1
|
Blomeier T, Fischbach P, Koch LA, Andres J, Miñambres M, Beyer HM, Zurbriggen MD. Blue Light-Operated CRISPR/Cas13b-Mediated mRNA Knockdown (Lockdown). Adv Biol (Weinh) 2021; 5:e2000307. [PMID: 34028208 DOI: 10.1002/adbi.202000307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/14/2021] [Indexed: 12/26/2022]
Abstract
The introduction of optogenetics into cell biology has furnished systems to control gene expression at the transcriptional and protein stability level, with a high degree of spatial, temporal, and dynamic light-regulation capabilities. Strategies to downregulate RNA currently rely on RNA interference and CRISPR/Cas-related methods. However, these approaches lack the key characteristics and advantages provided by optical control. "Lockdown" introduces optical control of RNA levels utilizing a blue light-dependent switch to induce expression of CRISPR/Cas13b, which mediates sequence-specific mRNA knockdown. Combining Lockdown with optogenetic tools to repress gene-expression and induce protein destabilization with blue light yields efficient triple-controlled downregulation of target proteins. Implementing Lockdown to degrade endogenous mRNA levels of the cyclin-dependent kinase 1 (hCdk1) leads to blue light-induced G2/M cell cycle arrest and inhibition of cell growth in mammalian cells.
Collapse
Affiliation(s)
- Tim Blomeier
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Patrick Fischbach
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Leonie-Alexa Koch
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Jennifer Andres
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Miguel Miñambres
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany.,Institute of Plant Biochemistry and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Hannes Michael Beyer
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | | |
Collapse
|
2
|
Brioschi M, Banfi C. The application of gene silencing in proteomics: from laboratory to clinic. Expert Rev Proteomics 2018; 15:717-732. [PMID: 30205712 DOI: 10.1080/14789450.2018.1521275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Since the completion of genome sequencing, gene silencing technologies have emerged as powerful tools to study gene functions in various biological processes, both in vivo and in vitro. Moreover, they have also been proposed as therapeutic agents to inhibit selected genes in a variety of pathological conditions, such as cancer, neurodegenerative, and cardiovascular diseases. Area covered: This review summarizes the mechanisms of action and applications of genome editing tools, from RNA interference to clustered regularly interspaced short palindromic repeats-based systems, in research and in clinics. We describe their essential role in high-throughput genetic screens and, in particular, in functional proteomics studies, to identify diagnostic markers and therapeutic targets. Indeed, gene silencing and proteomics have been extensively integrated to study global proteome changes, posttranslational modifications, and protein-protein interactions. Expert commentary: Functional proteomics approaches that leverage gene silencing tools have been successfully applied to examine the role of several genes in various contexts, leading to a deeper knowledge of biological pathways and disease mechanisms. Recent developments of gene silencing tools have improved their performance, also in terms of off-targets effects reduction, paving the way for a wider therapeutic application of these systems.
Collapse
Affiliation(s)
- Maura Brioschi
- a Unit of Proteomics , Centro Cardiologico Monzino IRCCS , Milano , Italy
| | - Cristina Banfi
- a Unit of Proteomics , Centro Cardiologico Monzino IRCCS , Milano , Italy
| |
Collapse
|
3
|
Wei L, Xin Y, Wang Q, Yang J, Hu H, Xu J. RNAi-based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1236-1250. [PMID: 28188644 DOI: 10.1111/tpj.13411] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 05/09/2023]
Abstract
Microalgae are promising feedstock for renewable fuels such as biodiesel, yet development of industrial oleaginous strains has been hindered by the paucity and inefficiency of reverse genetics tools. Here we established an efficient RNAi-based targeted gene-knockdown method for Nannochloropsis spp., which are emerging model organisms for industrial microalgal oil production. The method achieved a 40-80% success rate in Nannochloropsis oceanica strain IMET1. When transcript level of one carbonic anhydrase (CA) was inhibited by 62-83% via RNAi, mutant cells exhibited photosynthetic oxygen evolution (POE) rates that were 68-100% higher than wild-type (WT) at pH 6.0, equivalent to WT at pH 8.2, yet 39-45% lower than WT at pH 9.0. Moreover, the mutant POE rates were negatively correlated with the increase of culture pH, an exact opposite of WT. Thus, a dynamic carbon concentration mechanism (CCM) that is highly sensitive to pH homeostasis was revealed, where the CA inhibition likely partially abrogated the mechanism that normally deactivates CCM under a high level of dissolved CO2 . Extension of the method to another sequenced N. oceanica strain of CCMP 1779 demonstrated comparable performance. Finally, McrBC-PCR followed by bisulfite sequencing revealed that the gene knockdown is mediated by the CG, CHG and CHH types of DNA methylation at the coding region of the targeted gene. The efficiency, robustness and general applicability of this reverse genetics approach suggested the possibility of large-scale RNAi-based gene function screening in industrial microalgae.
Collapse
Affiliation(s)
- Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Qintao Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| |
Collapse
|
4
|
Chen MS, Kim H, Jagot-Lacoussiere L, Maurel P. Cadm3 (Necl-1) interferes with the activation of the PI3 kinase/Akt signaling cascade and inhibits Schwann cell myelination in vitro. Glia 2016; 64:2247-2262. [PMID: 27658374 DOI: 10.1002/glia.23072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 08/10/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Abstract
Axo-glial interactions are critical for myelination and the domain organization of myelinated fibers. Cell adhesion molecules belonging to the Cadm family, and in particular Cadm3 (axonal) and its heterophilic binding partner Cadm4 (Schwann cell), mediate these interactions along the internode. Using targeted shRNA-mediated knockdown, we show that the removal of axonal Cadm3 promotes Schwann cell myelination in the in vitro DRG neuron/Schwann cell myelinating system. Conversely, over-expressing Cadm3 on the surface of DRG neuron axons results in an almost complete inability by Schwann cells to form myelin segments. Axons of superior cervical ganglion (SCG) neurons, which do not normally support the formation of myelin segments by Schwann cells, express higher levels of Cadm3 compared to DRG neurons. Knocking down Cadm3 in SCG neurons promotes myelination. Finally, the extracellular domain of Cadm3 interferes in a dose-dependent manner with the activation of ErbB3 and of the pro-myelinating PI3K/Akt pathway, but does not interfere with the activation of the Mek/Erk1/2 pathway. While not in direct contradiction, these in vitro results shed lights on the apparent lack of phenotype that was reported from in vivo studies of Cadm3-/- mice. Our results suggest that Cadm3 may act as a negative regulator of PNS myelination, potentially through the selective regulation of the signaling cascades activated in Schwann cells by axonal contact, and in particular by type III Nrg-1. Further analyses of peripheral nerves in the Cadm-/- mice will be needed to determine the exact role of axonal Cadm3 in PNS myelination. GLIA 2016;64:2247-2262.
Collapse
Affiliation(s)
- Ming-Shuo Chen
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Hyosung Kim
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey
| | | | - Patrice Maurel
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
5
|
Unniyampurath U, Pilankatta R, Krishnan MN. RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi? Int J Mol Sci 2016; 17:291. [PMID: 26927085 PMCID: PMC4813155 DOI: 10.3390/ijms17030291] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi) based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi. The conclusion drawn from this analysis is that RNAi will still occupy specific domains of biomedical research and clinical applications, under the current state of development of these technologies. However, further improvements in CRISPR/Cas9 based technology may ultimately enable it to dominate RNAi in the long term.
Collapse
Affiliation(s)
- Unnikrishnan Unniyampurath
- Program on Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Rajendra Pilankatta
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Nileshwar 671328, India.
| | - Manoj N Krishnan
- Program on Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
6
|
Noncoding RNAs in Regulation of Cancer Metabolic Reprogramming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:191-215. [PMID: 27376736 DOI: 10.1007/978-981-10-1498-7_7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the description of the Warburg effect 90 years ago, metabolic reprogramming has been gradually recognized as a major hallmark of cancer cells. Mounting evidence now indicates that cancer is a kind of metabolic disease, quite distinct from conventional perception. While metabolic alterations in cancer cells have been extensively observed in glucose, lipid, and amino acid metabolisms, its underlying regulatory mechanisms are still poorly understood. Noncoding RNA, also known as the "dark matter in life," functions through various mechanisms at RNA level regulating different biological pathways. The last two decades have witnessed the booming of noncoding RNA study on microRNA (miRNA), long noncoding RNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), etc. In this chapter, we will discuss the regulatory roles of noncoding RNAs on cancer metabolism.
