1
|
Rajput I, Rajendran VM, Nickerson AJ, Lodge JPA, Sandle GI. Somatostatin peptides prevent increased human colonic epithelial permeability induced by hypoxia. Am J Physiol Gastrointest Liver Physiol 2024; 327:G701-G710. [PMID: 39226584 DOI: 10.1152/ajpgi.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Mesenteric ischemia increases gut permeability and bacterial translocation. In human colon, chemical hypoxia induced by 2,4-dinitrophenol (DNP) activates basolateral intermediate conductance K+ (IK) channels (designated KCa3.1 or KCNN4) and increases paracellular shunt conductance/permeability (GS), but whether this leads to increased macromolecule permeability is unclear. Somatostatin (SOM) inhibits IK channels and prevents hypoxia-induced increases in GS. Thus, we examined whether octreotide (OCT), a synthetic SOM analog, prevents hypoxia-induced increases GS in human colon and hypoxia-induced increases in total epithelial conductance (GT) and permeability to FITC-dextran 4000 (FITC) in rat colon. The effects of serosal SOM and OCT on increases in GS induced by 100 µM DNP were compared in isolated human colon. The effects of OCT on DNP-induced increases in GT and transepithelial FITC movement were evaluated in isolated rat distal colon. GS in DNP-treated human colon was 52% greater than in controls (P = 0.003). GS was similar when 2 µM SOM was added after or before DNP treatment, in both cases being less (P < 0.05) than with DNP alone. OCT (0.2 µM) was equally effective preventing hypoxia-induced increases in GS, whether added after or before DNP treatment. In rat distal colon, DNP significantly increased GT by 18% (P = 0.016) and mucosa-to-serosa FITC movement by 43% (P = 0.01), and 0.2 µM OCT pretreatment completely prevented these changes. We conclude that OCT prevents hypoxia-induced increases in paracellular/macromolecule permeability and speculate that it may limit ischemia-induced gut hyperpermeability during abdominal surgery, thereby reducing bacterial/bacterial toxin translocation and sepsis.NEW & NOTEWORTHY Somatostatin (SOM, 2 µM) and octreotide (OCT, 0.2 µM, a long-acting synthetic analog of SOM) were equally effective in preventing chemical hypoxia-induced increases in paracellular shunt permeability/conductance in isolated human colon. In rat distal colon, chemical hypoxia significantly increased total epithelial conductance and transepithelial movement of FITC-dextran 4000, changes completely prevented by 0.2 µM OCT. OCT may prevent or limit gut ischemia during abdominal surgery, thereby decreasing the risk of bacterial/bacterial toxin translocation and sepsis.
Collapse
Affiliation(s)
- Ibrahim Rajput
- Department of Surgery, St James's University Hospital, Leeds, United Kingdom
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Andrew J Nickerson
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - J Peter A Lodge
- Department of Surgery, St James's University Hospital, Leeds, United Kingdom
| | - Geoffrey I Sandle
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
2
|
Nie HY, Ge J, Huang GX, Liu KG, Yue Y, Li H, Lin HG, Zhang T, Yan HF, Xu BX, Sun HW, Yang JW, Si SY, Zhou JL, Cui Y. New insights into the intestinal barrier through "gut-organ" axes and a glimpse of the microgravity's effects on intestinal barrier. Front Physiol 2024; 15:1465649. [PMID: 39450142 PMCID: PMC11499591 DOI: 10.3389/fphys.2024.1465649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 10/26/2024] Open
Abstract
Gut serves as the largest interface between humans and the environment, playing a crucial role in nutrient absorption and protection against harmful substances. The intestinal barrier acts as the initial defense mechanism against non-specific infections, with its integrity directly impacting the homeostasis and health of the human body. The primary factor attributed to the impairment of the intestinal barrier in previous studies has always centered on the gastrointestinal tract itself. In recent years, the concept of the "gut-organ" axis has gained significant popularity, revealing a profound interconnection between the gut and other organs. It speculates that disruption of these axes plays a crucial role in the pathogenesis and progression of intestinal barrier damage. The evaluation of intestinal barrier function and detection of enterogenic endotoxins can serve as "detecting agents" for identifying early functional alterations in the heart, kidney, and liver, thereby facilitating timely intervention in the disorders. Simultaneously, consolidating intestinal barrier integrity may also present a potential therapeutic approach to attenuate damage in other organs. Studies have demonstrated that diverse signaling pathways and their corresponding key molecules are extensively involved in the pathophysiological regulation of the intestinal barrier. Aberrant activation of these signaling pathways and dysregulated expression of key molecules play a pivotal role in the process of intestinal barrier impairment. Microgravity, being the predominant characteristic of space, can potentially exert a significant influence on diverse intestinal barriers. We will discuss the interaction between the "gut-organ" axes and intestinal barrier damage, further elucidate the signaling pathways underlying intestinal barrier damage, and summarize alterations in various components of the intestinal barrier under microgravity. This review aims to offer a novel perspective for comprehending the etiology and molecular mechanisms of intestinal barrier injury as well as the prevention and management of intestinal barrier injury under microgravity environment.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Ge
- Clinical laboratory, The Ninth Medical Center of the PLA General Hospital, Beijing, China
| | - Guo-Xing Huang
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
| | - Kai-Ge Liu
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Yue
- Department of Disease Control and Prevention, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hao Li
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hai-Guan Lin
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Tao Zhang
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hong-Feng Yan
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Bing-Xin Xu
- Special Medical Laboratory Center, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hong-Wei Sun
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jian-Wu Yang
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Shao-Yan Si
- Special Medical Laboratory Center, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jin-Lian Zhou
- Department of Pathology, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Cui
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Arumugam P, Saha K, Nighot P. Intestinal Epithelial Tight Junction Barrier Regulation by Novel Pathways. Inflamm Bowel Dis 2024:izae232. [PMID: 39321109 DOI: 10.1093/ibd/izae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 09/27/2024]
Abstract
Intestinal epithelial tight junctions (TJs), a dynamically regulated barrier structure composed of occludin and claudin family of proteins, mediate the interaction between the host and the external environment by allowing selective paracellular permeability between the luminal and serosal compartments of the intestine. TJs are highly dynamic structures and can undergo constant architectural remodeling in response to various external stimuli. This is mediated by an array of intracellular signaling pathways that alters TJ protein expression and localization. Dysfunctional regulation of TJ components compromising the barrier homeostasis is an important pathogenic factor for pathological conditions including inflammatory bowel disease (IBD). Previous studies have elucidated the significance of TJ barrier integrity and key regulatory mechanisms through various in vitro and in vivo models. In recent years, considerable efforts have been made to understand the crosstalk between various signaling pathways that regulate formation and disassembly of TJs. This review provides a comprehensive view on the novel mechanisms that regulate the TJ barrier and permeability. We discuss the latest evidence on how ion transport, cytoskeleton and extracellular matrix proteins, signaling pathways, and cell survival mechanism of autophagy regulate intestinal TJ barrier function. We also provide a perspective on the context-specific outcomes of the TJ barrier modulation. The knowledge on the diverse TJ barrier regulatory mechanisms will provide further insights on the relevance of the TJ barrier defects and potential target molecules/pathways for IBD.
Collapse
Affiliation(s)
- Priya Arumugam
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Kushal Saha
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. INT J VITAM NUTR RES 2024; 94:405-421. [PMID: 38009780 DOI: 10.1024/0300-9831/a000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intestinal permeability is a physiological property that allows necessary molecules to enter the organism. This property is regulated by tight junction proteins located between intestinal epithelial cells. However, various factors can increase intestinal permeability (IIP), including diet. Specific components in the Western diet (WD), such as monosaccharides, fat, gluten, salt, alcohol, and additives, can affect the tight junctions between enterocytes, leading to increased permeability. This review explains how these components promote IIP and outlines their potential implications for health. In addition, we describe how a reduction in WD consumption may help improve dietary treatment of diseases associated with IIP. Research has shown that some of these components can cause changes in the gut microbiota, leading to dysbiosis, which can promote greater intestinal permeability and displacement of endotoxins into the bloodstream. These endotoxins include lipopolysaccharides derived from gram-negative bacteria, and their presence has been associated with various diseases, such as autoimmune, neurological, and metabolic diseases like diabetes and cardiovascular disease. Therefore, nutrition professionals should promote the reduction of WD consumption and consider the inclusion of healthy diet components as part of the nutritional treatment for diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- Gilberto Jaquez-Durán
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| | - Ana Lidia Arellano-Ortiz
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| |
Collapse
|
5
|
Ciorba MA, Konnikova L, Hirota SA, Lucchetta EM, Turner JR, Slavin A, Johnson K, Condray CD, Hong S, Cressall BK, Pizarro TT, Hurtado-Lorenzo A, Heller CA, Moss AC, Swantek JL, Garrett WS. Challenges in IBD Research 2024: Preclinical Human IBD Mechanisms. Inflamm Bowel Dis 2024; 30:S5-S18. [PMID: 38778627 PMCID: PMC11491665 DOI: 10.1093/ibd/izae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Preclinical human inflammatory bowel disease (IBD) mechanisms is one of 5 focus areas of the Challenges in IBD Research 2024 document, which also includes environmental triggers, novel technologies, precision medicine, and pragmatic clinical research. Herein, we provide a comprehensive overview of current gaps in inflammatory bowel diseases research that relate to preclinical research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in IBD interception, remission, and restoration. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders and represents a valuable resource for patient-centric research prioritization. This preclinical human IBD mechanisms section identifies major research gaps whose investigation will elucidate pathways and mechanisms that can be targeted to address unmet medical needs in IBD. Research gaps were identified in the following areas: genetics, risk alleles, and epigenetics; the microbiome; cell states and interactions; barrier function; IBD complications (specifically fibrosis and stricturing); and extraintestinal manifestations. To address these gaps, we share specific opportunities for investigation for basic and translational scientists and identify priority actions.
