1
|
Mott J, Celly C, Glock R, Gilor C. The glucagon-receptor antagonist MK-3577 reduces glucagon-stimulated plasma glucose and insulin concentrations in metabolically healthy overweight cats. Domest Anim Endocrinol 2024; 89:106874. [PMID: 39018655 DOI: 10.1016/j.domaniend.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The role of glucagon disturbances in diabetes mellitus is increasingly recognized and, hence, glucagon antagonism might aid in treatment of hyperglycemia and other metabolic disturbances. The aim of this study was to assess the pharmacokinetics of the glucagon receptor antagonist MK-3577 and its effect on plasma glucose, insulin, and glucagon concentrations in healthy cats. In a cross-over placebo-controlled study, 5 purpose-bred cats were treated with either Placebo, MK-3577 (1 mg/kg), or MK-3577 (3 mg/kg). Glucose, insulin and glucagon concentrations were measured at 0, 15, 225, 240 min post-treatment administration. Glucagon (20 mcg/kg, IM) was administered at 240 min and glucose and insulin were measured at 255, 265, 275, 285 and 300 min. Plasma MK-3577 concentrations peaked at 4.2 and 3.2 hours after 1 and 3 mg/kg dosing with a half-life of 14.8h and 15.5h respectively. Baseline glucose, insulin and glucagon concentrations did not differ significantly between treatment groups. At a dose of 3 mg/kg, MK-3577 blunted the glucagon-stimulated rise of glucose (p=0.0089) and insulin (p=0.02). Similar trends were observed with MK-3577 at the 1 mg/kg dose but the effect was smaller, and not significant. In conclusion, the GRA MK-3577 has a pharmacokinetic profile suitable for diminishing the glucagon-induced rise of glucose and insulin in healthy cats.
Collapse
Affiliation(s)
- J Mott
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave. Gainesville, FL 32608, USA
| | - C Celly
- Merck Animal Health, 126 East Lincoln Avenue, PO Box 2000, Rahway, NJ 07065, USA
| | - R Glock
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210, USA
| | - C Gilor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210, USA; Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave. Gainesville, FL 32608, USA.
| |
Collapse
|
2
|
Forouzanmehr B, Hemmati MA, Atkin SL, Jamialahmadi T, Yaribeygi H, Sahebkar A. GLP-1 mimetics and diabetic ketoacidosis: possible interactions and clinical consequences. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03384-1. [PMID: 39172148 DOI: 10.1007/s00210-024-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Diabetic ketoacidosis is a serious diabetes-related consequence that occurs in type 1 diabetes and less commonly in type 2 diabetes and is a major cause of death. It results from the metabolic consequences due to a lack of insulin secretion or impaired insulin activity in diabetes leading to dysregulated pathophysiologic pathways resulting in excessive ketone body formation. While ketone bodies are physiologic molecules, their high levels reduce the physiological pH of the blood and induce ketoacidosis, leading to increasing metabolic dysfunction. Glucagon-like peptide-1 (GLP-1) mimetics are a class of recently developed diabetes therapy that do not lead to hypoglycemic, but some reports have suggested a relationship between GLP-1 mimetics and ketogenesis. To clarify the possible interactions between GLP-1 mimetics and ketogenesis in diabetes, this review was undertaken to collate and interpret the literature.
Collapse
Affiliation(s)
- Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Estes SK, Shiota C, O'Brien TP, Printz RL, Shiota M. The impact of glucagon to support postabsorptive glucose flux and glycemia in healthy rats and its attenuation in male Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 2024; 326:E308-E325. [PMID: 38265288 PMCID: PMC11193518 DOI: 10.1152/ajpendo.00192.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Hyperglucagonemia is a hallmark of type 2 diabetes (T2DM), yet the role of elevated plasma glucagon (P-GCG) to promote excessive postabsorptive glucose production and contribute to hyperglycemia in patients with this disease remains debatable. We investigated the acute action of P-GCG to safeguard/support postabsorptive endogenous glucose production (EGP) and euglycemia in healthy Zucker control lean (ZCL) rats. Using male Zucker diabetic fatty (ZDF) rats that exhibit the typical metabolic disorders of human T2DM, such as excessive EGP, hyperglycemia, hyperinsulinemia, and hyperglucagonemia, we examined the ability of hyperglucagonemia to promote greater rates of postabsorptive EGP and hyperglycemia. Euglycemic or hyperglycemic basal insulin (INS-BC) and glucagon (GCG-BC) clamps were performed in the absence or during an acute setting of glucagon deficiency (GCG-DF, ∼10% of basal), either alone or in combination with insulin deficiency (INS-DF, ∼10% of basal). Glucose appearance, disappearance, and cycling rates were measured using [2-3H] and [3-3H]-glucose. In ZCL rats, GCG-DF reduced the levels of hepatic cyclic AMP, EGP, and plasma glucose (PG) by 50%, 32%, and 50%, respectively. EGP fell in the presence GCG-DF and INS-BC, but under GCG-DF and INS-DF, EGP and PG increased two- and threefold, respectively. GCG-DF revealed the hyperglucagonemia present in ZDF rats lacked the ability to regulate hepatic intracellular cyclic AMP levels and glucose flux, since EGP and PG levels fell by only 10%. We conclude that the liver in T2DM suffers from resistance to all three major regulatory factors, glucagon, insulin, and glucose, thus leading to a loss of metabolic flexibility.NEW & NOTEWORTHY In postabsorptive state, basal plasma insulin (P-INS) and plasma glucose (PG) act dominantly to increase hepatic glucose cycling and reduce endogenous glucose production (EGP) and PG in healthy rats, which is only counteracted by the acute action of basal plasma glucagon (P-GCG) to support EGP and euglycemia. Hyperglucagonemia, a hallmark of type 2 diabetes (T2DM) present in Zucker diabetic fatty (ZDF) rats, is not the primary mediator of hyperglycemia and high EGP as commonly thought; instead, the liver is resistant to glucagon as well as insulin and glucose.
Collapse
Affiliation(s)
- Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Richard L Printz
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
4
|
Gu L, Cui X, Lin X, Yang J, Wei R, Hong T, Yang K. γ-aminobutyric acid modulates α-cell hyperplasia but not β-cell regeneration induced by glucagon receptor antagonism in type 1 diabetic mice. Acta Diabetol 2023; 60:19-28. [PMID: 36129525 DOI: 10.1007/s00592-022-01970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023]
Abstract
AIMS To investigate whether treatment with γ-aminobutyric acid (GABA) alone or in combination with glucagon receptor (GCGR) monoclonal antibody (mAb) exerted beneficial effects on β-cell mass and α-cell mass, and to explore the origins of the regenerated β-cells in mice with type 1 diabetes (T1D). METHODS Streptozotocin (STZ)-induced T1D mice were treated with intraperitoneal injection of GABA (250 μg/kg per day) and/or REMD 2.59 (a GCGR mAb, 5 mg/kg per week), or IgG dissolved in PBS for 8 weeks. Plasma hormone levels and islet cell morphology were evaluated by ELISA and immunofluorescence, respectively. The origins of the regenerated β-cells were analyzed by double-immunostaining, α-cell lineage-tracing and BrdU-tracing studies. RESULTS After the 8-week treatment, GABA or GCGR mAb alone or in combination ameliorated hyperglycemia in STZ-induced T1D mice. GCGR mAb upregulated plasma insulin level and increased β-cell mass, and GABA appeared to have similar effects in T1D mice. However, combination treatment did not reveal any additive or synergistic effect. Interestingly, the GCGR mAb-induced increment of plasma glucagon level and α-cell mass was attenuated by the combined treatment of GABA. In addition, duct-derived β-cell neogenesis and α-to-β cell conversion but not β-cell proliferation contributed to the increased β-cell mass in T1D mice. CONCLUSION These results suggested that GABA attenuated α-cell hyperplasia but did not potentiates β-cell regeneration induced by GCGR mAb in T1D mice. Our findings provide novel insights into a combination treatment strategy for β-cell regeneration in T1D.
Collapse
Affiliation(s)
- Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiafang Lin
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
5
|
Klempel N, Thomas K, Conlon JM, Flatt PR, Irwin N. Alpha-cells and therapy of diabetes: Inhibition, antagonism or death? Peptides 2022; 157:170877. [PMID: 36108978 DOI: 10.1016/j.peptides.2022.170877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Absolute or relative hyperglucagonaemia is a characteristic of both Type 1 and Type 2 diabetes, resulting in fasting hyperglycaemia due in part to increased hepatic glucose production and lack of postprandial suppression of circulating glucagon concentrations. Consequently, therapeutics that target glucagon secretion or biological action may be effective antidiabetic agents. In this regard, specific glucagon receptor (GCGR) antagonists have been developed that exhibit impressive glucose-lowering actions, but unfortunately may cause off-target adverse effects in humans. Further to this, several currently approved antidiabetic agents, including GLP-1 mimetics, DPP-4 inhibitors, metformin, sulphonylureas and pramlintide likely exert part of their glucose homeostatic actions through direct or indirect inhibition of GCGR signalling. In addition to agents that inhibit the release of glucagon, compounds that enhance the transdifferentiation of glucagon secreting alpha-cells towards an insulin positive beta-cell phenotype could also help curb excess glucagon secretion in diabetes. Use of alpha-cell toxins represents another possible strategy to address hyperglucagonaemia in diabetes. In that respect, research from the 1920 s with diguanides such as synthalin A demonstrated effective glucose-lowering with alpha-cell ablation in both animal models and humans with diabetes. However, further clinical use of synthalin A was curtailed due its adverse effects and the increased availability of insulin. Overall, these observations with therapeutics that directly target alpha-cells, or GCGR signaling, highlight a largely untapped potential for diabetes therapy that merits further detailed consideration.
