1
|
Mechanical Stretch Activates TRPV4 and Hemichannel Responses in the Nonpigmented Ciliary Epithelium. Int J Mol Sci 2023; 24:ijms24021673. [PMID: 36675184 PMCID: PMC9865367 DOI: 10.3390/ijms24021673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Previously, we reported a mechanosensitive ion channel, TRPV4, along with functional connexin hemichannels on the basolateral surface of the ocular nonpigmented ciliary epithelium (NPE). In the lens, TRPV4-mediated hemichannel opening is part of a feedback loop that senses and respond to swelling. The present study was undertaken to test the hypothesis that TRPV4 and hemichannels in the NPE respond to a mechanical stimulus. Porcine NPE cells were cultured on flexible membranes to study effects of cyclic stretch and ATP release was determined by a luciferase assay. The uptake of propidium iodide (PI) was measured as an indicator of hemichannel opening. NPE cells subjected to cyclic stretch for 1-10 min (10%, 0.5 Hz) displayed a significant increase in ATP release into the bathing medium. In studies where PI was added to the bathing medium, the same stretch stimulus increased cell PI uptake. The ATP release and PI uptake responses to stretch both were prevented by a TRPV4 antagonist, HC067047 (10 µM), and a connexin mimetic peptide, Gap 27 (200µm). In the absence of a stretch stimulus, qualitatively similar ATP release and PI uptake responses were observed in cells exposed to the TRPV4 agonist GSK1016790A (10 nM), and Gap 27 prevented the responses. Cells subjected to an osmotic swelling stimulus (hypoosmotic medium: 200 mOsm) also displayed a significant increase in ATP release and PI uptake and the responses were abolished by TRPV4 inhibition. The findings point to TRPV4-dependent connexin hemichannel opening in response to mechanical stimulus. The TRPV4-hemichannel mechanism may act as a mechanosensor that facilitates the release of ATP and possibly other autocrine or paracrine signaling molecules that influence fluid (aqueous humor) secretion by the NPE.
Collapse
|
2
|
Delamere NA, Shahidullah M. Ion Transport Regulation by TRPV4 and TRPV1 in Lens and Ciliary Epithelium. Front Physiol 2022; 12:834916. [PMID: 35173627 PMCID: PMC8841554 DOI: 10.3389/fphys.2021.834916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
Aside from a monolayer of epithelium at the anterior surface, the lens is formed by tightly compressed multilayers of fiber cells, most of which are highly differentiated and have a limited capacity for ion transport. Only the anterior monolayer of epithelial cells has high Na, K-ATPase activity. Because the cells are extensively coupled, the lens resembles a syncytium and sodium-potassium homeostasis of the entire structure is largely dependent on ion transport by the epithelium. Here we describe recent studies that suggest TRPV4 and TRPV1 ion channels activate signaling pathways that play an important role in matching epithelial ion transport activity with needs of the lens cell mass. A TRPV4 feedback loop senses swelling in the fiber mass and increases Na, K-ATPase activity to compensate. TRPV4 channel activation in the epithelium triggers opening of connexin hemichannels, allowing the release of ATP that stimulates purinergic receptors in the epithelium and results in the activation of Src family tyrosine kinases (SFKs) and SFK-dependent increase of Na, K-ATPase activity. A separate TRPV1 feedback loop senses shrinkage in the fiber mass and increases NKCC1 activity to compensate. TRPV1 activation causes calcium-dependent activation of a signaling cascade in the lens epithelium that involves PI3 kinase, ERK, Akt and WNK. TRPV4 and TRPV1 channels are also evident in the ciliary body where Na, K-ATPase is localized on one side of a bilayer in which two different cell types, non-pigmented and pigmented ciliary epithelium, function in a coordinated manner to secrete aqueous humor. TRPV4 and TRPV1 may have a role in maintenance of cell volume homeostasis as ions and water move through the bilayer.
Collapse
|
3
|
Okada Y, Sabirov RZ, Sato-Numata K, Numata T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Front Cell Dev Biol 2021; 8:614040. [PMID: 33511120 PMCID: PMC7835517 DOI: 10.3389/fcell.2020.614040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cell volume regulation (CVR) is essential for survival and functions of animal cells. Actually, normotonic cell shrinkage and swelling are coupled to apoptotic and necrotic cell death and thus called the apoptotic volume decrease (AVD) and the necrotic volume increase (NVI), respectively. A number of ubiquitously expressed anion and cation channels are involved not only in CVD but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels and several types of TRP cation channels including TRPM2 and TRPM7. The Part 1 focuses on the roles of the volume-sensitive outwardly rectifying anion channels (VSOR), also called the volume-regulated anion channel (VRAC), which is activated by cell swelling or reactive oxygen species (ROS) in a manner dependent on intracellular ATP. First we describe phenotypical properties, the molecular identity, and physical pore dimensions of VSOR/VRAC. Second, we highlight the roles of VSOR/VRAC in the release of organic signaling molecules, such as glutamate, glutathione, ATP and cGAMP, that play roles as double-edged swords in cell survival. Third, we discuss how VSOR/VRAC is involved in CVR and cell volume dysregulation as well as in the induction of or protection from apoptosis, necrosis and regulated necrosis under pathophysiological conditions.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ravshan Z. Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
4
|
Fischbarg J. Water channels and their roles in some ocular tissues. Mol Aspects Med 2012; 33:638-41. [PMID: 22819922 DOI: 10.1016/j.mam.2012.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 01/23/2023]
Abstract
Water is a major component of the eye, and water channels (aquaporins) are ubiquitous in ocular tissues, and quite abundant at their different locations. AQP1 is expressed in corneal endothelium, lens epithelium, ciliary epithelium, and retinal pigment epithelium. AQP3 is expressed in corneal epithelium, and in conjunctival epithelium. AQP4 is expressed in ciliary epithelium and retinal Muller cells. AQP5 is expressed in corneal epithelium, and conjunctival epithelium. AQP0 is expressed in lens fiber cells. It is known that five ocular tissues transport fluid, namely: (1) Corneal endothelium; (2) Conjunctival epithelium; (3) Lens epithelium; (4) Ciliary epithelium; (5) Retinal pigment epithelium. For the corneal endothelium, aquaporins are not the main route for trans-tissue water movement, which is paracellular. Instead, we propose that aquaporins allow fast osmotic equilibration of the cell, which is necessary to maintain optimal rates of fluid movement since the cyclic paracellular water transfer mechanism operates separately and tends to create periodic osmotic imbalances (τ∼5 s).