Collapse
|
7
|
Dambach DM, Misner D, Brock M, Fullerton A, Proctor W, Maher J, Lee D, Ford K, Diaz D. Safety Lead Optimization and Candidate Identification: Integrating New Technologies into Decision-Making. Chem Res Toxicol 2015; 29:452-72. [DOI: 10.1021/acs.chemrestox.5b00396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Donna M. Dambach
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dinah Misner
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Aaron Fullerton
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - William Proctor
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Jonathan Maher
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dong Lee
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Kevin Ford
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dolores Diaz
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Zhan Y, Liu Y, Lin J, Fu X, Zhuang C, Liu L, Xu W, Li J, Chen M, Zhao G, Huang W, Cai Z. Synthetic Tet-inducible artificial microRNAs targeting β-catenin or HIF-1α inhibit malignant phenotypes of bladder cancer cells T24 and 5637. Sci Rep 2015; 5:16177. [PMID: 26541358 PMCID: PMC4635424 DOI: 10.1038/srep16177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 02/05/2023] Open
Abstract
Ribonucleic acid interference (RNAi) based on microRNA (miRNA) may provide efficient and safe therapeutic opportunities. However, natural microRNAs can not easily be regulated and usually cause few phenotypic changes. Using the engineering principles of synthetic biology, we provided a novel and standard platform for the generation of tetracycline (Tet)-inducible vectors that express artificial microRNAs in a dosage-dependent manner. The vector generates a Pol II promoter-mediated artificial microRNA which was flanked by ribozyme sequences. In order to prove the utility of this platform, we chose β-catenin and HIF-1α as the functional targets and used the bladder cancer cell lines 5637 and T24 as the test models. We found that the Tet-inducible artificial microRNAs can effectively silence the target genes and their downstream genes, and induce anti-cancer effects in the two bladder cancer cell lines. These devices can inhibit proliferation, induce apoptosis, and suppress migration of the bladder cancer cell lines 5637 and T24. The Tet-inducible synthetic artificial microRNAs may represent a kind of novel therapeutic strategies for treating human bladder cancer.
Collapse
Affiliation(s)
- Yonghao Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
- Shantou University Medical College, Shantou 515041, China
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
| | - Junhao Lin
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
- Shantou University Medical College, Shantou 515041, China
| | - Xing Fu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
| | - Chengle Zhuang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
- Shantou University Medical College, Shantou 515041, China
| | - Li Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
- Shantou University Medical College, Shantou 515041, China
| | - Wen Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
- Shantou University Medical College, Shantou 515041, China
| | - Mingwei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
| | - Guoping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Centerat Shanghai, Shanghai 200000, Shanghai, China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
| |
Collapse
|
9
|
Zins K, Sioud M, Aharinejad S, Lucas T, Abraham D. Modulating the tumor microenvironment with RNA interference as a cancer treatment strategy. Methods Mol Biol 2015; 1218:143-61. [PMID: 25319650 DOI: 10.1007/978-1-4939-1538-5_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The tumor microenvironment is composed of accessory cells and immune cells in addition to extracellular matrix (ECM) components. The stromal compartment interacts with cancer cells in a complex crosstalk to support tumor development. Growth factors and cytokines produced by stromal cells support the growth of tumor cells and promote interaction with the vasculature to enhance tumor progression and invasion. The activation of autocrine and paracrine oncogenic signaling pathways by growth factors, cytokines, and proteases derived from both tumor cells and the stromal compartment is thought to play a major role in assisting tumor cells during metastasis. Consequently, targeting tumor-stroma interactions by RNA interference (RNAi)-based approaches is a promising strategy in the search for novel treatment modalities in human cancer. Recent advances in packaging technology including the use of polymers, peptides, liposomes, and nanoparticles to deliver small interfering RNAs (siRNAs) into target cells may overcome limitations associated with potential RNAi-based therapeutics. Newly developed nonviral gene delivery approaches have shown improved anticancer efficacy suggesting that RNAi-based therapeutics provide novel opportunities to elicit significant gene silencing and induce regression of tumor growth. This chapter summarizes our current understanding of the tumor microenvironment and highlights some potential targets for therapeutic intervention with RNAi-based cancer therapeutics.
Collapse
Affiliation(s)
- Karin Zins
- Laboratory for Cardiovascular Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
10
|
Abstract
Glycosylation is a stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process, especially increased sialylation, have been associated with malignant transformation and metastasis. The role of altered sialylation in multiple myeloma (MM) cell trafficking has not been previously investigated. In the present study we identified high expression of β-galactoside α-2,3-sialyltransferase, ST3GAL6, in MM cell lines and patients. This gene plays a key role in selectin ligand synthesis in humans through the generation of functional sialyl Lewis X. In MRC IX patients, high expression of this gene is associated with inferior overall survival. In this study we demonstrate that knockdown of ST3GAL6 results in a significant reduction in levels of α-2,3-linked sialic acid on the surface of MM cells with an associated significant reduction in adhesion to MM bone marrow stromal cells and fibronectin along with reduced transendothelial migration in vitro. In support of our in vitro findings, we demonstrate significantly reduced homing and engraftment of ST3GAL6 knockdown MM cells to the bone marrow niche in vivo, along with decreased tumor burden and prolonged survival. This study points to the importance of altered glycosylation, particularly sialylation, in MM cell adhesion and migration.
Collapse
|
11
|
Stegh AH. Toward personalized cancer nanomedicine - past, present, and future. Integr Biol (Camb) 2013; 5:48-65. [PMID: 22858688 DOI: 10.1039/c2ib20104f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors are composed of highly proliferate, migratory, invasive, and therapy-evading cells. These characteristics are conferred by an enormously complex landscape of genomic, (epi-)genetic, and proteomic aberrations. Recent efforts to comprehensively catalogue these reversible and irreversible modifications have began to identify molecular mechanisms that contribute to cancer pathophysiology, serve as novel therapeutic targets, and may constitute biomarkers for early diagnosis and prediction of therapy responses. With constantly evolving technologies that will ultimately enable a complete survey of cancer genomes, the challenges for discovery cancer science and drug development are daunting. Bioinformatic and functional studies must differentiate cancer-driving and -contributing mutations from mere bystanders or 'noise', and have to delineate their molecular mechanisms of action as a function of collaborating oncogenic and tumor suppressive signatures. In addition, the translation of these genomic discoveries into meaningful clinical endpoints requires the development of co-extinction strategies to therapeutically target multiple cancer genes, to robustly deliver therapeutics to tumor sites, and to enable widespread dissemination of therapies within tumor tissue. In this perspective, I will describe the most current paradigms to study and validate cancer gene function. I will highlight advances in the area of nanotechnology, in particular, the development of RNA interference (RNAi)-based platforms to more effectively deliver therapeutic agents to tumor sites, and to modulate critical cancer genes that are difficult to target using conventional small-molecule- or antibody-based approaches. I will conclude with an outlook on the deluge of challenges that genomic and bioengineering sciences must overcome to make the long-awaited era of personalized nano-medicine a clinical reality for cancer patients.
Collapse
Affiliation(s)
- Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Wang JQ, He JT, Du ZW, Li ZS, Liu YF, Mang J, Xu ZX. Effects of SARA on oxygen-glucose deprivation in PC12 cell line. Neurochem Res 2013; 38:961-71. [PMID: 23440543 DOI: 10.1007/s11064-013-1004-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/21/2013] [Accepted: 02/12/2013] [Indexed: 01/17/2023]
Abstract
Ischemic stroke is a major composition of cerebrovascular disease, seriously threatening to human health in the world. Activin A (ActA), belonging to transforming growth factor-beta (TGF-β) super family, plays an important role in the hypoxic-ischemic brain injury through ActA/Smads pathway. While as an essential phosphorylation assistor in TGF-β signaling, the functions and mechanisms of smad anchor for receptor activation (SARA) in ischemic brain injury remain poorly understood. To solve this problem and explore the pathological processes of ischemic stroke, we used an Oxygen-Glucose deprivation (OGD) model in nerve growth factor-induced differentiated rattus PC12 pheochromocytoma cells and down regulated the expressions of SARA by RNA interference technology. Our results showed that the repression of SARA before OGD exposure reduced the expressions of Smad2, 3, 4 mRNA and the phosphorylation rate of Smad2 protein, but it did not affect the mRNA expressions of Smad7. After OGD treatment, ActA/Smads pathway was activated and the expression of SARA in the SARA pre-repression group was significantly up-regulated. The pre-repression of SARA increased the sensitivities of nerve-like cells to OGD damage. Moreover, the mRNA expression of Smad7 which was supposed to participate in the negative feedback of ActA/Smads pathway was also elevated due to OGD injury. Taken together, these results suggest a positive role of SARA in assisting the phosphorylation of Smad2 and maintaining the neuron protective effect of ActA/Smads pathway.
Collapse
Affiliation(s)
- Jiao-Qi Wang
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Chen L, McKenna JT, Bolortuya Y, Brown RE, McCarley RW. Knockdown of orexin type 2 receptor in the lateral pontomesencephalic tegmentum of rats increases REM sleep. Eur J Neurosci 2013; 37:957-63. [PMID: 23282008 DOI: 10.1111/ejn.12101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 11/12/2012] [Accepted: 11/19/2012] [Indexed: 12/22/2022]
Abstract
Dysfunction of the orexin/hypocretin neurotransmitter system causes the sleep disorder narcolepsy, characterized by intrusion of rapid eye movement (REM) sleep-like events into normal wakefulness. The sites where orexins act to suppress REM sleep are incompletely understood. Previous studies suggested that the lateral pontomesencephalic tegmentum (lPMT) contains an important REM sleep inhibitory area, and proposed that orexins inhibit REM sleep via orexin type 2 receptors (OxR2) in this region. However, this hypothesis has heretofore not been tested. We thus performed bilateral injection of small interfering RNAs (siRNAs) targeting Ox2R into the lPMT on two consecutive days. This led to a approximately 30% increase of time spent in REM sleep in both the dark and light periods for the first 2 days after injection, with a return to baseline over the next two post-injection days. This increase was mainly due to longer (> 120 s) REM episodes. Cataplexy-like episodes were not observed. The percentage of time spent in wakefulness and non-(N)REM sleep, as well as the power spectral profile of NREM and REM sleep, were unaffected. Control animals injected with scrambled siRNA had no sleep changes post-injection. Quantification of the knockdown revealed that unilateral microinjection of siRNAs targeting OxR2 into the lPMT induced a approximately 40% reduction of OxR2 mRNA 2 days following the injections when compared with the contralateral side receiving control (scrambled) siRNA. Orexin type 1 receptor mRNA level was unaffected. Our results indicate that removal of OxR2 neurotransmission in the lPMT enhances REM sleep by increasing the duration of REM episodes.
