1
|
Luo Y, Yang L, Wu H, Xu H, Peng J, Wang Y, Zhou F. Exploring the Molecular Mechanism of Comorbidity of Type 2 Diabetes Mellitus and Colorectal Cancer: Insights from Bulk Omics and Single-Cell Sequencing Validation. Biomolecules 2024; 14:693. [PMID: 38927096 PMCID: PMC11201668 DOI: 10.3390/biom14060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The relationship between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) has long been extensively recognized, but their crosstalk mechanisms based on gene regulation remain elusive. In our study, for the first time, bulk RNA-seq and single-cell RNA-seq data were used to explore the shared molecular mechanisms between T2DM and CRC. Moreover, Connectivity Map and molecular docking were employed to determine potential drugs targeting the candidate targets. Eight genes (EVPL, TACSTD2, SOX4, ETV4, LY6E, MLXIPL, ENTPD3, UGP2) were identified as characteristic comorbidity genes for T2DM and CRC, with EVPL and ENTPD3 further identified as core comorbidity genes. Our results demonstrated that upregulation of EVPL and downregulation of ENTPD3 were intrinsic molecular features throughout T2DM and CRC and were significantly associated with immune responses, immune processes, and abnormal immune landscapes in both diseases. Single-cell analysis highlighted a cancer-associated fibroblast (CAF) subset that specifically expressed ENTPD3 in CRC, which exhibited high heterogeneity and unique tumor-suppressive features that were completely different from classical cancer-promoting CAFs. Furthermore, ENTPD3+ CAFs could notably predict immunotherapy response in CRC, holding promise to be an immunotherapy biomarker at the single-cell level. Finally, we identified that droperidol may be a novel drug simultaneously targeting EVPL and ENTPD3. In conclusion, previous studies have often focused solely on metabolic alterations common to T2DM and CRC. Our study establishes EVPL and ENTPD3 as characteristic molecules and immune biomarkers of comorbidity in T2DM and CRC patients, and emphasizes the importance of considering immunological mechanisms in the co-development of T2DM and CRC.
Collapse
Affiliation(s)
- Yongge Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Lei Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Han Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Jin Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - You Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| |
Collapse
|
2
|
Fotino C, Molano RD, Ben Nasr M, Umland O, Fraker CA, Ulissi U, Balasubramanian HB, Lunati ME, Usuelli V, Seelam AJ, Khalefa SA, La Sala C, Gimeno J, Mendez AJ, Ricordi C, Bayer AL, Fiorina P, Pileggi A. Reversal of Experimental Autoimmune Diabetes With an sCD39/Anti-CD3 Treatment. Diabetes 2023; 72:1641-1651. [PMID: 37625134 PMCID: PMC10588287 DOI: 10.2337/db23-0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Extracellular (e)ATP, a potent proinflammatory molecule, is released by dying/damaged cells at the site of inflammation and is degraded by the membrane ectonucleotidases CD39 and CD73. In this study, we sought to unveil the role of eATP degradation in autoimmune diabetes. We then assessed the effect of soluble CD39 (sCD39) administration in prevention and reversal studies in NOD mice as well as in mechanistic studies. Our data showed that eATP levels were increased in hyperglycemic NOD mice compared with prediabetic NOD mice. CD39 and CD73 were found expressed by both α- and β-cells and by different subsets of T cells. Importantly, prediabetic NOD mice displayed increased frequencies of CD3+CD73+CD39+ cells within their pancreata, pancreatic lymph nodes, and spleens. The administration of sCD39 into prediabetic NOD mice reduced their eATP levels, abrogated the proliferation of CD4+- and CD8+-autoreactive T cells, and increased the frequency of regulatory T cells, while delaying the onset of T1D. Notably, concomitant administration of sCD39 and anti-CD3 showed a strong synergism in restoring normoglycemia in newly hyperglycemic NOD mice compared with monotherapy with anti-CD3 or with sCD39. The eATP/CD39 pathway plays an important role in the onset of T1D, and its targeting might represent a potential therapeutic strategy in T1D. ARTICLE HIGHLIGHTS
Collapse
MESH Headings
- Animals
- Female
- Mice
- 5'-Nucleotidase/metabolism
- Adenosine Triphosphate/metabolism
- Antigens, CD/metabolism
- Apyrase/metabolism
- CD3 Complex/metabolism
- CD3 Complex/immunology
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Mice, Inbred NOD
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Carmen Fotino
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - R. Damaris Molano
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Oliver Umland
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - Christopher A. Fraker
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
- Division of Cellular Transplantation, DeWitt Daughtry Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| | - Ulisse Ulissi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - Hari Baskar Balasubramanian