Collapse
Affiliation(s)
- Matthew A Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Liza Konnikova
- Departments of Pediatrics, Immunobiology, and Obstetric, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Dept. of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Elena M Lucchetta
- The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | - Jerrold R Turner
- Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Cass D Condray
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Sungmo Hong
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Brandon K Cressall
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Caren A Heller
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | - Alan C Moss
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Kymera Therapeutics, Watertown, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Tang H, Zhou H, Zhang L, Tang T, Li N. Molecular mechanism of MLCK1 inducing 5-Fu resistance in colorectal cancer cells through activation of TNFR2/NF-κB pathway. Discov Oncol 2024; 15:159. [PMID: 38735014 PMCID: PMC11089027 DOI: 10.1007/s12672-024-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND AND AIMS Chemotherapy resistance in colorectal cancer have been faced with significant challenges in recent years. Particular interest is directed to tumor microenvironment function. Recent work has, identified a small molecule named Divertin that prevents myosin light chain kinase 1(MLCK1) recruitment to the perijunctional actomyosin ring(PAMR), restores barrier function after tumor necrosis factor(TNF)-induced barrier loss and prevents disease progression in experimental inflammatory bowel disease. Studies have shown that MLCK is a potential target for affecting intestinal barrier function, as well as for tumor therapy. However, the relative contributions of MLCK expression and chemotherapy resistance in colorectal cancers have not been defined. METHODS Statistical analysis of MYLK gene expression differences in colorectal cancer patients and normal population and prognosis results from The Cancer Genome Atlas(TCGA) data. Cell activity was detected by Cell counting Kit-8. Cell proliferation was detected by monoclonal plate. The apoptosis was detected by flow cytometry and western blot. Determine the role of MLCK1 in inducing 5-Fluorouracil(5-Fu) resistance in colorectal cancer cells was detected by overexpression of MLCK1 and knock-down expression of MLCK1. RESULTS MLCK1 is expressed at different levels in different colorectal cancer cells, high MLCK1 expressing cell lines are less sensitive to 5-Fu, and low MLCK1 expressing cell lines are more sensitive to 5-Fu. MLCK1 high expression enhances resistance to 5-Fu in colorectal cancer cells and the sensitivity to 5-Fu was increased after knocking down the expression of MLCK1, that might be closely correlated to TNFR2/NF-κB pathway. CONCLUSIONS MLCK1 high expression can enhance resistance to 5-Fu in colorectal cancer cells and the sensitivity to 5-Fu was increased after knocking down the expression of MLCK1, that might be closely correlated to TNFR2/NF-κB pathway, which will provide a new method for the treatment of colorectal cancer patients who are resistant to 5-Fu chemotherapy.
Collapse
Affiliation(s)
- Huifen Tang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Hui Zhou
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Liang Zhang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Tingting Tang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Ning Li
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Huang J, Guo F, Abbas W, Hu Z, Liu L, Qiao J, Bi R, Xu T, Zhang K, Huang J, Guo Y, Wang Z. Effects of microencapsulated essential oils and organic acids preparation on growth performance, slaughter characteristics, nutrient digestibility and intestinal microenvironment of broiler chickens. Poult Sci 2024; 103:103655. [PMID: 38537402 PMCID: PMC11067778 DOI: 10.1016/j.psj.2024.103655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 05/01/2024] Open
Abstract
To develop effective antibiotics alternatives is getting more and more important to poultry healthy production. The study investigated the effects of a microencapsulated essential oils and organic acids preparation (EOA) on growth performance, slaughter performance, nutrient digestibility and intestinal microenvironment of broilers. A total of 624 1-day-old male Arbor Acres broilers were randomly divided into 6 groups including the control group (T1) fed with basal diet, the antibiotic group (T2) supplemented with basal diet with 45 mg/kg bacitracin methylene disalicylate (BMD), and 4 inclusion levels of EOA-treated groups (T3, T4, T5, T6 groups) chickens given basal diet with 200, 400, 600, and 800 mg EOA/kg of diet, respectively. Results showed that compared with the control, the 200 mg/kg EOA group increased average daily gain (ADG) and average body weight (ABW) during the early stage (P < 0.05). EOA addition decreased crypt depth of the ileum (P < 0.05), but villus height to crypt depth ratio was increased by EOA addition at 200 and 400 mg/kg at d 21 (P < 0.05). Compared with the control, dietary addition EOA at 200, 400 and 600 mg/kg increased the lipase activity in the duodenum at d 21 (P < 0.05). Increased lactic acid bacteria population was found in cecal digesta of the 400 mg/kg EOA group at d 21 (P < 0.05), and higher concentration of butyric acid level was observed in cecal digesta at d 21 and d 42 in the 200 mg/kg EOA group compared with the control (P < 0.05). RT-PCR analysis found that dietary EOA addition decreased the gene expression of IL-1β, COX-2 and TGF-β4 in the ileum at d 21 (P < 0.05), while only the 200 mg/kg EOA increased the gene expression of IL-10, TGF-β4, Claudin-1, ZO-1, CATH-1, CATH-3, AvBD-1, AvBD-9 and AvBD-12 in the ileum at d 42 (P < 0.05) compared with the control. In summary, adding 200 mg/kg and 400 mg/kg of the EOA to the diet could improve the growth performance and intestinal microenvironment through improving intestinal morphology, increasing digestive enzymes activity and cecal lactic acid bacteria abundance and butyric acid content, improving intestinal barrier function as well as maintaining intestinal immune homeostasis. The improving effect induced by EOA addition in the early growth stage was better than that in the later growth stage. Overall, the EOA product might be an effective antibiotic alternative for broiler industry.
Collapse
Affiliation(s)
- Jia Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianing Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kaichen Zhang
- Shandong Heyi Food Co., Ltd., Zaozhuang City, Shandong Province, China
| | - Jinyu Huang
- Shanghai Meinong Biotechnology Co., Ltd., Shanghai, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Citi S, Fromm M, Furuse M, González-Mariscal L, Nusrat A, Tsukita S, Turner JR. A short guide to the tight junction. J Cell Sci 2024; 137:jcs261776. [PMID: 38712627 PMCID: PMC11128289 DOI: 10.1242/jcs.261776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Tight junctions (TJs) are specialized regions of contact between cells of epithelial and endothelial tissues that form selective semipermeable paracellular barriers that establish and maintain body compartments with different fluid compositions. As such, the formation of TJs represents a critical step in metazoan evolution, allowing the formation of multicompartmental organisms and true, barrier-forming epithelia and endothelia. In the six decades that have passed since the first observations of TJs by transmission electron microscopy, much progress has been made in understanding the structure, function, molecular composition and regulation of TJs. The goal of this Perspective is to highlight the key concepts that have emerged through this research and the future challenges that lie ahead for the field.
Collapse
Affiliation(s)
- Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, 30 Quai Ernest Ansermet, 1205 Geneva, Switzerland
| | - Michael Fromm
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Charité – Universitätsmedizin Berlin,Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, 5-1 Higashiyama Myodajii, Okazaki 444-8787, Japan
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, México
| | - Asma Nusrat
- Mucosal Biology and Inflammation Research Group, Department of Pathology, University of Michigan, 109 Zina Pitcher Place, 4057 Biomedical Science Research Building, Ann Arbor, MI 48109-2200, USA
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization (ACRO),Teikyo University, Kaga 2-21-1, Itabashi-ku, Tokyo 173-0003, Japan
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 01125, USA
| |
Collapse
|
9
|
Gheorghe CE, Leigh SJ, Tofani GSS, Bastiaanssen TFS, Lyte JM, Gardellin E, Govindan A, Strain C, Martinez-Herrero S, Goodson MS, Kelley-Loughnane N, Cryan JF, Clarke G. The microbiota drives diurnal rhythms in tryptophan metabolism in the stressed gut. Cell Rep 2024; 43:114079. [PMID: 38613781 DOI: 10.1016/j.celrep.2024.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024] Open
Abstract
Chronic stress disrupts microbiota-gut-brain axis function and is associated with altered tryptophan metabolism, impaired gut barrier function, and disrupted diurnal rhythms. However, little is known about the effects of acute stress on the gut and how it is influenced by diurnal physiology. Here, we used germ-free and antibiotic-depleted mice to understand how microbiota-dependent oscillations in tryptophan metabolism would alter gut barrier function at baseline and in response to an acute stressor. Cecal metabolomics identified tryptophan metabolism as most responsive to a 15-min acute stressor, while shotgun metagenomics revealed that most bacterial species exhibiting rhythmicity metabolize tryptophan. Our findings highlight that the gastrointestinal response to acute stress is dependent on the time of day and the microbiome, with a signature of stress-induced functional alterations in the ileum and altered tryptophan metabolism in the colon.
Collapse
Affiliation(s)
- Cassandra E Gheorghe
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Sarah-Jane Leigh
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Gabriel S S Tofani
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Elisa Gardellin
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland
| | - Ashokkumar Govindan
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy Co, P61 C996 Cork, Ireland
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy Co, P61 C996 Cork, Ireland
| | - Sonia Martinez-Herrero
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45324, USA
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45324, USA
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland.
| |
Collapse
|
10
|
Wang J, Wang S, Okyere SK, Wen J, Wang X, Huang R, Tang Z, Cao S, Deng J, Ren Z, Hu Y. Ageratina adenophora causes intestinal integrity damage in goats via the activation of the MLCK/ROCK signaling pathway. Toxicon 2024; 240:107633. [PMID: 38331107 DOI: 10.1016/j.toxicon.2024.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
As a global toxin invasive species, the whole herb of Ageratina adenophora (A. adenophora) contains various sesquiterpenes, which can cause various degrees of toxic reactions characterized by inflammatory damage when ingested by animals. Current studies on the toxicity of A. adenophora have focused on parenchymatous organs such as the liver and spleen, but few studies have been conducted on the intestine as the organ that is first exposed to A. adenophora and digests and absorbs its toxic components. In this study, after feeding goats with 40 % A. adenophora herb powder for 90 d, we found that the intestinal structure of goats showed pathological changes characterized, and the damage to the small intestinal segments was more severe than that of the large intestine. The MLCK/ROCK signaling pathway was activated, the cytoskeleton underwent centripetal contraction, the composition of tight junctions between intestinal epithelial cells was altered table, Occludin, Claudin-1 and Zonula occluden (ZO-1) amount was decreased, and the intestinal mechanical barrier was disrupted. The intestinal damage markers diamine oxidase (DAO) and D-lactate (D-LA) levels were elevated. In addition, we also found that intestinal bacteria translocate and enter the portal vein to colonize the liver and mesenteric lymph nodes. The expression of intestinal pro-inflammatory factors and anti-inflammatory factors was changed, the intestinal immune function was disrupted. The present study is the first to analyze the mechanism of poisoning of A. adenophora from the intestinal tract in compound-gastric animals.