Collapse
Affiliation(s)
- Lichao Chen
- Research Service, VA Boston Healthcare System, Brockton, MA, USA.
| | | | | | | | | |
Collapse
|
14
|
A Combinatorial Library of Bi-functional Polymeric Vectors for siRNA Delivery In Vitro. Pharm Res 2012; 30:362-76. [DOI: 10.1007/s11095-012-0876-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 08/23/2012] [Indexed: 01/28/2023]
|
15
|
Zaheer S, Wu Y, Yang X, Thangavel R, Sahu SK, Zaheer A. Efficient down-regulation of glia maturation factor expression in mouse brain and spinal cord. Neurochem Res 2012; 37:1578-83. [PMID: 22446845 DOI: 10.1007/s11064-012-0753-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/07/2012] [Accepted: 03/07/2012] [Indexed: 01/03/2023]
Abstract
Long-lasting siRNA-based down-regulation of gene of interest can be achieved by lentiviral-based expression vectors driving the production of short hairpin RNA (shRNA). We investigated an attractive therapeutic approach to target the expression of proinflammatory GMF by using lentiviral vector encoding GMF-specific shRNA to reduce GMF levels in the spinal cord and brain of mice. To determine the effect of GMF-shRNA on GMF protein levels, we performed quantitative ELISA analysis in brain and in thoracic, cervical and lumbar regions of spinal cord from mice followed by GMF-shRNA (G-shRNA) or control shRNA (C-shRNA) treatments. Our results show a marked reduction of GMF protein levels in brain and spinal cord of mice treated with GMF-shRNA compared to control shRNA treatment. Consistent with the GMF protein analysis, the immunohistochemical examination of the spinal cord sections of EAE mice treated with GMF-shRNA showed significantly reduced GMF-immunoreactivity. Thus, the down-regulation of GMF by GMF-shRNA was efficient and wide spread in CNS as evident by the significantly reduced levels of GMF protein in the brain and spinal cord of mice.
Collapse
Affiliation(s)
- Smita Zaheer
- Department of Neurology, The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
16
|
Guan J, Mishra S, Falk RH, Liao R. Current perspectives on cardiac amyloidosis. Am J Physiol Heart Circ Physiol 2011; 302:H544-52. [PMID: 22058156 DOI: 10.1152/ajpheart.00815.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloidosis represents a group of diseases in which proteins undergo misfolding to form insoluble fibrils with subsequent tissue deposition. While almost all deposited amyloid fibers share a common nonbranched morphology, the affected end organs, clinical presentation, treatment strategies, and prognosis vary greatly among this group of diseases and are largely dependent on the specific amyloid precursor protein. To date, at least 27 precursor proteins have been identified to result in either local tissue or systemic amyloidosis, with nine of them manifesting in cardiac deposition and resulting in a syndrome termed "cardiac amyloidosis" or "amyloid cardiomyopathy." Although cardiac amyloidosis has been traditionally considered to be a rare disorder, as clinical appreciation and understanding continues to grow, so too has the prevalence, suggesting that this disease may be greatly underdiagnosed. The most common form of cardiac amyloidosis is associated with circulating amyloidogenic monoclonal immunoglobulin light chain proteins. Other major cardiac amyloidoses result from a misfolding of products of mutated or wild-type transthyretin protein. While the various cardiac amyloidoses share a common functional consequence, namely, an infiltrative cardiomyopathy with restrictive pathophysiology leading to progressive heart failure, the underlying pathophysiology and clinical syndrome varies with each precursor protein. Herein, we aim to provide an up-to-date overview of cardiac amyloidosis from nomenclature to molecular mechanisms and treatment options, with a particular focus on amyloidogenic immunoglobulin light chain protein cardiac amyloidosis.
Collapse
Affiliation(s)
- Jian Guan
- Cardiac Muscle Research Lab., 77 Ave. Louis Pasteur, NRB 431, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
17
|
Davis RP, van den Berg CW, Casini S, Braam SR, Mummery CL. Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med 2011; 17:475-84. [PMID: 21703926 DOI: 10.1016/j.molmed.2011.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/02/2011] [Accepted: 05/05/2011] [Indexed: 12/13/2022]
Abstract
Recent advances in pluripotent stem cell biology now make it possible to generate human cardiomyocytes in vitro from both healthy individuals and from patients with cardiac abnormalities. This offers unprecedented opportunities to study cardiac disease development 'in a dish' and establish novel platforms for drug discovery, either to prevent disease progression or to reverse it. In this review paper, we discuss some of the genetic diseases that affect the heart and illustrate how these new paradigms could assist our understanding of cardiac pathogenesis and aid in drug discovery. In particular, we highlight the limitations of other commonly used model systems in predicting the consequences of drug exposure on the human heart.
Collapse
Affiliation(s)
- Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Seyhan AA. RNAi: a potential new class of therapeutic for human genetic disease. Hum Genet 2011; 130:583-605. [PMID: 21537948 DOI: 10.1007/s00439-011-0995-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/17/2011] [Indexed: 12/19/2022]
Abstract
Dominant negative genetic disorders, in which a mutant allele of a gene causes disease in the presence of a second, normal copy, have been challenging since there is no cure and treatments are only to alleviate the symptoms. Current therapies involving pharmacological and biological drugs are not suitable to target mutant genes selectively due to structural indifference of the normal variant of their targets from the disease-causing mutant ones. In instances when the target contains single nucleotide polymorphism (SNP), whether it is an enzyme or structural or receptor protein are not ideal for treatment using conventional drugs due to their lack of selectivity. Therefore, there is a need to develop new approaches to accelerate targeting these previously inaccessible targets by classical therapeutics. Although there is a cooling trend by the pharmaceutical industry for the potential of RNA interference (RNAi), RNAi and other RNA targeting drugs (antisense, ribozyme, etc.) still hold their promise as the only drugs that provide an opportunity to target genes with SNP mutations found in dominant negative disorders, genes specific to pathogenic tumor cells, and genes that are critical for mediating the pathology of various other diseases. Because of its exquisite specificity and potency, RNAi has attracted a considerable interest as a new class of therapeutic for genetic diseases including amyotrophic lateral sclerosis, Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), spinocerebellar ataxia, dominant muscular dystrophies, and cancer. In this review, progress and challenges in developing RNAi therapeutics for genetic diseases will be discussed.
Collapse
Affiliation(s)
- Attila A Seyhan
- Pfizer Inc., Translational Immunology, Inflammation and Immunology, 200 Cambridgepark Drive, Cambridge, MA 02140, USA.
| |
Collapse
|
19
|
Chen L, McKenna JT, Bolortuya Y, Winston S, Thakkar MM, Basheer R, Brown RE, McCarley RW. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period. Eur J Neurosci 2010; 32:1528-36. [PMID: 21089218 PMCID: PMC3058252 DOI: 10.1111/j.1460-9568.2010.07401.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The locus coeruleus (LC) regulates sleep/wakefulness and is densely innervated by orexinergic neurons in the lateral hypothalamus. Here we used small interfering RNAs (siRNAs) to test the role of LC orexin type 1 receptor (OxR1) in sleep–wake control. In sleep studies, bilateral OxR1 siRNA injections led to an increase of time spent in rapid eye movement (REM) sleep, which was selective for the dark (active) period, peaked at approximately 30% of control during the second dark period after injection and then disappeared after 4 days. Cataplexy-like episodes were not observed. The percentage time spent in wakefulness and non-REM (NREM) sleep and the power spectral profile of NREM and REM sleep were unaffected. Control animals, injected with scrambled siRNA, had no sleep changes after injection. Quantification of the knockdown revealed that unilateral microinjection of siRNAs targeting OxR1 into the rat LC on two consecutive days induced a 45.5% reduction of OxR1 mRNA in the LC 2 days following the injections when compared with the contralateral side receiving injections of control (scrambled) siRNAs. This reduction disappeared 4 days after injection. Similarly, unilateral injection of OxR1 siRNA into the LC revealed a marked (33.5%) reduction of OxR1 staining 2 days following injections. In contrast, both the mRNA level and immunohistochemical staining for tyrosine hydroxylase were unaffected. The results indicate that a modest knockdown of OxR1 is sufficient to induce observable sleep changes. Moreover, orexin neurons, by acting on OxR1 in the LC, play a role in the diurnal gating of REM sleep.
Collapse
Affiliation(s)
- Lichao Chen
- Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Brockton, MA 02301,USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The microRNA (miRNA) pathway and the phenomenon of RNA interference (RNAi), which have both been shown to involve targeting of mRNAs by small RNA molecules, are interconnected and depend partly on the same cellular machinery. RNAi in vertebrates was first reported in zebrafish (Danio rerio) 10 years ago. However, reliable RNAi-based gene silencing techniques, based on injection of small interfering RNAs (siRNAs) into zygotes, have not been established for this important vertebrate model because of unspecific developmental defects. We have recently shown that these side effects can be attributed to inhibition of the miRNA pathway by siRNAs at early embryonic stages. This review highlights these findings and the function of microRNAs in zebrafish development.
