID: 30628835 DOI: 10.33549/physiolres.933995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a progressive loss of mesencephalic dopaminergic neurons of the substantia nigra (SN). To further evaluate its pathophysiology, accurate animal models are needed. The current study aims to verify the impact of a 6-hydroxydopamine (6-OHDA) bilateral microinjection into the SN on gastrointestinal symptoms in rats and confirm that the 6-OHDA rat model is an appropriate tool to investigate the mechanisms of Parkinsonian GI disorders. Immunohistochemistry, digital X-ray imaging, short-circuit current, FITC-dextran permeability and ultra-performance liquid chromatography tandem mass spectrometry were used in this study. The results indicated that the dopaminergic neurons in SN and fibres in the striatum were markedly reduced in 6-OHDA rats. The 6-OHDA rats manifested reductions in occupancy in a rotarod test and increases in daily food debris but no difference in body mass or daily consumption. Compared with control rats, faecal pellets and their contents were significantly decreased, whereas gastric emptying and intestinal transport were delayed in 6-OHDA rats. The increased in vivo FITC-dextran permeability and decreased intestinal transepithelial resistance in the model suggest attenuated barrier function in the digestive tract in the PD model. Moreover, inflammatory factors in the plasma showed that pro-inflammatory factors IL-1? and IL-8 were significantly increased in 6-OHDA rats. Collectively, these findings indicate that the model is an interesting experimental tool to investigate the mechanisms involved in the progression of gastrointestinal dysfunction in PD.
Collapse
Affiliation(s)
- Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China.
| | | | | | | |
Collapse
|
27
|
Venglovecz V, Pallagi P, Kemény LV, Balázs A, Balla Z, Becskeházi E, Gál E, Tóth E, Zvara Á, Puskás LG, Borka K, Sendler M, Lerch MM, Mayerle J, Kühn JP, Rakonczay Z, Hegyi P. The Importance of Aquaporin 1 in Pancreatitis and Its Relation to the CFTR Cl - Channel. Front Physiol 2018; 9:854. [PMID: 30050452 PMCID: PMC6052342 DOI: 10.3389/fphys.2018.00854] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Aquaporins (AQPs) facilitate the transepithelial water flow involved in epithelial fluid secretion in numerous tissues; however, their function in the pancreas is less characterized. Acute pancreatitis (AP) is a serious disorder in which specific treatment is still not possible. Accumulating evidence indicate that decreased pancreatic ductal fluid secretion plays an essential role in AP; therefore, the aim of this study was to investigate the physiological and pathophysiological role of AQPs in the pancreas. Expression and localization of AQPs were investigated by real-time PCR and immunocytochemistry, whereas osmotic transmembrane water permeability was estimated by the dye dilution technique, in Capan-1 cells. The presence of AQP1 and CFTR in the mice and human pancreas were investigated by immunohistochemistry. Pancreatic ductal HCO3- and fluid secretion were studied on pancreatic ducts isolated from wild-type (WT) and AQP1 knock out (KO) mice using microfluorometry and videomicroscopy, respectively. In vivo pancreatic fluid secretion was estimated by magnetic resonance imaging. AP was induced by intraperitoneal injection of cerulein and disease severity was assessed by measuring biochemical and histological parameters. In the mice, the presence of AQP1 was detected throughout the whole plasma membrane of the ductal cells and its expression highly depends on the presence of CFTR Cl- channel. In contrast, the expression of AQP1 is mainly localized to the apical membrane of ductal cells in the human pancreas. Bile acid treatment dose- and time-dependently decreased mRNA and protein expression of AQP1 and reduced expression of this channel was also demonstrated in patients suffering from acute and chronic pancreatitis. HCO3- and fluid secretion significantly decreased in AQP1 KO versus WT mice and the absence of AQP1 also worsened the severity of pancreatitis. Our results suggest that AQP1 plays an essential role in pancreatic ductal fluid and HCO3- secretion and decreased expression of the channel alters fluid secretion which probably contribute to increased susceptibility of the pancreas to inflammation.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Lajos V Kemény
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Anita Balázs
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Eszter Becskeházi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Emese Tóth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin Borka
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany.,Department of Medicine II, Klinikum Grosshadern, Universitätsklinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens-Peter Kühn
- Institute of Radiology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany.,Institute and Policlinic of Radiology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary.,Institute for Translational Medicine and First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
28
|
Zhang J, Wang Y, Jiang X, Chan HC. Cystic fibrosis transmembrane conductance regulator-emerging regulator of cancer. Cell Mol Life Sci 2018; 75:1737-1756. [PMID: 29411041 PMCID: PMC11105598 DOI: 10.1007/s00018-018-2755-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/27/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, the most common life-limiting recessive genetic disease among Caucasians. CFTR mutations have also been linked to increased risk of various cancers but remained controversial for a long time. Recent studies have begun to reveal that CFTR is not merely an ion channel but also an important regulator of cancer development and progression with multiple signaling pathways identified. In this review, we will first present clinical findings showing the correlation of genetic mutations or aberrant expression of CFTR with cancer incidence in multiple cancers. We will then focus on the roles of CFTR in fundamental cellular processes including transformation, survival, proliferation, migration, invasion and epithelial-mesenchymal transition in cancer cells, highlighting the signaling pathways involved. Finally, the association of CFTR expression levels with patient prognosis, and the potential of CFTR as a cancer prognosis indicator in human malignancies will be discussed.
Collapse
Affiliation(s)
- Jieting Zhang
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yan Wang
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Xiaohua Jiang
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Hsiao Chang Chan
- Faculty of Medicine, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, People's Republic of China.