Collapse
Affiliation(s)
- Natalie Klempel
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Keith Thomas
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - J Michael Conlon
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
6
|
Capozzi ME, D'Alessio DA, Campbell JE. The past, present, and future physiology and pharmacology of glucagon. Cell Metab 2022; 34:1654-1674. [PMID: 36323234 PMCID: PMC9641554 DOI: 10.1016/j.cmet.2022.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The evolution of glucagon has seen the transition from an impurity in the preparation of insulin to the development of glucagon receptor agonists for use in type 1 diabetes. In type 2 diabetes, glucagon receptor antagonists have been explored to reduce glycemia thought to be induced by hyperglucagonemia. However, the catabolic actions of glucagon are currently being leveraged to target the rise in obesity that paralleled that of diabetes, bringing the pharmacology of glucagon full circle. During this evolution, the physiological importance of glucagon advanced beyond the control of hepatic glucose production, incorporating critical roles for glucagon to regulate both lipid and amino acid metabolism. Thus, it is unsurprising that the study of glucagon has left several paradoxes that make it difficult to distill this hormone down to a simplified action. Here, we describe the history of glucagon from the past to the present and suggest some direction to the future of this field.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
7
|
Qiao L, Saget S, Lu C, Zang T, Dzyuba B, Hay WW, Shao J. The Essential Role of Pancreatic α-Cells in Maternal Metabolic Adaptation to Pregnancy. Diabetes 2022; 71:978-988. [PMID: 35147704 PMCID: PMC9044124 DOI: 10.2337/db21-0923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022]
Abstract
Pancreatic α-cells are important in maintaining metabolic homeostasis, but their role in regulating maternal metabolic adaptations to pregnancy has not been studied. The objective of this study was to determine whether pancreatic α-cells respond to pregnancy and their contribution to maternal metabolic adaptation. With use of C57BL/6 mice, the findings of our study showed that pregnancy induced a significant increase of α-cell mass by promoting α-cell proliferation that was associated with a transitory increase of maternal serum glucagon concentration in early pregnancy. Maternal pancreatic GLP-1 content also was significantly increased during pregnancy. Using the inducible Cre/loxp technique, we ablated the α-cells (α-null) before and during pregnancy while maintaining enteroendocrine L-cells and serum GLP-1 in the normal range. In contrast to an improved glucose tolerance test (GTT) before pregnancy, significantly impaired GTT and remarkably higher serum glucose concentrations in the fed state were observed in α-null dams. Glucagon receptor antagonism treatment, however, did not affect measures of maternal glucose metabolism, indicating a dispensable role of glucagon receptor signaling in maternal glucose homeostasis. However, the GLP-1 receptor agonist improved insulin production and glucose metabolism of α-null dams. Furthermore, GLP-1 receptor antagonist Exendin (9-39) attenuated pregnancy-enhanced insulin secretion and GLP-1 restored glucose-induced insulin secretion of cultured islets from α-null dams. Together, these results demonstrate that α-cells play an essential role in controlling maternal metabolic adaptation to pregnancy by enhancing insulin secretion.
Collapse
Affiliation(s)
- Liping Qiao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Sarah Saget
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Cindy Lu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Tianyi Zang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Brianna Dzyuba
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | | | - Jianhua Shao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Corresponding author: Jianhua Shao,
| |
Collapse
|
8
|
Franklin ZJ, Lafferty RA, Flatt PR, McShane LM, O'Harte FP, Irwin N. Metabolic effects of combined glucagon receptor antagonism and glucagon-like peptide-1 receptor agonism in high fat fed mice. Biochimie 2022; 199:60-67. [DOI: 10.1016/j.biochi.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023]
|
9
|
Hunt JE, Yassin M, Olsen J, Hartmann B, Holst JJ, Kissow H. Intestinal Growth in Glucagon Receptor Knockout Mice Is Not Associated With the Formation of AOM/DSS-Induced Tumors. Front Endocrinol (Lausanne) 2021; 12:695145. [PMID: 34108943 PMCID: PMC8181411 DOI: 10.3389/fendo.2021.695145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022] Open
Abstract
Treatment with exogenous GLP-2 has been shown to accelerate the growth of intestinal adenomas and adenocarcinomas in experimental models of colonic neoplasia, however, the role of endogenous GLP-2 in tumor promotion is less well known. Mice with a global deletion of the glucagon receptor (Gcgr-/-) display an increase in circulating GLP-1 and GLP-2. Due to the intestinotrophic nature of GLP-2, we hypothesized that Gcgr-/- mice would be more susceptible to colonic dysplasia in a model of inflammation-induced colonic carcinogenesis. Female Gcgr-/- mice were first characterized for GLP-2 secretion and in a subsequent study they were given a single injection with the carcinogen azoxymethane (7.5 mg/kg) and treated with dextran sodium sulfate (DSS) (3%) for six days (n=19 and 9). A cohort of animals (n=4) received a colonoscopy 12 days following DSS treatment and all animals were sacrificed after six weeks. Disruption of glucagon receptor signaling led to increased GLP-2 secretion (p<0.0001) and an increased concentration of GLP-2 in the pancreas of Gcgr-/- mice, coinciding with an increase in small intestinal (p<0.0001) and colonic (p<0.05) weight. Increased villus height was recorded in the duodenum (p<0.001) and crypt depth was increased in the duodenum and jejunum (p<0.05 and p<0.05). Disruption of glucagon receptor signaling did not affect body weight during AOM/DSS treatment, neither did it affect the inflammatory score assessed during colonoscopy or the number of large and small adenomas present at the end of the study period. In conclusion, despite the increased endogenous GLP-2 secretion Gcgr-/- mice were not more susceptible to AOM/DSS-induced tumors.
Collapse
Affiliation(s)
- Jenna Elizabeth Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Yassin
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Olsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Hannelouise Kissow,
| |
Collapse
|
10
|
El K, Capozzi ME, Campbell JE. Repositioning the Alpha Cell in Postprandial Metabolism. Endocrinology 2020; 161:5910252. [PMID: 32964214 PMCID: PMC7899437 DOI: 10.1210/endocr/bqaa169] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Glucose homeostasis is maintained in large part due to the actions of the pancreatic islet hormones insulin and glucagon, secreted from β- and α-cells, respectively. The historical narrative positions these hormones in opposition, with insulin primarily responsible for glucose-lowering and glucagon-driving elevations in glucose. Recent progress in this area has revealed a more complex relationship between insulin and glucagon, highlighted by data demonstrating that α-cell input is essential for β-cell function and glucose homeostasis. Moreover, the common perception that glucagon levels decrease following a nutrient challenge is largely shaped by the inhibitory effects of glucose administration alone on the α-cell. Largely overlooked is that a mixed nutrient challenge, which is more representative of typical human feeding, actually stimulates glucagon secretion. Thus, postprandial metabolism is associated with elevations, not decreases, in α-cell activity. This review discusses the recent advances in our understanding of how α-cells regulate metabolism, with a particular focus on the postprandial state. We highlight α- to β-cell communication, a term that describes how α-cell input into β-cells is a critical axis that regulates insulin secretion and glucose homeostasis. Finally, we discuss the open questions that have the potential to advance this field and continue to evolve our understanding of the role that α-cells play in postprandial metabolism.
Collapse
Affiliation(s)
- Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
- Department of Medicine, Division of Endocrinology, Duke University, Durham, North Carolina
- Correspondence: Jonathan E. Campbell, 300 N Duke Street, Durham, North Carolina 27701. E-mail:
| |
Collapse
|
11
|
Lang S, Wei R, Wei T, Gu L, Feng J, Yan H, Yang J, Hong T. Glucagon receptor antagonism promotes the production of gut proglucagon-derived peptides in diabetic mice. Peptides 2020; 131:170349. [PMID: 32561493 DOI: 10.1016/j.peptides.2020.170349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Abstract
Glucagon is an essential regulator of glucose homeostasis, particularly in type 2 diabetes (T2D). Blocking the glucagon receptor (GCGR) in diabetic animals and humans has been shown to alleviate hyperglycemia and increase circulating glucagon-like peptide-1 (GLP-1) levels. However, the origin of the upregulated GLP-1 remains to be clarified. Here, we administered high-fat diet + streptozotocin-induced T2D mice and diabetic db/db mice with REMD 2.59, a fully competitive antagonistic human GCGR monoclonal antibody (mAb) for 12 weeks. GCGR mAb treatment decreased fasting blood glucose levels and increased plasma GLP-1 levels in the T2D mice. In addition, GCGR mAb upregulated preproglucagon gene expression and the contents of gut proglucagon-derived peptides, particularly GLP-1, in the small intestine and colon. Notably, T2D mice treated with GCGR mAb displayed a higher L-cell density in the small intestine and colon, which was associated with increased numbers of LK-cells coexpressing GLP-1 and glucose-dependent insulinotropic polypeptide and reduced L-cell apoptosis. Furthermore, GCGR mAb treatment upregulated GLP-1 production in the pancreas, which was detected at lower levels than in the intestine. Collectively, these results suggest that GCGR mAb can increase intestinal GLP-1 production and L-cell number by enhancing LK-cell expansion and inhibiting L-cell apoptosis in T2D.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neutralizing/pharmacology
- Apoptosis/genetics
- Blood Glucose/metabolism
- Colon/drug effects
- Colon/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diet, High-Fat/adverse effects
- Fasting/metabolism
- Gastric Inhibitory Polypeptide/genetics
- Gastric Inhibitory Polypeptide/metabolism
- Gene Expression Regulation
- Glucagon-Like Peptide 1/genetics
- Glucagon-Like Peptide 1/metabolism
- Humans
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Pancreas/drug effects
- Pancreas/metabolism
- Proglucagon/genetics
- Proglucagon/metabolism
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/genetics
- Receptors, Glucagon/metabolism
- Signal Transduction
- Streptozocin/administration & dosage
Collapse
Affiliation(s)
- Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Jin Feng
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA 93012, USA; Beijing Cosci-REMD, Beijing 102206, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China.