Collapse
Affiliation(s)
- Anders Fjose
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | |
Collapse
|
21
|
Gupta AK, Eshraghi Y, Gliniak C, Gosain AK. Nonviral transfection of mouse calvarial organ in vitro using Accell-modified siRNA. Plast Reconstr Surg 2010; 125:494-501. [PMID: 19910849 DOI: 10.1097/prs.0b013e3181c82df1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Understanding the biology of cranial suture fusion and the precise role of involved molecules implicated in the process will help to identify key factors involved in regulation of suture fusion. Modulation of these key factors may serve as a tissue-engineering technique to replace the traditional surgical procedures for the correction of premature suture fusion. Modulation of gene expression by RNA interference is a widely used technique with high potential. Because there is no available report of calvarial organ transfection in vitro, the authors studied the development of a successful nonviral delivery technique of small inhibitory RNA (siRNA) to an in vitro calvarial organ culture system. METHODS In this study, 19-day-old male CD1 mice were euthanized and parallel craniotomies made through the parietal and frontal calvaria, 2 mm to either side of the sagittal suture, with care taken to preserve the underlying dura mater. Organs grown in vitro in a defined medium were transfected with transforming growth factor-beta1-specific Accell-modified siRNA followed by RNA isolation and quantitative polymerase chain reaction analysis. RESULTS Transfection of a calvarial organ with transforming growth factor-beta1-specific Accell-modified siRNA effectively knocks down the mRNA level. CONCLUSIONS Observations from this study indicate that in an in vitro calvarial organ culture system, a specific, efficient, and durable RNA interference activity can be achieved when Accell-modified siRNA is used. In addition to bypassing the need for toxic lipid carriers, the modifications introduced in Accell-modified siRNAs make it more stable and less off-target. This technique can potentially be used for in vivo studies once the initial effect of gene-specific siRNA on in vitro suture fusion has been determined.
Collapse
Affiliation(s)
- Ashim K Gupta
- Cleveland, Ohio From the Department of Plastic Surgery, Case Western Reserve School of Medicine
| | | | | | | |
Collapse
|
22
|
Roccaro AM, Sacco A, Husu EN, Pitsillides C, Vesole S, Azab AK, Azab F, Melhem M, Ngo HT, Quang P, Maiso P, Runnels J, Liang MC, Wong KK, Lin C, Ghobrial IM. Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood 2010; 115:559-69. [PMID: 19965685 PMCID: PMC2810978 DOI: 10.1182/blood-2009-07-235747] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 10/28/2009] [Indexed: 01/15/2023] Open
Abstract
We have previously shown clinical activity of a mammalian target of rapamycin (mTOR) complex 1 inhibitor in Waldenstrom macroglobulinemia (WM). However, 50% of patients did not respond to therapy. We therefore examined mechanisms of activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR in WM, and mechanisms of overcoming resistance to therapy. We first demonstrated that primary WM cells show constitutive activation of the PI3K/Akt pathway, supported by decreased expression of phosphate and tensin homolog tumor suppressor gene (PTEN) at the gene and protein levels, together with constitutive activation of Akt and mTOR. We illustrated that dual targeting of the PI3K/mTOR pathway by the novel inhibitor NVP-BEZ235 showed higher cytotoxicity on WM cells compared with inhibition of the PI3K or mTOR pathways alone. In addition, NVP-BEZ235 inhibited both rictor and raptor, thus abrogating the rictor-induced Akt phosphorylation. NVP-BEZ235 also induced significant cytotoxicity in WM cells in a caspase-dependent and -independent manner, through targeting the Forkhead box transcription factors. In addition, NVP-BEZ235 targeted WM cells in the context of bone marrow microenvironment, leading to significant inhibition of migration, adhesion in vitro, and homing in vivo. These studies therefore show that dual targeting of the PI3K/mTOR pathway is a better modality of targeted therapy for tumors that harbor activation of the PI3K/mTOR signaling cascade, such as WM.
Collapse
Affiliation(s)
- Aldo M Roccaro
- Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Transgenic animals are very useful models that can be utilized for the analysis of temporal and spatial gene expression in vivo. However, generation of a transgenic animal may become problematic if the presence of the transgene leads to conditions which are toxic or lethal to cell growth. In an effort to delineate the mechanism by which a specific gene contributes to cell growth and viability, an inducible and/or conditional system was established to generate transgenic animals. The systems comprise the following: (1) Selecting a specific promoter, (2) replacing a normal gene with other gene sequences (knock out), (3) promoting destruction of the mRNA (RNAi), (4) inducing and/or conditioning by drugs (Tet on/off), and (5) conditional cell knock out with cell death. The choice of system employed is dependent on the particular aim of the investigation, and may influence the final result. The inducible and conditional promoter system represents a useful experimental approach for the development of transgenic animals and the precise examination of gene function.
Collapse
|
24
|
Chen J, Tian H, Guo Z, Xia J, Kano A, Maruyama A, Jing X, Chen X. A Highly Efficient siRNA Carrier of PBLG Modified Hyperbranched PEI. Macromol Biosci 2009; 9:1247-53. [DOI: 10.1002/mabi.200900249] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Gama Sosa MA, De Gasperi R, Elder GA. Animal transgenesis: an overview. Brain Struct Funct 2009; 214:91-109. [PMID: 19937345 DOI: 10.1007/s00429-009-0230-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
Abstract
Transgenic animals are extensively used to study in vivo gene function as well as to model human diseases. The technology for producing transgenic animals exists for a variety of vertebrate and invertebrate species. The mouse is the most utilized organism for research in neurodegenerative diseases. The most commonly used techniques for producing transgenic mice involves either the pronuclear injection of transgenes into fertilized oocytes or embryonic stem cell-mediated gene targeting. Embryonic stem cell technology has been most often used to produce null mutants (gene knockouts) but may also be used to introduce subtle genetic modifications down to the level of making single nucleotide changes in endogenous mouse genes. Methods are also available for inducing conditional gene knockouts as well as inducible control of transgene expression. Here, we review the main strategies for introducing genetic modifications into the mouse, as well as in other vertebrate and invertebrate species. We also review a number of recent methodologies for the production of transgenic animals including retrovirus-mediated gene transfer, RNAi-mediated gene knockdown and somatic cell mutagenesis combined with nuclear transfer, methods that may be more broadly applicable to species where both pronuclear injection and ES cell technology have proven less practical.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | | | | |
Collapse
|
26
|
Su W, Gray SJ, Dondi R, Burley GA. Highly efficient synthesis of DNA-binding hairpin polyamides via the use of a new triphosgene coupling strategy. Org Lett 2009; 11:3910-3. [PMID: 19670849 DOI: 10.1021/ol9015139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile and highly efficient solid phase synthesis method is reported for the preparation of hairpin DNA-binding polyamides using the cost-effective triphosgene (BTC) activating agent. Difficult polyamide sequences were prepared from N-methylimidazole (Im) and N-methylpyrrole (Py) building blocks with high stepwise yields (>98%) using Boc chemistry. The versatility of the triphosgene coupling approach was also demonstrated for the first time on aryl hydrazine resins to afford biomedically relevant tail-truncated polyamides in excellent isolated yields.
Collapse
Affiliation(s)
- Wu Su
- Department of Chemistry, University of Leicester, University Road, Leicester, UK
| | | | | | | |
Collapse
|
27
|
Kim Y, Tewari M, Pajerowski JD, Cai S, Sen S, Williams J, Sirsi S, Lutz G, Discher DE. Polymersome delivery of siRNA and antisense oligonucleotides. J Control Release 2009; 134:132-40. [PMID: 19084037 PMCID: PMC2740336 DOI: 10.1016/j.jconrel.2008.10.020] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/24/2008] [Indexed: 01/07/2023]
Abstract
siRNA and antisense oligonucleotides, AON, have similar size and negative charge and are often packaged for in vitro delivery with cationic lipids or polymers-but exposed positive charge is problematic in vivo. Here we demonstrate loading and functional delivery of RNAi and AON with non-ionic, nano-transforming polymersomes. These degradable carriers are taken up passively by cultured cells after which the vesicles transform into micelles that allow endolysosomal escape and delivery of either siRNA into cytosol for mRNA knockdown or else AON into the nucleus for exon skipping within pre-mRNA. Polymersome-mediated knockdown appears as efficient as common cationic-lipid transfection and about half as effective as Lenti-virus after sustained selection. For AON, initial results also show that intramuscular injection into a mouse model of muscular dystrophy leads to the expected protein expression, which occurs along the entire length of muscle. The lack of cationic groups in antisense polymersomes together with initial tests of efficacy suggests broader utility of these non-viral carriers.