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, People's Republic of China.
| |
Collapse
|
29
|
Xu H, Ghishan FK, Kiela PR. SLC9 Gene Family: Function, Expression, and Regulation. Compr Physiol 2018; 8:555-583. [PMID: 29687889 DOI: 10.1002/cphy.c170027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Slc9 family of Na+ /H+ exchangers (NHEs) plays a critical role in electroneutral exchange of Na+ and H+ in the mammalian intestine as well as other absorptive and secretory epithelia of digestive organs. These transport proteins contribute to the transepithelial Na+ and water absorption, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. They also influence the function of other membrane transport mechanisms, affect cellular proliferation and apoptosis as well as cell migration, adherence to the extracellular matrix, and tissue repair. Additionally, they modulate the extracellular milieu to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+ /H+ exchange is inhibited in selected gastrointestinal diseases, either by intrinsic factors (e.g., bile acids, inflammatory mediators) or infectious agents and associated bacterial toxins. Disrupted NHE activity may contribute not only to local and systemic electrolyte imbalance but also to the disease severity via multiple mechanisms. In this review, we describe the cation proton antiporter superfamily of Na+ /H+ exchangers with a particular emphasis on the eight SLC9A isoforms found in the digestive tract, followed by a more integrative description in their roles in each of the digestive organs. We discuss regulatory mechanisms that determine the function of Na+ /H+ exchangers as pertinent to the digestive tract, their regulation in pathological states of the digestive organs, and reciprocally, the contribution of dysregulated Na+ /H+ exchange to the disease pathogenesis and progression. © 2018 American Physiological Society. Compr Physiol 8:555-583, 2018.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA.,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
30
|
Andharia N, Hayashi M, Matsuda H. Electrophysiological properties of anion exchangers in the luminal membrane of guinea pig pancreatic duct cells. Pflugers Arch 2018; 470:897-907. [PMID: 29399744 PMCID: PMC5945753 DOI: 10.1007/s00424-018-2116-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/10/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
The pancreatic duct epithelium secretes the HCO3−-rich pancreatic juice. The HCO3− transport across the luminal membrane has been proposed to be mediated by SLC26A Cl−–HCO3− exchangers. To examine the electrophysiological properties of Cl−–HCO3− exchangers, we directly measured HCO3− conductance in the luminal membrane of the interlobular pancreatic duct cells from guinea pigs using an inside-out patch-clamp technique. Intracellular HCO3− increased the HCO3− conductance with a half-maximal effective concentration value of approximately 30 mM. The selectivity sequence based on permeability ratios was SCN− (1.4) > Cl− (1.2) = gluconate (1.1) = I− (1.1) = HCO3− (1.0) > methanesulfonate (0.6). The sequence of the relative conductance was HCO3− (1.0) > SCN− (0.7) = I− (0.7) > Cl− (0.5) = gluconate (0.4) > methanesulfonate (0.2). The current dependent on intracellular HCO3− was reduced by replacement of extracellular Cl− with gluconate or by H2DIDS, an inhibitor of Cl−–HCO3− exchangers. RT-PCR analysis revealed that the interlobular and main ducts expressed all SLC26A family members except Slc26a5 and Slc26a8. SLC26A1, SLC26A4, SLC26A6, and SLC26A10 were found to be localized to the luminal membrane of the guinea pig pancreatic duct by immunohistochemistry. These results demonstrate that these SLC26A Cl−–HCO3− exchangers may mediate the electrogenic HCO3− transport through the luminal membrane and may be involved in pancreatic secretion in guinea pig ducts.
Collapse
Affiliation(s)
- N Andharia
- Department of Physiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Japan
| | - M Hayashi
- Department of Physiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Japan.
| | - H Matsuda
- Department of Physiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Japan
| |
Collapse
|
31
|
Cuoghi I, Lazzaretti C, Mandrioli M, Mola L, Pederzoli A. Immunohistochemical analysis of the distribution of molecules involved in ionic and pH regulation in the lancelet Branchiostoma floridae (Hubbs, 1922). Acta Histochem 2018; 120:33-40. [PMID: 29169695 DOI: 10.1016/j.acthis.2017.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 10/30/2017] [Indexed: 11/28/2022]
Abstract
The aim of present work is to analyse the distribution of carbonic anhydrase II (CAII), cystic fibrosis transmembrane regulator (CFTR), vacuolar-type H+-ATPase (V-H+-ATPase), Na+/K+ ATPase, Na+/H+ exchanger (NHE) and SLC26A6 (solute carrier family 26, member 6), also known as pendrin protein, in the lancelet Branchiostoma floridae in order to go in depth in the evolution of osmoregulation and pH regulation in Chordates. In view of their phylogenetic position, lancelets may indeed provide a critical point of reference for studies on osmoregulation evolution in Chordates. The results of present work demonstrated that, except to Na+/K+ ATPase that is strongly expressed in nephridia only, all the other studied molecules are abundantly present in skin, coelomic epithelium, renal papillae and nephridia and hepatic coecum. Thus, it is possible to hypothesize that also in lancelet, as in fish, these organs are involved in pH control and ionic regulation. In the digestive tract of B. floridae, the intestine epithelium was weakly immune-reactive to all tested antibodies, while the hepatic coecum showed an intense immunoreactivity to all molecules. Since in amphioxus the hepatic coecum functions simultaneously as stomach, liver and pancreas, these immunohistochemical results proved the secretion of H+ and HCO3- ions, typical of digestive process. Colocalization studies indicated a co-expression of the studied proteins in all considered organs, excluding NHE and pendrin for renal papillae, since some renal papillae are NHE immunopositive only.