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Maria Elena Lunati
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Salma Ayman Khalefa
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Christian La Sala
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - Jennifer Gimeno
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
| | - Armando J. Mendez
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
- Division of Cellular Transplantation, DeWitt Daughtry Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
- Division of Cellular Transplantation, DeWitt Daughtry Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| | - Allison L. Bayer
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Division of Endocrinology, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Milan, Italy
| | - Antonello Pileggi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, FL
- Division of Cellular Transplantation, DeWitt Daughtry Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| |
Collapse
|
3
|
Hauke S, Rada J, Tihanyi G, Schilling D, Schultz C. ATP is an essential autocrine factor for pancreatic β-cell signaling and insulin secretion. Physiol Rep 2022; 10:e15159. [PMID: 35001557 PMCID: PMC8743876 DOI: 10.14814/phy2.15159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 06/14/2023] Open
Abstract
ATP has been previously identified as an autocrine signaling factor that is co-released with insulin to modulate and propagate β-cell activity within islets of Langerhans. Here, we show that β-cell activity and insulin secretion essentially rely on the presence of extracellular ATP. For this, we monitored changes of the intracellular Ca2+ concentration ([Ca2+ ]i oscillations) as an immediate read-out for insulin secretion in live cell experiments. Extensive washing of cells or depletion of extracellular ATP levels by recombinant apyrase reduced [Ca2+ ]i oscillations and insulin secretion in pancreatic cell lines and primary β-cells. Following ATP depletion, [Ca2+ ]i oscillations were stimulated by the replenishment of ATP in a concentration-dependent manner. Inhibition of endogenous ecto-ATP nucleotidases increased extracellular ATP levels, along with [Ca2+ ]i oscillations and insulin secretion, indicating that there is a constant supply of ATP to the extracellular space. Our combined results demonstrate that extracellular ATP is essential for β-cell activity. The presented work suggests extracellular ATPases as potential drug targets for the modulation of insulin release. We further found that exogenous fatty acids compensated for depleted extracellular ATP levels by the recovery of [Ca2+ ]i oscillations, indicating that autocrine factors mutually compensate for the loss of others. Thereby, our results contribute to a more detailed and complete understanding of the general role of autocrine signaling factors as a fundamental regulatory mechanism of β-cell activity and insulin secretion.
Collapse
Affiliation(s)
- Sebastian Hauke
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jona Rada
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gergely Tihanyi
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Danny Schilling
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
4
|
Haas CB, Lovászi M, Braganhol E, Pacher P, Haskó G. Ectonucleotidases in Inflammation, Immunity, and Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1983-1990. [PMID: 33879578 PMCID: PMC10037530 DOI: 10.4049/jimmunol.2001342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes that hydrolyze nucleotides such as ATP, UTP, ADP, and UDP to monophosphates derivates such as AMP and UMP. The NTPDase family consists of eight enzymes, of which NTPDases 1, 2, 3, and 8 are expressed on cell membranes thereby hydrolyzing extracellular nucleotides. Cell membrane NTPDases are expressed in all tissues, in which they regulate essential physiological tissue functions such as development, blood flow, hormone secretion, and neurotransmitter release. They do so by modulating nucleotide-mediated purinergic signaling through P2 purinergic receptors. NTPDases 1, 2, 3, and 8 also play a key role during infection, inflammation, injury, and cancer. Under these conditions, NTPDases can contribute and control the pathophysiology of infectious, inflammatory diseases and cancer. In this review, we discuss the role of NTPDases, focusing on the less understood NTPDases 2-8, in regulating inflammation and immunity during infectious, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
| | | | - Elizandra Braganhol
- Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; and
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute of Alcohol Abuse and Alcoholism, Bethesda, MD
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY;
| |
Collapse
|
5
|