Collapse
Affiliation(s)
- Younghoon Kim
- Department of Chemical and Biomolecular Engineering and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, United States
| | - Manorama Tewari
- Department of Chemical and Biomolecular Engineering and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, United States
| | - J. David Pajerowski
- Department of Chemical and Biomolecular Engineering and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, United States
| | - Shenshen Cai
- Department of Chemical and Biomolecular Engineering and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, United States
| | - Shamik Sen
- Department of Chemical and Biomolecular Engineering and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, United States
| | - Jason Williams
- Department of Pharmacology, College of Medicine, Drexel University, Philadelphia, United States
| | - Shashank Sirsi
- Department of Pharmacology, College of Medicine, Drexel University, Philadelphia, United States
| | - Gordon Lutz
- Department of Pharmacology, College of Medicine, Drexel University, Philadelphia, United States
| | - Dennis E. Discher
- Department of Chemical and Biomolecular Engineering and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
28
|
Li AJ, Wang Q, Dinh TT, Ritter S. Simultaneous silencing of Npy and Dbh expression in hindbrain A1/C1 catecholamine cells suppresses glucoprivic feeding. J Neurosci 2009; 29:280-7. [PMID: 19129404 PMCID: PMC2711634 DOI: 10.1523/jneurosci.4267-08.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 11/21/2022] Open
Abstract
Previous data have strongly implicated hindbrain catecholamine/neuropeptide Y (NPY) coexpressing neurons as key mediators of the glucoprivic feeding response. Catecholamine/NPY cell bodies are concentrated in the A1 and caudal C1 cell cluster (A1/C1) in the ventrolateral medulla, a region highly sensitive to glucoprivic challenge. To further investigate the importance of this catecholamine subpopulation in glucoregulation, we used small interfering RNA (siRNA) technology to produce a targeted gene knockdown of NPY and dopamine-beta-hydroxylase (DBH), a catecholamine biosynthetic enzyme. Unilateral injection of NPY siRNA and DBH siRNA (0.02 nmol each) both significantly inhibited expression of the targeted genes up to 2 d, as revealed by real-time PCR, and reduced protein expression up to 8 d, as revealed by immunohistochemistry, compared with the control nontargeting siRNA (ntRNA) side. Subsequently, targeted siRNA or control ntRNA was injected bilaterally into A1/C1 and responses to 2-deoxy-D-glucose (2DG; 200 mg/kg)-induced glucoprivation were tested 3-7 d later. Silencing of either Npy or Dbh alone did not reduce glucoprivic feeding or hyperglycemic responses, compared with responses of ntRNA-injected controls. In contrast, simultaneous silencing of both Npy and Dbh reduced 2DG-induced feeding by 61%. Neither the hyperglycemic response to 2DG nor feeding elicited by mercaptoacetate (68 mg/kg)-induced blockade of fatty acid oxidation ("lipoprivic feeding") was reduced by simultaneous silencing of these two genes. These results suggest that catecholamines and NPY act conjointly to control glucoprivic feeding and that the crucial NPY/catecholamine coexpressing neurons are concentrated in the A1/C1 cell group.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-6520, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Tumors are composed of both malignant and normal cells, including fibroblasts, endothelial cells, mesenchymal stem cells, and inflammatory immune cells such as macrophages. These various stromal components interact with cancer cells to promote growth and metastasis. For example, macrophages, attracted by colony-stimulating factor-1 (CSF-1) produced by tumor cells, in turn produce various growth factors such as vascular endothelial growth factor, which supports the growth of tumor cells and their interaction with blood vessels leading to enhanced tumor cell spreading. The activation of autocrine and paracrine oncogenic signaling pathways by stroma-derived growth factors and cytokines has been implicated in promoting tumor cell proliferation and metastasis. Furthermore, matrix metalloproteinases (MMPs) derived from both tumor cells and the stromal compartment are regarded as major players assisting tumor cells during metastasis. Collectively, these recent findings indicate that targeting tumor-stroma interactions is a promising strategy in the search for novel treatment modalities in human cancer. This chapter summarizes our current understanding of the tumor microenvironment and highlights some potential targets for therapeutic intervention with small interfering RNAs.
Collapse
|
30
|
Hoyer D, Thakker DR, Natt F, Maier R, Huesken D, Müller M, Flor P, VAN DER Putten H, Schmutz M, Bilbe G, Cryan JF. Global Down-Regulation of Gene Expression in the Brain Using RNA Interference, with Emphasis on Monoamine Transporters and GPCRs: Implications for Target Characterization in Psychiatric and Neurological Disorders. J Recept Signal Transduct Res 2008; 26:527-47. [PMID: 17118797 DOI: 10.1080/10799890600929663] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RNA interference (RNAi) is a natural mechanism for regulating gene expression, which exists in plants, invertebrates, and mammals. We investigated whether non-viral infusion of short interfering RNA (siRNA) by the intracerebroventricular route would enable a sequence-specific gene knockdown in the mouse brain and whether the knockdown translates into disease-relevant behavioral changes. Initially, we targeted enhanced green fluorescent protein (EGFP) in mice overexpressing EGFP. A selective knockdown of both EGFP protein and mRNA was observed throughout the brain, with lesser down-regulation in regions distal to the infusion site. We then targeted endogenous genes, encoding the dopamine (DAT) and serotonin transporters (SERT). DAT-siRNA infusion in adult mice produced a significant down-regulation of DAT mRNA and protein and elicited hyperlocomotion similar, but delayed, to that produced on infusion of GBR-12909, a potent and selective DAT inhibitor. Similarly, SERT-siRNA infusion resulted in significant knockdown of SERT mRNA and protein and elicited reduced immobility in the forced swim test similar to that obtained on infusion of citalopram, a very selective and potent SSRI. Application of this non-viral RNAi approach may accelerate target validation for neuropsychiatric disorders that involve a complex interplay of gene(s) from various brain regions.
Collapse
Affiliation(s)
- Daniel Hoyer
- Psychiatry Program, Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood 2008; 111:4752-63. [PMID: 18316628 DOI: 10.1182/blood-2007-11-120972] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Waldenström macroglobulinemia (WM) is an incurable low-grade B-cell lymphoma characterized by high protein turnover. We dissected the biologic role of the proteasome in WM using 2 proteasome inhibitors, NPI-0052 and bortezomib. We found that NPI-0052 inhibited proliferation and induced apoptosis in WM cells, and that the combination of NPI-0052 and bortezomib induced synergistic cytotoxicity in WM cells, leading to inhibition of nuclear translocation of p65NF-kappaB and synergistic induction of caspases-3, -8, and -9 and PARP cleavage. These 2 agents inhibited the canonical and noncanonical NF-kappaB pathways and acted synergistically through their differential effect on Akt activity and on chymotrypsin-like, caspaselike, and trypsinlike activities of the proteasome. We demonstrated that NPI-0052-induced cytotoxicity was completely abrogated in an Akt knockdown cell line, indicating that its major activity is mediated through the Akt pathway. Moreover, we demonstrated that NPI-0052 and bortezomib inhibited migration and adhesion in vitro and homing of WM cells in vivo, and overcame resistance induced by mesenchymal cells or by the addition of interleukin-6 in a coculture in vitro system. Theses studies enhance our understanding of the biologic role of the proteasome pathway in WM, and provide the preclinical basis for clinical trials of combinations of proteasome inhibitors in WM.
Collapse
|
32
|
Dann CT, Garbers DL. Production of knockdown rats by lentiviral transduction of embryos with short hairpin RNA transgenes. Methods Mol Biol 2008; 450:193-209. [PMID: 18370061 DOI: 10.1007/978-1-60327-214-8_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The primary method for determining the function of a gene in rodents has been to make a knockout mouse through homologous recombination in embryonic stem cells. However, with the advent of RNA interference (RNAi) technology, new methods for studying gene function are now possible in a wide array of animals. We describe a protocol for knocking down a gene of interest in vivo in rats by stably expressing a short hairpin RNA (shRNA). Transgenic rats are produced using a simple and efficient procedure for transducing single-cell embryos with a lentiviral vector. The vector described is designed to result in ubiquitous expression of shRNA. Thus, it is well suited to study genes expressed specifically in male germ cells in which the predicted phenotype would be male sterility. This system has been used to generate a transgenic line with stable and heritable knockdown of the gene Deleted in Azoospermia-like (Dazl), resulting in male sterility and germline transmission of the transgene through females.
Collapse
Affiliation(s)
- Christina Tenenhaus Dann
- Department of Pharmacology and Cecil H and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
33
|
Maurel P, Einheber S, Galinska J, Thaker P, Lam I, Rubin MB, Scherer SS, Murakami Y, Gutmann DH, Salzer JL. Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. ACTA ACUST UNITED AC 2007; 178:861-74. [PMID: 17724124 PMCID: PMC2064549 DOI: 10.1083/jcb.200705132] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axon-glial interactions are critical for the induction of myelination and the domain organization of myelinated fibers. Although molecular complexes that mediate these interactions in the nodal region are known, their counterparts along the internode are poorly defined. We report that neurons and Schwann cells express distinct sets of nectin-like (Necl) proteins: axons highly express Necl-1 and -2, whereas Schwann cells express Necl-4 and lower amounts of Necl-2. These proteins are strikingly localized to the internode, where Necl-1 and -2 on the axon are directly apposed by Necl-4 on the Schwann cell; all three proteins are also enriched at Schmidt-Lanterman incisures. Binding experiments demonstrate that the Necl proteins preferentially mediate heterophilic rather than homophilic interactions. In particular, Necl-1 on axons binds specifically to Necl-4 on Schwann cells. Knockdown of Necl-4 by short hairpin RNA inhibits Schwann cell differentiation and subsequent myelination in cocultures. These results demonstrate a key role for Necl-4 in initiating peripheral nervous system myelination and implicate the Necl proteins as mediators of axo-glial interactions along the internode.