Collapse
Affiliation(s)
- Ivan Cuoghi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| | - Clara Lazzaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| | - Lucrezia Mola
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy.
| | - Aurora Pederzoli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| |
Collapse
|
32
|
Lee KP, Kim HJ, Yang D. Functional identification of protein phosphatase 1-binding consensus residues in NBCe1-B. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 22:91-99. [PMID: 29302216 PMCID: PMC5746516 DOI: 10.4196/kjpp.2018.22.1.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 12/03/2022]
Abstract
Protein phosphatase 1 (PP1) is involved in various signal transduction mechanisms as an extensive regulator. The PP1 catalytic subunit (PP1c) recognizes and binds to PP1-binding consensus residues (FxxR/KxR/K) in NBCe1-B. Consequently, we focused on identifying the function of the PP1-binding consensus residue, 922FMDRLK927, in NBCe1-B. Using site-directed mutagenesis and co-immunoprecipitation assays, we revealed that in cases where the residues were substituted (F922A, R925A, and K927A) or deleted (deletion of amino acids 922–927), NBCe1-B mutants inhibited PP1 binding to NBCe1-B. Additionally, by recording the intracellular pH, we found that PP1-binding consensus residues in NBCe1-B were not only critical for NBCe1-B activity, but also relevant to its surface expression level. Therefore, we reported that NBCe1-B, as a substrate of PP1, contains these residues in the C-terminal region and that the direct interaction between NBCe1-B and PP1 is functionally critical in controlling the regulation of the HCO3− transport. These results suggested that like IRBIT, PP1 was another novel regulator of HCO3− secretion in several types of epithelia.
Collapse
Affiliation(s)
- Kyu Pil Lee
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Hyun Jin Kim
- Department of Physiology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
33
|
Rácz R, Földes A, Bori E, Zsembery Á, Harada H, Steward MC, DenBesten P, Bronckers ALJJ, Gerber G, Varga G. No Change in Bicarbonate Transport but Tight-Junction Formation Is Delayed by Fluoride in a Novel Ameloblast Model. Front Physiol 2017; 8:940. [PMID: 29375389 PMCID: PMC5770627 DOI: 10.3389/fphys.2017.00940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
We have recently developed a novel in vitro model using HAT-7 rat ameloblast cells to functionally study epithelial ion transport during amelogenesis. Our present aims were to identify key transporters of bicarbonate in HAT-7 cells and also to examine the effects of fluoride exposure on vectorial bicarbonate transport, cell viability, and the development of transepithelial resistance. To obtain monolayers, the HAT-7 cells were cultured on Transwell permeable filters. We monitored transepithelial resistance (TER) as an indicator of tight junction formation and polarization. We evaluated intracellular pH changes by microfluorometry using the fluorescent indicator BCECF. Activities of ion transporters were tested by withdrawal of various ions from the bathing medium, by using transporter specific inhibitors, and by activation of transporters with forskolin and ATP. Cell survival was estimated by alamarBlue assay. Changes in gene expression were monitored by qPCR. We identified the activity of several ion transporters, NBCe1, NHE1, NKCC1, and AE2, which are involved in intracellular pH regulation and vectorial bicarbonate and chloride transport. Bicarbonate secretion by HAT-7 cells was not affected by acute fluoride exposure over a wide range of concentrations. However, tight-junction formation was inhibited by 1 mM fluoride, a concentration which did not substantially reduce cell viability, suggesting an effect of fluoride on paracellular permeability and tight-junction formation. Cell viability was only reduced by prolonged exposure to fluoride concentrations greater than 1 mM. In conclusion, cultured HAT-7 cells are functionally polarized and are able to transport bicarbonate ions from the basolateral to the apical fluid spaces. Exposure to 1 mM fluoride has little effect on bicarbonate secretion or cell viability but delays tight-junction formation, suggesting a novel mechanism that may contribute to dental fluorosis.
Collapse
Affiliation(s)
- Róbert Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Anna Földes
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Erzsébet Bori
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | | | - Martin C Steward
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Pamela DenBesten
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Antonius L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands
| | - Gábor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Sun X, Yi Y, Xie W, Liang B, Winter MC, He N, Liu X, Luo M, Yang Y, Ode KL, Uc A, Norris AW, Engelhardt JF. CFTR Influences Beta Cell Function and Insulin Secretion Through Non-Cell Autonomous Exocrine-Derived Factors. Endocrinology 2017; 158:3325-3338. [PMID: 28977592 PMCID: PMC5659686 DOI: 10.1210/en.2017-00187] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Although β-cell dysfunction in cystic fibrosis (CF) leads to diabetes, the mechanism by which the cystic fibrosis transmembrane conductance regulator (CFTR) channel influences islet insulin secretion remains debated. We investigated the CFTR-dependent islet-autonomous mechanisms affecting insulin secretion by using islets isolated from CFTR knockout ferrets. Total insulin content was lower in CF as compared with wild-type (WT) islets. Furthermore, glucose-stimulated insulin secretion (GSIS) was impaired in perifused neonatal CF islets, with reduced first, second, and amplifying phase secretion. Interestingly, CF islets compensated for reduced insulin content under static low-glucose conditions by secreting a larger fraction of islet insulin than WT islets, probably because of elevated SLC2A1 transcripts, increased basal inhibition of adenosine triphosphate-sensitive potassium channels (K-ATP), and elevated basal intracellular Ca2+. Interleukin (IL)-6 secretion by CF islets was higher relative to WT, and IL-6 treatment of WT ferret islets produced a CF-like phenotype with reduced islet insulin content and elevated percentage insulin secretion in low glucose. CF islets exhibited altered expression of INS, CELA3B, and several β-cell maturation and proliferation genes. Pharmacologic inhibition of CFTR reduced GSIS by WT ferret and human islets but similarly reduced insulin secretion and intracellular Ca2+ in CFTR knockout ferret islets, indicating that the mechanism of action is not through CFTR. Single-molecule fluorescent in situ hybridization, on isolated ferret and human islets and ferret pancreas, demonstrated that CFTR RNA colocalized within KRT7+ ductal cells but not endocrine cells. These results suggest that CFTR affects β-cell function via a paracrine mechanism involving proinflammatory factors secreted from islet-associated exocrine-derived cell types.