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
12
|
Capozzi ME, Coch RW, Koech J, Astapova II, Wait JB, Encisco SE, Douros JD, El K, Finan B, Sloop KW, Herman MA, D'Alessio DA, Campbell JE. The Limited Role of Glucagon for Ketogenesis During Fasting or in Response to SGLT2 Inhibition. Diabetes 2020; 69:882-892. [PMID: 32005706 PMCID: PMC7171961 DOI: 10.2337/db19-1216] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022]
Abstract
Glucagon is classically described as a counterregulatory hormone that plays an essential role in the protection against hypoglycemia. In addition to its role in the regulation of glucose metabolism, glucagon has been described to promote ketosis in the fasted state. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a new class of glucose-lowering drugs that act primarily in the kidney, but some reports have described direct effects of SGLT2i on α-cells to stimulate glucagon secretion. Interestingly, SGLT2 inhibition also results in increased endogenous glucose production and ketone production, features common to glucagon action. Here, we directly test the ketogenic role of glucagon in mice, demonstrating that neither fasting- nor SGLT2i-induced ketosis is altered by interruption of glucagon signaling. Moreover, any effect of glucagon to stimulate ketogenesis is severely limited by its insulinotropic actions. Collectively, our data suggest that fasting-associated ketosis and the ketogenic effects of SGLT2 inhibitors occur almost entirely independent of glucagon.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Reilly W Coch
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| | - Jepchumba Koech
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Inna I Astapova
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| | - Jacob B Wait
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Sara E Encisco
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | | | - Kimberly El
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Brian Finan
- Novo Nordisk Research Center, Indianapolis, IN
| | - Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Mark A Herman
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
13
|
Lang S, Yang J, Yang K, Gu L, Cui X, Wei T, Liu J, Le Y, Wang H, Wei R, Hong T. Glucagon receptor antagonist upregulates circulating GLP-1 level by promoting intestinal L-cell proliferation and GLP-1 production in type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001025. [PMID: 32139602 PMCID: PMC7059498 DOI: 10.1136/bmjdrc-2019-001025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Glucagon receptor (GCGR) blockage improves glycemic control and increases circulating glucagon-like peptide-1 (GLP-1) level in diabetic animals and humans. The elevated GLP-1 has been reported to be involved in the hypoglycemic effect of GCGR blockage. However, the source of this elevation remains to be clarified. RESEARCH DESIGN AND METHODS REMD 2.59, a human GCGR monoclonal antibody (mAb), was administrated for 12 weeks in db/db mice and high-fat diet+streptozotocin (HFD/STZ)-induced type 2 diabetic (T2D) mice. Blood glucose, glucose tolerance and plasma GLP-1 were evaluated during the treatment. The gut length, epithelial area, and L-cell number and proliferation were detected after the mice were sacrificed. Cell proliferation and GLP-1 production were measured in mouse L-cell line GLUTag cells, and primary mouse and human enterocytes. Moreover, GLP-1 receptor (GLP-1R) antagonist or protein kinase A (PKA) inhibitor was used in GLUTag cells to determine the involved signaling pathways. RESULTS Treatment with the GCGR mAb lowered blood glucose level, improved glucose tolerance and elevated plasma GLP-1 level in both db/db and HFD/STZ-induced T2D mice. Besides, the treatment promoted L-cell proliferation and LK-cell expansion, and increased the gut length, epithelial area and L-cell number in these two T2D mice. Similarly, our in vitro study showed that the GCGR mAb promoted L-cell proliferation and increased GLP-1 production in GLUTag cells, and primary mouse and human enterocytes. Furthermore, either GLP-1R antagonist or PKA inhibitor diminished the effects of GCGR mAb on L-cell proliferation and GLP-1 production. CONCLUSIONS The elevated circulating GLP-1 level by GCGR mAb is mainly due to intestinal L-cell proliferation and GLP-1 production, which may be mediated via GLP-1R/PKA signaling pathways. Therefore, GCGR mAb represents a promising strategy to improve glycemic control and restore the impaired GLP-1 production in T2D.
Collapse
Affiliation(s)
- Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Yunyi Le
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. Int J Mol Sci 2020; 21:ijms21030724. [PMID: 31979106 PMCID: PMC7037442 DOI: 10.3390/ijms21030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
The glucagon receptor (GCGR) is a G-protein-coupled receptor (GPCR) that mediates the activity of glucagon. Disruption of GCGR results in many metabolic alterations, including increased glucose tolerance, decreased adiposity, hypoglycemia, and pancreatic α-cell hyperplasia. To better understand the global transcriptomic changes resulting from GCGR deficiency, we performed whole-organism RNA sequencing analysis in wild type and gcgr-deficient zebrafish. We found that the expression of 1645 genes changes more than two-fold among mutants. Most of these genes are related to metabolism of carbohydrates, lipids, and amino acids. Genes related to fatty acid β-oxidation, amino acid catabolism, and ureagenesis are often downregulated. Among gcrgr-deficient zebrafish, we experimentally confirmed increases in lipid accumulation in the liver and whole-body glucose uptake, as well as a modest decrease in total amino acid content. These results provide new information about the global metabolic network that GCGR signaling regulates in addition to a better understanding of the receptor’s physiological functions.
Collapse
|
15
|
Capozzi ME, Wait JB, Koech J, Gordon AN, Coch RW, Svendsen B, Finan B, D'Alessio DA, Campbell JE. Glucagon lowers glycemia when β-cells are active. JCI Insight 2019; 5:129954. [PMID: 31335319 DOI: 10.1172/jci.insight.129954] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucagon and insulin are commonly believed to have counteracting effects on blood glucose levels. However, recent studies have demonstrated that glucagon has a physiologic role to activate β-cells and enhance insulin secretion. To date, the actions of glucagon have been studied mostly in fasting or hypoglycemic states, yet it is clear that mixed-nutrient meals elicit secretion of both glucagon and insulin, suggesting that glucagon also contributes to glucose regulation in the postprandial state. We hypothesized that the elevated glycemia seen in the fed state would allow glucagon to stimulate insulin secretion and reduce blood glucose. In fact, exogenous glucagon given under fed conditions did robustly stimulate insulin secretion and lower glycemia. Exogenous glucagon given to fed Gcgr:Glp1rβcell-/- mice failed to stimulate insulin secretion or reduce glycemia, demonstrating the importance of an insulinotropic glucagon effect. The action of endogenous glucagon to reduce glycemia in the fed state was tested with administration of alanine, a potent glucagon secretagogue. Alanine raised blood glucose in fasted WT mice or fed Gcgr:Glp1rβcell-/- mice, conditions where glucagon is unable to stimulate β-cell activity. However, alanine given to fed WT mice produced a decrease in glycemia, along with elevated insulin and glucagon levels. Overall, our data support a model in which glucagon serves as an insulinotropic hormone in the fed state and complements rather than opposes insulin action to maintain euglycemia.
Collapse
Affiliation(s)
| | | | | | | | - Reilly W Coch
- Duke Molecular Physiology Institute and.,Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Brian Finan
- Novo Nordisk Research Center, Indianapolis, Indiana, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute and.,Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute and.,Department of Medicine, Duke University, Durham, North Carolina, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
16
|
Sharma AX, Quittner-Strom EB, Lee Y, Johnson JA, Martin SA, Yu X, Li J, Lu J, Cai Z, Chen S, Wang MY, Zhang Y, Pearson MJ, Dorn AC, McDonald JG, Gordillo R, Yan H, Thai D, Wang ZV, Unger RH, Holland WL. Glucagon Receptor Antagonism Improves Glucose Metabolism and Cardiac Function by Promoting AMP-Mediated Protein Kinase in Diabetic Mice. Cell Rep 2019; 22:1760-1773. [PMID: 29444429 PMCID: PMC5978750 DOI: 10.1016/j.celrep.2018.01.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/30/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
The antidiabetic potential of glucagon receptor antagonism presents an opportunity for use in an insulin-centric clinical environment. To investigate the metabolic effects of glucagon receptor antagonism in type 2 diabetes, we treated Leprdb/db and Lepob/ob mice with REMD 2.59, a human monoclonal antibody and competitive antagonist of the glucagon receptor. As expected, REMD 2.59 suppresses hepatic glucose production and improves glycemia. Surprisingly, it also enhances insulin action in both liver and skeletal muscle, coinciding with an increase in AMP-activated protein kinase (AMPK)-mediated lipid oxidation. Furthermore, weekly REMD 2.59 treatment over a period of months protects against diabetic cardiomyopathy. These functional improvements are not derived simply from correcting the systemic milieu; nondiabetic mice with cardiac-specific overexpression of lipoprotein lipase also show improvements in contractile function after REMD 2.59 treatment. These observations suggest that hyperglucagonemia enables lipotoxic conditions, allowing the development of insulin resistance and cardiac dysfunction during disease progression.