Collapse
Affiliation(s)
- Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxuan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruya Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyao Tang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Chanez-Paredes SD, Abtahi S, Zha J, Li E, Marsischky G, Zuo L, Grey MJ, He W, Turner JR. Mechanisms underlying distinct subcellular localization and regulation of epithelial long myosin light-chain kinase splice variants. J Biol Chem 2024; 300:105643. [PMID: 38199574 PMCID: PMC10862019 DOI: 10.1016/j.jbc.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Intestinal epithelia express two long myosin light-chain kinase (MLCK) splice variants, MLCK1 and MLCK2, which differ by the absence of a complete immunoglobulin (Ig)-like domain 3 within MLCK2. MLCK1 is preferentially associated with the perijunctional actomyosin ring at steady state, and this localization is enhanced by inflammatory stimuli including tumor necrosis factor (TNF). Here, we sought to identify MLCK1 domains that direct perijunctional MLCK1 localization and their relevance to disease. Ileal biopsies from Crohn's disease patients demonstrated preferential increases in MLCK1 expression and perijunctional localization relative to healthy controls. In contrast to MLCK1, MLCK2 expressed in intestinal epithelia is predominantly associated with basal stress fibers, and the two isoforms have distinct effects on epithelial migration and barrier regulation. MLCK1(Ig1-4) and MLCK1(Ig1-3), but not MLCK2(Ig1-4) or MLCK1(Ig3), directly bind to F-actin in vitro and direct perijunctional recruitment in intestinal epithelial cells. Further study showed that Ig1 is unnecessary, but that, like Ig3, the unstructured linker between Ig1 and Ig2 (Ig1/2us) is essential for recruitment. Despite being unable to bind F-actin or direct recruitment independently, Ig3 does have dominant negative functions that allow it to displace perijunctional MLCK1, increase steady-state barrier function, prevent TNF-induced MLCK1 recruitment, and attenuate TNF-induced barrier loss. These data define the minimal domain required for MLCK1 localization and provide mechanistic insight into the MLCK1 recruitment process. Overall, the results create a foundation for development of molecularly targeted therapies that target key domains to prevent MLCK1 recruitment, restore barrier function, and limit inflammatory bowel disease progression.
Collapse
Affiliation(s)
- Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shabnam Abtahi
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Juanmin Zha
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Suzhou Medical School of Soochow University, Suzhou, China
| | - Enkai Li
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald Marsischky
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China
| | - Michael J Grey
- Gastroenterology Division, Department of Medicine, Beth-Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Weiqi He
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Suzhou Medical School of Soochow University, Suzhou, China.
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Markovich Z, Abreu A, Sheng Y, Han SM, Xiao R. Deciphering internal and external factors influencing intestinal junctional complexes. Gut Microbes 2024; 16:2389320. [PMID: 39150987 PMCID: PMC11332634 DOI: 10.1080/19490976.2024.2389320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
The intestinal barrier, an indispensable guardian of gastrointestinal health, mediates the intricate exchange between internal and external environments. Anchored by evolutionarily conserved junctional complexes, this barrier meticulously regulates paracellular permeability in essentially all living organisms. Disruptions in intestinal junctional complexes, prevalent in inflammatory bowel diseases and irritable bowel syndrome, compromise barrier integrity and often lead to the notorious "leaky gut" syndrome. Critical to the maintenance of the intestinal barrier is a finely orchestrated network of intrinsic and extrinsic factors that modulate the expression, composition, and functionality of junctional complexes. This review navigates through the composition of key junctional complex components and the common methods used to assess intestinal permeability. It also explores the critical intracellular signaling pathways that modulate these junctional components. Lastly, we delve into the complex dynamics between the junctional complexes, microbial communities, and environmental chemicals in shaping the intestinal barrier function. Comprehending this intricate interplay holds paramount importance in unraveling the pathophysiology of gastrointestinal disorders. Furthermore, it lays the foundation for the development of precise therapeutic interventions targeting barrier dysfunction.
Collapse
Affiliation(s)
- Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Crawford CK, Beltran A, Castillo D, Matloob MS, Uehara ME, Quilici ML, Cervantes VL, Kol A. Fenofibrate reduces glucose-induced barrier dysfunction in feline enteroids. Sci Rep 2023; 13:22558. [PMID: 38110453 PMCID: PMC10728136 DOI: 10.1038/s41598-023-49874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease in humans and household cats that is characterized by persistent hyperglycemia. DM is associated with dysfunction of the intestinal barrier. This barrier is comprised of an epithelial monolayer that contains a network of tight junctions that adjoin cells and regulate paracellular movement of water and solutes. The mechanisms driving DM-associated barrier dysfunction are multifaceted, and the direct effects of hyperglycemia on the epithelium are poorly understood. Preliminary data suggest that fenofibrate, An FDA-approved peroxisome proliferator-activated receptor-alpha (PPARα) agonist drug attenuates intestinal barrier dysfunction in dogs with experimentally-induced DM. We investigated the effects of hyperglycemia-like conditions and fenofibrate treatment on epithelial barrier function using feline intestinal organoids. We hypothesized that glucose treatment directly increases barrier permeability and alters tight junction morphology, and that fenofibrate administration can ameliorate these deleterious effects. We show that hyperglycemia-like conditions directly increase intestinal epithelial permeability, which is mitigated by fenofibrate. Moreover, increased permeability is caused by disruption of tight junctions, as evident by increased junctional tortuosity. Finally, we found that increased junctional tortuosity and barrier permeability in hyperglycemic conditions were associated with increased protein kinase C-α (PKCα) activity, and that fenofibrate treatment restored PKCα activity to baseline levels. We conclude that hyperglycemia directly induces barrier dysfunction by disrupting tight junction structure, a process that is mitigated by fenofibrate. We further propose that counteracting modulation of PKCα activation by increased intracellular glucose levels and fenofibrate is a key candidate regulatory pathway of tight junction structure and epithelial permeability.
Collapse
Affiliation(s)
- Charles K Crawford
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Aeelin Beltran
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Muhammad S Matloob
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Mimoli E Uehara
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Mary L Quilici
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Veronica Lopez Cervantes
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Amir Kol
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Taverner A, Almansour K, Gridley K, Marques ARL, MacKay J, Eggleston IM, Mrsny RJ. Structure-function analysis of tight junction-directed permeation enhancer PIP250. J Control Release 2023; 364:S0168-3659(23)00705-8. [PMID: 39491173 DOI: 10.1016/j.jconrel.2023.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
The intestinal paracellular route of absorption is modulated via tight junction (TJ) structures located at the apical neck of polarized intestinal epithelial cells to restrict solute movement through the intercellular space between them. Tight junctions open or close in response to changes in the phosphorylation status of light chain (MLC) at position Ser-19. This phosphorylation event is primarily controlled by MLC kinase (MLCK) and MLC phosphatase (MLCP), the latter being a holoenzyme that involves interaction between protein phosphatase 1 (PP1) and myosin targeting protein 1 (MYPT1). An entirely D-amino acid Permeant Inhibitor of Phosphatase (PIP) peptide sequence designed to disrupt PP1-MYPT1 interactions at the cytoplasmic surface of TJs, PIP250 (rrfkvktkkrk) localized at intracellular TJ structures, altered expression levels of specific TJ proteins, increased cellular phosphorylated MLC (pMLC) levels, binding to PP1, decreased epithelial barrier function, and significantly increased systemic uptake of the poorly absorbed antibiotic gentamicin in vivo. A series of PIP250 peptide analogues showed that positions phe3 and val5 were critical to its functional properties, with some providing opportunities to tune the dynamic actions of its TJ modulation properties. These data confirm the activity of PIP250 as a rationally designed oral permeation enhancer and validated key amino acids involved in its interaction with PP1 that define its overall actions; the magnitude and duration of these enhancing properties were associated with the MYPT1-mimetic properties of the PIP250 peptide analogues described.
Collapse
Affiliation(s)
- Alistair Taverner
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Ha'il 55473, Saudi Arabia
| | - Kate Gridley
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Ana Rita Lima Marques
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Julia MacKay
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Ian M Eggleston
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Randall J Mrsny
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
15
|
Cencer CS, Silverman JB, Meenderink LM, Krystofiak ES, Millis BA, Tyska MJ. Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions. Dev Cell 2023; 58:2048-2062.e7. [PMID: 37832537 PMCID: PMC10615885 DOI: 10.1016/j.devcel.2023.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
To maximize solute transport, epithelial cells build an apical "brush border," where thousands of microvilli are linked to their neighbors by protocadherin-containing intermicrovillar adhesion complexes (IMACs). Previous studies established that the IMAC is needed to build a mature brush border, but how this complex contributes to the accumulation of new microvilli during differentiation remains unclear. We found that early in differentiation, mouse, human, and porcine epithelial cells exhibit a marginal accumulation of microvilli, which span junctions and interact with protrusions on neighboring cells using IMAC protocadherins. These transjunctional IMACs are highly stable and reinforced by tension across junctions. Finally, long-term live imaging showed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions. Thus, nascent microvilli are stabilized by a marginal capture mechanism that depends on the formation of transjunctional IMACs. These results may offer insights into how apical specializations are assembled in diverse epithelial systems.