Collapse
Affiliation(s)
- Xingshen Sun
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Yaling Yi
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Weiliang Xie
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Bo Liang
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | | | - Nan He
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Xiaoming Liu
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Meihui Luo
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Yu Yang
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| | - Aliye Uc
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| | - John F. Engelhardt
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
35
|
Varga G, DenBesten P, Rácz R, Zsembery Á. Importance of bicarbonate transport in pH control during amelogenesis - need for functional studies. Oral Dis 2017; 24:879-890. [PMID: 28834043 DOI: 10.1111/odi.12738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022]
Abstract
Dental enamel, the hardest mammalian tissue, is produced by ameloblasts. Ameloblasts show many similarities to other transporting epithelia although their secretory product, the enamel matrix, is quite different. Ameloblasts direct the formation of hydroxyapatite crystals, which liberate large quantities of protons that then need to be buffered to allow mineralization to proceed. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. Many investigations have used immunohistochemical and knockout studies to determine the effects of these genes on enamel formation, but up till recently very little functional data were available for mineral ion transport. To address this, we developed a novel 2D in vitro model using HAT-7 ameloblast cells. HAT-7 cells can be polarized and develop functional tight junctions. Furthermore, they are able to accumulate bicarbonate ions from the basolateral to the apical fluid spaces. We propose that in the future, the HAT-7 2D system along with similar cellular models will be useful to functionally model ion transport processes during amelogenesis. Additionally, we also suggest that similar approaches will allow a better understanding of the regulation of the cycling process in maturation-stage ameloblasts, and the pH sensory mechanisms, which are required to develop sound, healthy enamel.
Collapse
Affiliation(s)
- G Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - P DenBesten
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - R Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Á Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
36
|
Abstract
Germline mutation of BRCA2 induces hereditary pancreatic cancer. However, how BRCA2 mutation specifically induces pancreatic tumorigenesis remains elusive. Here, we have examined a mouse model of Brca2-deficiency-induced pancreatic tumors and found that excessive reactive nitrogen species (RNS), such as nitrite, are generated in precancerous pancreases, which induce massive DNA damage, including DNA double-strand breaks. RNS-induced DNA lesions cause genomic instability in the absence of Brca2. Moreover, with the treatment of antioxidant tempol to suppress RNS, not only are DNA lesions significantly reduced, but also the onset of pancreatic cancer is delayed. Thus, this study demonstrates that excess RNS are a nongenetic driving force for Brca2-deficiency-induced pancreatic tumors. Suppression of RNS could be an important strategy for pancreatic cancer prevention.
Collapse
|
37
|
Jantarajit W, Lertsuwan K, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. CFTR-mediated anion secretion across intestinal epithelium-like Caco-2 monolayer under PTH stimulation is dependent on intermediate conductance K + channels. Am J Physiol Cell Physiol 2017; 313:C118-C129. [PMID: 28490422 DOI: 10.1152/ajpcell.00010.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
Parathyroid hormone (PTH), a pleiotropic hormone that maintains mineral homeostasis, is also essential for controlling pH balance and ion transport across renal and intestinal epithelia. Optimization of luminal pH is important for absorption of trace elements, e.g., calcium and phosphorus. We have previously demonstrated that PTH rapidly stimulated electrogenic [Formula: see text] secretion in intestinal epithelial-like Caco-2 monolayers, but the underlying cellular mechanism, contributions of other ions, particularly Cl- and K+, and long-lasting responses are not completely understood. Herein, PTH and forskolin were confirmed to induce anion secretion, which peaked within 1-3 min (early phase), followed by an abrupt decay and plateau that lasted for 60 min (late phase). In both early and late phases, apical membrane capacitance was increased with a decrease in basolateral capacitance after PTH or forskolin exposure. PTH also induced a transient increase in apical conductance with a long-lasting decrease in basolateral conductance. Anion secretion in both phases was reduced under [Formula: see text]-free and/or Cl--free conditions or after exposure to carbonic anhydrase inhibitor (acetazolamide), CFTR inhibitor (CFTRinh-172), Na+/H+ exchanger (NHE)-3 inhibitor (tenapanor), or K+ channel inhibitors (BaCl2, clotrimazole, and TRAM-34; basolateral side), the latter of which suggested that PTH action was dependent on basolateral K+ recycling. Furthermore, early- and late-phase responses to PTH were diminished by inhibitors of PI3K (wortmannin and LY-294002) and PKA (PKI 14-22). In conclusion, PTH requires NHE3 and basolateral K+ channels to induce [Formula: see text] and Cl- secretion, thus explaining how PTH regulated luminal pH balance and pH-dependent absorption of trace minerals.