Collapse
Affiliation(s)
- Ankit X Sharma
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Ezekiel B Quittner-Strom
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Young Lee
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - Joshua A Johnson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Sarah A Martin
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Xinxin Yu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - Jianping Li
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - John Lu
- REMD Biotherapeutics Inc., Camarillo, CA 93012, USA
| | | | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - May-Yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - Yiyi Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Mackenzie J Pearson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Andie C Dorn
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Hai Yan
- REMD Biotherapeutics Inc., Camarillo, CA 93012, USA
| | - Dung Thai
- REMD Biotherapeutics Inc., Camarillo, CA 93012, USA
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Roger H Unger
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
17
|
Wei R, Gu L, Yang J, Yang K, Liu J, Le Y, Lang S, Wang H, Thai D, Yan H, Hong T. Antagonistic Glucagon Receptor Antibody Promotes α-Cell Proliferation and Increases β-Cell Mass in Diabetic Mice. iScience 2019; 16:326-339. [PMID: 31203188 PMCID: PMC6581654 DOI: 10.1016/j.isci.2019.05.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Under extreme conditions or by genetic modification, pancreatic α-cells can regenerate and be converted into β-cells. This regeneration holds substantial promise for cell replacement therapy in diabetic patients. The discovery of clinical therapeutic strategies to promote β-cell regeneration is crucial for translating these findings into clinical applications. In this study, we reported that treatment with REMD 2.59, a human glucagon receptor (GCGR) monoclonal antibody (mAb), lowered blood glucose without inducing hypoglycemia in normoglycemic, streptozotocin-induced type 1 diabetic (T1D) and non-obesity diabetic mice. Moreover, GCGR mAb treatment increased the plasma glucagon and active glucagon-like peptide-1 levels, induced pancreatic ductal ontogenic α-cell neogenesis, and promoted α-cell proliferation. Strikingly, the treatment also increased the β-cell mass in these two T1D models. Using α-cell lineage-tracing mice, we found that the neogenic β-cells were likely derived from α-cell conversion. Therefore, GCGR mAb-induced α- to β-cell conversion might represent a pre-clinical approach for improving diabetes therapy. GCGR mAb induced α-cell expansion by neogenesis and cell proliferation GCGR mAb increased the β-cell mass in type 1 diabetic mice GCGR mAb might promote α- to β-cell conversion in type 1 diabetic mice
Collapse
Affiliation(s)
- Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yunyi Le
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Dung Thai
- REMD Biotherapeutics, Camarillo, CA 93012, USA; Beijing Cosci-REMD, Beijing 102206, China
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA 93012, USA; Beijing Cosci-REMD, Beijing 102206, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
18
|
Nguyen NQ, Debreceni TL, Burgess JE, Bellon M, Wishart J, Standfield S, Malbert CH, Horowitz M. Impact of gastric emptying and small intestinal transit on blood glucose, intestinal hormones, glucose absorption in the morbidly obese. Int J Obes (Lond) 2018; 42:1556-1564. [PMID: 29453463 DOI: 10.1038/s41366-018-0012-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023]
Abstract
This study evaluated gastric emptying (GE) and small intestinal (SI) transit in people with morbid obesity and their relationships to glycaemia, incretin hormones, and glucose absorption METHODS: GE and caecal arrival time (CAT) of a mixed meal were assessed in 22 morbidly obese (50.2 ± 2.5 years; 13 F:9 M; BMI: 48.6 ± 1.8 kg/m2) and 10 lean (38.6 ± 8.4 years; 5 F:5 M; BMI: 23.9 ± 0.7 kg/m2) subjects, using scintigraphy. Blood glucose, plasma 3-O-methylglucose, insulin, glucagon, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were measured. Insulin sensitivity and resistance were also quantified RESULTS: When compared with lean subjects, GE (t50: 60.7 ± 6.5 vs. 41.1 ± 7.3 min; P = 0.04) and CAT (221.5 ± 9.8 vs. 148.0 ± 7.1 min; P = 0.001) of solids were prolonged in morbid obesity. Postprandial rises in GIP (P = 0.001), insulin (P = 0.02), glucose (P = 0.03) and 3-O-methylglucose (P = 0.001) were less. Whereas GLP-1 increased at 45 mins post-prandially in lean subjects, there was no increase in the obese (P = 0.04). Both fasting (P = 0.045) and postprandial (P = 0.012) plasma glucagon concentrations were higher in the obese CONCLUSIONS: GE and SI transit are slower in the morbidly obese, and associated with reductions in postprandial glucose absorption, and glycaemic excursions, as well as plasma GIP and GLP-1.
Collapse
Affiliation(s)
- Nam Q Nguyen
- Department of Gastroenterology and Hepatology, Level 7, Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia.
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6 Eleanor Harrold Building, North Terrace, Adelaide, SA, 5000, Australia.
| | - Tamara L Debreceni
- Department of Gastroenterology and Hepatology, Level 7, Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia
| | - Jenna E Burgess
- Department of Gastroenterology and Hepatology, Level 7, Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia
| | - Max Bellon
- Nuclear Medicine, PET and Bone Densitometry, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Judith Wishart
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6 Eleanor Harrold Building, North Terrace, Adelaide, SA, 5000, Australia
| | - Scott Standfield
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6 Eleanor Harrold Building, North Terrace, Adelaide, SA, 5000, Australia
| | | | - Michael Horowitz
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6 Eleanor Harrold Building, North Terrace, Adelaide, SA, 5000, Australia
| |
Collapse
|
19
|
Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The New Biology and Pharmacology of Glucagon. Physiol Rev 2017; 97:721-766. [PMID: 28275047 DOI: 10.1152/physrev.00025.2016] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last two decades we have witnessed sizable progress in defining the role of gastrointestinal signals in the control of glucose and energy homeostasis. Specifically, the molecular basis of the huge metabolic benefits in bariatric surgery is emerging while novel incretin-based medicines based on endogenous hormones such as glucagon-like peptide 1 and pancreas-derived amylin are improving diabetes management. These and related developments have fostered the discovery of novel insights into endocrine control of systemic metabolism, and in particular a deeper understanding of the importance of communication across vital organs, and specifically the gut-brain-pancreas-liver network. Paradoxically, the pancreatic peptide glucagon has reemerged in this period among a plethora of newly identified metabolic macromolecules, and new data complement and challenge its historical position as a gut hormone involved in metabolic control. The synthesis of glucagon analogs that are biophysically stable and soluble in aqueous solutions has promoted biological study that has enriched our understanding of glucagon biology and ironically recruited glucagon agonism as a central element to lower body weight in the treatment of metabolic disease. This review summarizes the extensive historical record and the more recent provocative direction that integrates the prominent role of glucagon in glucose elevation with its under-acknowledged effects on lipids, body weight, and vascular health that have implications for the pathophysiology of metabolic diseases, and the emergence of precision medicines to treat metabolic diseases.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - B Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - C Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - R D DiMarchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Chemistry, Indiana University, Bloomington, Indiana; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| |
Collapse
|
20
|
Holst JJ, Holland W, Gromada J, Lee Y, Unger RH, Yan H, Sloop KW, Kieffer TJ, Damond N, Herrera PL. Insulin and Glucagon: Partners for Life. Endocrinology 2017; 158:696-701. [PMID: 28323959 PMCID: PMC6061217 DOI: 10.1210/en.2016-1748] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022]
Abstract
In August 2016, several leaders in glucagon biology gathered for the European Association for the Study of Diabetes Hagedorn Workshop in Oxford, England. A key point of discussion focused on the need for basal insulin to allow for the therapeutic benefit of glucagon blockade in the treatment of diabetes. Among the most enlightening experimental results presented were findings from studies in which glucagon receptor-deficient mice were administered streptozotocin to destroy pancreatic β cells or had undergone diphtheria toxin-induced β cell ablation. This article summarizes key features of the discussion as a consensus was reached. Agents that antagonize glucagon may be of great benefit for the treatment of diabetes; however, sufficient levels of basal insulin are required for their therapeutic efficacy.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - William Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | - Young Lee
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Roger H Unger
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hai Yan
- REMD Biotherapeutics Inc., Camarillo, California
| | - Kyle W Sloop
- Endocrine Discovery, Lilly Research Laboratories, Indianapolis, Indiana
| | - Timothy J Kieffer
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Damond
- Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
21
|
Kazda CM, Ding Y, Kelly RP, Garhyan P, Shi C, Lim CN, Fu H, Watson DE, Lewin AJ, Landschulz WH, Deeg MA, Moller DE, Hardy TA. Evaluation of Efficacy and Safety of the Glucagon Receptor Antagonist LY2409021 in Patients With Type 2 Diabetes: 12- and 24-Week Phase 2 Studies. Diabetes Care 2016; 39:1241-9. [PMID: 26681715 DOI: 10.2337/dc15-1643] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/30/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 2 diabetes pathophysiology is characterized by dysregulated glucagon secretion. LY2409021, a potent, selective small-molecule glucagon receptor antagonist that lowers glucose was evaluated for efficacy and safety in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS The efficacy (HbA1c and glucose) and safety (serum aminotransferase) of once-daily oral administration of LY2409021 was assessed in two double-blind studies. Phase 2a study patients were randomized to 10, 30, or 60 mg of LY2409021 or placebo for 12 weeks. Phase 2b study patients were randomized to 2.5, 10, or 20 mg LY2409021 or placebo for 24 weeks. RESULTS LY2409021 produced reductions in HbA1c that were significantly different from placebo over both 12 and 24 weeks. After 12 weeks, least squares (LS) mean change from baseline in HbA1c was -0.83% (10 mg), -0.65% (30 mg), and -0.66% (60 mg) (all P < 0.05) vs. placebo, 0.11%. After 24 weeks, LS mean change from baseline in HbA1c was -0.45% (2.5 mg), -0.78% (10 mg, P < 0.05), -0.92% (20 mg, P < 0.05), and -0.15% with placebo. Increases in serum aminotransferase, fasting glucagon, and total fasting glucagon-like peptide-1 (GLP-1) were observed; levels returned to baseline after drug washout. Fasting glucose was also lowered with LY2409021 at doses associated with only modest increases in aminotransferases (mean increase in alanine aminotransferase [ALT] ≤10 units/L). The incidence of hypoglycemia in the LY2409021 groups was not statistically different from placebo. CONCLUSIONS In patients with type 2 diabetes, glucagon receptor antagonist treatment significantly lowered HbA1c and glucose levels with good overall tolerability and a low risk for hypoglycemia. Modest, reversible increases in serum aminotransferases were observed.