Collapse
Affiliation(s)
- Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jennifer B Silverman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA; United States Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212, USA
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37235, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Xiao L, Dou W, Wang Y, Deng H, Xu H, Pan Y. Treatment with S-adenosylmethionine ameliorates irinotecan-induced intestinal barrier dysfunction and intestinal microbial disorder in mice. Biochem Pharmacol 2023; 216:115752. [PMID: 37634598 DOI: 10.1016/j.bcp.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
This study aimed to investigate the protective effects of S-adenosylmethionine (SAM) on irinotecan-induced intestinal barrier dysfunction and microbial ecological dysregulation in both mice and human colon cell line Caco-2, which is widely used for studying intestinal epithelial barrier function. Specifically, this study utilized Caco-2 monolayers incubated with 7-ethyl-10-hydroxycamptothecin (SN-38) as well as an irinotecan-induced diarrhea model in mice. Our study found that SAM pretreatment significantly reduced body weight loss and diarrhea induced by irinotecan in mice. Furthermore, SAM inhibited the increase of intestinal permeability in irinotecan-treated mice and ameliorated the decrease of Zonula occludens-1(ZO-1), Occludin, and Claudin-1 expression. Additionally, irinotecan treatment increased the relative abundance of Proteobacteria compared to the control group, an effect that was reversed by SAM administration. In Caco-2 monolayers, SAM reduced the expression of reactive oxygen species (ROS) and ameliorated the decrease in transepithelial electrical resistance (TER) and increase in fluorescein isothiocyanate-dextran 4000 Da (FD-4) flux caused by SN-38. Moreover, SAM attenuated changes in the localization and distribution of ZO-1and Occludin in Caco-2 monolayers induced by SN-38 and protected barrier function by inhibiting activation of the p38 MAPK/p65 NF-κB/MLCK/MLC signaling pathway. These findings provide preliminary evidence for the potential use of SAM in treating diarrhea caused by irinotecan.
Collapse
Affiliation(s)
- Lin Xiao
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Yajie Wang
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Huan Deng
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China
| | - Hao Xu
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China.
| | - YiSheng Pan
- Department of General Surgery, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, China.
| |
Collapse
|
17
|
Bi Z, Chen J, Chang X, Li D, Yao Y, Cai F, Xu H, Cheng J, Hua Z, Zhuang H. ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis. Front Med 2023; 17:972-992. [PMID: 37507636 DOI: 10.1007/s11684-023-0990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/31/2023] [Indexed: 07/30/2023]
Abstract
Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.
Collapse
Affiliation(s)
- Zhiqian Bi
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dangran Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yingying Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jian Cheng
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Di Sabatino A, Santacroce G, Rossi CM, Broglio G, Lenti MV. Role of mucosal immunity and epithelial-vascular barrier in modulating gut homeostasis. Intern Emerg Med 2023; 18:1635-1646. [PMID: 37402104 PMCID: PMC10504119 DOI: 10.1007/s11739-023-03329-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/25/2023] [Indexed: 07/05/2023]
Abstract
The intestinal mucosa represents the most extensive human barrier having a defense function against microbial and food antigens. This barrier is represented externally by a mucus layer, consisting mainly of mucins, antimicrobial peptides, and secretory immunoglobulin A (sIgA), which serves as the first interaction with the intestinal microbiota. Below is placed the epithelial monolayer, comprising enterocytes and specialized cells, such as goblet cells, Paneth cells, enterochromaffin cells, and others, each with a specific protective, endocrine, or immune function. This layer interacts with both the luminal environment and the underlying lamina propria, where mucosal immunity processes primarily take place. Specifically, the interaction between the microbiota and an intact mucosal barrier results in the activation of tolerogenic processes, mainly mediated by FOXP3+ regulatory T cells, underlying intestinal homeostasis. Conversely, the impairment of the mucosal barrier function, the alteration of the normal luminal microbiota composition (dysbiosis), or the imbalance between pro- and anti-inflammatory mucosal factors may result in inflammation and disease. Another crucial component of the intestinal barrier is the gut-vascular barrier, formed by endothelial cells, pericytes, and glial cells, which regulates the passage of molecules into the bloodstream. The aim of this review is to examine the various components of the intestinal barrier, assessing their interaction with the mucosal immune system, and focus on the immunological processes underlying homeostasis or inflammation.
Collapse
Affiliation(s)
- Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy.
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy.
- Clinica Medica I, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Viale Golgi 19, 27100, Pavia, Italy.
| | - Giovanni Santacroce
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giacomo Broglio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| |
Collapse
|
19
|
Keller AG, Dahlhoff EP, Bracewell R, Chatla K, Bachtrog D, Rank NE, Williams CM. Multi-locus genomic signatures of local adaptation to snow across the landscape in California populations of a willow leaf beetle. Proc Biol Sci 2023; 290:20230630. [PMID: 37583321 PMCID: PMC10427825 DOI: 10.1098/rspb.2023.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023] Open
Abstract
Organisms living in mountains contend with extreme climatic conditions, including short growing seasons and long winters with extensive snow cover. Anthropogenic climate change is driving unprecedented, rapid warming of montane regions across the globe, resulting in reduced winter snowpack. Loss of snow as a thermal buffer may have serious consequences for animals overwintering in soil, yet little is known about how variability in snowpack acts as a selective agent in montane ecosystems. Here, we examine genomic variation in California populations of the leaf beetle Chrysomela aeneicollis, an emerging natural model system for understanding how organisms respond to climate change. We used a genotype-environment association approach to identify genomic signatures of local adaptation to microclimate in populations from three montane regions with variable snowpack and a coastal region with no snow. We found that both winter-associated environmental variation and geographical distance contribute to overall genomic variation across the landscape. We identified non-synonymous variation in novel candidate loci associated with cytoskeletal function, ion transport and membrane stability, cellular processes associated with cold tolerance in other insects. These findings provide intriguing evidence that variation in snowpack imposes selective gradients in montane ecosystems.
Collapse
Affiliation(s)
- Abigail G. Keller
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Ryan Bracewell
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Nathan E. Rank
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | | |
Collapse
|
20
|
So BR, Kim S, Jang SH, Kim MJ, Lee JJ, Kim SR, Jung SK. Dietary protocatechuic acid redistributes tight junction proteins by targeting Rho-associated protein kinase to improve intestinal barrier function. Food Funct 2023; 14:4777-4791. [PMID: 37128780 DOI: 10.1039/d3fo00605k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inflammatory bowel disease (IBD) is continuously increasing globally and caused by intestinal barrier dysfunction. Although protocatechuic acid (PCA) has a protective effect on colitis, the molecular mechanisms underlying its contribution to intestinal barrier function remain unknown. Transepithelial electrical resistance (TEER) and FITC-dextran permeability measurements reveled that PCA suppresses lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α-induced increase in intestinal permeability; zonula occludens (ZO)-1 and claudin-2 redistribution was also suppressed in the epithelial cell membranes of differentiated Caco-2 cells. PCA was found to directly bind Rho-associated coiled-coil containing protein kinase (ROCK), subsequently suppressing myosin light chain (MLC) phosphorylation. Notably, PCA binds ROCK to a similar degree as Y27632, a selective ROCK inhibitor. Orally administering PCA (5 or 25 mg per kg per day) to C57BL/6 mice alleviated the 3% dextran sulfate sodium (DSS)-induced colitis symptoms including reduced colon length, disrupted intestinal barrier structure, and increased proinflammatory cytokines expressions, such as interleukin (IL)-1β, TNF-α, and IL-6. Furthermore, orally administering PCA suppressed DSS-induced ZO-1 and claudin-2/4 redistribution in mice colon membrane fractions. Therefore, PCA may serve as a promising nutraceutical to improve gut health and alleviate IBD by maintaining intestinal barrier function in vitro and in vivo.
Collapse
Affiliation(s)
- Bo Ram So
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - San Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Se Hyeon Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeong Jae Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
21
|
Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00766-3. [PMID: 37186118 PMCID: PMC10127193 DOI: 10.1038/s41575-023-00766-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Arie Horowitz
- UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xenia Haest
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Nighot M, Liao PL, Morris N, McCarthy D, Dharmaprakash V, Ullah Khan I, Dalessio S, Saha K, Ganapathy AS, Wang A, Ding W, Yochum G, Koltun W, Nighot P, Ma T. Long-Term Use of Proton Pump Inhibitors Disrupts Intestinal Tight Junction Barrier and Exaggerates Experimental Colitis. J Crohns Colitis 2023; 17:565-579. [PMID: 36322638 PMCID: PMC10115233 DOI: 10.1093/ecco-jcc/jjac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Proton pump inhibitors [PPIs] are widely used to treat a number of gastro-oesophageal disorders. PPI-induced elevation in intragastric pH may alter gastrointestinal physiology. The tight junctions [TJs] residing at the apical intercellular contacts act as a paracellular barrier. TJ barrier dysfunction is an important pathogenic factor in inflammatory bowel disease [IBD]. Recent studies suggest that PPIs may promote disease flares in IBD patients. The role of PPIs in intestinal permeability is not clear. AIM The aim of the present study was to study the effect of PPIs on the intestinal TJ barrier function. METHODS Human intestinal epithelial cell culture and organoid models and mouse IBD models of dextran sodium sulphate [DSS] and spontaneous enterocolitis in IL-10-/- mice were used to study the role of PPIs in intestinal permeability. RESULTS PPIs increased TJ barrier permeability via an increase in a principal TJ regulator, myosin light chain kinase [MLCK] activity and expression, in a p38 MAPK-dependent manner. The PPI-induced increase in extracellular pH caused MLCK activation via p38 MAPK. Long-term PPI administration in mice exaggerated the increase in intestinal TJ permeability and disease severity in two independent models of DSS colitis and IL-10-/- enterocolitis. The TJ barrier disruption by PPIs was prevented in MLCK-/- mice. Human database studies revealed increased hospitalizations associated with PPI use in IBD patients. CONCLUSIONS Our results suggest that long-term use of PPIs increases intestinal TJ permeability and exaggerates experimental colitis via an increase in MLCK expression and activity.