Collapse
Affiliation(s)
- Walailak Jantarajit
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; and
| | | | - Nateetip Krishnamra
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; .,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
38
|
Chao PC, Butt AG. cAMP-dependent secretagogues stimulate the NaHCO 3 cotransporter in the villous epithelium of the brushtail possum, Trichosurus vulpecula. J Comp Physiol B 2017; 187:1019-1028. [PMID: 28247055 DOI: 10.1007/s00360-017-1063-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/30/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022]
Abstract
In the ileum of the brushtail possum, Trichosurus vulpecula, fluid secretion appears to be driven by electrogenic HCO3- secretion. Consistent with this, the cystic fibrosis transmembrane conductance regulator is expressed in the apical membrane of the ileal epithelial cells and the pancreatic or secretory variant of the NaHCO3 cotransporter in the basolateral membrane. This suggests that in the possum ileum, electrogenic HCO3- secretion is driven by basolateral NaHCO3 cotransporter (NBC) activity. To determine if the NBC contributes to HCO3- secretion in the possum ileum, intracellular pH (pHi) measurements in isolated villi were used to demonstrate NBC activity in the ileal epithelial cells and investigate the effect of cAMP-dependent secretagogues. In CO2/HCO3--free solutions, recovery of the epithelial cells from an acid load was Na+-dependent and ≈80% inhibited by ethyl-isopropyl-amiloride (EIPA, 10 µmol L-1), indicative of the presence of an Na+/H+ exchanger, most likely NHE1. However, in the presence of CO2/HCO3-, EIPA only inhibited ≈ 50% of the recovery, the remainder was inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS, 500 µmol L-1), indicative of NBC activity. Under steady-state conditions, NHE1 inhibition by EIPA had little effect on pHi in the presence or absence of secretagogues, but NBC inhibition with DIDS resulted in a rapid acidification of the cells, which was increased fivefold by secretagogues. These data demonstrate the functional activity of an NaHCO3 cotransporter in the ileal epithelial cells. Furthermore, the stimulation of NBC activity by secretagogues is consistent with the involvement of an NaHCO3 cotransporter in electrogenic HCO3- secretion.
Collapse
Affiliation(s)
- Pin-Chun Chao
- Department of Physiology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - A Grant Butt
- Department of Physiology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
39
|
Yamaguchi M, Steward MC, Smallbone K, Sohma Y, Yamamoto A, Ko SBH, Kondo T, Ishiguro H. Bicarbonate-rich fluid secretion predicted by a computational model of guinea-pig pancreatic duct epithelium. J Physiol 2017; 595:1947-1972. [PMID: 27995646 DOI: 10.1113/jp273306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS The ductal system of the pancreas secretes large volumes of alkaline fluid containing HCO3- concentrations as high as 140 mm during hormonal stimulation. A computational model has been constructed to explore the underlying ion transport mechanisms. Parameters were estimated by fitting the model to experimental data from guinea-pig pancreatic ducts. The model was readily able to secrete 140 mm HCO3- . Its capacity to do so was not dependent upon special properties of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels and solute carrier family 26 member A6 (SLC26A6) anion exchangers. We conclude that the main requirement for secreting high HCO3- concentrations is to minimize the secretion of Cl- ions. These findings help to clarify the mechanism responsible for pancreatic HCO3- secretion, a vital process that prevents the formation of protein plugs and viscous mucus in the ducts, which could otherwise lead to pancreatic disease. ABSTRACT A computational model of guinea-pig pancreatic duct epithelium was developed to determine the transport mechanism by which HCO3- ions are secreted at concentrations in excess of 140 mm. Parameters defining the contributions of the individual ion channels and transporters were estimated by least-squares fitting of the model predictions to experimental data obtained from isolated ducts and intact pancreas under a range of experimental conditions. The effects of cAMP-stimulated secretion were well replicated by increasing the activities of the basolateral Na+ -HCO3- cotransporter (NBC1) and apical Cl- /HCO3- exchanger (solute carrier family 26 member A6; SLC26A6), increasing the basolateral K+ permeability and apical Cl- and HCO3- permeabilities (CFTR), and reducing the activity of the basolateral Cl- /HCO3- exchanger (anion exchanger 2; AE2). Under these conditions, the model secreted ∼140 mm HCO3- at a rate of ∼3 nl min-1 mm-2 , which is consistent with experimental observations. Alternative 1:2 and 1:1 stoichiometries for Cl- /HCO3- exchange via SLC26A6 at the apical membrane were able to support a HCO3- -rich secretion. Raising the HCO3- /Cl- permeability ratio of CFTR from 0.4 to 1.0 had little impact upon either the secreted HCO3- concentration or the volume flow. However, modelling showed that a reduction in basolateral AE2 activity by ∼80% was essential in minimizing the intracellular Cl- concentration following cAMP stimulation and thereby maximizing the secreted HCO3- concentration. The addition of a basolateral Na+ -K+ -2Cl- cotransporter (NKCC1), assumed to be present in rat and mouse ducts, raised intracellular Cl- and resulted in a lower secreted HCO3- concentration, as is characteristic of those species. We conclude therefore that minimizing the driving force for Cl- secretion is the main requirement for secreting 140 mm HCO3- .