Sandhu B, Perez-Matos MC, Tran S, Singhal G, Syed I, Feldbrügge L, Mitsuhashi S, Pelletier J, Huang J, Yalcin Y, Csizmadia E, Tiwari-Heckler S, Enjyoji K, Sévigny J, Maratos-Flier E, Robson SC, Jiang ZG. Global deletion of NTPDase3 protects against diet-induced obesity by increasing basal energy metabolism. Metabolism 2021; 118:154731. [PMID: 33631144 PMCID: PMC8052311 DOI: 10.1016/j.metabol.2021.154731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3), also known as CD39L3, is the dominant ectonucleotidase expressed by beta cells in the islet of Langerhans and on nerves. NTPDase3 catalyzes the conversion of extracellular ATP and ADP to AMP and modulates purinergic signaling. Previous studies have shown that NTPDase3 decreases insulin release from beta-cells in vitro. This study aims to determine the impact of NTPDase3 in diet-induced obesity (DIO) and metabolism in vivo. METHODS We developed global NTPDase3 deficient (Entpd3-/-) and islet beta-cell-specific NTPDase-3 deficient mice (Entpd3flox/flox,InsCre) using Ins1-Cre targeted gene editing to compare metabolic phenotypes with wildtype (WT) mice on a high-fat diet (HFD). RESULTS Entpd3-/- mice exhibited similar growth rates compared to WT on chow diet. When fed HFD, Entpd3-/- mice demonstrated significant resistance to DIO. Entpd3-/- mice consumed more calories daily and exhibited less fecal calorie loss. Although Entpd3-/- mice had no increases in locomotor activity, the mice exhibited a significant increase in basal metabolic rate when on the HFD. This beneficial phenotype was associated with improved glucose tolerance, but not higher insulin secretion. In fact, Entpd3flox/flox,InsCre mice demonstrated similar metabolic phenotypes and insulin secretion compared to matched controls, suggesting that the expression of NTPDase3 in beta-cells was not the primary protective factor. Instead, we observed a higher expression of uncoupling protein 1 (UCP-1) in brown adipose tissue and an augmented browning in inguinal white adipose tissue with upregulation of UCP-1 and related genes involved in thermogenesis in Entpd3-/- mice. CONCLUSIONS Global NTPDase3 deletion in mice is associated with resistance to DIO and obesity-associated glucose intolerance. This outcome is not driven by the expression of NTPDase3 in pancreatic beta-cells, but rather likely mediated through metabolic changes in adipocytes.
Collapse
Affiliation(s)
- Bynvant Sandhu
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria C Perez-Matos
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stephanie Tran
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Garima Singhal
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ismail Syed
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Linda Feldbrügge
- Department of Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shuji Mitsuhashi
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julie Pelletier
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada
| | - Jinhe Huang
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yusuf Yalcin
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eva Csizmadia
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shilpa Tiwari-Heckler
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Keiichi Enjyoji
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jean Sévigny
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Eleftheria Maratos-Flier
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Z Gordon Jiang
- Division of Gastroenterology & Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Synthesis, In-vitro evaluation and molecular docking studies of oxoindolin phenylhydrazine carboxamides as potent and selective inhibitors of ectonucleoside triphosphate diphosphohydrolase (NTPDase). Bioorg Chem 2021; 112:104957. [PMID: 34020240 DOI: 10.1016/j.bioorg.2021.104957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
Members of the ectonucleoside triphosphate diphosphohydrolases (NTPDases) constitute the major family of enzymes responsible for the maintenance of extracellular levels of nucleotides and nucleosides by catalyzing the hydrolysis of nucleoside triphosphate (NTP) and nucleoside diphosphates (NDP) to nucleoside monophosphate (NMP). Although, NTPDase inhibitors can act as potential drug candidates for the treatment of various diseases, there is lack of potent as well as selective inhibitors of NTPDases. The current study describes the synthesis of a number of carboxamide derivatives that were tested on recombinant human (h) NTPDases. The most promising inhibitors were 2h (h-NTPDase1, IC50: 0.12 ± 0.03 µM), 2d (h-NTPDase2, IC50: 0.15 ± 0.01 µM) and 2a (h-NTPDase3, IC50: 0.30 ± 0.04 µM; h-NTPDase8, IC50: 0.16 ± 0.02 µM). Four compounds (2e, 2f, 2g and 2h) were associated with the selective inhibition of h-NTPDase1 while 2b was identified as a selective h-NTPDase3 inhibitor. Considering the importance of NTPDase3 in the regulation of insulin release, the NTPDase3 inhibitors were further investigated to elucidate their role in the insulin release. The obtained data suggested that compound 2a was actively participating in regulating the insulin release without producing any effect on NTPDase3 mRNA. Moreover, the most potent inhibitors were docked within the active site of respective enzyme and the observed interactions were in compliance with in vitro results. Hence, these compounds can be used as pharmacological tool to further investigate the role of NTPDase3 coupled to insulin release.