Collapse
Affiliation(s)
- Jorge Fischbarg
- Institute for Cardiological Investigations A.C. Taquini, University of Buenos Aires and CONICET, Marcelo T. de Alvear 2270, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Voltage-gated potassium channel Kv1.3 in rabbit ciliary epithelium regulates the membrane potential via coupling intracellular calcium. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200811020-00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Vinge LE, von Lueder TG, Aasum E, Qvigstad E, Gravning JA, How OJ, Edvardsen T, Bjørnerheim R, Ahmed MS, Mikkelsen BW, Oie E, Attramadal T, Skomedal T, Smiseth OA, Koch WJ, Larsen TS, Attramadal H. Cardiac-restricted expression of the carboxyl-terminal fragment of GRK3 Uncovers Distinct Functions of GRK3 in regulation of cardiac contractility and growth: GRK3 controls cardiac alpha1-adrenergic receptor responsiveness. J Biol Chem 2007; 283:10601-10. [PMID: 18165681 DOI: 10.1074/jbc.m708912200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor kinase-2 and -3 (GRK2 and GRK3) in cardiac myocytes catalyze phosphorylation and desensitization of different G protein-coupled receptors through specificity controlled by their carboxyl-terminal pleckstrin homology domain. Although GRK2 has been extensively investigated, the function of cardiac GRK3 remains unknown. Thus, in this study cardiac function of GRK3 was investigated in transgenic (Tg) mice with cardiac-restricted expression of a competitive inhibitor of GRK3, i.e. the carboxyl-terminal plasma membrane targeting domain of GRK3 (GRK3ct). Cardiac myocytes from Tg-GRK3ct mice displayed significantly enhanced agonist-stimulated alpha(1)-adrenergic receptor-mediated activation of ERK1/2 versus cardiac myocytes from nontransgenic littermate control (NLC) mice consistent with inhibition of GRK3. Tg-GRK3ct mice did not display alterations of cardiac mass or left ventricular dimensions compared with NLC mice. Tail-cuff plethysmography of 3- and 9-month-old mice revealed elevated systolic blood pressure in Tg-GRK3ct mice versus control mice (3-month-old mice, 136.8 +/- 3.6 versus 118.3 +/- 4.7 mm Hg, p < 0.001), an observation confirmed by radiotelemetric recording of blood pressure of conscious, unrestrained mice. Simultaneous recording of left ventricular pressure and volume in vivo by miniaturized conductance micromanometry revealed increased systolic performance with significantly higher stroke volume and stroke work in Tg-GRK3ct mice than in NLC mice. This phenotype was corroborated in electrically paced ex vivo perfused working hearts. However, analysis of left ventricular function ex vivo as a function of increasing filling pressure disclosed significantly reduced (dP/dt)(min) and prolonged time constant of relaxation (tau) in Tg-GRK3ct hearts at elevated supraphysiological filling pressure compared with control hearts. Thus, inhibition of GRK3 apparently reduces tolerance to elevation of preload. In conclusion, inhibition of cardiac GRK3 causes hypertension because of hyperkinetic myocardium and increased cardiac output relying at least partially on cardiac myocyte alpha(1)-adrenergic receptor hyper-responsiveness. The reduced tolerance to elevation of preload may cause impaired ability to withstand pathophysiological mechanisms of heart failure.
Collapse
Affiliation(s)
- Leif Erik Vinge
- Institute for Surgical Research, University of Oslo and Rikshospitalet-Radiumhospitalet Medical Center, Oslo N-0027, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mao JW, Wang LW, Jacob T, Sun XR, Li H, Zhu LY, Li P, Zhong P, Nie SH, Chen LX. Involvement of regulatory volume decrease in the migration of nasopharyngeal carcinoma cells. Cell Res 2007; 15:371-8. [PMID: 15916723 DOI: 10.1038/sj.cr.7290304] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The transwell chamber migration assay and CCD digital camera imaging techniques were used to investigate the relationship between regulatory volume decrease (RVD) and cell migration in nasopharyngeal carcinoma cells (CNE-2Z cells). Both migrated and non-migrated CNE-2Z cells, when swollen by 47% hypotonic solution, exhibited RVD which was inhibited by extracellular application of chloride channel blockers adenosine 5'-triphosphate (ATP), 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen. However, RVD rate in migrated CNE-2Z cells was bigger than that of non-migrated cells and the sensitivity of migrated cells to NPPB and tamoxifen was higher than that of non-migrated cells. ATP, NPPB and tamoxifen also inhibited migration of CNE-2Z cells. The inhibition of migration was positively correlated to the blockage of RVD, with a correlation coefficient (r) = 0.99, suggesting a functional relationship between RVD and cell migration. We conclude that RVD is involved in cell migration and RVD may play an important role in migratory process in CNE-2Z cells.