Collapse
Affiliation(s)
- Makoto Yamaguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kieran Smallbone
- School of Computer Science, University of Manchester, Manchester, UK
| | | | - Akiko Yamamoto
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeru B H Ko
- Department of Systems Medicine, Keio University, Tokyo, Japan
| | - Takaharu Kondo
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
40
|
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2016; 74:93-115. [PMID: 27714410 PMCID: PMC5209439 DOI: 10.1007/s00018-016-2391-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
41
|
Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, Melton DA, Yanai I. A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Syst 2016; 3:346-360.e4. [PMID: 27667365 DOI: 10.1016/j.cels.2016.08.011] [Citation(s) in RCA: 879] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/16/2016] [Accepted: 08/10/2016] [Indexed: 11/30/2022]
Abstract
Although the function of the mammalian pancreas hinges on complex interactions of distinct cell types, gene expression profiles have primarily been described with bulk mixtures. Here we implemented a droplet-based, single-cell RNA-seq method to determine the transcriptomes of over 12,000 individual pancreatic cells from four human donors and two mouse strains. Cells could be divided into 15 clusters that matched previously characterized cell types: all endocrine cell types, including rare epsilon-cells; exocrine cell types; vascular cells; Schwann cells; quiescent and activated stellate cells; and four types of immune cells. We detected subpopulations of ductal cells with distinct expression profiles and validated their existence with immuno-histochemistry stains. Moreover, among human beta- cells, we detected heterogeneity in the regulation of genes relating to functional maturation and levels of ER stress. Finally, we deconvolved bulk gene expression samples using the single-cell data to detect disease-associated differential expression. Our dataset provides a resource for the discovery of novel cell type-specific transcription factors, signaling receptors, and medically relevant genes.
Collapse
Affiliation(s)
- Maayan Baron
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Adrian Veres
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel L Wolock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aubrey L Faust
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Renaud Gaujoux
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Amedeo Vetere
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
| | - Jennifer Hyoje Ryu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bridget K Wagner
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
| | - Shai S Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Itai Yanai
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
42
|
Park PW, Ahn JY, Yang D. Ahcyl2 upregulates NBCe1-B via multiple serine residues of the PEST domain-mediated association. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:433-40. [PMID: 27382360 PMCID: PMC4930912 DOI: 10.4196/kjpp.2016.20.4.433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Inositol-1,4,5-triphosphate [IP3] receptors binding protein released with IP3 (IRBIT) was previously reported as an activator of NBCe1-B. Recent studies have characterized IRBIT homologue S-Adenosylhomocysteine hydrolase-like 2 (AHCYL2). AHCYL2 is highly homologous to IRBIT (88%) and heteromerizes with IRBIT. The two important domains in the N-terminus of AHCYL2 are a PEST domain and a coiled-coil domain which are highly comparable to those in IRBIT. Therefore, in this study, we tried to identify the role of those domains in mouse AHCYL2 (Ahcyl2), and we succeeded in identifying PEST domain of Ahcyl2 as a regulation region for NBCe1-B activity. Site directed mutagenesis and coimmunoprecipitation assay showed that NBCe1-B binds to the N-terminal Ahcyl2-PEST domain, and its binding is determined by the phosphorylation of 4 critical serine residues (Ser151, Ser154, Ser157, and Ser160) in Ahcyl2 PEST domain. Also we revealed that 4 critical serine residues in Ahcyl2 PEST domain are indispensable for the activation of NBCe1-B using measurement of intracellular pH experiment. Thus, these results suggested that the NBCe1-B is interacted with 4 critical serine residues in Ahcyl2 PEST domain, which play an important role in intracellular pH regulation through NBCe1-B.
Collapse
Affiliation(s)
- Pil Whan Park
- Department of Laboratory Medicine, Gachon University Gil Hospital, Incheon 21565, Korea
| | - Jeong Yeal Ahn
- Department of Laboratory Medicine, Gachon University Gil Hospital, Incheon 21565, Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21936, Korea
| |
Collapse
|
43
|
Laczkó D, Rosztóczy A, Birkás K, Katona M, Rakonczay Z, Tiszlavicz L, Róka R, Wittmann T, Hegyi P, Venglovecz V. Role of ion transporters in the bile acid-induced esophageal injury. Am J Physiol Gastrointest Liver Physiol 2016; 311:G16-31. [PMID: 27198194 DOI: 10.1152/ajpgi.00159.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 04/20/2016] [Indexed: 01/31/2023]
Abstract
Barrett's esophagus (BE) is considered to be the most severe complication of gastro-esophageal reflux disease (GERD), in which the prolonged, repetitive episodes of combined acidic and biliary reflux result in the replacement of the squamous esophageal lining by columnar epithelium. Therefore, the acid-extruding mechanisms of esophageal epithelial cells (EECs) may play an important role in the defense. Our aim was to identify the presence of acid/base transporters on EECs and to investigate the effect of bile acids on their expressions and functions. Human EEC lines (CP-A and CP-D) were acutely exposed to bile acid cocktail (BAC) and the changes in intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i) were measured by microfluorometry. mRNA and protein expression of ion transporters was investigated by RT-PCR, Western blot, and immunohistochemistry. We have identified the presence of a Na(+)/H(+) exchanger (NHE), Na(+)/HCO3 (-) cotransporter (NBC), and a Cl(-)-dependent HCO3 (-) secretory mechanism in CP-A and CP-D cells. Acute administration of BAC stimulated HCO3 (-) secretion in both cell lines and the NHE activity in CP-D cells by an inositol triphosphate-dependent calcium release. Chronic administration of BAC to EECs increased the expression of ion transporters compared with nontreated cells. A similar expression pattern was observed in biopsy samples from BE compared with normal epithelium. We have shown that acute administration of bile acids differently alters ion transport mechanisms of EECs, whereas chronic exposure to bile acids increases the expression of acid/base transporters. We speculate that these adaptive processes of EECs represent an important mucosal defense against the bile acid-induced epithelial injury.