Collapse
|
7
|
Henquin JC. Paracrine and autocrine control of insulin secretion in human islets: evidence and pending questions. Am J Physiol Endocrinol Metab 2021; 320:E78-E86. [PMID: 33103455 DOI: 10.1152/ajpendo.00485.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin secretion by β-cells is largely controlled by circulating nutrients, hormones, and neurotransmitters. However, recent years have witnessed the multiplication of studies investigating whether local regulation also takes place within pancreatic islets, in which β-cells cohabit with several other cell types. The cell composition and architectural organization of human islets differ from those of rodent islets and are particularly favorable to cellular interactions. An impressive number of hormonal (glucagon, glucagon-like peptide-1, somatostatin, etc.) and nonhormonal products (ATP, acetylcholine, γ-aminobutyric acid, dopamine, etc.) are released by islet cells and have been implicated in a local control of insulin secretion. This review analyzes reports directly testing paracrine and autocrine control of insulin secretion in isolated human islets. Many of these studies were designed on background information collected in rodent islets. However, the perspective of the review is not to highlight species similarities or specificities but to contrast established and speculative mechanisms in human islets. It will be shown that the current evidence is convincing only for a minority of candidates for a paracrine function whereas arguments supporting a physiological role of others do not stand up to scrutiny. Several pending questions await further investigation.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Afzal S, Al-Rashida M, Hameed A, Pelletier J, Sévigny J, Iqbal J. Functionalized Oxoindolin Hydrazine Carbothioamide Derivatives as Highly Potent Inhibitors of Nucleoside Triphosphate Diphosphohydrolases. Front Pharmacol 2020; 11:585876. [PMID: 33328992 PMCID: PMC7734281 DOI: 10.3389/fphar.2020.585876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) are ectoenzymes that play an important role in the hydrolysis of nucleoside triphosphate and diphosphate to nucleoside monophosphate. NTPDase1, -2, -3 and -8 are the membrane bound members of this enzyme family that are responsible for regulating the levels of nucleotides in extracellular environment. However, the pathophysiological functions of these enzymes are not fully understood due to lack of potent and selective NTPDase inhibitors. Herein, a series of oxoindolin hydrazine carbothioamide derivatives is synthesized and screened for NTPDase inhibitory activity. Four compounds were identified as selective inhibitors of h-NTPDase1 having IC50 values in lower micromolar range, these include compounds 8b (IC50 = 0.29 ± 0.02 µM), 8e (IC50 = 0.15 ± 0.009 µM), 8f (IC50 = 0.24 ± 0.01 µM) and 8l (IC50 = 0.30 ± 0.03 µM). Similarly, compound 8k (IC50 = 0.16 ± 0.01 µM) was found to be a selective h-NTPDase2 inhibitor. In case of h-NTPDase3, most potent inhibitors were compounds 8c (IC50 = 0.19 ± 0.02 µM) and 8m (IC50 = 0.38 ± 0.03 µM). Since NTPDase3 has been reported to be associated with the regulation of insulin secretion, we evaluated our synthesized NTPDase3 inhibitors for their ability to stimulate insulin secretion in isolated mice islets. Promising results were obtained showing that compound 8m potently stimulated insulin secretion without affecting the NTPDase3 gene expression. Molecular docking studies of the most potent compounds were also carried out to rationalize binding site interactions. Hence, these compounds are useful tools to study the role of NTPDase3 in insulin secretion.