Collapse
Affiliation(s)
- Patrice Maurel
- Department of Cell Biology and Neurology, Smilow Neuroscience Program, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cahill AL, Moore JM, Sabar FI, Harkins AB. Variability in RNA interference in neuroendocrine PC12 cell lines stably transfected with an shRNA plasmid. J Neurosci Methods 2007; 166:236-40. [PMID: 17767962 DOI: 10.1016/j.jneumeth.2007.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
RNA interference (RNAi) has quickly become a very powerful technique for specifically suppressing or knocking down the expression of any desired gene. Many fields of research, including neuroscience, have benefitted from RNAi methods. It has been well documented that different small interfering RNAs (siRNAs) and small hairpin RNAs (shRNAs) vary greatly in terms of their effectiveness, and much attention has been focused on guidelines and algorithms for the selection of effective siRNAs. However, it has not been widely appreciated that a single shRNA-expressing plasmid can also produce widely varying levels of knockdown in different stably transfected cell lines derived from the same transfection. Here we report that knockdown of three distinct target proteins varies from minimal to almost complete in independent, stably transfected PC12 cell lines. This variability in knockdown among cell lines emphasizes the importance of characterizing a number of cell lines when attempting to establish stable knockdown cell lines, but also offers the possibility of studying the effects of graded levels of protein expression.
Collapse
Affiliation(s)
- Anne L Cahill
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
35
|
Zhang S, Zhao B, Jiang H, Wang B, Ma B. Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release 2007; 123:1-10. [PMID: 17716771 DOI: 10.1016/j.jconrel.2007.07.016] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 07/19/2007] [Indexed: 01/13/2023]
Abstract
RNA interference (RNAi) is one of the most importantly protective phenomena forming from the process combating against virus. Since its high efficiency for silencing the expression of proteins at the posttranscriptional level, RNAi shows great prospect in therapeutics for diseases. However, the delivery of siRNA into cells, tissues or organs remains to be a big obstacle for its applications. Many vectors for siRNA delivery have been developed including viral vectors and non-viral vectors, among them non-viral vectors have the advantages of low toxicity, ease of synthesis and low immune response over viral ones. Cationic liposomes and polymer particles, major varieties of non-viral vectors, used for gene delivery, have shown to be suitable for the delivery of siRNA. Based on the concise introduction of RNAi, this article reviews the non-viral delivery systems of siRNA, hoping to provide helpful information for the development of delivery systems of siRNA, and to summarize literatures about siRNA delivery published in recent years.
Collapse
Affiliation(s)
- Shubiao Zhang
- SEAC-ME Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China.
| | | | | | | | | |
Collapse
|
36
|
Leleu X, Jia X, Runnels J, Ngo HT, Moreau AS, Farag M, Spencer JA, Pitsillides CM, Hatjiharissi E, Roccaro A, O'Sullivan G, McMillin DW, Moreno D, Kiziltepe T, Carrasco R, Treon SP, Hideshima T, Anderson KC, Lin CP, Ghobrial IM. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood 2007; 110:4417-26. [PMID: 17761832 PMCID: PMC2234792 DOI: 10.1182/blood-2007-05-092098] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Waldenstrom macroglobulinemia (WM) is an incurable low-grade lymphoplasmacytic lymphoma. We demonstrate up-regulated Akt activity in WM, and that Akt down-regulation by Akt knockdown and the inhibitor perifosine leads to significant inhibition of proliferation and induction of apoptosis in WM cells in vitro, but not in normal donor peripheral blood and hematopoietic progenitors. Importantly, down-regulation of Akt induced cytotoxicity of WM cells in the bone marrow microenvironment (BMM) context. Perifosine induced significant reduction in WM tumor growth in vivo in a subcutaneous xenograft model through inhibition of Akt phosphorylation and downstream targets. We also demonstrated that Akt pathway down-regulation inhibited migration and adhesion in vitro and homing of WM tumor cells to the BMM in vivo. Proteomic analysis identified other signaling pathways modulated by perifosine, such as activation of ERK MAPK pathway, which induces survival of tumor cells. Interestingly, MEK inhibitor significantly enhanced perifosine-induced cytotoxicity in WM cells. Using Akt knockdown experiments and specific Akt and PI3K inhibitors, we demonstrated that ERK activation is through a direct effect, rather than feedback activation, of perifosine upstream ERK pathway. These results provide understanding of biological effects of Akt pathway in WM and provide the framework for clinical evaluation of perifosine in WM patients.
Collapse
Affiliation(s)
- Xavier Leleu
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dzhashiashvili Y, Zhang Y, Galinska J, Lam I, Grumet M, Salzer JL. Nodes of Ranvier and axon initial segments are ankyrin G-dependent domains that assemble by distinct mechanisms. ACTA ACUST UNITED AC 2007; 177:857-70. [PMID: 17548513 PMCID: PMC2064285 DOI: 10.1083/jcb.200612012] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Axon initial segments (AISs) and nodes of Ranvier are sites of action potential generation and propagation, respectively. Both domains are enriched in sodium channels complexed with adhesion molecules (neurofascin [NF] 186 and NrCAM) and cytoskeletal proteins (ankyrin G and βIV spectrin). We show that the AIS and peripheral nervous system (PNS) nodes both require ankyrin G but assemble by distinct mechanisms. The AIS is intrinsically specified; it forms independent of NF186, which is targeted to this site via intracellular interactions that require ankyrin G. In contrast, NF186 is targeted to the node, and independently cleared from the internode, by interactions of its ectodomain with myelinating Schwann cells. NF186 is critical for and initiates PNS node assembly by recruiting ankyrin G, which is required for the localization of sodium channels and the entire nodal complex. Thus, initial segments assemble from the inside out driven by the intrinsic accumulation of ankyrin G, whereas PNS nodes assemble from the outside in, specified by Schwann cells, which direct the NF186-dependent recruitment of ankyrin G.
Collapse
Affiliation(s)
- Yulia Dzhashiashvili
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
38
|
Taishi P, Churchill L, Wang M, Kay D, Davis CJ, Guan X, De A, Yasuda T, Liao F, Krueger JM. TNFalpha siRNA reduces brain TNF and EEG delta wave activity in rats. Brain Res 2007; 1156:125-32. [PMID: 17531209 PMCID: PMC2041959 DOI: 10.1016/j.brainres.2007.04.072] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/27/2007] [Accepted: 04/28/2007] [Indexed: 11/21/2022]
Abstract
Tumor necrosis factor alpha (TNFalpha) is a pleiotropic cytokine with several CNS physiological and pathophysiological actions including sleep, memory, thermal and appetite regulation. Short interfering RNAs (siRNA) targeting TNFalpha were incubated with cortical cell cultures and microinjected into the primary somatosensory cortex (SSctx) of rats. The TNFalpha siRNA treatment specifically reduced TNFalpha mRNA by 45% in vitro without affecting interleukin-6 or gluR1-4 mRNA levels. In vivo the TNFalpha siRNAalpha reduced TNFalpha mRNA, interleukin-6 mRNA and gluR1 mRNA levels compared to treatment with a scrambled control siRNA. After in vivo microinjection, the density of TNFalpha-immunoreactive cells in layer V of the SSctx was also reduced. Electroencephalogram (EEG) delta wave power was decreased on days 2 and 3 on the side of the brain that received the TNFalpha siRNA microinjection relative to the side receiving the control siRNA. These findings support the hypothesis that TNFalpha siRNA attenuates TNFalpha mRNA and TNFalpha protein in the rat cortex and that those reductions reduce cortical EEG delta power. Results also are consistent with the notion that TNFalpha is involved in CNS physiology including sleep regulation.