Collapse
Affiliation(s)
- Dorottya Laczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary; First Department of Medicine, University of Szeged, Szeged, Hungary
| | - András Rosztóczy
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Klaudia Birkás
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Máté Katona
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary; Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | | | - Richárd Róka
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Tibor Wittmann
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary; and Institute for Translational Medicine and First Department of Medicine, University of Pécs, Pécs, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary;
| |
Collapse
|
44
|
Involvement of Cl(-)/HCO3(-) exchanger SLC26A3 and SLC26A6 in preimplantation embryo cleavage. Sci Rep 2016; 6:28402. [PMID: 27346053 PMCID: PMC4921817 DOI: 10.1038/srep28402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/01/2016] [Indexed: 01/04/2023] Open
Abstract
Bicarbonate (HCO3(-)) is essential for preimplantation embryo development. However, the mechanism underlying the HCO3(-) transport into the embryo remains elusive. In the present study, we examined the possible involvement of Cl(-)/HCO3(-) exchanger in mediating HCO3(-) transport into the embryo. Our results showed that depletion of extracellular Cl(-), even in the presence of HCO3(-), suppressed embryo cleavage in a concentration-dependent manner. Cleavage-associated HCO3(-)-dependent events, including increase of intracellular pH, upregulation of miR-125b and downregulation of p53, also required Cl(-). We further showed that Cl(-)/HCO3(-) exchanger solute carrier family 26 (SLC26) A3 and A6 were expressed at 2-cell through blastocyst stage. Blocking individual exchanger's activity by inhibitors or gene knockdown differentially decreased embryo cleavage and inhibited HCO3(-)-dependent events, while inhibiting/knocking down both produced an additive effect to an extent similar to that observed when CFTR was inhibited. These results indicate the involvement of SLC26A3 and A6 in transporting HCO3(-) essential for embryo cleavage, possibly working in concert with CFTR through a Cl(-) recycling pathway. The present study sheds light into our understanding of molecular mechanisms regulating embryo cleavage by the female reproductive tract.
Collapse
|
45
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
46
|
Seo JB, Jung SR, Hille B, Koh DS. Extracellular ATP protects pancreatic duct epithelial cells from alcohol-induced damage through P2Y1 receptor-cAMP signal pathway. Cell Biol Toxicol 2016; 32:229-47. [PMID: 27197531 PMCID: PMC5493489 DOI: 10.1007/s10565-016-9331-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/22/2016] [Indexed: 12/18/2022]
Abstract
Extracellular adenosine-5'-triphosphate (ATP) regulates cell death and survival of neighboring cells. The detailed effects are diverse depending on cell types and extracellular ATP concentration. We addressed the effect of ATP on ethanol-induced cytotoxicity in epithelial cells, the cell type that experiences the highest concentrations of alcohol. Using pancreatic duct epithelial cells (PDEC), we found that a micromolar range of ATP reverses all intracellular toxicity mechanisms triggered by exceptionally high doses of ethanol and, thus, improves cell viability dramatically. Out of the many purinergic receptors expressed in PDEC, the P2Y1 receptor was identified to mediate the protective effect, based on pharmacological and siRNA assays. Activation of P2Y1 receptors increased intracellular cyclic adenosine monophosphate (cAMP). The protective effect of ATP was mimicked by forskolin and 8-Br-cAMP but inhibited by a protein kinase A (PKA) inhibitor, H-89. Finally, ATP reverted leakiness of PDEC monolayers induced by ethanol and helped to maintain epithelial integrity. We suggest that purinergic receptors reduce extreme alcohol-induced cell damage via the cAMP signal pathway in PDEC and some other types of cells.
Collapse
Affiliation(s)
- Jong Bae Seo
- Department of Physiology and Biophysics, University of Washington, Health Sciences Bldg. Rm. G-424, Seattle, WA, 98195-7290, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, 92093, USA
| | - Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Health Sciences Bldg. Rm. G-424, Seattle, WA, 98195-7290, USA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Health Sciences Bldg. Rm. G-424, Seattle, WA, 98195-7290, USA
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington, Health Sciences Bldg. Rm. G-424, Seattle, WA, 98195-7290, USA.
| |
Collapse
|
47
|
Hamano N, Murata M, Kawano T, Piao JS, Narahara S, Nakata R, Akahoshi T, Ikeda T, Hashizume M. Förster Resonance Energy Transfer-Based Self-Assembled Nanoprobe for Rapid and Sensitive Detection of Postoperative Pancreatic Fistula. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5114-5123. [PMID: 26845508 DOI: 10.1021/acsami.5b11902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Postoperative pancreatic fistula (POPF) is the most serious and challenging complication following gastroenterological surgery. Activated pancreatic juice leaking from the organ remnant contains proteases that attack the surrounding tissue, potentially leading to severe inflammation, tissue necrosis, and fistula formation. However, it is difficult to observe pancreatic leakage during surgery and to evaluate the protease activity of leaked fluid at the patient's bedside. This report describes a protein nanocage-based protease ratiometric sensor comprising a pancreatic protease-sensitive small heat-shock protein (HSP) 16.5, which is a naturally occurring protein in Methanococcus jannaschii that forms a spherical structure by self-assembly of 24 subunits, and a chemically conjugated donor-acceptor dye pair for Förster resonance energy transfer (FRET). The HSP-FRET probe was constructed by subunit exchange of each dye-labeled engineered HSP, resulting in a spherical nanocage of approximately 10 nm in diameter, which exhibited very high stability against degradation in blood plasma and no remarkable toxicity in mice. The efficiency of FRET was found to depend on both the dye orientation and the acceptor/donor ratio. Pancreatic proteases, including trypsin, α-chymotrypsin, and elastase, were quantitatively analyzed by fluorescence recovery with high specificity using the HSP-FRET nanoprobe. Furthermore, the HSP-FRET nanoprobe was sufficiently sensitive to detect POPF in the pancreatic juice of patients using only the naked eye within 10 min. Thus, this novel nanoprobe is proposed as an effective and convenient tool for the detection of POPF and the visualization of activated pancreatic juice during gastroenterological surgery.