Collapse
Affiliation(s)
- Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Abdul Hameed
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
9
|
Iqbal J. Ectonucleotidases: Potential Target in Drug Discovery and Development. Mini Rev Med Chem 2019; 19:866-869. [PMID: 31379303 DOI: 10.2174/138955751911190517102116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, University Road, Postal Code 22060 - Abbottabad, K.P.K, Pakistan
| |
Collapse
|
10
|
Saunders DC, Brissova M, Phillips N, Shrestha S, Walker JT, Aramandla R, Poffenberger G, Flaherty DK, Weller KP, Pelletier J, Cooper T, Goff MT, Virostko J, Shostak A, Dean ED, Greiner DL, Shultz LD, Prasad N, Levy SE, Carnahan RH, Dai C, Sévigny J, Powers AC. Ectonucleoside Triphosphate Diphosphohydrolase-3 Antibody Targets Adult Human Pancreatic β Cells for In Vitro and In Vivo Analysis. Cell Metab 2019; 29:745-754.e4. [PMID: 30449685 PMCID: PMC6402969 DOI: 10.1016/j.cmet.2018.10.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/15/2018] [Accepted: 10/19/2018] [Indexed: 01/09/2023]
Abstract
Identification of cell-surface markers specific to human pancreatic β cells would allow in vivo analysis and imaging. Here we introduce a biomarker, ectonucleoside triphosphate diphosphohydrolase-3 (NTPDase3), that is expressed on the cell surface of essentially all adult human β cells, including those from individuals with type 1 or type 2 diabetes. NTPDase3 is expressed dynamically during postnatal human pancreas development, appearing first in acinar cells at birth, but several months later its expression declines in acinar cells while concurrently emerging in islet β cells. Given its specificity and membrane localization, we utilized an NTPDase3 antibody for purification of live human β cells as confirmed by transcriptional profiling, and, in addition, for in vivo imaging of transplanted human β cells. Thus, NTPDase3 is a cell-surface biomarker of adult human β cells, and the antibody directed to this protein should be a useful new reagent for β cell sorting, in vivo imaging, and targeting.
Collapse
Affiliation(s)
- Diane C Saunders
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37240, USA
| | - Marcela Brissova
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Neil Phillips
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shristi Shrestha
- HudsonAlpha Institute of Biotechnology, Huntsville, AL 35806, USA
| | - John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37240, USA
| | - Radhika Aramandla
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Greg Poffenberger
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David K Flaherty
- Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin P Weller
- Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julie Pelletier
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada
| | - Tracy Cooper
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matt T Goff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John Virostko
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Alena Shostak
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - E Danielle Dean
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - Nripesh Prasad
- HudsonAlpha Institute of Biotechnology, Huntsville, AL 35806, USA
| | - Shawn E Levy
- HudsonAlpha Institute of Biotechnology, Huntsville, AL 35806, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Chunhua Dai
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jean Sévigny
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37240, USA; Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare, Nashville, TN 37212, USA.
| |
Collapse
|
11
|
Almaça J, Weitz J, Rodriguez-Diaz R, Pereira E, Caicedo A. The Pericyte of the Pancreatic Islet Regulates Capillary Diameter and Local Blood Flow. Cell Metab 2018; 27:630-644.e4. [PMID: 29514070 PMCID: PMC5876933 DOI: 10.1016/j.cmet.2018.02.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/15/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
Abstract
Efficient insulin secretion requires a well-functioning pancreatic islet microvasculature. The dense network of islet capillaries includes the islet pericyte, a cell that has barely been studied. Here we show that islet pericytes help control local blood flow by adjusting islet capillary diameter. Islet pericytes cover 40% of the microvasculature, are contractile, and are innervated by sympathetic axons. Sympathetic adrenergic input increases pericyte activity and reduces capillary diameter and local blood flow. By contrast, activating beta cells by increasing glucose concentration inhibits pericytes, dilates islet capillaries, and increases local blood flow. These effects on pericytes are mediated by endogenous adenosine, which is likely derived from ATP co-released with insulin. Pericyte coverage of islet capillaries drops drastically in type 2 diabetes, suggesting that, under diabetic conditions, islets lose this mechanism to control their own blood supply. This may lead to inadequate insulin release into the circulation, further deteriorating glycemic control.