Collapse
Affiliation(s)
- Ping Taishi
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University Pullman, WA 99164-6520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X, Lu G, Timm M, Kumar A, Côté D, Veilleux I, Hedin KE, Roodman GD, Witzig TE, Kung AL, Hideshima T, Anderson KC, Lin CP, Ghobrial IM. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 2007; 109:2708-17. [PMID: 17119115 PMCID: PMC1852222 DOI: 10.1182/blood-2006-07-035857] [Citation(s) in RCA: 346] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mechanisms by which multiple myeloma (MM) cells migrate and home to the bone marrow are not well understood. In this study, we sought to determine the effect of the chemokine SDF-1 (CXCL12) and its receptor CXCR4 on the migration and homing of MM cells. We demonstrated that CXCR4 is differentially expressed at high levels in the peripheral blood and is down-regulated in the bone marrow in response to high levels of SDF-1. SDF-1 induced motility, internalization, and cytoskeletal rearrangement in MM cells evidenced by confocal microscopy. The specific CXCR4 inhibitor AMD3100 and the anti-CXCR4 antibody MAB171 inhibited the migration of MM cells in vitro. CXCR4 knockdown experiments demonstrated that SDF-1-dependent migration was regulated by the P13K and ERK/ MAPK pathways but not by p38 MAPK. In addition, we demonstrated that AMD3100 inhibited the homing of MM cells to the bone marrow niches using in vivo flow cytometry, in vivo confocal microscopy, and whole body bioluminescence imaging. This study, therefore, demonstrates that SDF-1/CXCR4 is a critical regulator of MM homing and that it provides the framework for inhibitors of this pathway to be used in future clinical trials to abrogate MM trafficking.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Benzylamines
- Bone Marrow/immunology
- Bone Marrow/pathology
- Case-Control Studies
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/physiology
- Chemokine CXCL12
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/blood
- Chemokines, CXC/physiology
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Cyclams
- Cytoskeleton/physiology
- Heterocyclic Compounds/pharmacology
- Humans
- MAP Kinase Signaling System
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Multiple Myeloma/physiopathology
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/blood
- Receptors, CXCR4/genetics
- Receptors, CXCR4/physiology
Collapse
Affiliation(s)
- Yazan Alsayed
- University of Pittsburgh Cancer Institute, Division of Hematology/Oncology, Department of Internal Medicine, University of Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Luo Q, Kang Q, Song WX, Luu HH, Luo X, An N, Luo J, Deng ZL, Jiang W, Yin H, Chen J, Sharff KA, Tang N, Bennett E, Haydon RC, He TC. Selection and validation of optimal siRNA target sites for RNAi-mediated gene silencing. Gene 2007; 395:160-9. [PMID: 17449199 DOI: 10.1016/j.gene.2007.02.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 11/23/2022]
Abstract
RNA interference (RNAi)-mediated gene silencing has become a valuable tool for functional studies, reverse genomics, and drug discoveries. One major challenge of using RNAi is to identify the most effective short interfering RNAs (siRNAs) sites of a given gene. Although several published bioinformatic prediction models have proven useful, the process to select and validate optimal siRNA sites for a given gene remains empirical and laborious. Here, we developed a fluorescence-based selection system using a retroviral vector backbone, namely pSOS, which was based on the premise that candidate siRNAs would knockdown the chimeric transcript between GFP and target gene. The expression of siRNA was driven by the opposing convergent H1 and U6 promoters. This configuration simplifies the cloning of duplex siRNA oligonucleotide cassettes. We demonstrated that GFP signal reduction was closely correlated with siRNA knockdown efficiency of human beta-catenin, as well as with the inhibition of beta-catenin/Tcf4 signaling activity. The pSOS should not only facilitate the selection and validation of candidate siRNA sites, but also provide efficient delivery tools of siRNAs via viral vectors in mammalian cells. Thus, the pSOS system represents an efficient and user-friendly strategy to select and validate siRNA target sites.
Collapse
Affiliation(s)
- Qing Luo
- The Children's Hospital, and the Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing University of Medical Sciences, Chongqing 400016, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Christensen HS, Daher A, Soye KJ, Frankel LB, Alexander MR, Lainé S, Bannwarth S, Ong CL, Chung SWL, Campbell SM, Purcell DFJ, Gatignol A. Small interfering RNAs against the TAR RNA binding protein, TRBP, a Dicer cofactor, inhibit human immunodeficiency virus type 1 long terminal repeat expression and viral production. J Virol 2007; 81:5121-31. [PMID: 17360756 PMCID: PMC1900231 DOI: 10.1128/jvi.01511-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is now widely used for gene silencing in mammalian cells. The mechanism uses the RNA-induced silencing complex, in which Dicer, Ago2, and the human immunodeficiency virus type 1 (HIV-1) TAR RNA binding protein (TRBP) are the main components. TRBP is a protein that increases HIV-1 expression and replication by inhibition of the interferon-induced protein kinase PKR and by increasing translation of viral mRNA. After HIV infection, TRBP could restrict the viral RNA through its activity in RNAi or could contribute more to the enhancement of viral replication. To determine which function will be predominant in the virological context, we analyzed whether the inhibition of its expression could enhance or decrease HIV replication. We have generated small interfering RNAs (siRNAs) against TRBP and found that they decrease HIV-1 long terminal repeat (LTR) basal expression 2-fold, and the LTR Tat transactivated level up to 10-fold. In the context of HIV replication, siRNAs against TRBP decrease the expression of viral genes and inhibit viral production up to fivefold. The moderate increase in PKR expression and activation indicates that it contributes partially to viral gene inhibition. The moderate decrease in micro-RNA (miRNA) biogenesis by TRBP siRNAs suggests that in the context of HIV replication, TRBP functions other than RNAi are predominant. In addition, siRNAs against Dicer decrease viral production twofold and impede miRNA biogenesis. These results suggest that, in the context of HIV replication, TRBP contributes mainly to the enhancement of virus production and that Dicer does not mediate HIV restriction by RNAi.
Collapse
Affiliation(s)
- Helen S Christensen
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Recently, RNA interference has evolved into a powerful research tool to functionally characterize genes. Genome-wide RNA interference reagents can study the loss-of-function phenotypes of candidate genes in the context of various disease model systems. In this review, we discuss the data from the most recent studies using RNA interference reagents with a focus on RNA interference-based genomic screening as a tool to expand our knowledge about the molecular basis of cancer. RECENT FINDINGS Tumorigenesis is the result of the progressive accumulation of mutations in genes controlling cell proliferation and death. Various genes carrying these alterations are known to be directly linked to tumor growth; however, how to translate this knowledge into effective chemotherapeutics, nontoxic to normal cells, is still a subject of intensive research. SUMMARY Loss-of-function studies offer a potential for validation of known and unrecognized tumor-associated targets. RNA interference-mediated gene knockdown can be exploited to study the reprogrammed circuitry of genes, discover gene interactions restricted to cancer cells and identify mechanisms of chemoresistance in cancer cells. In addition, the simultaneous use of cancer drugs and RNA interference also provides a paradigm to develop strategies to inactivate essential genes promoting neoplastic growth.
Collapse
Affiliation(s)
- Alex Gaither
- Genome and Proteome Sciences Department, Platform and Chemical Biology Unit, Novartis Institute for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
43
|
Moreau AS, Jia X, Ngo HT, Leleu X, O'Sullivan G, Alsayed Y, Leontovich A, Podar K, Kutok J, Daley J, Lazo-Kallanian S, Hatjiharissi E, Raab MS, Xu L, Treon SP, Hideshima T, Anderson KC, Ghobrial IM. Protein kinase C inhibitor enzastaurin induces in vitro and in vivo antitumor activity in Waldenstrom macroglobulinemia. Blood 2007; 109:4964-72. [PMID: 17284528 DOI: 10.1182/blood-2006-10-054577] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Waldenström macroglobulinemia (WM) is an incurable lymphoplasmacytic lymphoma with limited options of therapy. Protein kinase Cbeta (PKCbeta) regulates cell survival and growth in many B-cell malignancies. In this study, we demonstrate up-regulation of PKCbeta protein in WM using protein array techniques and immunohistochemistry. Enzastaurin, a PKCbeta inhibitor, blocked PKCbeta activity and induced a significant decrease of proliferation at 48 hours in WM cell lines (IC(50), 2.5-10 muM). Similar effects were demonstrated in primary CD19(+) WM cells, without cytotoxicity on peripheral blood mononuclear cells. In addition, enzastaurin overcame tumor cell growth induced by coculture of WM cells with bone marrow stromal cells. Enzastaurin induced dose-dependent apoptosis at 48 hours mediated via induction of caspase-3, caspase-8, caspase-9, and PARP cleavage. Enzastaurin inhibited Akt phosphorylation and Akt kinase activity, as well as downstream p-MARCKS and ribosomal p-S6. Furthermore, enzastaurin demonstrated additive cytotoxicity in combination with bortezomib, and synergistic cytotoxicity in combination with fludarabine. Finally, in an in vivo xenograft model of human WM, significant inhibition of tumor growth was observed in the enzastaurin-treated mice (P = .028). Our studies therefore show that enzastaurin has significant antitumor activity in WM both in vitro and in vivo, providing the framework for clinical trials to improve patient outcome in WM.
Collapse
Affiliation(s)
- Anne-Sophie Moreau
- Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xuan B, Qian Z, Tan C, Min T, Shen S, Huang W. esiRNAs purified with chromatography suppress homologous gene expression with high efficiency and specificity. Mol Biotechnol 2007; 31:203-9. [PMID: 16230770 DOI: 10.1385/mb:31:3:203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many preclinical studies have shown RNA interference (RNAi) as a new promising way to treat various human diseases including cancer and virus infection and there is an increasing demand for the large-scale preparation of short interfering RNAs (siRNAs) at low cost. Data are accumulating to show that endoribonuclease-prepared siRNAs (esiRNAs) are superior to chemically synthesized siRNAs in terms of expense, efficiency, and specificity. Yet all procedures available for esiRNA purification were designed to produce small amount of siRNAs for laboratory use. In this article, a new method of purification of esiRNAs based on ion exchange chromatography and size exclusion chromatography is reported. The esiRNAs prepared with this method are shown here to be of high purity and specifically suppress homologous gene expression without activating interferon response and with higher efficiency than chemically synthesized siRNAs. We can expect that the new method can be scaled up easily to provide large quantities of esiRNAs to meet the requirement of preclinical and clinical studies.