Collapse
Affiliation(s)
| | - Ying Ding
- Eli Lilly and Company, Indianapolis, IN
| | - Ronan P Kelly
- Lilly-NUS Centre for Clinical Pharmacology, Singapore
| | | | | | | | - Haoda Fu
- Eli Lilly and Company, Indianapolis, IN
| | | | | | | | | | | | | |
Collapse
|
22
|
Pearson MJ, Unger RH, Holland WL. Clinical Trials, Triumphs, and Tribulations of Glucagon Receptor Antagonists. Diabetes Care 2016; 39:1075-7. [PMID: 27330122 PMCID: PMC5876017 DOI: 10.2337/dci15-0033] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mackenzie J Pearson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Roger H Unger
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX VA North Texas Health Care System, Dallas, TX
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
23
|
Damond N, Thorel F, Moyers JS, Charron MJ, Vuguin PM, Powers AC, Herrera PL. Blockade of glucagon signaling prevents or reverses diabetes onset only if residual β-cells persist. eLife 2016; 5. [PMID: 27092792 PMCID: PMC4871705 DOI: 10.7554/elife.13828] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/07/2016] [Indexed: 12/15/2022] Open
Abstract
Glucagon secretion dysregulation in diabetes fosters hyperglycemia. Recent studies report that mice lacking glucagon receptor (Gcgr-/-) do not develop diabetes following streptozotocin (STZ)-mediated ablation of insulin-producing β-cells. Here, we show that diabetes prevention in STZ-treated Gcgr-/- animals requires remnant insulin action originating from spared residual β-cells: these mice indeed became hyperglycemic after insulin receptor blockade. Accordingly, Gcgr-/- mice developed hyperglycemia after induction of a more complete, diphtheria toxin (DT)-induced β-cell loss, a situation of near-absolute insulin deficiency similar to type 1 diabetes. In addition, glucagon deficiency did not impair the natural capacity of α-cells to reprogram into insulin production after extreme β-cell loss. α-to-β-cell conversion was improved in Gcgr-/- mice as a consequence of α-cell hyperplasia. Collectively, these results indicate that glucagon antagonism could i) be a useful adjuvant therapy in diabetes only when residual insulin action persists, and ii) help devising future β-cell regeneration therapies relying upon α-cell reprogramming. DOI:http://dx.doi.org/10.7554/eLife.13828.001 After meals, digested food causes sugar to accumulate in the blood. This triggers the release of the hormone insulin from beta cells in the pancreas, which allows liver cells, muscle cells and fat cells to use and store the sugar for energy. Other cells in the pancreas, called alpha cells, release a hormone called glucagon that counteracts the effects of insulin by telling the liver to release sugar into the bloodstream. The balance between the activity of insulin and glucagon keeps blood sugar levels steady. Diabetes results from the body being unable to produce enough insulin or respond to the insulin that is produced, which results in sugar accumulating in the blood. Diabetes also increases the production of glucagon, which further increases blood sugar levels. Recently, some researchers have reported that mice that lack the receptor proteins through which glucagon works do not develop diabetes, even when they are treated with a drug called streptozotocin that wipes out most of their beta cells. This suggests that the high blood sugar levels seen in diabetes result from an excess of glucagon, and not a lack of insulin. Drugs that block the action of glucagon have been found to reduce the symptoms of mild diabetes in mice and are now being tested in humans. However, it is less clear whether this treatment has any benefits in animals with more severe diabetes. Streptozotocin destroys most of a mouse’s beta cells but a significant fraction of them persist, while a different system relying on diphtheria toxin destroys more than 99% of these cells. Damond et al. have now found that treating mice that lack glucagon receptors with diphtheria toxin causes the mice to develop severe diabetes. Mice that lacked glucagon receptors that had been treated with streptozotocin also developed diabetes after they had been treated with an insulin-blocking drug. Further experiments showed that blocking glucagon receptors in typical mice with diabetes reduces blood sugar, but only if there is some insulin left in their bodies. Damond et al. also found that the glucagon receptor-lacking mice have more alpha cells, which have the ability to convert into insulin-producing cells after the widespread destruction of beta cells. Together, the experiments suggest that blocking glucagon could be a useful treatment for diabetes, but only in individuals who still have some insulin-producing cells. Such treatment would help reduce the release of sugar from the liver and increase the production of insulin in converted alpha cells in the pancreas. Damond et al. are now investigating how alpha cells convert into beta cells, with the aim of learning how to make beta cells regenerate more efficiently. DOI:http://dx.doi.org/10.7554/eLife.13828.002
Collapse
Affiliation(s)
- Nicolas Damond
- Department of Genetic Medicine and Development of the Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development of the Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, United States
| | - Maureen J Charron
- Departments of Biochemistry, Medicine, and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, United States
| | - Patricia M Vuguin
- Pediatric Endocrinology, Women's and Childrens Health, College of Physicians & Surgeons, Columbia University, New York, United States
| | - Alvin C Powers
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Department of Molecular Physiology, Vanderbilt University, Nashville, United States.,VA Tennessee Valley Healthcare System, Nashville, United States
| | - Pedro L Herrera
- Department of Genetic Medicine and Development of the Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Han J, Zhang M, Froese S, Dai FF, Robitaille M, Bhattacharjee A, Huang X, Jia W, Angers S, Wheeler MB, Wei L. The Identification of Novel Protein-Protein Interactions in Liver that Affect Glucagon Receptor Activity. PLoS One 2015; 10:e0129226. [PMID: 26075596 PMCID: PMC4468146 DOI: 10.1371/journal.pone.0129226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
Glucagon regulates glucose homeostasis by controlling glycogenolysis and gluconeogenesis in the liver. Exaggerated and dysregulated glucagon secretion can exacerbate hyperglycemia contributing to type 2 diabetes (T2D). Thus, it is important to understand how glucagon receptor (GCGR) activity and signaling is controlled in hepatocytes. To better understand this, we sought to identify proteins that interact with the GCGR to affect ligand-dependent receptor activation. A Flag-tagged human GCGR was recombinantly expressed in Chinese hamster ovary (CHO) cells, and GCGR complexes were isolated by affinity purification (AP). Complexes were then analyzed by mass spectrometry (MS), and protein-GCGR interactions were validated by co-immunoprecipitation (Co-IP) and Western blot. This was followed by studies in primary hepatocytes to assess the effects of each interactor on glucagon-dependent glucose production and intracellular cAMP accumulation, and then in immortalized CHO and liver cell lines to further examine cell signaling. Thirty-three unique interactors were identified from the AP-MS screening of GCGR expressing CHO cells in both glucagon liganded and unliganded states. These studies revealed a particularly robust interaction between GCGR and 5 proteins, further validated by Co-IP, Western blot and qPCR. Overexpression of selected interactors in mouse hepatocytes indicated that two interactors, LDLR and TMED2, significantly enhanced glucagon-stimulated glucose production, while YWHAB inhibited glucose production. This was mirrored with glucagon-stimulated cAMP production, with LDLR and TMED2 enhancing and YWHAB inhibiting cAMP accumulation. To further link these interactors to glucose production, key gluconeogenic genes were assessed. Both LDLR and TMED2 stimulated while YWHAB inhibited PEPCK and G6Pase gene expression. In the present study, we have probed the GCGR interactome and found three novel GCGR interactors that control glucagon-stimulated glucose production by modulating cAMP accumulation and genes that control gluconeogenesis. These interactors may be useful targets to control glucose homeostasis in T2D.