Collapse
Affiliation(s)
- Joana Almaça
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Jonathan Weitz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Molecular Cell and Developmental Biology Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
12
|
Molecular dynamic simulations reveal structural insights into substrate and inhibitor binding modes and functionality of Ecto-Nucleoside Triphosphate Diphosphohydrolases. Sci Rep 2018; 8:2581. [PMID: 29416085 PMCID: PMC5803232 DOI: 10.1038/s41598-018-20971-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/26/2018] [Indexed: 11/25/2022] Open
Abstract
Ecto-nucleotidase enzymes catalyze the hydrolysis of extracellular nucleotides to their respective nucleosides. Herein, we place the focus on the elucidation of structural features of the cell surface located ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDase1-3 and 8). The physiological role of these isozymes is crucially important as they control purinergic signaling by modulating the extracellular availability of nucleotides. Since, crystal or NMR structure of the human isozymes are not available – structures have been obtained by homology modeling. Refinement of the homology models with poor stereo-chemical quality is of utmost importance in order to derive reliable structures for subsequent studies. Therefore, the resultant models obtained by homology modelling were refined by running molecular dynamic simulation. Binding mode analysis of standard substrates and of competitive inhibitor was conducted to highlight important regions of the active site involved in hydrolysis of the substrates and possible mechanism of inhibition.
Collapse
|
13
|
Zhong AH, Gordon Jiang Z, Cummings RD, Robson SC. Various N-glycoforms differentially upregulate E-NTPDase activity of the NTPDase3/CD39L3 ecto-enzymatic domain. Purinergic Signal 2017; 13:601-609. [PMID: 28956227 PMCID: PMC5714850 DOI: 10.1007/s11302-017-9587-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022] Open
Abstract
The GDA1/CD39 ecto-nucleoside triphosphate diphosphosphohydrolase (E-NTPDase) superfamily is a group of eight heavily glycosylated ecto-enzymes that hydrolyze extracellular nucleosides di- and tri-phosphates in the presence of divalent cations, to generate the monophosphate derivatives. This catalytic process differentially regulates a complex array of purinergic signaling responses. NTPDase3/CD39L3is dominantly expressed in pancreatic islet cells, where it may regulate insulin secretion, and has seven N-linked glycosylation sites with four close to five highly conserved domains called "apyrase conserved regions" (ACRs). In a manner similar to CD39, NTPDase3/CD39L3 uses ATP as its preferential substrate and also possesses significant activities toward other triphosphate and diphosphate nucleosides. To understand the mechanism of the ecto-NTPDase activity and substrate specificity, potentially impacted by N-glycans, we have generated soluble enzymatic domains of NTPDase3/CD39L3 in human embryotic kidney cells with four different glycan modifications. These include mannose5-9 glycans with kifunesine treatment, single GlcNAc-Asn by treatment with EndoH, de-glycosylated form by treatment with PNGaseF, and wild-type glycans. Our functional data indicate that the non-glycosylated NTPDase3/CD39L3 ecto-enzymatic domain retains activity, but that N-glycan attachments, such as the GlcNAc-Asn, substantially upregulate specific NTPDase activity by 2-20 fold. Both the Vmax and the Km on di- or tri-phosphate nucleosides are substantially and differentially altered by the glycan attachments. Structural modeling analysis based on putative structures derived from bacterial-originated CD39 domain proteins suggests that N-glycan modifications at Asn149 next to ACR2 and/or Asn454, N-terminal to ACR5 have critical roles in regulating the catalytic pocket of NTPDase3/CD39L3. Our data provide both new insights into the enzymatic mechanisms of NTPDase family members and further evidence that N-glycans directly modulate functional ectonucleotidase activities.