Collapse
Affiliation(s)
- Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Pei-Luan Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Nathan Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Dennis McCarthy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Viszwapriya Dharmaprakash
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Inam Ullah Khan
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Shannon Dalessio
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
23
|
Lama Tamang R, Juritsch AF, Ahmad R, Salomon JD, Dhawan P, Ramer-Tait AE, Singh AB. The diet-microbiota axis: a key regulator of intestinal permeability in human health and disease. Tissue Barriers 2023; 11:2077069. [PMID: 35603609 PMCID: PMC10161950 DOI: 10.1080/21688370.2022.2077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 01/21/2023] Open
Abstract
The intestinal barrier orchestrates selective permeability to nutrients and metabolites while excluding noxious stimuli. Recent scientific advances establishing a causal role for the gut microbiota in human health outcomes have generated a resurgent interest toward intestinal permeability. Considering the well-established role of the gut barrier in protection against foreign antigens, there is mounting evidence for a causal link between gut permeability and the microbiome in regulating human health. However, an understanding of the dynamic host-microbiota interactions that govern intestinal barrier functions remains poorly defined. Furthermore, the system-level mechanisms by which microbiome-targeted therapies, such as probiotics and prebiotics, simultaneously promote intestinal barrier function and host health remain an area of active investigation. This review summarizes the recent advances in understanding the dynamics of intestinal permeability in human health and its integration with gut microbiota. We further summarize mechanisms by which probiotics/prebiotics influence the gut microbiota and intestinal barrier functions.
Collapse
Affiliation(s)
- Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony F. Juritsch
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jeffrey D. Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| |
Collapse
|
24
|
Giustina A, di Filippo L, Allora A, Bikle DD, Cavestro GM, Feldman D, Latella G, Minisola S, Napoli N, Trasciatti S, Uygur M, Bilezikian JP. Vitamin D and malabsorptive gastrointestinal conditions: A bidirectional relationship? Rev Endocr Metab Disord 2023; 24:121-138. [PMID: 36813995 PMCID: PMC9946876 DOI: 10.1007/s11154-023-09792-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
This paper is one of the outcomes of the 5th International Conference "Controversies in Vitamin D" held in Stresa, Italy from 15 to 18 September 2021 as part of a series of annual meetings which was started in 2017. The scope of these meetings is to discuss controversial issues about vitamin D. Publication of the outcomes of the meeting in international journals allows a wide sharing of the most recent data with the medical and academic community. Vitamin D and malabsorptive gastrointestinal conditions was one of the topics discussed at the meeting and focus of this paper. Participants to the meeting were invited to review available literature on selected issues related to vitamin D and gastrointestinal system and to present their topic to all participants with the aim to initiate a discussion on the main outcomes of which are reported in this document. The presentations were focused on the possible bidirectional relationship between vitamin D and gastrointestinal malabsorptive conditions such as celiac disease, inflammatory bowel diseases (IBDs) and bariatric surgery. In fact, on one hand the impact of these conditions on vitamin D status was examined and on the other hand the possible role of hypovitaminosis D on pathophysiology and clinical course of these conditions was also evaluated. All examined malabsorptive conditions severely impair vitamin D status. Since vitamin D has known positive effects on bone this in turn may contribute to negative skeletal outcomes including reduced bone mineral density, and increased risk of fracture which may be mitigated by vitamin D supplementation. Due to the immune and metabolic extra-skeletal effects there is the possibility that low levels of vitamin D may negatively impact on the underlying gastrointestinal conditions worsening its clinical course or counteracting the effect of treatment. Therefore, vitamin D status assessment and supplementation should be routinely considered in all patients affected by these conditions. This concept is strengthened by the existence of a possible bidirectional relationship through which poor vitamin D status may negatively impact on clinical course of underlying disease. Sufficient elements are available to estimate the desired threshold vitamin D level above which a favourable impact on the skeleton in these conditions may be obtained. On the other hand, ad hoc controlled clinical trials are needed to better define this threshold for obtaining a positive effect of vitamin D supplementation on occurrence and clinical course of malabsorptive gastrointestinal diseases.
Collapse
Affiliation(s)
- Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy.
- Division of Endocrinology, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Agnese Allora
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniel D Bikle
- Veterans Affairs Medical Center, University of California San Francisco, 1700 Owens St, San Francisco, CA, 94158, USA
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - David Feldman
- Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanni Latella
- Gastroenterology, Hepatology and Nutrition Division, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Nicola Napoli
- Department of Medicine, Unit of Endocrinology and Diabetes, Università Campus Bio-Medico Di Roma, Rome, Italy
| | | | - Melin Uygur
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Endocrinology and Metabolism Disease, RTE University School of Medicine, Rize, Turkey
| | - John P Bilezikian
- Department of Medicine, Vagelos College of Physicians and Surgeons, New York City, NY, USA
| |
Collapse
|
25
|
Haroun E, Kumar PA, Saba L, Kassab J, Ghimire K, Dutta D, Lim SH. Intestinal barrier functions in hematologic and oncologic diseases. J Transl Med 2023; 21:233. [PMID: 37004099 PMCID: PMC10064590 DOI: 10.1186/s12967-023-04091-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The intestinal barrier is a complex structure that not only regulates the influx of luminal contents into the systemic circulation but is also involved in immune, microbial, and metabolic homeostasis. Evidence implicating disruption in intestinal barrier functions in the development of many systemic diseases, ranging from non-alcoholic steatohepatitis to autism, or systemic complications of intestinal disorders has increased rapidly in recent years, raising the possibility of the intestinal barrier as a potential target for therapeutic intervention to alter the course and mitigate the complications associated with these diseases. In addition to the disease process being associated with a breach in the intestinal barrier functions, patients with hematologic and oncologic diseases are particularly at high risks for the development of increased intestinal permeability, due to the frequent use of broad-spectrum antibiotics and chemoradiation. They also face a distinct challenge of being intermittently severely neutropenic due to treatment of the underlying conditions. In this review, we will discuss how hematologic and oncologic diseases are associated with disruption in the intestinal barrier and highlight the complications associated with an increase in the intestinal permeability. We will explore methods to modulate the complication. To provide a background for our discussion, we will first examine the structure and appraise the methods of evaluation of the intestinal barrier.
Collapse
Affiliation(s)
- Elio Haroun
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Prashanth Ashok Kumar
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Ludovic Saba
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Joseph Kassab
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Krishna Ghimire
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Dibyendu Dutta
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA.
| | - Seah H Lim
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA.
| |
Collapse
|
26
|
Raj V, Venkataraman B, Ojha SK, Almarzooqi S, Subramanian VS, Al-Ramadi BK, Adrian TE, Subramanya SB. Cis-Nerolidol Inhibits MAP Kinase and NF-κB Signaling Pathways and Prevents Epithelial Tight Junction Dysfunction in Colon Inflammation: In Vivo and In Vitro Studies. Molecules 2023; 28:molecules28072982. [PMID: 37049744 PMCID: PMC10096091 DOI: 10.3390/molecules28072982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammation of the GI tract leads to compromised epithelial barrier integrity, which increases intestine permeability. A compromised intestinal barrier is a critical event that leads to microbe entry and promotes inflammatory responses. Inflammatory bowel diseases that comprise Crohn’s disease (CD) and ulcerative colitis (UC) show an increase in intestinal permeability. Nerolidol (NED), a naturally occurring sesquiterpene alcohol, has potent anti-inflammatory properties in preclinical models of colon inflammation. In this study, we investigated the effect of NED on MAPKs, NF-κB signaling pathways, and intestine epithelial tight junction physiology using in vivo and in vitro models. The effect of NED on proinflammatory cytokine release and MAPK and NF-κB signaling pathways were evaluated using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. Subsequently, the role of NED on MAPKs, NF-κB signaling, and the intestine tight junction integrity were assessed using DSS-induced colitis and LPS-stimulated Caco-2 cell culture models. Our result indicates that NED pre-treatment significantly inhibited proinflammatory cytokine release, expression of proteins involved in MAP kinase, and NF-κB signaling pathways in LPS-stimulated RAW macrophages and DSS-induced colitis. Furthermore, NED treatment significantly decreased FITC-dextran permeability in DSS-induced colitis. NED treatment enhanced tight junction protein expression (claudin-1, 3, 7, and occludin). Time-dependent increases in transepithelial electrical resistance (TEER) measurements reflect the formation of healthy tight junctions in the Caco-2 monolayer. LPS-stimulated Caco-2 showed a significant decrease in TEER. However, NED pre-treatment significantly prevented the fall in TEER measurements, indicating its protective role. In conclusion, NED significantly decreased MAPK and NF-κB signaling pathways and decreased tight junction permeability by enhancing epithelial tight junction protein expression.