Collapse
Affiliation(s)
- Nobuhito Hamano
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahito Kawano
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jing Shu Piao
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sayoko Narahara
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryosuke Nakata
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiko Akahoshi
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tetsuo Ikeda
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Hashizume
- Center for Advanced Medical Innovation, ‡Department of Advanced Medical Initiatives, Faculty of Medical Sciences, and §Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
48
|
Bori E, Guo J, Rácz R, Burghardt B, Földes A, Kerémi B, Harada H, Steward MC, Den Besten P, Bronckers ALJJ, Varga G. Evidence for Bicarbonate Secretion by Ameloblasts in a Novel Cellular Model. J Dent Res 2016; 95:588-96. [PMID: 26792171 DOI: 10.1177/0022034515625939] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Formation and growth of hydroxyapatite crystals during amelogenesis generate a large number of protons that must be neutralized, presumably by HCO3 (-)ions transported from ameloblasts into the developing enamel matrix. Ameloblasts express a number of transporters and channels known to be involved in HCO3 (-)transport in other epithelia. However, to date, there is no functional evidence for HCO3 (-)transport in these cells. To address questions related to HCO3 (-)export from ameloblasts, we have developed a polarized 2-dimensional culture system for HAT-7 cells, a rat cell line of ameloblast origin. HAT-7 cells were seeded onto Transwell permeable filters. Transepithelial resistance was measured as a function of time, and the expression of transporters and tight junction proteins was investigated by conventional and quantitative reverse transcription polymerase chain reaction. Intracellular pH regulation and HCO3 (-)transport were assessed by microfluorometry. HAT-7 cells formed epithelial layers with measureable transepithelial resistance on Transwell permeable supports and expressed claudin-1, claudin-4, and claudin-8-key proteins for tight junction formation. Transport proteins previously described in maturation ameloblasts were also present in HAT-7 cells. Microfluorometry showed that the HAT-7 cells were polarized with a high apical membrane CO2 permeability and vigorous basolateral HCO3 (-)uptake, which was sensitive to Na(+)withdrawal, to the carbonic anhydrase inhibitor acetazolamide and to H2DIDS inhibition. Measurements of transepithelial HCO3 (-)transport showed a marked increase in response to Ca(2+)- and cAMP-mobilizing stimuli. Collectively, 2-dimensional HAT-7 cell cultures on permeable supports 1) form tight junctions, 2) express typical tight junction proteins and electrolyte transporters, 3) are functionally polarized, and 4) can accumulate HCO3 (-)ions from the basolateral side and secrete them at the apical membrane. These studies provide evidence for a regulated, vectorial, basolateral-to-apical bicarbonate transport in polarized HAT-7 cells. We therefore propose that the HAT-7 cell line is a useful functional model for studying electrolyte transport by ameloblasts.
Collapse
Affiliation(s)
- E Bori
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - J Guo
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, Netherlands
| | - R Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - B Burghardt
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - A Földes
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - B Kerémi
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - H Harada
- Department of Anatomy, Division of Developmental Biology and Regenerative Medicine, Iwate Medical University, Iwate, Japan
| | - M C Steward
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - P Den Besten
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - A L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, Netherlands
| | - G Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
49
|
Hong JH, Muhammad E, Zheng C, Hershkovitz E, Alkrinawi S, Loewenthal N, Parvari R, Muallem S. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation. J Physiol 2015; 593:5299-312. [PMID: 26486891 DOI: 10.1113/jp271378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. ABSTRACT Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Jeong Hee Hong
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Physiology, College of Medicine, Gachon University, 191 Hambakmeoro, Yeonsu-gu, Incheon, 406-799, South Korea
| | - Emad Muhammad
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Changyu Zheng
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eli Hershkovitz
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Soliman Alkrinawi
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Loewenthal
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ruti Parvari
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Shmuel Muallem
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
50
|
Abstract
The human exocrine pancreas consists of 2 main cell types: acinar and ductal cells. These exocrine cells interact closely to contribute to the secretion of pancreatic juice. The most important ion in terms of the pancreatic ductal secretion is HCO3. In fact, duct cells produce an alkaline fluid that may contain up to 140 mM NaHCO3, which is essential for normal digestion. This article provides an overview of the basics of pancreatic ductal physiology and pathophysiology. In the first part of the article, we discuss the ductal electrolyte and fluid transporters and their regulation. The central role of cystic fibrosis transmembrane conductance regulator (CFTR) is highlighted, which is much more than just a Cl channel. We also review the role of pancreatic ducts in severe debilitating diseases such as cystic fibrosis (caused by various genetic defects of cftr), pancreatitis, and diabetes mellitus. Stimulation of ductal secretion in cystic fibrosis and pancreatitis may have beneficial effects in their treatment.
Collapse
|