Collapse
Affiliation(s)
- Junfeng Han
- Department of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ming Zhang
- Department of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean Froese
- Department of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Feihan F. Dai
- Department of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mélanie Robitaille
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Alpana Bhattacharjee
- Department of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xinyi Huang
- Department of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Stéphane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Michael B. Wheeler
- Department of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (MW); (LW)
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- * E-mail: (MW); (LW)
| |
Collapse
|
25
|
Sandoval DA, D'Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev 2015; 95:513-48. [PMID: 25834231 DOI: 10.1152/physrev.00013.2014] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preproglucagon gene (Gcg) is expressed by specific enteroendocrine cells (L-cells) of the intestinal mucosa, pancreatic islet α-cells, and a discrete set of neurons within the nucleus of the solitary tract. Gcg encodes multiple peptides including glucagon, glucagon-like peptide-1, glucagon-like peptide-2, oxyntomodulin, and glicentin. Of these, glucagon and GLP-1 have received the most attention because of important roles in glucose metabolism, involvement in diabetes and other disorders, and application to therapeutics. The generally accepted model is that GLP-1 improves glucose homeostasis indirectly via stimulation of nutrient-induced insulin release and by reducing glucagon secretion. Yet the body of literature surrounding GLP-1 physiology reveals an incompletely understood and complex system that includes peripheral and central GLP-1 actions to regulate energy and glucose homeostasis. On the other hand, glucagon is established principally as a counterregulatory hormone, increasing in response to physiological challenges that threaten adequate blood glucose levels and driving glucose production to restore euglycemia. However, there also exists a potential role for glucagon in regulating energy expenditure that has recently been suggested in pharmacological studies. It is also becoming apparent that there is cross-talk between the proglucagon derived-peptides, e.g., GLP-1 inhibits glucagon secretion, and some additive or synergistic pharmacological interaction between GLP-1 and glucagon, e.g., dual glucagon/GLP-1 agonists cause more weight loss than single agonists. In this review, we discuss the physiological functions of both glucagon and GLP-1 by comparing and contrasting how these peptides function, variably in concert and opposition, to regulate glucose and energy homeostasis.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David A D'Alessio
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
26
|
Abstract
Glucagon is secreted from islet α cells and controls blood levels of glucose in the fasting state. Impaired glucagon secretion predisposes some patients with type 1 diabetes mellitus (T1DM) to hypoglycaemia; whereas hyperglycaemia in patients with T1DM or type 2 diabetes mellitus (T2DM) is often associated with hyperglucagonaemia. Hence, therapeutic strategies to safely achieve euglycaemia in patients with diabetes mellitus now encompass bihormonal approaches to simultaneously deliver insulin and glucagon (in patients with T1DM) or reduce excess glucagon action (in patients with T1DM or T2DM). Glucagon also reduces food intake and increases energy expenditure through central and peripheral mechanisms, which suggests that activation of signalling through the glucagon receptor might be useful for controlling body weight. Here, we review new data that is relevant to understanding α-cell biology and glucagon action in the brain, liver, adipose tissue and heart, with attention to normal physiology, as well as conditions associated with dysregulated glucagon action. The feasibility and safety of current and emerging glucagon-based therapies that encompass both gain-of-function and loss-of-function approaches for the treatment of T1DM, T2DM and obesity is discussed in addition to developments, challenges and critical gaps in our knowledge that require additional investigation.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, TCP5-1004, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
27
|
Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway. Proc Natl Acad Sci U S A 2015; 112:2503-8. [PMID: 25675519 DOI: 10.1073/pnas.1424934112] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulin monotherapy can neither maintain normoglycemia in type 1 diabetes (T1D) nor prevent the long-term damage indicated by elevated glycation products in blood, such as glycated hemoglobin (HbA1c). Here we find that hyperglycemia, when unaccompanied by an acute increase in insulin, enhances itself by paradoxically stimulating hyperglucagonemia. Raising glucose from 5 to 25 mM without insulin enhanced glucagon secretion ∼two- to fivefold in InR1-G9 α cells and ∼18-fold in perfused pancreata from insulin-deficient rats with T1D. Mice with T1D receiving insulin treatment paradoxically exhibited threefold higher plasma glucagon during hyperglycemic surges than during normoglycemic intervals. Blockade of glucagon action with mAb Ac, a glucagon receptor (GCGR) antagonizing antibody, maintained glucose below 100 mg/dL and HbA1c levels below 4% in insulin-deficient mice with T1D. In rodents with T1D, hyperglycemia stimulates glucagon secretion, up-regulating phosphoenolpyruvate carboxykinase and enhancing hyperglycemia. GCGR antagonism in mice with T1D normalizes glucose and HbA1c, even without insulin.
Collapse
|
28
|
Franklin ZJ, O’Harte FP, Irwin N. Effects of short-term chemical ablation of glucagon signalling by peptide-based glucagon receptor antagonists on insulin secretion and glucose homeostasis in mice. Biol Chem 2014; 395:433-42. [DOI: 10.1515/hsz-2013-0224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/04/2013] [Indexed: 11/15/2022]
Abstract
Abstract
Glucagon is a hormone with important effects on blood glucose regulation. This study has utilized the stable glucagon receptor antagonists, desHis1Pro4Glu9-glucagon and desHis1Pro4Glu9(Lys12PAL)-glucagon, to evaluate the effects of sustained inhibition of glucagon receptor signalling in normal mice. Twice-daily injection of either analogue for 10 days had no effect on food intake, body weight and non-fasting plasma glucose concentrations. However, insulin levels were significantly raised (p<0.05 to p<0.01) from day 3 onwards in desHis1Pro4Glu9-glucagon mice. After 10 days, glucose tolerance was improved (p<0.05) in desHis1Pro4Glu9-glucagon treated mice. Glucose-mediated insulin secretion and circulating cholesterol levels were significantly (p<0.05 to p<0.01) decreased in both treatment groups. Importantly, the effects of glucagon to increase blood glucose and insulin concentrations were still annulled on day 10. Insulin sensitivity was almost identical in all groups of mice at the end of the study. In addition, no changes in pancreatic insulin and glucagon content or islet morphology were observed in either treatment group. Finally, acute injection of desHis1Pro4Glu9-glucagon followed by a 24-h fast in treatment naïve mice was not associated with any hypoglycaemic episodes. These data indicate that peptide-based glucagon receptor antagonists represent safe and effective treatment options for type 2 diabetes.
Collapse
|
29
|
Omar BA, Andersen B, Hald J, Raun K, Nishimura E, Ahrén B. Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice. Diabetes 2014; 63:101-10. [PMID: 24062250 DOI: 10.2337/db13-0710] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mice genetically deficient in the glucagon receptor (Gcgr(-/-)) show improved glucose tolerance, insulin sensitivity, and α-cell hyperplasia. In addition, Gcgr(-/-) mice do not develop diabetes after chemical destruction of β-cells. Since fibroblast growth factor 21 (FGF21) has insulin-independent glucose-lowering properties, we investigated whether FGF21 was contributing to diabetes resistance in insulin-deficient Gcgr(-/-) mice. Plasma FGF21 was 25-fold higher in Gcgr(-/-) mice than in wild-type mice. FGF21 was found to be expressed in pancreatic β- and α-cells, with high expression in the hyperplastic α-cells of Gcgr(-/-) mice. FGF21 expression was also significantly increased in liver and adipose tissue of Gcgr(-/-) mice. To investigate the potential antidiabetic actions of FGF21 in insulin-deficient Gcgr(-/-) mice, an FGF21-neutralizing antibody was administered prior to oral glucose tolerance tests (OGTTs). FGF21 neutralization caused a decline in glucose tolerance in insulin-deficient Gcgr(-/-) mice during the OGTT. Despite this decline, insulin-deficient Gcgr(-/-) mice did not develop hyperglycemia. Glucagon-like peptide 1 (GLP-1) also has insulin-independent glucose-lowering properties, and an elevated circulating level of GLP-1 is a known characteristic of Gcgr(-/-) mice. Neutralization of FGF21, while concurrently blocking the GLP-1 receptor with the antagonist Exendin 9-39 (Ex9-39), resulted in significant hyperglycemia in insulin-deficient Gcgr(-/-) mice, while blocking with Ex9-39 alone did not. In conclusion, FGF21 acts additively with GLP-1 to prevent insulinopenic diabetes in mice lacking glucagon action.
Collapse
Affiliation(s)
- Bilal A Omar
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
30
|
Mera T, Itoh T, Kita S, Kodama S, Kojima D, Nishinakamura H, Okamoto K, Ohkura M, Nakai J, Iyoda T, Iwamoto T, Matsuda T, Baba A, Omori K, Ono J, Watarai H, Taniguchi M, Yasunami Y. Pretreatment of donor islets with the Na(+) /Ca(2+) exchanger inhibitor improves the efficiency of islet transplantation. Am J Transplant 2013; 13:2154-60. [PMID: 23746308 DOI: 10.1111/ajt.12306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/25/2023]
Abstract
Pancreatic islet transplantation is an attractive therapy for the treatment of insulin-dependent diabetes mellitus. However, the low efficiency of this procedure necessitating sequential transplantations of islets with the use of 2-3 donors for a single recipient, mainly due to the early loss of transplanted islets, hampers its clinical application. Previously, we have shown in mice that a large amount of HMGB1 is released from islets soon after their transplantation and that this triggers innate immune rejection with activation of DC, NKT cells and neutrophils to produce IFN-γ, ultimately leading to the early loss of transplanted islets. Thus, HMGB1 release plays an initial pivotal role in this process; however, its mechanism remains unclear. Here we demonstrate that release of HMGB1 from transplanted islets is due to hypoxic damage resulting from Ca(2+) influx into β cells through the Na(+) /Ca(2+) exchanger (NCX). Moreover, the hypoxia-induced β cell damage was prevented by pretreatment with an NCX-specific inhibitor prior to transplantation, resulting in protection and long-term survival of transplanted mouse and human islets when grafted into mice. These findings suggest a novel strategy with potentially great impact to improve the efficiency of islet transplantation in clinical settings by targeting donor islets rather than recipients.