Collapse
Affiliation(s)
- Vishnu Raj
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Saeeda Almarzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | | | - Basel K. Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. BOX 15551, United Arab Emirates
| | - Thomas E. Adrian
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
27
|
Maruyama M, Nishida Y, Tanaka H, Minami T, Ogawara KI, Miyake M, Takamura Y, Kakuta H, Higaki K. Analysis of absorption-enhancing mechanisms for combinatorial use of spermine with sodium taurocholate in Caco-2 cells. Eur J Pharm Biopharm 2022; 180:332-343. [DOI: 10.1016/j.ejpb.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
|
28
|
Cifarelli V, Peche VS, Abumrad NA. Vascular and lymphatic regulation of gastrointestinal function and disease risk. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159207. [PMID: 35882297 PMCID: PMC9642046 DOI: 10.1016/j.bbalip.2022.159207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
The vascular and lymphatic systems in the gut regulate lipid transport while restricting transfer of commensal gut microbiota and directing immune cell trafficking. Increased permeability of the endothelial systems in the intestine associates with passage of antigens and microbiota from the gut into the bloodstream leading to tissue inflammation, the release of pro-inflammatory mediators and ultimately to abnormalities of systemic metabolism. Recent studies show that lipid metabolism maintains homeostasis and function of intestinal blood and lymphatic endothelial cells, BECs and LECs, respectively. This review highlights recent progress in this area, and information related to the contribution of the lipid transporter CD36, abundant in BECs and LECs, to gastrointestinal barrier integrity, inflammation, and to gut regulation of whole body metabolism. The potential role of endothelial lipid delivery in epithelial tissue renewal after injury and consequently in the risk of gastric and intestinal diseases is also discussed.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | - Vivek S Peche
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
Jize Z, Zhuoga D, Xiaoqing Z, Na T, Jiacuo G, Cuicheng L, Bandan P. Different feeding strategies can affect growth performance and rumen functions in Gangba sheep as revealed by integrated transcriptome and microbiome analyses. Front Microbiol 2022; 13:908326. [PMID: 36090079 PMCID: PMC9449551 DOI: 10.3389/fmicb.2022.908326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Due to the harsh environment in the Tibetan Plateau, traditional grazing greatly limits the growth potential of local animals and causes severe ecosystem degradation. This is an urgent issue to be solved, which requires alternative strategies for grazing animals in the Tibetan alpine pastoral livestock systems. This study aimed to investigate the effects of different feeding strategies on growth performance and ruminal microbiota-host interactions in the local breed of sheep (Gangba sheep). Thirty 9-month old Gangba sheep (n = 10 per group) were assigned to natural grazing (G), semi-grazing with supplementation (T), and barn feeding (F) groups (supplementation of concentrate and oat hay) based on body weight. At the end of the experiment (75 d), all sheep were weighed, rumen fluid was obtained from six sheep per group, and ruminal epithelium was obtained from 3 sheep per group. The results showed that: (1) Compared with the G and T groups, the F group significantly increased dry matter intake, average daily gain, and feed conversion ratio of animals. Additionally, Gangba sheep in the F group had higher concentrations of ruminal short-chain volatile fatty acids (VFAs), especially propionate and butyrate (P <0.05) than sheep in the G and T groups. (2) The principal coordinates analysis indicated a significant difference in bacterial composition among different feed strategies. More specifically, the relative abundance of propionate (unidentified F082 and Succiniclasticum) and butyrate-producing (Eubacterium_coprostanoligenes_group) genera were also observed to be increased in the F group, in which unidentified F082 was identified as a differential biomarker among the three groups according to linear discriminant analysis effect size analysis. (3) The dynamics of the rumen epithelial transcriptome revealed that ECM-receptor interactions, focal adhesion, and PI3K-Akt signaling pathways, which are critical in mediating many aspects of cellular functions such as cell proliferation and motility, were upregulated in the F group. In conclusion, under harsh conditions in the Tibetan alpine meadow, barn feeding increased ruminal VFAs concentrations (especially propionate and butyrate), which stimulated gene expression related to cell proliferation in rumen epithelium, appearing to be superior to natural grazing and semi-grazing in gaining body weight of the local Gangba sheep.
Collapse
Affiliation(s)
- Zhang Jize
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Deqing Zhuoga
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Zhang Xiaoqing
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- *Correspondence: Zhang Xiaoqing
| | - Ta Na
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Gesang Jiacuo
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Luosang Cuicheng
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Pingcuo Bandan
- Institute of Livestock Research, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| |
Collapse
|
30
|
Gong Z, Yang Q, Wang Y, Weng X, Li Y, Dong Y, Zhu X, Chen Y. Pharmacokinetic Differences of Wuji Pill Components in Normal and Chronic Visceral Hypersensitivity Irritable Bowel Syndrome Rats Attributable to Changes in Tight Junction and Transporters. Front Pharmacol 2022; 13:948678. [PMID: 35873589 PMCID: PMC9305487 DOI: 10.3389/fphar.2022.948678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
The Wuji pill, also called Wuji Wan (WJW), is an effective traditional medicine for the clinical treatment of irritable bowel syndrome (IBS). It is principally composed of Rhizoma Coptidis, Fructus Evodiae Rutaecarpae, and Radix Paeoniae Alba. There have been no reports on the pharmacokinetics of WJW on IBS. Because it is more meaningful to study pharmacokinetics in relation to specific pathological conditions, our study investigated the pharmacokinetic differences of five representative components (berberine, palmatine, evodiamine, rutaecarpine, and paeoniflorin) in normal rats and chronic visceral hypersensitivity IBS (CVH-IBS) model rats after single dose and multiple doses of WJW using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Transmission electron microscopy, immunohistochemistry, and immunofluorescence were used to explore mechanisms behind the pharmacokinetic differences in terms of tight junction proteins (Occludin and ZO-1), myosin light chain kinase (MLCK), and transporters including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and multidrug resistance associated protein 2 (MRP2) in rat colons. After a single dose, for all components except rutaecarpine, significant differences were observed between normal and model groups. Compared with normal group, T1/2 and AUC0-t of berberine and palmatine in model group increased significantly (562.5 ± 237.2 vs. 1,384.9 ± 712.4 min, 733.8 ± 67.4 vs. 1,532.4 ± 612.7 min; 5,443.0 ± 1,405.8 vs. 9,930.8 ± 2,304.5 min·ng/ml, 2,365.5 ± 410.6 vs. 3,527.0 ± 717.8 min·ng/ml), while Cl/F decreased (840.7 ± 250.8 vs. 397.3 ± 142.7 L/h/kg, 427.7 ± 89.4 vs. 288.9 ± 114.4 L/h/kg). Cmax and AUC0-t of evodiamine in model group increased significantly (1.4 ± 0.6 vs. 2.4 ± 0.7 ng/ml; 573 ± 45.3 vs. 733.9 ± 160.2 min·ng/ml), while T1/2, Tmax, Cl/F, and Vd/F had no significant difference. Tmax and AUC0-t of paeoniflorin in model group increased significantly (21.0 ± 8.2 vs. 80.0 ± 45.8 min; 15,428.9 ± 5,063.6 vs. 33,140.6 ± 5,613.9 min·ng/ml), while Cl/F decreased (110.5 ± 48.1 vs. 43.3 ± 9.5 L/h/kg). However, after multiple doses, all five components showed significant differences between normal and model groups. Moreover, these differences were related to tight junction damage and the differential expression of transporters in the colon, suggesting that dose adjustment might be required during administration of WJW in the clinical treatment of IBS.
Collapse
Affiliation(s)
- Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Dong
- Guang’An Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yu Dong, ; Xiaoxin Zhu, ; Ying Chen,
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yu Dong, ; Xiaoxin Zhu, ; Ying Chen,
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yu Dong, ; Xiaoxin Zhu, ; Ying Chen,
| |
Collapse
|
31
|
Chen HM, MacDonald JA. Death-associated protein kinases and intestinal epithelial homeostasis. Anat Rec (Hoboken) 2022; 306:1062-1087. [PMID: 35735750 DOI: 10.1002/ar.25022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
33
|
Xie X, Geng C, Li X, Liao J, Li Y, Guo Y, Wang C. Roles of gastrointestinal polypeptides in intestinal barrier regulation. Peptides 2022; 151:170753. [PMID: 35114316 DOI: 10.1016/j.peptides.2022.170753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022]
Abstract
The intestinal barrier is a dynamic entity that is organized as a multilayer system and includes various intracellular and extracellular elements. The gut barrier functions in a coordinated manner to impede the passage of antigens, toxins, and microbiome components and simultaneously preserves the balanced development of the epithelial barrier and the immune system and the acquisition of tolerance to dietary antigens and intestinal pathogens.Numerous scientific studies have shown a significant association between gut barrier damage and gastrointestinal and extraintestinal diseases such as inflammatory bowel disease, celiac disease and hepatic fibrosis. Various internal and external factors regulate the intestinal barrier. Gastrointestinal peptides originate from enteroendocrine cells in the luminal digestive tract and are critical gut barrier regulators. Recent studies have demonstrated that gastrointestinal peptides have a therapeutic effect on digestive tract diseases, enhancing epithelial barrier activity and restoring the gut barrier. This review demonstrates the roles and mechanisms of gastrointestinal polypeptides, especially somatostatin (SST) and vasoactive intestinal peptide (VIP), in intestinal barrier regulation.
Collapse
Affiliation(s)
- Xiaoxi Xie
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; Division of Digestive Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Liao
- Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Ornelas A, Dowdell AS, Lee JS, Colgan SP. Microbial Metabolite Regulation of Epithelial Cell-Cell Interactions and Barrier Function. Cells 2022; 11:cells11060944. [PMID: 35326394 PMCID: PMC8946845 DOI: 10.3390/cells11060944] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells that line tissues such as the intestine serve as the primary barrier to the outside world. Epithelia provide selective permeability in the presence of a large constellation of microbes, termed the microbiota. Recent studies have revealed that the symbiotic relationship between the healthy host and the microbiota includes the regulation of cell–cell interactions at the level of epithelial tight junctions. The most recent findings have identified multiple microbial-derived metabolites that influence intracellular signaling pathways which elicit activities at the epithelial apical junction complex. Here, we review recent findings that place microbiota-derived metabolites as primary regulators of epithelial cell–cell interactions and ultimately mucosal permeability in health and disease.
Collapse
Affiliation(s)
- Alfredo Ornelas
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - Alexander S. Dowdell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - J. Scott Lee
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
- Rocky Mountain Regional Veterans Affairs Medical Center, 1700 N. Wheeling St., Aurora, CO 80045, USA
- Correspondence:
| |
Collapse
|
35
|
Supplementation with milk fat globule membrane from early life reduces maternal separation-induced visceral pain independent of enteric nervous system or intestinal permeability changes in the rat. Neuropharmacology 2022; 210:109026. [DOI: 10.1016/j.neuropharm.2022.109026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/23/2022] [Accepted: 03/06/2022] [Indexed: 12/19/2022]
|
36
|
Sodium Butyrate Ameliorates Oxidative Stress-Induced Intestinal Epithelium Barrier Injury and Mitochondrial Damage through AMPK-Mitophagy Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3745135. [PMID: 35132348 PMCID: PMC8817854 DOI: 10.1155/2022/3745135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Sodium butyrate has gained increasing attention for its vast beneficial effects. However, whether sodium butyrate could alleviate oxidative stress-induced intestinal dysfunction and mitochondrial damage of piglets and its underlying mechanism remains unclear. The present study used a hydrogen peroxide- (H2O2-) induced oxidative stress model to study whether sodium butyrate could alleviate oxidative stress, intestinal epithelium injury, and mitochondrial dysfunction of porcine intestinal epithelial cells (IPEC-J2) in AMPK-mitophagy-dependent pathway. The results indicated that sodium butyrate alleviated the H2O2-induced oxidative stress, decreased the level of reactive oxygen species (ROS), increased mitochondrial membrane potential (MMP), mitochondrial DNA (mtDNA), and mRNA expression of genes related to mitochondrial function, and inhibited the release of mitochondrial cytochrome c (Cyt c). Sodium butyrate reduced the protein expression of recombinant NLR family, pyrin domain-containing protein 3 (NLRP3) and fluorescein isothiocyanate dextran 4 kDa (FD4) permeability and increased transepithelial resistance (TER) and the protein expression of tight junction. Sodium butyrate increased the expression of light-chain-associated protein B (LC3B) and Beclin-1, reduced the expression of P62, and enhanced mitophagy. However, the use of AMPK inhibitor or mitophagy inhibitor weakened the protective effect of sodium butyrate on mitochondrial function and intestinal epithelium barrier function and suppressed the induction effect of sodium butyrate on mitophagy. In addition, we also found that after interference with AMPKα, the protective effect of sodium butyrate on IPEC-J2 cells treated with H2O2 was suppressed, indicating that AMPKα is necessary for sodium butyrate to exert its protective effect. In summary, these results revealed that sodium butyrate induced mitophagy by activating AMPK, thereby alleviating oxidative stress, intestinal epithelium barrier injury, and mitochondrial dysfunction induced by H2O2.