Collapse
Affiliation(s)
- Jian Wen Mao
- Laboratory of Cell Biology, Guangdong Medical College, Zhanjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Capó-Aponte JE, Iserovich P, Reinach PS. Characterization of regulatory volume behavior by fluorescence quenching in human corneal epithelial cells. J Membr Biol 2007; 207:11-22. [PMID: 16463139 DOI: 10.1007/s00232-005-0800-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 10/01/2005] [Indexed: 10/25/2022]
Abstract
An in-depth understanding of the mechanisms underlying regulatory volume behavior in corneal epithelial cells has been in part hampered by the lack of adequate methodology for characterizing this phenomenon. Accordingly, we developed a novel approach to characterize time-dependent changes in relative cell volume induced by anisosmotic challenges in calcein-loaded SV40-immortalized human corneal epithelial (HCE) cells with a fluorescence microplate analyzer. During a hypertonic challenge, cells shrank rapidly, followed by a temperature-dependent regulatory volume increase (RVI), tau(c) = 19 min. In contrast, a hypotonic challenge induced a rapid (tau(c) = 2.5 min) regulatory volume decrease (RVD). Temperature decline from 37 to 24 degrees C reduced RVI by 59%, but did not affect RVD. Bumetanide (50 microM), ouabain (1 mM), DIDS (1 mM), EIPA (100 microM), or Na(+)-free solution reduced the RVI by 60, 61, 39, 32, and 69%, respectively. K+, Cl- channel and K(+)-Cl(-) cotransporter (KCC) inhibition obtained with either 4-AP (1 mM), DIDS (1 mM), DIOA (100 microM), high K+ (20 mM) or Cl(-)-free solution, suppressed RVD by 42, 47, 34, 52 and 58%, respectively. KCC activity also affects steady-state cell volume, since its inhibition or stimulation induced relative volume alterations under isotonic conditions. Taken together, K+ and Cl- channels in parallel with KCC activity are important mediators of RVD, whereas RVI is temperature-dependent and is essentially mediated by the Na(+)-K(+)-2Cl(-) cotransporter (Na(+)-K(+)-2Cl(-)) and the Na(+)-K(+) pump. Inhibition of K+ and Cl- channels and KCC but not Na(+)-K(+)-2Cl(-) affect steady-state cell volume under isotonic conditions. This is the first report that KCC activity is required for HCE cell volume regulation and maintenance of steady-state cell volume.
Collapse
Affiliation(s)
- J E Capó-Aponte
- Department of Biological Sciences, College of Optometry, State University of New York, New York, NY 10036, USA
| | | | | |
Collapse
|
9
|
Chen LX, Zhu LY, Jacob TJC, Wang LW. Roles of volume-activated Cl- currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells. Cell Prolif 2007; 40:253-67. [PMID: 17472731 PMCID: PMC6496325 DOI: 10.1111/j.1365-2184.2007.00432.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/31/2006] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Previously it has been shown, that the volume-activated plasma membrane chloride channel is associated with regulatory volume decrease (RVD) of cells and may play an important role in control of cell proliferation. We have demonstrated that both expression of the channel and RVD capacity are actively regulated in the cell cycle. In this study, we aimed to further study the role of the volume-activated chloride current and RVD in cell cycle progression and overall in cell proliferation. MATERIALS AND METHODS Whole-cell currents, RVD, cell cycle distribution, cell proliferation and cell viability were measured or detected with the patch-clamp technique, the cell image analysis technique, flow cytometry, the MTT assay and the trypan blue assay respectively, in nasopharyngeal carcinoma cells (CNE-2Z cells). RESULTS The Cl- channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen, inhibit the volume-activated chloride current, RVD and proliferation of CNE-2Z cells in a dose-dependent manner. Analysis of relationships between the current, RVD and cell proliferation showed that both the current and RVD were positively correlated with cell proliferation. NPPB (100 microM) and tamoxifen (20 microM) did not significantly induce cell death, but inhibited cell proliferation, implying that the blockers may inhibit cell proliferation by affecting cell cycle progression. This was verified by the observation that tamoxifen (20 microM) and NPPB (100 microM) inhibited cell cycle progress and arrested cells at the G0/G1 phase boundary. CONCLUSIONS Activity of the volume-activated chloride channel is one of the important factors that regulate the passage of cells through the G1 restriction point and that the Cl- current associated with RVD plays an important role in cell proliferation.
Collapse
Affiliation(s)
- L X Chen
- Medical College, Jinan University, Guangzhou, China
| | | | | | | |
Collapse
|
10
|
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) are found on the surface of all cells of multicellular organisms and are major mediators of intercellular communication. More than 800 distinct GPCRs are present in the human genome, and individual receptor subtypes respond to hormones, neurotransmitters, chemokines, odorants, or tastants. GPCRs represent the most widely targeted pharmacological protein class. Because drugs that target GPCRs often engage receptor regulatory mechanisms that limit drug effectiveness, particularly in chronic treatment, there is great interest in understanding how GPCRs are regulated, as a basis for designing therapeutic drugs that evade this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), followed by binding of arrestin proteins, which prevent receptors from activating downstream heterotrimeric G protein pathways while allowing activation of arrestin-dependent signaling pathways. Although the general mechanisms of GRK-arrestin regulation have been well explored in model cell systems and with purified proteins, much less is known about the role of GRK-arrestin regulation of receptors in physiological and pathophysiological settings. This review focuses on the physiological functions and potential pathophysiological roles of GRKs and arrestins in human disorders as well as on recent studies using knockout and transgenic mice to explore the role of GRK-arrestin regulation of GPCRs in vivo.
Collapse
Affiliation(s)
- Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
11
|
Karl MO, Peterson-Yantorno K, Civan MM. Cell-specific differential modulation of human trabecular meshwork cells by selective adenosine receptor agonists. Exp Eye Res 2006; 84:126-34. [PMID: 17070802 PMCID: PMC1764820 DOI: 10.1016/j.exer.2006.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/11/2006] [Accepted: 09/11/2006] [Indexed: 11/30/2022]
Abstract
Activation of A1 and A2A subtype adenosine receptors (AR) likely exert opposing effects on outflow of aqueous humor, and thereby, on intraocular pressure. Selective agonists of adenosine receptor (AR) subtypes have previously been applied to trabecular meshwork (TM) and Schlemm's canal (SC) cells to identify the site(s) of differential purinergic modulation. However, the apparent changes in volume monitored by previously measuring projected cell area might have partially reflected cell contraction and relaxation. In addition, whole-cell current responses of the TM cells previously described were highly variable following application of selective A1, A2A and A3 agonists. The complexity of the electrophysiologic responses may have reflected cell heterogeneity of the populations harvested from collagenase digestion of TM explants. We now report measurements of TM-cell volume using calcein fluorescence quenching, an approach independent of contractile state. Furthermore, we have applied selective AR agonists to a uniform population of human TM cells, the hTM5 cell line. A1, but not A2A or A3, AR agonists triggered TM-cell shrinkage. Both A1 and A2A AR agonists produced reproducible increases in TM-cell whole-cell currents of similar magnitude. The results suggest that previous measurements of explant-derived TM cells may have reflected a range of responses from phenotypically different cell populations, and that the opposing effects of A1 and A2A agonists on outflow resistance are not likely to be mediated by actions on a single population of TM cells. These opposing effects might reflect AR responses by two or more subpopulations of TM cells, by TM and SC cells or by inner-wall SC cells, alone.