Collapse
Affiliation(s)
- T Mera
- Central Research Institute for Islet Biology, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ravn P, Madhurantakam C, Kunze S, Matthews E, Priest C, O'Brien S, Collinson A, Papworth M, Fritsch-Fredin M, Jermutus L, Benthem L, Gruetter M, Jackson RH. Structural and pharmacological characterization of novel potent and selective monoclonal antibody antagonists of glucose-dependent insulinotropic polypeptide receptor. J Biol Chem 2013; 288:19760-72. [PMID: 23689510 PMCID: PMC3707680 DOI: 10.1074/jbc.m112.426288] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an endogenous hormonal factor (incretin) that, upon binding to its receptor (GIPr; a class B G-protein-coupled receptor), stimulates insulin secretion by beta cells in the pancreas. There has been a lack of potent inhibitors of the GIPr with prolonged in vivo exposure to support studies on GIP biology. Here we describe the generation of an antagonizing antibody to the GIPr, using phage and ribosome display libraries. Gipg013 is a specific competitive antagonist with equally high potencies to mouse, rat, dog, and human GIP receptors with a Ki of 7 nm for the human GIPr. Gipg013 antagonizes the GIP receptor and inhibits GIP-induced insulin secretion in vitro and in vivo. A crystal structure of Gipg013 Fab in complex with the human GIPr extracellular domain (ECD) shows that the antibody binds through a series of hydrogen bonds from the complementarity-determining regions of Gipg013 Fab to the N-terminal α-helix of GIPr ECD as well as to residues around its highly conserved glucagon receptor subfamily recognition fold. The antibody epitope overlaps with the GIP binding site on the GIPr ECD, ensuring competitive antagonism of the receptor. This well characterized antagonizing antibody to the GIPr will be useful as a tool to further understand the biological roles of GIP.
Collapse
Affiliation(s)
- Peter Ravn
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Irwin N, Franklin ZJ, O'Harte FPM. desHis¹Glu⁹-glucagon-[mPEG] and desHis¹Glu⁹(Lys³⁰PAL)-glucagon: long-acting peptide-based PEGylated and acylated glucagon receptor antagonists with potential antidiabetic activity. Eur J Pharmacol 2013; 709:43-51. [PMID: 23562625 DOI: 10.1016/j.ejphar.2013.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/19/2013] [Accepted: 03/24/2013] [Indexed: 12/13/2022]
Abstract
Glucagon is hormone secreted from the pancreatic alpha-cells that is involved in blood glucose regulation. As such, antagonism of glucagon receptor signalling represents an exciting approach for treating diabetes. To harness these beneficial metabolic effects, two novel glucagon analogues, desHis¹Glu⁹-glucagon-[mPEG] and desHis¹Glu⁹(Lys³⁰PAL)-glucagon, has been evaluated for potential glucagon receptor antagonistic properties. Both novel peptides were completely resistant to enzymatic breakdown and significantly (P<0.05 to P<0.001) inhibited glucagon-mediated elevations of cAMP production in glucagon receptor transfected cells. Similarly, desHis¹Glu⁹-glucagon-[mPEG] and desHis¹Glu⁹(Lys³⁰PAL)-glucagon effectively antagonised glucagon-induced increases of insulin secretion from BRIN BD11 cells. When administered acutely to normal, high fat fed or ob/ob mice, both analogues had no significant effects on overall blood glucose or plasma insulin levels when compared to saline treated controls. However, desHis¹Glu⁹-glucagon-[mPEG] significantly (P<0.05) annulled glucagon-induced increases in blood glucose and plasma insulin levels in normal mice and had similar non-significant tendencies in high fat and ob/ob mice. In addition, desHis¹Glu⁹(Lys³⁰PAL)-glucagon effectively (P<0.05 to P<0.001) antagonised glucagon-mediated elevations of blood glucose levels in high fat fed and ob/ob mice, but was less efficacious in normal mice. Further studies confirmed the significant persistent glucagon receptor antagonistic properties of both novel enzyme-resistant analogues 4h post administration in normal mice. These studies emphasise the potential of longer-acting peptide-based glucagon receptor antagonists, and particularly acylated versions, for the treatment of diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.
| | | | | |
Collapse
|
33
|
Longuet C, Robledo AM, Dean ED, Dai C, Ali S, McGuinness I, de Chavez V, Vuguin PM, Charron MJ, Powers AC, Drucker DJ. Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: evidence for a circulating α-cell growth factor. Diabetes 2013; 62:1196-205. [PMID: 23160527 PMCID: PMC3609565 DOI: 10.2337/db11-1605] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucagon is a critical regulator of glucose homeostasis; however, mechanisms regulating glucagon action and α-cell function and number are incompletely understood. To elucidate the role of the hepatic glucagon receptor (Gcgr) in glucagon action, we generated mice with hepatocyte-specific deletion of the glucagon receptor. Gcgr(Hep)(-/-) mice exhibited reductions in fasting blood glucose and improvements in insulin sensitivity and glucose tolerance compared with wild-type controls, similar in magnitude to changes observed in Gcgr(-/-) mice. Despite preservation of islet Gcgr signaling, Gcgr(Hep)(-/-) mice developed hyperglucagonemia and α-cell hyperplasia. To investigate mechanisms by which signaling through the Gcgr regulates α-cell mass, wild-type islets were transplanted into Gcgr(-/-) or Gcgr(Hep)(-/-) mice. Wild-type islets beneath the renal capsule of Gcgr(-/-) or Gcgr(Hep)(-/-) mice exhibited an increased rate of α-cell proliferation and expansion of α-cell area, consistent with changes exhibited by endogenous α-cells in Gcgr(-/-) and Gcgr(Hep)(-/-) pancreata. These results suggest that a circulating factor generated after disruption of hepatic Gcgr signaling can increase α-cell proliferation independent of direct pancreatic input. Identification of novel factors regulating α-cell proliferation and mass may facilitate the generation and expansion of α-cells for transdifferentiation into β-cells and the treatment of diabetes.
Collapse
Affiliation(s)
- Christine Longuet
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Ana M. Robledo
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - E. Danielle Dean
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Safina Ali
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Ian McGuinness
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vincent de Chavez
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Patricia M. Vuguin
- Division of Pediatric Endocrinology, Steven & Alexandra Cohen Children’s Medical Center of New York, Long Island, New York
| | - Maureen J. Charron
- Albert Einstein College of Medicine, Departments of Biochemistry, Medicine, and Obstetrics & Gynecology, Bronx, New York
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Corresponding author: Alvin C. Powers, , or Daniel J. Drucker,
| | - Daniel J. Drucker
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Habener JF, Stanojevic V. Alpha cells come of age. Trends Endocrinol Metab 2013; 24:153-63. [PMID: 23260869 DOI: 10.1016/j.tem.2012.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/27/2012] [Accepted: 10/30/2012] [Indexed: 02/07/2023]
Abstract
The alpha cells that coinhabit the islets with the insulin-producing beta cells have recently captured the attention of diabetes researchers because of new breakthrough findings highlighting the importance of these cells in the maintenance of beta cell health and functions. In normal physiological conditions alpha cells produce glucagon but in conditions of beta cell injury they also produce glucagon-like peptide-1 (GLP-1), a growth and survival factor for beta cells. In this review we consider these new findings on the functions of alpha cells. Alpha cells remain somewhat enigmatic inasmuch as they now appear to be important in the maintenance of the health of beta cells, but their production of glucagon promotes diabetes. This circumstance prompts an examination of approaches to coax alpha cells to produce GLP-1 instead of glucagon.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
35
|
Kim WD, Lee YH, Kim MH, Jung SY, Son WC, Yoon SJ, Lee BW. Human monoclonal antibodies against glucagon receptor improve glucose homeostasis by suppression of hepatic glucose output in diet-induced obese mice. PLoS One 2012; 7:e50954. [PMID: 23226550 PMCID: PMC3513295 DOI: 10.1371/journal.pone.0050954] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/25/2012] [Indexed: 11/18/2022] Open
Abstract
Aim Glucagon is an essential regulator of hepatic glucose production (HGP), which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR), NPB112, on glucose homeostasis in diet-induced obese (DIO) mice. Methods The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP. Results Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min) compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min) in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment. Conclusions A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Wook-Dong Kim
- Department of New Drug Discovery, Neopharm Co., Ltd., Daejeon, Korea
| | - Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Medicine, Graduate School Yonsei University, Seoul, Korea
| | - Min-Hee Kim
- Department of New Drug Discovery, Neopharm Co., Ltd., Daejeon, Korea
| | - Sun-Young Jung
- Department of Pathology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Seon-Joo Yoon
- Department of New Drug Discovery, Neopharm Co., Ltd., Daejeon, Korea
- * E-mail: (B-WL); (S-JY)
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Medicine, Graduate School Yonsei University, Seoul, Korea
- * E-mail: (B-WL); (S-JY)
| |
Collapse
|
36
|
Wu G, Zhang L, Li T, Zuniga A, Lopaschuk GD, Li L, Jacobs RL, Vance DE. Choline supplementation promotes hepatic insulin resistance in phosphatidylethanolamine N-methyltransferase-deficient mice via increased glucagon action. J Biol Chem 2012. [PMID: 23179947 DOI: 10.1074/jbc.m112.415117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Biosynthesis of hepatic choline via phosphatidylethanolamine N-methyltransferase (PEMT) plays an important role in the development of type 2 diabetes and obesity. We investigated the mechanism(s) by which choline modulates insulin sensitivity. PEMT wild-type (Pemt(+/+)) and knock-out (Pemt(-/-)) mice received either a high fat diet (HF; 60% kcal of fat) or a high fat, high choline diet (HFHC; 4 g of choline/kg of HF diet) for 1 week. Hepatic insulin signaling and glucose and lipid homeostasis were investigated. Glucose and insulin intolerance occurred in Pemt(-/-) mice fed the HFHC diet, but not in their Pemt(-/-) littermates fed the HF diet. Plasma glucagon was elevated in Pemt(-/-) mice fed the HFHC diet compared with Pemt(-/-) mice fed the HF diet, concomitant with increased hepatic expression of glucagon receptor, phosphorylated AMP-activated protein kinase (AMPK), and phosphorylated insulin receptor substrate 1 at serine 307 (IRS1-s307). Gluconeogenesis and mitochondrial oxidative stress were markedly enhanced, whereas glucose oxidation and triacylglycerol biosynthesis were diminished in Pemt(-/-) mice fed the HFHC diet. A glucagon receptor antagonist (2-aminobenzimidazole) attenuated choline-induced hyperglycemia and insulin intolerance and blunted up-regulation of phosphorylated AMPK and IRS1-s307. Choline induces glucose and insulin intolerance in Pemt(-/-) mice through modulating plasma glucagon and its action in liver.