Collapse
|
37
|
Pongkorpsakol P, Satianrapapong W, Wongkrasant P, Steinhagen PR, Tuangkijkul N, Pathomthongtaweechai N, Muanprasat C. Establishment of Intestinal Epithelial Cell Monolayers and Their Use in Calcium Switch Assay for Assessment of Intestinal Tight Junction Assembly. Methods Mol Biol 2022; 2367:273-290. [PMID: 33861461 DOI: 10.1007/7651_2021_347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Intestinal barrier function relies primarily on the assembly and integrity of tight junctions, which forms a size-selective barrier. This barrier restricts paracellular movement of solutes in various types of epithelia. Of note, extracellular Ca2+ concentration affects tight junction assembly. Therefore, the removal and re-addition of Ca2+ into cell culture medium of cultured intestinal epithelial cells causes destabilization and reassembly of tight junction to membrane periphery near apical surface, respectively. Based on this principle, the Ca2+-switch assay was established to investigate tight junction assembly in fully differentiated intestinal epithelial cells. This chapter provides a stepwise protocol for culture of intestinal epithelial cell monolayers using T84 cell line as an in vitro model and the Ca2+-switch assay for evaluating tight junction assembly.
Collapse
Affiliation(s)
- Pawin Pongkorpsakol
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.
| | - Wilasinee Satianrapapong
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | - Nuttha Tuangkijkul
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
38
|
Liu J, Zhou J, Zhao S, Xu X, Li CJ, Li L, Shen T, Hunt PW, Zhang R. Differential responses of abomasal transcriptome to Haemonchus contortus infection between Haemonchus-selected and Trichostrongylus-selected merino sheep. Parasitol Int 2022; 87:102539. [PMID: 35007764 DOI: 10.1016/j.parint.2022.102539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Haemonchus contortus is the most prevalent and pathogenic gastrointestinal nematode infecting sheep and goats. The two CSIRO sheep resource flocks, the Haemonchus-selected flock (HSF) and Trichostrongylus-selected flock (TSF) were developed for research on host resistance or susceptibility to gastrointestinal nematode infection. A recent study focused on the gene expression differences between resistant and susceptible sheep within each flock, with lymphatic and gastrointestinal tissues. To identify features in the host transcriptome and understand the molecular differences underlying host resistance to H. contortus between flocks with different selective breeding and genetic backgrounds, we compared the abomasal transcriptomic responses of the resistant or susceptible animals between HSF and TSF flocks. A total of 11 and 903 differentially expressed genes were identified in the innate infection treatment in HSF and TSF flocks between resistant and susceptible sheep respectively, while 52 and 485 genes were identified to be differentially expressed in the acquired infection treatment, respectively. Among them, 294 genes had significantly different gene expression levels between HSF and TSF flock animals within the susceptible sheep by both the innate and acquired infections. Moreover, similar expression patterns of the 294 genes were observed, with 273 genes more highly expressed in HSF and 21 more highly expressed in the TSF within the abomasal transcriptome of the susceptible animals. Gene ontology enrichment of the differentially expressed genes identified in this study predicted the likely differing function between the two flock's susceptible lines in response to H. contortus infection. Nineteen pathways were significantly enriched in both the innate and adaptive immune responses in susceptible animals, which indicated that these pathways likely contribute to the host resistance development to H. contortus infection in susceptible sheep. Biological networks built for the set of genes differentially abundant in susceptible animals identified hub genes of PRKG1, PRKACB, PRKACA, and ITGB1 for the innate immune response, and CALM2, MYL1, COL1A1, ITGB1 and ITGB3 for the adaptive immune response, respectively. Our results offered a quantitative snapshot of host transcriptomic changes induced by H. contortus infection between flocks with different selective breeding and genetic backgrounds and provided novel insights into molecular mechanisms of host resistance.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Jiachang Zhou
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Si Zhao
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China; International Medical School, Hebei Foreign Studies University, Shijiazhuang, Hebei 050096, China
| | - Xiangdong Xu
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Cong-Jun Li
- United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.
| | - Li Li
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Tingbo Shen
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Peter W Hunt
- CSIRO Agriculture and Food, Armidale, NSW, Australia.
| | - Runfeng Zhang
- College of Life Science, Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Biomedicine Industry and Technology Research Institute Company Limited, Hubei Normal University, Huangshi, Hubei 435002, China.
| |
Collapse
|
39
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
40
|
Age-Dependent Intestinal Repair: Implications for Foals with Severe Colic. Animals (Basel) 2021; 11:ani11123337. [PMID: 34944114 PMCID: PMC8697879 DOI: 10.3390/ani11123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
Colic is a leading cause of death in horses, with the most fatal form being strangulating obstruction which directly damages the intestinal barrier. Following surgical intervention, it is imperative that the intestinal barrier rapidly repairs to prevent translocation of gut bacteria and their products and ensure survival of the patient. Age-related disparities in survival have been noted in many species, including horses, humans, and pigs, with younger patients suffering poorer clinical outcomes. Maintenance and repair of the intestinal barrier is regulated by a complex mucosal microenvironment, of which the ENS, and particularly a developing network of subepithelial enteric glial cells, may be of particular importance in neonates with colic. Postnatal development of an immature enteric glial cell network is thought to be driven by the microbial colonization of the gut and therefore modulated by diet-influenced changes in bacterial populations early in life. Here, we review the current understanding of the roles of the gut microbiome, nutrition, stress, and the ENS in maturation of intestinal repair mechanisms after foaling and how this may influence age-dependent outcomes in equine colic cases.
Collapse
|
41
|
Almasoudi SH, Schlosser G. Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. Front Neuroanat 2021; 15:722374. [PMID: 34616280 PMCID: PMC8488300 DOI: 10.3389/fnana.2021.722374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland
| |
Collapse
|
42
|
Nighot M, Ganapathy AS, Saha K, Suchanec E, Castillo EF, Gregory A, Shapiro S, Ma T, Nighot P. Matrix Metalloproteinase MMP-12 Promotes Macrophage Transmigration Across Intestinal Epithelial Tight Junctions and Increases Severity of Experimental Colitis. J Crohns Colitis 2021; 15:1751-1765. [PMID: 33836047 PMCID: PMC8495490 DOI: 10.1093/ecco-jcc/jjab064] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Matrix metalloproteinases [MMPs] play an important role in extracellular matrix regulation during cell growth and wound healing. Increased expression of MMP-12 [human macrophage elastase] has been reported in inflammatory bowel disease [IBD] which is characterised by the loss of epithelial tight junction [TJ] barrier function and an excessive inflammatory response. The aim of this study was to investigate the role of MMP-12 in intestinal TJ barrier function and inflammation. METHODS Wild type [WT] and MMP-12-/- mice were subjected to experimental acute or chronic dextran sodium sulphate [DSS] colitis. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon and ex vivo by Ussing chamber studies. RESULTS DSS administration increased colonic permeability through modulation of TJ proteins and also increased MMP-12 expression in the colonic mucosa of WT mice. The acute as well as chronic DSS-induced increase in colonic TJ permeability and the severity of DSS colitis was found to be markedly attenuated in MMP-12-/- mice. The resistance of MMP-12-/- mice to DSS colitis was characterised by reduced macrophage infiltration and transmigration, and reduced basement membrane laminin degradation. Further in vitro and in vivo studies show that macrophage transmigration across the epithelial layer is MMP-12 dependent and the epithelial TJ barrier is compromised during macrophage transmigration. Conclusions: Together, these data demonstrate that MMP-12 mediated degradation of basement membrane laminin, macrophage transmigration, and associated loss of intestinal TJ barrier are key pathogenic factors for intestinal inflammation.
Collapse
Affiliation(s)
- Meghali Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| | | | - Kushal Saha
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| | - Eric Suchanec
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| | - Eliseo F Castillo
- University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Alyssa Gregory
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven Shapiro
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas Ma
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| | - Prashant Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| |
Collapse
|
43
|
Sun Y, Oami T, Liang Z, Miniet AA, Burd EM, Ford ML, Coopersmith CM. Membrane Permeant Inhibitor of Myosin Light Chain Kinase Worsens Survival in Murine Polymicrobial Sepsis. Shock 2021; 56:621-628. [PMID: 33606476 PMCID: PMC8368082 DOI: 10.1097/shk.0000000000001759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABSTRACT Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Genetic deletion of myosin light chain kinase (MLCK) reverses intestinal hyperpermeability and improves survival in a murine model of intra-abdominal sepsis. In an attempt to determine whether these findings could be translated using a more clinically relevant strategy, this study aimed to determine if pharmacologic inhibition of MLCK using the membrane permeant inhibitor of MLCK (PIK) improved gut barrier function and survival following sepsis. C57BL/6 mice underwent cecal ligation and puncture to induce sepsis and were then randomized to receive either PIK or vehicle. Unexpectedly, PIK significantly worsened 7-day survival following sepsis (24% vs. 62%). The three pathways of intestinal permeability were then interrogated by orally gavaging septic mice with creatinine (6Å), FD-4 (28Å), and rhodamine70 (120Å) and assaying their appearance in the bloodstream. PIK led to increased permeability in the leak pathway with higher levels of FD-4 in the bloodstream compared to septic mice given vehicle. In contrast, no differences were detected in the pore or unrestricted pathways of permeability. Examination of jejunal tight junctions for potential mechanisms underlying increased leak permeability revealed that mice that received PIK had increased phosphorylated MLC without alterations in occludin, ZO-1, or JAM-A. PIK administration was not associated with significant differences in systemic or peritoneal bacterial burden, cytokines, splenic or Peyer's Patches immune cells or intestinal integrity. These results demonstrate that pharmacologic inhibition of MLCK unexpectedly increases mortality, associated with worsened intestinal permeability through the leak pathway, and suggest caution is required in targeting the gut barrier as a potential therapy in sepsis.