Collapse
Affiliation(s)
| | | | - Mortimer M. Civan
- Departments of Physiology and
- Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085
- Corresponding author: Dr. Mortimer M. Civan, Dept. of Physiology, University of Pennsylvania, Richards Building, Philadelphia, PA 19104-6085 [Tel.: (215)-898-8773; FAX: (215)-573-5851; e-mail: ]
| |
Collapse
|
12
|
Calera MR, Topley HL, Liao Y, Duling BR, Paul DL, Goodenough DA. Connexin43 is required for production of the aqueous humor in the murine eye. J Cell Sci 2006; 119:4510-9. [PMID: 17046998 DOI: 10.1242/jcs.03202] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Connexin43 is a major component of the gap junctions between pigmented and non-pigmented cells of the double-layered epithelium in the ciliary body of the eye. We directly tested the hypothesis that gap junctions play a crucial role in the production of the aqueous humor by inactivating the GJA1 (connexin43) gene in the pigmented epithelium with cre-loxP technology. To accomplish this, we crossed a line expressing cre recombinase driven by the nestin promoter and a line with floxed connexin43 alleles. Resultant lines exhibited loss of connexin43 from the pigmented epithelium, iris, retinal pigment epithelium and the lens. We observed plasma proteins in the aqueous humor and pathological changes consistent with a loss of intraocular pressure. As the ciliary body is responsible for aqueous humor production, these data support the hypothesis that the gap junctions between pigmented and non-pigmented epithelium are necessary for production of the aqueous humor that is in turn required for the generation of normal intraocular pressure and nourishment of the postnatal lens. The loss of connexin43 expression in the iris correlated with a separation of the posterior pigmented epithelium from the anterior myoepithelium and with meiosis, possibly resulting from a loss of function of the dilator pupillae.
Collapse
Affiliation(s)
- Mónica R Calera
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
13
|
Métayé T, Gibelin H, Perdrisot R, Kraimps JL. Pathophysiological roles of G-protein-coupled receptor kinases. Cell Signal 2005; 17:917-28. [PMID: 15894165 DOI: 10.1016/j.cellsig.2005.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 01/11/2005] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptor kinases (GRKs) interact with the agonist-activated form of G-protein-coupled receptors (GPCRs) to effect receptor phosphorylation and to initiate profound impairment of receptor signalling, or desensitization. GPCRs form the largest family of cell surface receptors known and defects in GRK function have the potential consequence to affect GPCR-stimulated biological responses in many pathological situations. This review focuses on the physiological role of GRKs revealed by genetically modified animals but also develops the involvement of GRKs in human diseases as, Oguchi disease, heart failure, hypertension or rhumatoid arthritis. Furthermore, the regulation of GRK levels in opiate addiction, cancers, psychiatric diseases, cystic fibrosis and cardiac diseases is discussed. Both transgenic mice and human pathologies have demonstrated the importance of GRKs in the signalling pathways of rhodopsin, beta-adrenergic and dopamine-1 receptors. The modulation of GRK activity in animal models of cardiac diseases can be effective to restore cardiac function in heart failure and opens a novel therapeutic strategy in diseases with GPCR dysregulation.
Collapse
Affiliation(s)
- Thierry Métayé
- Department of Nuclear Medicine and Biophysics, Groupe de Recherche en Endocrinologie Expérimentale et Clinique, CHU de Poitiers, France.
| | | | | | | |
Collapse
|
14
|
Anis Y, Leshem O, Reuveni H, Wexler I, Ben Sasson R, Yahalom B, Laster M, Raz I, Ben Sasson S, Shafrir E, Ziv E. Antidiabetic effect of novel modulating peptides of G-protein-coupled kinase in experimental models of diabetes. Diabetologia 2004; 47:1232-1244. [PMID: 15235770 DOI: 10.1007/s00125-004-1444-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 04/19/2004] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS G-protein-coupled receptor kinases (GRKs) play a key role in agonist-induced desensitisation of G-protein-coupled receptors (GPCRs) that are involved in metabolic regulation and glucose homeostasis. Our aim was to examine whether small peptides derived from the catalytic domain of GRK2 and -3 would ameliorate Type 2 diabetes in three separate animal models of diabetes. METHODS Synthetic peptides derived from a kinase-substrate interaction site in GRK2/3 were initially screened for their effect on in vitro melanogenesis, a GRK-mediated process. The most effective peptides were administered intraperitoneally, utilising a variety of dosing regimens, to Psammomys obesus gerbils, Zucker diabetic fatty (ZDF) rats, or db/db mice. The metabolic effects of these peptides were assessed by measuring fasting and fed blood glucose levels and glucose tolerance. RESULTS Two peptides, KRX-683(107) and KRX-683(124), significantly reduced fed-state blood glucose levels in the diabetic Psammomys obesus. In animals treated with KRX-683(124) at a dose of 12.5 mg/kg weekly for 7 weeks, ten of eleven treated animals responded with mean blood glucose significantly lower than controls (4.7+/-0.4 vs 16.8+/-0.8 mmol/l, p</=0.0001). Significant reductions in blood glucose compared with controls were also seen in ZDF rats administered KRX-683(124) and in db/db mice, which had significantly reduced fasting and 2-hour postprandial glucose levels after the treatment. CONCLUSIONS/INTERPRETATION Sequence-based peptides derived from GRK2/3 have an antidiabetic effect demonstrated in three different animal models of Type 2 diabetes. By modulating GRK2/3 activity, these peptides enhance GPCR-initiated signal transduction, resulting in improved glucose homeostasis. Sequence-based peptide modulation of GRK could prove useful in the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Y Anis
- Keryx Biopharmaceuticals, Jerusalem, Israel
| | - O Leshem
- Keryx Biopharmaceuticals, Jerusalem, Israel
| | - H Reuveni
- Keryx Biopharmaceuticals, Jerusalem, Israel
| | - I Wexler
- Keryx Biopharmaceuticals, Jerusalem, Israel
- Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel
| | - R Ben Sasson
- Diabetes Research Center, Department of Medicine, Hadassah University Hospital, Jerusalem 91120, Israel
| | - B Yahalom
- Keryx Biopharmaceuticals, Jerusalem, Israel
| | - M Laster
- Keryx Biopharmaceuticals, Jerusalem, Israel
| | - I Raz
- Diabetes Research Center, Department of Medicine, Hadassah University Hospital, Jerusalem 91120, Israel
| | - S Ben Sasson
- Department of Experimental Medicine & Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - E Shafrir
- Diabetes Research Center, Department of Medicine, Hadassah University Hospital, Jerusalem 91120, Israel
| | - E Ziv
- Diabetes Research Center, Department of Medicine, Hadassah University Hospital, Jerusalem 91120, Israel.