Collapse
Affiliation(s)
- Baoqin Xuan
- Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
45
|
Hoyer D, Dev KK. RNA interference as a therapeutic strategy for treating CNS disorders. DRUG DISCOVERY TODAY: THERAPEUTIC STRATEGIES 2006; 3:451-456. [PMID: 32288775 PMCID: PMC7105917 DOI: 10.1016/j.ddstr.2006.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNA interference (RNAi) controls gene silencing in most living organisms. The potential clinical applications of RNAi represent a strategy with unsurpassed selectivity, with the ability to target multiple disease-related genes, independent of their perceived drugability. The design of highly selective and efficacious small interfering (siRNAs) and short hairpin RNAs (shRNAs) has become routine, owing to significant progress in modeling and chemistry. RNAi significantly downregulates gene expression and function both in vitro and in vivo, including in the brain. This essay highlights recent findings and how the pharmaceutical industry intends to apply RNAi for the treatment neuropsychiatric and other diseases. David Sibley – National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA C. Anthony Altar – Psychiatric Genomics, Gaithersburg, USA Theresa Branchek – Lundbeck Research, Paramus, USA
Collapse
|
46
|
Wyszko E, Nowak M, Pospieszny H, Szymanski M, Pas J, Barciszewska MZ, Barciszewski J. Leadzyme formed in vivo interferes with tobacco mosaic virus infection in Nicotiana tabacum. FEBS J 2006; 273:5022-31. [PMID: 17032353 PMCID: PMC7163940 DOI: 10.1111/j.1742-4658.2006.05497.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/03/2006] [Accepted: 09/12/2006] [Indexed: 11/29/2022]
Abstract
We developed a new method for inhibiting tobacco mosaic virus infection in tobacco plants based on specific RNA hydrolysis induced by a leadzyme. We identified a leadzyme substrate target sequence in genomic tobacco mosaic virus RNA and designed a 16-mer oligoribonucleotide capable of forming a specific leadzyme motif with a five-nucleotide catalytic loop. The synthetic 16-mer RNA was applied with nontoxic, catalytic amount of lead to infected tobacco leaves. We observed inhibition of tobacco mosaic virus infection in tobacco leaves in vivo due to specific tobacco mosaic virus RNA cleavage effected by leadzyme. A significant reduction in tobacco mosaic virus accumulation was observed even when the leadzyme was applied up to 2 h after inoculation of leaves with tobacco mosaic virus. This process, called leadzyme interference, is determined by specific recognition and cleavage of the target site by the RNA catalytic strand in the presence of Pb(2+).
Collapse
Affiliation(s)
- Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen Z, Stockton J, Mathis D, Benoist C. Modeling CTLA4-linked autoimmunity with RNA interference in mice. Proc Natl Acad Sci U S A 2006; 103:16400-5. [PMID: 17060611 PMCID: PMC1637594 DOI: 10.1073/pnas.0607854103] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CTLA4 gene is important for T lymphocyte-mediated immunoregulation and has been associated with several autoimmune diseases, in particular, type 1 diabetes. To model the impact of natural genetic variants of CTLA4, we constructed RNA interference (RNAi) "knockdown" mice through lentiviral transgenesis. Variegation of expression was observed in founders but proved surmountable because it reflected parental imprinting, with derepression by transmission from male lentigenics. Unlike the indiscriminate multiorgan autoimmune phenotype of the corresponding knockout mice, Ctla4 knockdown animals had a disease primarily focused on the pancreas, with rapid progression to diabetes. As with the human disease, the knockdown phenotype was tempered by genetic-modifier loci. RNAi should be more pertinent than gene ablation in modeling disease pathogenesis linked to a gene-dosage variation.
Collapse
Affiliation(s)
- Zhibin Chen
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - John Stockton
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
- *To whom correspondence may be addressed at:
Section on Immunology and Immunogenetics, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215. E-mail:
| | - Christophe Benoist
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
- *To whom correspondence may be addressed at:
Section on Immunology and Immunogenetics, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215. E-mail:
| |
Collapse
|
48
|
Li S, Salgar SK, Thanikachalam M, Murdock AD, Gammie JS, Demetris AJ, Zeevi A, Pham SM. Modeling CTLA4-linked autoimmunity with RNA interference in mice. Proc Natl Acad Sci U S A 2006; 136:238-46. [PMID: 17046021 DOI: 10.1016/j.jss.2006.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 05/02/2006] [Accepted: 05/25/2006] [Indexed: 11/27/2022] Open
Abstract
The CTLA4 gene is important for T lymphocyte-mediated immunoregulation and has been associated with several autoimmune diseases, in particular, type 1 diabetes. To model the impact of natural genetic variants of CTLA4, we constructed RNA interference (RNAi) "knockdown" mice through lentiviral transgenesis. Variegation of expression was observed in founders but proved surmountable because it reflected parental imprinting, with derepression by transmission from male lentigenics. Unlike the indiscriminate multiorgan autoimmune phenotype of the corresponding knockout mice, Ctla4 knockdown animals had a disease primarily focused on the pancreas, with rapid progression to diabetes. As with the human disease, the knockdown phenotype was tempered by genetic-modifier loci. RNAi should be more pertinent than gene ablation in modeling disease pathogenesis linked to a gene-dosage variation.
Collapse
Affiliation(s)
- Sen Li
- Division of Cardiothoracic Surgery, University of Miami School of Medicine, Miami, Florida 33156, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen L, Thakkar MM, Winston S, Bolortuya Y, Basheer R, McCarley RW. REM sleep changes in rats induced by siRNA-mediated orexin knockdown. Eur J Neurosci 2006; 24:2039-48. [PMID: 17067300 PMCID: PMC2394504 DOI: 10.1111/j.1460-9568.2006.05058.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Short interfering RNAs (siRNA) targeting prepro-orexin mRNA were microinjected into the rat perifornical hypothalamus. Prepro-orexin siRNA-treated rats had a significant (59%) reduction in prepro-orexin mRNA compared to scrambled siRNA-treated rats 2 days postinjection, whereas prodynorphin mRNA was unaffected. The number of orexin-A-positive neurons on the siRNA-treated side decreased significantly (23%) as compared to the contralateral control (scrambled siRNA-treated) side. Neither the colocalized dynorphin nor the neighbouring melanin-concentrating hormone neurons were affected. The number of orexin-A-positive neurons on the siRNA-treated side did not differ from the number on the control side 4 or 6 days postinjection. Behaviourally, there was a persistent (approximately 60%) increase in the amount of time spent in rapid eye movement (REM) sleep during the dark (active) period for 4 nights postinjection, in rats treated with prepro-orexin siRNA bilaterally. This increase occurred mainly because of an increased number of REM episodes and decrease in REM-to-REM interval. Cataplexy-like episodes were also observed in some of these animals. Wakefulness and NREM sleep were unaffected. The siRNA-induced increase in REM sleep during the dark cycle reverted to control values on the 5th day postinjection. In contrast, the scrambled siRNA-treated animals only had a transient increase in REM sleep for the first postinjection night. Our results indicate that siRNA can be usefully employed in behavioural studies to complement other loss-of-function approaches. Moreover, these data suggest that the orexin system plays a role in the diurnal gating of REM sleep.
Collapse
Affiliation(s)
- Lichao Chen
- Department of Psychiatry, Harvard Medical School, Boston VA Healthcare System, 940 Belmont Street, Brockton, MA 02301, USA
| | - Mahesh M. Thakkar
- Department of Neurology, University of Missouri, Harry Truman Memorial VA Hospital, 800 Hospital Drive, Columbia, MO 65203, USA
| | - Stuart Winston
- Department of Psychiatry, Harvard Medical School, Boston VA Healthcare System, 940 Belmont Street, Brockton, MA 02301, USA
| | - Yunren Bolortuya
- Department of Psychiatry, Harvard Medical School, Boston VA Healthcare System, 940 Belmont Street, Brockton, MA 02301, USA
| | - Radhika Basheer
- Department of Psychiatry, Harvard Medical School, Boston VA Healthcare System, 940 Belmont Street, Brockton, MA 02301, USA
| | - Robert W. McCarley
- Department of Psychiatry, Harvard Medical School, Boston VA Healthcare System, 940 Belmont Street, Brockton, MA 02301, USA
| |
Collapse
|
50
|
Toub N, Malvy C, Fattal E, Couvreur P. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed Pharmacother 2006; 60:607-20. [PMID: 16952435 DOI: 10.1016/j.biopha.2006.07.093] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 07/28/2006] [Indexed: 02/08/2023] Open
Abstract
One way to reach intracellular therapeutic targets in cells consists in the use of short nucleic acids which will bind specifically to on targets thanks to either Watson-Crick base pairing or protein nucleic acids recognition rules. Among these short nucleic acids an important class of therapeutic agents is antisense oligonucleotides and siRNAs. However, the major problem of nucleic acids is their poor stability in biological media. One method, among others, to solve the stability problem is the use of colloïdal carriers such as nanoparticles. Nanoparticles have already been applied with success to in vitro drug delivery to particular types of cells and in vivo in several experimental models. Many membrane and intracellular processes deal with nanosized structure (typically 100 nm) which are processed further through the recognition sites of receptors and enzymes. Thus non-viral nanoparticles are interesting candidates to present biochemical molecules such as nucleic acids and proteins to cells as well as to protect them in vivo during delivery. This review focuses on the recent developments in the design of nanotechnologies to improve the delivery of antisense oligonucleotides and siRNAs.
Collapse
Affiliation(s)
- N Toub
- Laboratoire de Physicochimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Faculté de Pharmacie, 5, rue Jean-Baptiste-Clement, 92286 Châtenay-Malabry cedex, France
| | | | | | | |
Collapse
|