Collapse
Affiliation(s)
- Yini Sun
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Takehiko Oami
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia
| | - Ashley A Miniet
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
44
|
Vanuytsel T, Tack J, Farre R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front Nutr 2021; 8:717925. [PMID: 34513903 PMCID: PMC8427160 DOI: 10.3389/fnut.2021.717925] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
An increased intestinal permeability has been described in various gastrointestinal and non-gastrointestinal disorders. Nevertheless, the concept and definition of intestinal permeability is relatively broad and includes not only an altered paracellular route, regulated by tight junction proteins, but also the transcellular route involving membrane transporters and channels, and endocytic mechanisms. Paracellular intestinal permeability can be assessed in vivo by using different molecules (e.g., sugars, polyethylene glycols, 51Cr-EDTA) and ex vivo in Ussing chambers combining electrophysiology and probes of different molecular sizes. The latter is still the gold standard technique for assessing the epithelial barrier function, whereas in vivo techniques, including putative blood biomarkers such as intestinal fatty acid-binding protein and zonulin, are broadly used despite limitations. In the second part of the review, the current evidence of the role of impaired barrier function in the pathophysiology of selected gastrointestinal and liver diseases is discussed. Celiac disease is one of the conditions with the best evidence for impaired barrier function playing a crucial role with zonulin as its proposed regulator. Increased permeability is clearly present in inflammatory bowel disease, but the question of whether this is a primary event or a consequence of inflammation remains unsolved. The gut-liver axis with a crucial role in impaired intestinal barrier function is increasingly recognized in chronic alcoholic and metabolic liver disease. Finally, the current evidence does not support an important role for increased permeability in bile acid diarrhea.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Department of Chronic Diseases, Translational Research Center for Gastrointestinal Disorders, Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium.,Division of Gastroenterology and Hepatology, Leuven University Hospital, Leuven, Belgium
| | - Jan Tack
- Department of Chronic Diseases, Translational Research Center for Gastrointestinal Disorders, Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium.,Division of Gastroenterology and Hepatology, Leuven University Hospital, Leuven, Belgium
| | - Ricard Farre
- Department of Chronic Diseases, Translational Research Center for Gastrointestinal Disorders, Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Pongkorpsakol P, Turner JR, Zuo L. Culture of Intestinal Epithelial Cell Monolayers and Their Use in Multiplex Macromolecular Permeability Assays for In Vitro Analysis of Tight Junction Size Selectivity. ACTA ACUST UNITED AC 2021; 131:e112. [PMID: 33175441 DOI: 10.1002/cpim.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tight junctions form a selectively permeable barrier that limits paracellular flux across epithelial-lined surfaces. Small molecules (less than ∼8 Å diameter) can traverse the junction via the size- and charge-selective, high-conductance pore pathway. In contrast, the low-conductance leak pathway accommodates larger macromolecules (up to ∼100 Å diameter) and is not charge-selective. Flux across the tight junction-independent, high-conductance, non-selective, unrestricted pathway occurs at sites of epithelial damage. Cytokines can regulate each of these pathways, but commonly used measures of barrier function cannot discriminate between tight junction regulation and epithelial damage. This article describes methods for culturing intestinal epithelial cell monolayers and assessing the impact of cytokine treatment on leak and unrestricted pathway permeabilities. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Generation and culture of cell monolayers in Transwells Basic Protocol 2: Assessment of cytokine (IFNγ and TNF) treatment effects on barrier function Support Protocol: Immunofluorescent staining of monolayers Basic Protocol 3: Multiplex flux assay.
Collapse
Affiliation(s)
- Pawin Pongkorpsakol
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Laboratory of Molecular Biochemistry, Anhui Medical University, Anhui, China
| |
Collapse
|
46
|
Monaco A, Ovryn B, Axis J, Amsler K. The Epithelial Cell Leak Pathway. Int J Mol Sci 2021; 22:ijms22147677. [PMID: 34299297 PMCID: PMC8305272 DOI: 10.3390/ijms22147677] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
The epithelial cell tight junction structure is the site of the transepithelial movement of solutes and water between epithelial cells (paracellular permeability). Paracellular permeability can be divided into two distinct pathways, the Pore Pathway mediating the movement of small ions and solutes and the Leak Pathway mediating the movement of large solutes. Claudin proteins form the basic paracellular permeability barrier and mediate the movement of small ions and solutes via the Pore Pathway. The Leak Pathway remains less understood. Several proteins have been implicated in mediating the Leak Pathway, including occludin, ZO proteins, tricellulin, and actin filaments, but the proteins comprising the Leak Pathway remain unresolved. Many aspects of the Leak Pathway, such as its molecular mechanism, its properties, and its regulation, remain controversial. In this review, we provide a historical background to the evolution of the Leak Pathway concept from the initial examinations of paracellular permeability. We then discuss current information about the properties of the Leak Pathway and present current theories for the Leak Pathway. Finally, we discuss some recent research suggesting a possible molecular basis for the Leak Pathway.
Collapse
Affiliation(s)
- Ashley Monaco
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
| | - Ben Ovryn
- Department of Physics, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA;
| | - Josephine Axis
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
| | - Kurt Amsler
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
- Correspondence: ; Tel.: +1-516-686-3716
| |
Collapse
|
47
|
Kim J, Tamura A, Tsukita S, Park S. Uniaxial stretching device for studying maturity-dependent morphological response of epithelial cell monolayers to tensile strain. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Lynn KS, Easley KF, Martinez FJ, Reed RC, Schlingmann B, Koval M. Asymmetric distribution of dynamin-2 and β-catenin relative to tight junction spikes in alveolar epithelial cells. Tissue Barriers 2021; 9:1929786. [PMID: 34107845 DOI: 10.1080/21688370.2021.1929786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Tight junctions between lung alveolar epithelial cells maintain an air-liquid barrier necessary for healthy lung function. Previously, we found that rearrangement of tight junctions from a linear, cortical orientation into perpendicular protrusions (tight junction spikes) is associated with a decrease in alveolar barrier function, especially in alcoholic lung syndrome. Using quantitative super-resolution microscopy, we found that spikes in control cells were enriched for claudin-18 as compared with alcohol-exposed cells. Moreover, using an in situ method to measure barrier function, tight junction spikes were not associated with localized increases in permeability. This suggests that tight junction spikes have a regulatory role as opposed to causing a physical weakening of the epithelial barrier. We found that tight junction spikes form at cell-cell junctions oriented away from pools of β-catenin associated with actin filaments, suggesting that adherens junctions determine the directionality of tight junction spikes. Dynamin-2 was associated with junctional claudin-18 and ZO-1, but showed little localization with β-catenin and tight junction spikes. Treatment with Dynasore decreased the number of tight junction spikes/cell, increased tight junction spike length, and stimulated actin to redistribute to cortical tight junctions. By contrast, Dynole 34-2 and MiTMAB altered β-catenin localization, and reduced tight junction spike length. These data suggest a novel role for dynamin-2 in tight junction spike formation by reorienting junction-associated actin. Moreover, the greater spatial separation of adherens and tight junctions in squamous alveolar epithelial cells as compared with columnar epithelial cells facilitates analysis of molecular regulation of the apical junctional complex.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Francisco J Martinez
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Ryan C Reed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Barbara Schlingmann
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA.,Department of Cell Biology, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
49
|
Wongdee K, Chanpaisaeng K, Teerapornpuntakit J, Charoenphandhu N. Intestinal Calcium Absorption. Compr Physiol 2021; 11:2047-2073. [PMID: 34058017 DOI: 10.1002/cphy.c200014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25-dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β-estradiol, calcitonin, and fibroblast growth factor-23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin-D9k ) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage-dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:1-27, 2021.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
50
|
King MA, Rollo I, Baker LB. Nutritional considerations to counteract gastrointestinal permeability during exertional heat stress. J Appl Physiol (1985) 2021; 130:1754-1765. [PMID: 33955260 DOI: 10.1152/japplphysiol.00072.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal barrier integrity and function are compromised during exertional heat stress (EHS) potentially leading to consequences that range from minor gastrointestinal (GI) disturbances to fatal outcomes in exertional heat stroke or septic shock. This mini-review provides a concise discussion of nutritional interventions that may protect against intestinal permeability during EHS and suggests physiological mechanisms responsible for this protection. Although diverse nutritional interventions have been suggested to be protective against EHS-induced GI permeability, the ingestion of certain amino acids, carbohydrates, and fluid per se is potentially effective strategy, whereas evidence for various polyphenols and pre/probiotics is developing. Plausible physiological mechanisms of protection include increased blood flow, epithelial cell proliferation, upregulation of intracellular heat shock proteins, modulation of inflammatory signaling, alteration of the GI microbiota, and increased expression of tight junction (TJ) proteins. Further clinical research is needed to propose specific nutritional candidates and recommendations for their application to prevent intestinal barrier disruption and elucidate mechanisms during EHS.
Collapse
Affiliation(s)
- Michelle A King
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, Illinois
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Leicestershire, United Kingdom
| | - Lindsay B Baker
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, Illinois
| |
Collapse
|