| |
Collapse
|
15
|
Cho WK, Siegrist VJ, Zinzow W. Impaired regulatory volume decrease in freshly isolated cholangiocytes from cystic fibrosis mice: implications for cystic fibrosis transmembrane conductance regulator effect on potassium conductance. J Biol Chem 2004; 279:14610-8. [PMID: 14722124 DOI: 10.1074/jbc.m310855200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Various K(+) and Cl(-) channels are important in cell volume regulation and biliary secretion, but the specific role of cystic fibrosis transmembrane conductance regulator in cholangiocyte cell volume regulation is not known. The goal of this research was to study regulatory volume decrease (RVD) in bile duct cell clusters (BDCCs) from normal and cystic fibrosis (CF) mouse livers. Mouse BDCCs without an enclosed lumen were prepared as described (Cho, W. K. (2002) Am. J. Physiol. 283, G1320-G1327). The isotonic solution consisted of HEPES buffer with 40% of the NaCl replaced with isomolar amounts of sucrose, whereas hypotonic solution was the same as isotonic solution without sucrose. The cell volume changes were indirectly assessed by measuring cross-sectional area (CSA) changes of the BDCCs using quantitative videomicroscopy. Exposure to hypotonic solutions increased relative CSAs of normal BDCCs to 1.20 +/- 0.01 (mean +/- S.E., n = 50) in 10 min, followed by RVD to 1.07 +/- 0.01 by 40 min. Hypotonic challenge in CF mouse BDCCs also increased relative CSA to 1.20 +/- 0.01 (n = 53) in 10 min but without significant recovery. Coadministration of the K(+)-selective ionophore valinomycin restored RVD in CF mouse BDCCs, suggesting that the impaired RVD was likely from a defect in K(+) conductance. Moreover, this valinomycin-induced RVD in CF mice was inhibited by 5-nitro-2'-(3-phenylpropylamino)-benzoate, indicating that it is not from nonspecific effects. Neither cAMP nor calcium agonists could reverse the impaired RVD seen in CF cholangiocytes. Our conclusion is that CF mouse cholangiocytes have defective RVD from an impaired K(+) efflux pathway, which could not be reversed by cAMP nor calcium agonists.
Collapse
Affiliation(s)
- Won Kyoo Cho
- Department of Medicine, Division of Gastroenterology/Hepatology, Indiana University School of Medicine and The Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
16
|
Walker JK, Fong AM, Lawson BL, Savov JD, Patel DD, Schwartz DA, Lefkowitz RJ. β-Arrestin-2 regulates the development of allergic asthma. J Clin Invest 2003. [DOI: 10.1172/jci200317265] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Chen L, Wang L, Zhu L, Nie S, Zhang J, Zhong P, Cai B, Luo H, Jacob TJC. Cell cycle-dependent expression of volume-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol 2002; 283:C1313-23. [PMID: 12225994 DOI: 10.1152/ajpcell.00182.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patch-clamping and cell image analysis techniques were used to study the expression of the volume-activated Cl(-) current, I(Cl(vol)), and regulatory volume decrease (RVD) capacity in the cell cycle in nasopharyngeal carcinoma cells (CNE-2Z). Hypotonic challenge caused CNE-2Z cells to swell and activated a Cl(-) current with a linear conductance, negligible time-dependent inactivation, and a reversal potential close to the Cl(-) equilibrium potential. The sequence of anion permeability was I(-) > Br(-) > Cl(-) > gluconate. The Cl(-) channel blockers tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), and ATP inhibited I(Cl(vol)). Synchronous cultures of cells were obtained by the mitotic shake-off technique and by a double chemical-block (thymidine and hydroxyurea) technique. The expression of I(Cl(vol)) was cell cycle dependent, being high in G(1) phase, downregulated in S phase, but increasing again in M phase. Hypotonic solution activated RVD, which was cell cycle dependent and inhibited by the Cl(-) channel blockers NPPB, tamoxifen, and ATP. The expression of I(Cl(vol)) was closely correlated with the RVD capacity in the cell cycle, suggesting a functional relationship. Inhibition of I(Cl(vol)) by NPPB (100 microM) arrested cells in G(0)/G(1). The data also suggest that expression of I(Cl(vol)) and RVD capacity are actively modulated during the cell cycle. The volume-activated Cl(-) current associated with RVD may therefore play an important role during the cell cycle progress.