Collapse
Affiliation(s)
- Gengshu Wu
- Group on the Molecular and Cell Biology of Lipids and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cho YM, Merchant CE, Kieffer TJ. Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol Ther 2012; 135:247-78. [DOI: 10.1016/j.pharmthera.2012.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
|
38
|
Abstract
This review considers the role of α-cells in β-cell generation and regeneration. We present recent evidence obtained from lineage-tracing studies showing that α-cells can serve as progenitors of β-cells and present a hypothetical model how injured β-cells might activate α-cells in adult islets to promote β-cell regeneration. β-cells appear to arise by way of their trans-differentiation from undifferentiated α progenitor cells, pro-α-cells, both during embryonic development of the islets and in the adult pancreas in response to β-cell injuries. Plasticity of α-cells is endowed by the expression of the gene encoding proglucagon, a prohormone that can give rise to glucagon and glucagon-like peptides (GLPs). The production of glucagon from proglucagon is characteristic of fully-differentiated α-cells whereas GLP-1 is a product of undifferentiated α-cells. GLP-1, a cell growth and survival factor, is proposed to promote the expansion of neurogenin3-expressing, undifferentiated pro-α-cells during development. β-cells arise from pro-α-cells by a change in the relative amounts of the transcription factors Arx and Pax4, master regulators of the α- and β-cell lineages, respectively. A paracrine/autocrine model is proposed whereby injuries of β-cells in adult islets induce the production and release of factors, such as stromal cell-derived factor-1, that cause the de-differentiation of adjacent α-cells into pro-α-cells. Pro-α-cells produce GLP-1 and its receptor that renders them competent to trans-differentiate into β-cells. The trans-differentiation of pro-α-cells into β-cells provides a potentially exploitable mechanism for the regeneration of β-cells in individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
39
|
Verspohl EJ. Novel Pharmacological Approaches to the Treatment of Type 2 Diabetes. Pharmacol Rev 2012; 64:188-237. [DOI: 10.1124/pr.110.003319] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Watanabe C, Seino Y, Miyahira H, Yamamoto M, Fukami A, Ozaki N, Takagishi Y, Sato J, Fukuwatari T, Shibata K, Oiso Y, Murata Y, Hayashi Y. Remodeling of hepatic metabolism and hyperaminoacidemia in mice deficient in proglucagon-derived peptides. Diabetes 2012; 61:74-84. [PMID: 22187375 PMCID: PMC3237648 DOI: 10.2337/db11-0739] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucagon is believed to be one of the most important peptides for upregulating blood glucose levels. However, homozygous glucagon-green fluorescent protein (gfp) knock-in mice (Gcg(gfp/gfp): GCGKO) are normoglycemic despite the absence of proglucagon-derived peptides, including glucagon. To characterize metabolism in the GCGKO mice, we analyzed gene expression and metabolome in the liver. The expression of genes encoding rate-limiting enzymes for gluconeogenesis was only marginally altered. On the other hand, genes encoding enzymes involved in conversion of amino acids to metabolites available for the tricarboxylic acid cycle and/or gluconeogenesis showed lower expression in the GCGKO liver. The expression of genes involved in the metabolism of fatty acids and nicotinamide was also altered. Concentrations of the metabolites in the GCGKO liver were altered in manners concordant with alteration in the gene expression patterns, and the plasma concentrations of amino acids were elevated in the GCGKO mice. The insulin concentration in serum and phosphorylation of Akt protein kinase in liver were reduced in GCGKO mice. These results indicated that proglucagon-derived peptides should play important roles in regulating various metabolic pathways, especially that of amino acids. Serum insulin concentration is lowered to compensate the impacts of absent proglucagon-derived peptide on glucose metabolism. On the other hand, impacts on other metabolic pathways are only partially compensated by reduced insulin action.
Collapse
Affiliation(s)
- Chika Watanabe
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Seino
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Miyahira
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Michiyo Yamamoto
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ayako Fukami
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuaki Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiko Takagishi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Jun Sato
- Futuristic Environmental Stimulation Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tsutomu Fukuwatari
- Department of Food Science and Nutrition, School of Human Cultures, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Katsumi Shibata
- Department of Food Science and Nutrition, School of Human Cultures, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiharu Murata
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshitaka Hayashi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Corresponding author: Yoshitaka Hayashi,
| |
Collapse
|
41
|
Abstract
Multiple bioactive peptides are produced from proglucagon encoded by glucagon gene (Gcg). Glucagon is produced in islet α-cells through processing by prohormone convertase 2 (Pcsk2) and exerts its action through the glucagon receptor (Gcgr). Although it is difficult to produce a genetic model that harbours isolated glucagon deficiency without affecting the production of other peptides derived from proglucagon, three different animal models that harbour deficiencies in glucagon signalling have been generated by gene targeting strategy. Although both Pcsk2(-/-) and Gcgr(-/-) mice display lower blood glucose levels, homozygous glucagon-GFP knock-in mice (Gcg(gfp/gfp) ) display normoglycaemia despite complete glucagon deficiency. In Gcg(gfp/gfp) mice, the metabolic impact of glucagon deficiency is probably ameliorated by lower plasma insulin levels and glucagon-independent mechanisms that maintain gluconeogenesis. As both Pcsk2(-/-) and Gcgr(-/-) mice exhibit increased production of glucagon-like peptide-1 (GLP-1), which is absent in Gcg(gfp/gfp), GLP-1 is the likely cause of the difference in metabolic impact of glucagon deficiency in these animal models. Although all the three models display islet 'α'-cell hyperplasia, the mechanisms involved remain to be elucidated. Studies using Pcsk2(-/-), Gcgr(-/-) and Gcg(gfp/gfp) mice, especially in combination with α-cell ablation models such as pancreas-specific aristaless-related homeobox (ARX) knockout mice, should further clarify the physiological and pathological roles of glucagon in the regulation of metabolism and the control of islet cell differentiation and proliferation.
Collapse
Affiliation(s)
- Y Hayashi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
42
|
Gu W, Lloyd DJ, Chinookswong N, Komorowski R, Sivits G, Graham M, Winters KA, Yan H, Boros LG, Lindberg RA, Véniant MM. Pharmacological targeting of glucagon and glucagon-like peptide 1 receptors has different effects on energy state and glucose homeostasis in diet-induced obese mice. J Pharmacol Exp Ther 2011; 338:70-81. [PMID: 21471191 DOI: 10.1124/jpet.111.179986] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pharmacologic contributions of directly agonizing glucagon-like peptide 1 (GLP-1) receptor or antagonizing glucagon receptor (GCGR) on energy state and glucose homeostasis were assessed in diet-induced obese (DIO) mice. Metabolic rate and respiratory quotient (RQ), hyperglycemic clamp, stable isotope-based dynamic metabolic profiling (SiDMAP) studies of (13)C-labeled glucose during glucose tolerance test (GTT) and gene expression were assessed in cohorts of DIO mice after a single administration of GLP-1 analog [GLP-1-(23)] or anti-GCGR antibody (Ab). GLP-1-(23) and GCGR Ab similarly improved GTT. GLP-1-(23) decreased food intake and body weight trended lower. GCGR Ab modestly decreased food intake without significant effect on body weight. GLP-1-(23) and GCGR Ab decreased RQ with GLP-1, causing a greater effect. In a hyperglycemic clamp, GLP-1-(23) reduced hepatic glucose production (HGP), increased glucose infusion rate (GIR), increased glucose uptake in brown adipose tissue, and increased whole-body glucose turnover, glycolysis, and rate of glycogen synthesis. GCGR Ab slightly decreased HGP, increased GIR, and increased glucose uptake in the heart. SiDMAP showed that GLP-1-(23) and GCGR Ab increased (13)C lactate labeling from glucose, indicating that liver, muscle, and other organs were involved in the rapid disposal of glucose from plasma. GCGR Ab and GLP-1-(23) caused different changes in mRNA expression levels of glucose- and lipid metabolism-associated genes. The effect of GLP-1-(23) on energy state and glucose homeostasis was greater than GCGR Ab. Although GCGR antagonism is associated with increased circulating levels of GLP-1, most GLP-1-(23)-associated pharmacologic effects are more pronounced than GCGR Ab.
Collapse
Affiliation(s)
- Wei Gu
- Department of Metabolic Disorders, Amgen Inc, Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | |
Collapse
|