Collapse
Affiliation(s)
- Lixin Chen
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, Wales, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang L, Chen L, Zhu L, Rawle M, Nie S, Zhang J, Ping Z, Kangrong C, Jacob TJC. Regulatory volume decrease is actively modulated during the cell cycle. J Cell Physiol 2002; 193:110-9. [PMID: 12209886 DOI: 10.1002/jcp.10156] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nasopharyngeal carcinoma cells, CNE-2Z, when swollen by 47% hypotonic solution, exhibited a regulatory volume decrease (RVD). The RVD was inhibited by extracellular applications of the chloride channel blockers tamoxifen (30 microM; 61% inhibition), 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 microM; 60% inhibition), and ATP (10 mM; 91% inhibition). The level and time constant of RVD varied greatly between cells. Most cells conducted an incomplete RVD, but a few had the ability to recover their volume completely. There was no obvious correlation between cell volume and RVD capacity. Flow cytometric analysis showed that highly synchronous cells were obtained by the mitotic shake-off technique and that the cells progressed through the cell cycle synchronously when incubated in culture medium. Combined application of DNA synthesis inhibitors, thymidine and hydroxyurea arrested cells at the G1/S boundary and 87% of the cells reached S phase 4 h after being released. RVD capacity changed significantly during the cell cycle progression in cells synchronized by shake-off technique. RVD capacity being at its highest in G1 phase and lowest in S phase. The RVD capacity in G1 (shake-off cells sampled after 4 h of incubation), S (obtained by chemical arrest), and M cells (selected under microscope) was 73, 33, and 58%, respectively, and the time constants were 435, 769, and 2,000 sec, respectively. We conclude that RVD capacity is actively modulated in the cell cycle and RVD may play an important role in cell cycle progress.
Collapse
Affiliation(s)
- Liwei Wang
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Seven-transmembrane receptors, which constitute the largest, most ubiquitous and most versatile family of membrane receptors, are also the most common target of therapeutic drugs. Recent findings indicate that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain their remarkably diverse biological actions.
Collapse
Affiliation(s)
- Kristen L Pierce
- The Howard Hughes Medical Institute and the Department of Medicine, Box 3821, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
20
|
Coffey KL, Krushinsky A, Green CR, Donaldson PJ. Molecular profiling and cellular localization of connexin isoforms in the rat ciliary epithelium. Exp Eye Res 2002; 75:9-21. [PMID: 12123633 DOI: 10.1006/exer.2002.1187] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functionally distinct epithelial layers of the ciliary body act as a syncitium to produce the aqueous humour. Ultrastructural studies have shown that the pigmented (PE) and non-pigmented (NPE) cell layers of the ciliary epithelium are connected by gap junctions. However the molecular composition of gap junctions both between and within the two cell layers has not been comprehensively studied. To address this issue the authors have performed an extensive molecular screening of connexin (Cx) expression patterns in ciliary epithelium of the rat. Initially, mRNA was extracted from rat ciliary bodies, reverse-transcribed, and subjected to two rounds of PCR using primer sets designed against each of the 14 Cx isoforms known to be expressed in the rat. This initial screening protocol amplified eight candidate Cx isoforms (Cxs 26, 31, 33, 37, 40, 43, 45 and 46). The Cx isoforms identified in this initial screen were then first assigned to the ciliary epithelium itself (Cxs 26, 31, 40 and 43) or structures outside the epithelium (Cxs 37, 40, and 45) using immunohistochemistry performed on ciliary body whole mounts. No convincing evidence for either Cx 33 or 46 labelling was found in the ciliary body. Then the four Cx isoforms localized to the epithelium were further localized to specific membrane domains within the epithelial cell layers by performing high resolution imaging of the antibody labeling patterns obtained in cryosections. This enabled Cx26 and 31 to be specifically localized to spatially different gap junctions between NPE cells. Cx31 labeled gap junctions associated with an extensive network of membrane interdigitations found between NPE cells at their basal surfaces. In contrast Cx26 labeling in NPE cells was restricted to the basolateral membranes of adjacent NPE cells. Cx40 and Cx43 were both localized to the PE-NPE interface where they formed discrete homomeric/homotypic gap junction plaques. No convincing evidence was found for antibody labeling between PE cells. Thus it appears that intercellular communication, both within the NPE layer and between the PE and NPE cell layers, is mediated by gap junction channels that have distinctive permeability properties. In particular the results raise the possibility that the permeability of PE-NPE gap junctions can be modulated by changing the Cx43 : Cx40 expression ratio. Whether such a change in Cx expression ratios occurs and what effect it has on aqueous humour production and composition remains to be determined.
Collapse
Affiliation(s)
- Kirsten L Coffey
- Disciplines of Physiology, School of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
21
|
Mitchell CH, Fleischhauer JC, Stamer WD, Peterson-Yantorno K, Civan MM. Human trabecular meshwork cell volume regulation. Am J Physiol Cell Physiol 2002; 283:C315-26. [PMID: 12055101 DOI: 10.1152/ajpcell.00544.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The volume of certain subpopulations of trabecular meshwork (TM) cells may modify outflow resistance of aqueous humor, thereby altering intraocular pressure. This study examines the contribution that Na+/H+, Cl-/HCO exchange, and K+-Cl- efflux mechanisms have on the volume of TM cells. Volume, Cl- currents, and intracellular Ca2+ activity of cultured human TM cells were studied with calcein fluorescence, whole cell patch clamping, and fura 2 fluorescence, respectively. At physiological bicarbonate concentration, the selective Na+/H+ antiport inhibitor dimethylamiloride reduced isotonic cell volume. Hypotonicity triggered a regulatory volume decrease (RVD), which could be inhibited by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), the K+ channel blockers Ba2+ and tetraethylammonium, and the K+-Cl- symport blocker [(dihydroindenyl)oxy]alkanoic acid. The fluid uptake mechanism in isotonic conditions was dependent on bicarbonate; at physiological levels, the Na+/H+ exchange inhibitor dimethylamiloride reduced cell volume, whereas at low levels the Na+-K+-2Cl- symport inhibitor bumetanide had the predominant effect. Patch-clamp measurements showed that hypotonicity activated an outwardly rectifying, NPPB-sensitive Cl- channel displaying the permeability ranking Cl- > methylsulfonate > aspartate. 2,3-Butanedione 2-monoxime antagonized actomyosin activity and both increased baseline [Ca2+] and abolished swelling-activated increase in [Ca2+], but it did not affect RVD. Results indicate that human TM cells display a Ca2+-independent RVD and that volume is regulated by swelling-activated K+ and Cl- channels, Na+/H+ antiports, and possibly K+-Cl- symports in addition to Na+-K+-2Cl- symports.
Collapse
Affiliation(s)
- Claire H Mitchell
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | | | | | |
Collapse
|
22
|
Krasznai Z, Weidema F, Ypey DL, Damjanovich S, Gáspár R, Márián T. A slow outward current and a hypoosmolality induced anion conductance in embryonic chicken osteoclasts. ACTA BIOLOGICA HUNGARICA 2001; 52:47-61. [PMID: 11396841 DOI: 10.1556/abiol.52.2001.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this paper we report on a hypoosmolality induced current, I(osmo), in embryonic chicken osteoclasts, which could only be studied when blocking a simultaneously active, unidentified slow outward current, I(slo). I(slo) was observed in all of the examined cells when both the intracellular and extracellular solutions contained sodium as the major cation and no potassium. The current was outwardly rectifying and activated at membrane potentials more positive than -44 +/- 12 mV (n = 31). The time to half activation of the current was also voltage dependent and was 350 ms at Vm = +80 mV, and 78 ms at Vm = +120 mV. The current did not inactivate during periods up to 5 s. Extracellular 4-AP (5 mM), TEA (5 mM) and Ba2+ (1 mM), blockers of K+ conductances in chicken osteoclasts, did not influence I(slo). However, I(slo) was inhibited by 50 microM extracellular verapamil, which allowed us to study I(osmo) in isolation. Exposure of the osteoclasts to hypotonic solution resulted in the development of a depolarization activated I(osmo). It developed after a 1-min delay and reached its maximum within 10 minutes. Half-maximal activation occurred after 4.4 +/- 0.9 min (n = 9). The current activated within a few ms upon depolarization and did not inactivate during at least 5 sec. I(osmo) reversed around the calculated Nernst potential for Cl- (E(Cl) = +7.3 mV and V(rev) = +5.4 +/- 3.6 mV, n = 9). The underlying conductance, G(osmo) exhibited moderate outward rectification around 0 mV in symmetrical Cl- solutions. Ion substitution experiments showed that G(osmo) is an anion conductance with P(Cl) approximately = P(F) > P(gluc) >> P(Na). I(osmo) was blocked by 0.5 mM SITS but 50 microM verapamil, 5 mM TEA, 5 mM 4-AP, 1 mM Ba2+, 50 microM cytochalasin D and 0.5 mM alendronate did not have any effect on the current. Cl- currents have been implicated in charge neutralization during osteoclastic acid secretion for bone resorption. The present results imply that osmolality may be a factor controlling this charge neutralization.
Collapse
Affiliation(s)
- Z Krasznai
- Department of Biophysics and Cell Biology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
23
|
Patil RV, Han Z, Yiming M, Yang J, Iserovich P, Wax MB, Fischbarg J. Fluid transport by human nonpigmented ciliary epithelial layers in culture: a homeostatic role for aquaporin-1. Am J Physiol Cell Physiol 2001; 281:C1139-45. [PMID: 11546649 DOI: 10.1152/ajpcell.2001.281.4.c1139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report for the first time that cultured nonpigmented human ciliary epithelial (NPE) cell layers transport fluid. Cells were grown to confluence on permeable membrane inserts, and fluid transport across the resulting cell layers was determined by volume clamp at 37 degrees C. These cell layers translocated fluid from the apical to the basal side at a steady rate of 3.6 microl x h(-1) x cm(-2) (n = 4) for 8 h. This fluid movement was independent of hydrostatic pressure and was completely inhibited by 1 mM ouabain, suggesting it arose from fluid transport. Mercuric chloride, a nonspecific but potent blocker of Hg(2+)-sensitive aquaporins, and aquaporin-1 antisense oligonucleotides both partially inhibited fluid transport across the cell layers, which suggests that water channels have a role in NPE cell homeostasis. In addition, these results suggest that of the two ciliary epithelial layers in tandem, the NPE layer by itself can transport fluid. This cultured layer, therefore, constitutes an interesting model that may be useful for physiological and pharmacological characterization of ciliary epithelial fluid secretion.
Collapse
Affiliation(s)
- R V Patil
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
McLaughlin CW, Peart D, Purves RD, Carré DA, Peterson-Yantorno K, Mitchell CH, Macknight AD, Civan MM. Timolol may inhibit aqueous humor secretion by cAMP-independent action on ciliary epithelial cells. Am J Physiol Cell Physiol 2001; 281:C865-75. [PMID: 11502564 DOI: 10.1152/ajpcell.2001.281.3.c865] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The beta-adrenergic antagonist timolol reduces ciliary epithelial secretion in glaucomatous patients. Whether inhibition is mediated by reducing cAMP is unknown. Elemental composition of rabbit ciliary epithelium was studied by electron probe X-ray microanalysis. Volume of cultured bovine pigmented ciliary epithelial (PE) cells was measured by electronic cell sizing; Ca(2+) activity and pH were monitored with fura 2 and 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, respectively. Timolol (10 microM) produced similar K and Cl losses from ciliary epithelia in HCO/CO(2) solution but had no effect in HCO/CO(2)-free solution or in HCO/CO(2) solution containing the carbonic anhydrase inhibitor acetazolamide. Inhibition of Na(+)/H(+) exchange by dimethylamiloride in HCO/CO(2) solution reduced Cl and K comparably to timolol. cAMP did not reverse timolol's effects. Timolol (100 nM, 10 microM) and levobunolol (10 microM) produced cAMP-independent inhibition of the regulatory volume increase (RVI) in PE cells and increased intracellular Ca(2+) and pH. Increasing Ca(2+) with ionomycin also blocked the RVI. The results document a previously unrecognized cAMP-independent transport effect of timolol. Inhibition of Cl(-)/HCO exchange may mediate timolol's inhibition of aqueous humor formation.
Collapse
Affiliation(s)
- C W McLaughlin
- Department of Physiology, University of Otago Medical School, Dunedin, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fisher KV, Telser A, Phillips JE, Yeates DB. Regulation of vocal fold transepithelial water fluxes. J Appl Physiol (1985) 2001; 91:1401-11. [PMID: 11509542 DOI: 10.1152/jappl.2001.91.3.1401] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vocal fold hydration is critical to phonation. We hypothesized that the vocal fold generates bidirectional water fluxes, which are regulated by activity of the Na(+)-K(+)- ATPase. Western blots and immunohistochemistry demonstrated the presence of the alpha-subunit Na(+)-K(+)-ATPase in the canine vocal fold (n = 11). Luminal cells, basal and adjacent one to two layers of suprabasal cells within stratified squamous epithelium, were immunopositive, as well as basolateral membranes of submucosal seromucous glands underlying transitional epithelia. Canine (n = 6) and ovine (n = 14) vocal fold mucosae exhibited transepithelial potential differences of 8.1 +/- 2.8 and 9.3 +/- 1.3 mV (lumen negative), respectively. The potential difference and short-circuit current (ovine = 31 +/- 4 microA/cm(2); canine = 41 +/- 10 microA/cm(2)) were substantially reduced by luminal administration of 75 microM acetylstrophanthidin (P < 0.05). Ovine (n = 7) transepithelial water fluxes decreased from 5.1 +/- 0.3 to 4.3 +/- 0.3 microl x min(-1) x cm(-2) from the basal to luminal chamber and from 5.2 +/- 0.2 to 3.9 +/- 0.3 microl x min(-1) x cm(-2) from the luminal to basal chamber by luminal acetylstrophanthidin (P < 0.05). The presence of the Na(+)-K(+)-ATPase in the vocal fold epithelium and the electrolyte transport derived from its activity provide the intrinsic mechanisms to regulate cell volume as well as vocal fold hydration.
Collapse
Affiliation(s)
- K V Fisher
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | |
Collapse
|
26
|
Wen Q, Diecke FP, Iserovich P, Kuang K, Sparrow J, Fischbarg J. Immunocytochemical localization of aquaporin-1 in bovine corneal endothelial cells and keratocytes. Exp Biol Med (Maywood) 2001; 226:463-7. [PMID: 11393176 DOI: 10.1177/153537020122600512] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
For immunocytochemistry, cultured bovine corneal endothelial cells (CBCEC) and bovine corneal cryosections were utilized. Preparations were fixed, permeabilized, and incubated with primary rabbit anti-rat aquaporin 1 (AQP1) antibody followed by rhodamine-conjugated secondary antibody, and were counter-stained with Sytox nuclear acid stain. Confocal microscopy of CBCEC in the x, y, and z planes showed rhodamine fluorescence, indicating the presence of AQP1 antibody localized to the apical and basolateral domains of the plasma membrane, but not to the membranes of intracellular compartments or other subcellular locations. Preabsorption with control antigenic peptide yielded no positive staining. Similar results were obtained using freshly dissected bovine corneas; in addition, these images showed AQP1 distributed to the plasma membranes of keratocytes. No AQP1 staining was seen in corneal epithelium, and no staining was observed in CBCEC layers exposed to AQP3, AQP4, and AQP5 antibodies.
Collapse
Affiliation(s)
- Q Wen
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
27
|
Carré DA, Mitchell CH, Peterson-Yantorno K, Coca-Prados M, Civan MM. Similarity of A(3)-adenosine and swelling-activated Cl(-) channels in nonpigmented ciliary epithelial cells. Am J Physiol Cell Physiol 2000; 279:C440-51. [PMID: 10913011 DOI: 10.1152/ajpcell.2000.279.2.c440] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloride release from nonpigmented ciliary epithelial (NPE) cells is a final step in forming aqueous humor, and adenosine stimulates Cl(-) transport by these cells. Whole cell patch clamping of cultured human NPE cells indicated that the A(3)-selective agonist 1-deoxy-1-(6-[([3-iodophenyl]methyl)amino]-9H-purin-9-yl)-N-methyl-be ta-D-ribofuranuronamide (IB-MECA) stimulated currents (I(IB-MECA)) by approximately 90% at +80 mV. Partial replacement of external Cl(-) with aspartate reduced outward currents and shifted the reversal potential (V(rev)) from -23 +/- 2 mV to -0.0 +/- 0.7 mV. Nitrate substitution had little effect. Perfusion with the Cl(-) channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and niflumic acid inhibited the currents. Partial Cl(-) replacement with aspartate and NO(3)(-), and perfusion with NPPB, had similar effects on the swelling-activated whole cell currents (I(Swell)). Partial cyclamate substitution for external Cl(-) inhibited inward and outward currents of both I(IB-MECA) and I(Swell). Both sets of currents also showed outward rectification and inactivation at large depolarizing potentials. The results are consistent with the concept that A(3)-subtype adenosine agonists and swelling activate a common population of Cl(-) channels.
Collapse
Affiliation(s)
- D A Carré
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
28
|
Offermanns S. Mammalian G-protein function in vivo: new insights through altered gene expression. Rev Physiol Biochem Pharmacol 2000; 140:63-133. [PMID: 10857398 DOI: 10.1007/bfb0035551] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- S Offermanns
- Institut für Pharmakologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Germany
| |
Collapse
|
29
|
Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 1999; 286:2495-8. [PMID: 10617462 DOI: 10.1126/science.286.5449.2495] [Citation(s) in RCA: 802] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability of morphine to alleviate pain is mediated through a heterotrimeric guanine nucleotide binding protein (G protein)-coupled heptahelical receptor (GPCR), the mu opioid receptor (muOR). The efficiency of GPCR signaling is tightly regulated and ultimately limited by the coordinated phosphorylation of the receptors by specific GPCR kinases and the subsequent interaction of the phosphorylated receptors with beta-arrestin 1 and beta-arrestin 2. Functional deletion of the beta-arrestin 2 gene in mice resulted in remarkable potentiation and prolongation of the analgesic effect of morphine, suggesting that muOR desensitization was impaired. These results provide evidence in vivo for the physiological importance of beta-arrestin 2 in regulating the function of a specific GPCR, the muOR. Moreover, they suggest that inhibition of beta-arrestin 2 function might lead to enhanced analgesic effectiveness of morphine and provide potential new avenues for the study and treatment of pain, narcotic tolerance, and dependence.
Collapse
Affiliation(s)
- L M Bohn
- Howard Hughes Medical Institute Laboratories, Departments of Cell Biology and Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
30
|
Fischbarg J. On volume regulation leading to epithelial fluid transport. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C1019. [PMID: 10610621 DOI: 10.1152/ajpcell.1999.277.5.c1019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|