Collapse
Affiliation(s)
- Alexander H Zhong
- Division of Gastroenterology and Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS), Harvard University, Office E/CLS 612, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Z Gordon Jiang
- Division of Gastroenterology and Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS), Harvard University, Office E/CLS 612, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Richard D Cummings
- Division of Gastroenterology and Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS), Harvard University, Office E/CLS 612, 3 Blackfan Circle, Boston, MA, 02115, USA
- Glycobiology, Department of Surgery at BIDMC, HMS Center for Glycobiology, Boston, MA, USA
| | - Simon C Robson
- Division of Gastroenterology and Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS), Harvard University, Office E/CLS 612, 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Yegutkin GG. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 2015; 49:473-97. [PMID: 25418535 DOI: 10.3109/10409238.2014.953627] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- Department of Medical Microbiology and Immunology, University of Turku , Turku , Finland
| |
Collapse
|
15
|
Iser IC, Bracco PA, Gonçalves CEI, Zanin RF, Nardi NB, Lenz G, Battastini AMO, Wink MR. Mesenchymal stem cells from different murine tissues have differential capacity to metabolize extracellular nucleotides. J Cell Biochem 2015; 115:1673-82. [PMID: 24802095 DOI: 10.1002/jcb.24830] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/29/2014] [Accepted: 05/02/2014] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have shown a great potential for cell-based therapy and many different therapeutic purposes. Despite the recent advances in the knowledge of MSCs biology, their biochemical and molecular properties are still poorly defined. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'-nucleotidase (eNT/CD73) are widely expressed enzymes that hydrolyze extracellular nucleotides, generating an important cellular signaling cascade. Currently, studies have evidenced the relationship between the purinergic system and the development, maintenance, and differentiation of stem cells. The objective of this study is to identify the NTPDases and eNT/CD73 and compare the levels of nucleotide hydrolysis on MSCs isolated from different murine tissues (bone marrow, lung, vena cava, kidney, pancreas, spleen, skin, and adipose tissue). MSCs from all tissues investigated expressed the ectoenzymes at different levels. In MSCs from pancreas and adipose tissue, the hydrolysis of triphosphonucleosides was significantly higher when compared to the other cells. The diphosphonucleosides were hydrolyzed at a higher rate by MSC from pancreas when compared to MSC from other tissues. The differential nucleotide hydrolysis activity and enzyme expression in these cells suggests that MSCs play different roles in regulating the purinergic system in these tissues. Overall MSCs are an attractive adult-derived cell population for therapies, however, the fact that ecto-nucleotide metabolism can affect the microenvironment, modulating important events, such as immune response, makes the assessment of this metabolism an important part of the characterization of MSCs to be applied therapeutically.
Collapse
Affiliation(s)
- Isabele C Iser
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tengholm A. Purinergic P2Y1 receptors take centre stage in autocrine stimulation of human beta cells. Diabetologia 2014; 57:2436-9. [PMID: 25277952 DOI: 10.1007/s00125-014-3392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
Abstract
Insulin secretory vesicles contain high concentrations of adenine nucleotides, which are co-released with insulin during exocytosis. There is strong evidence that ATP and ADP serve as autocrine messengers in pancreatic beta cells, but the functional effects and detailed mechanisms of action are under debate. In this issue of Diabetologia, Khan and colleagues (DOI: 10.1007/s00125-014-3368-8 ) present the results of their study of autocrine purinergic signalling in isolated human beta cells. Using a combination of electrophysiological techniques, Ca(2+) imaging and measurements of insulin secretion, it is demonstrated that voltage-dependent Ca(2+) influx triggers release of ATP/ADP, which activates purinergic receptors of the Gq/11-coupled P2Y1 isoform. Activation of these receptors leads to membrane depolarisation and phospholipase C-mediated mobilisation of Ca(2+) from endoplasmic reticulum stores, which amplifies the exocytosis-triggering Ca(2+) signal. In contrast, there is little evidence for involvement of ionotropic P2X receptors in the autocrine stimulation of human beta cells. This commentary discusses these findings as well as various functional and therapeutic implications of the complex purinergic signalling network in the pancreatic islet.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23, Uppsala, Sweden,
| |
Collapse
|
17
|
Szkudelski T, Szkudelska K. Regulatory role of adenosine in insulin secretion from pancreatic β-cells--action via adenosine A₁ receptor and beyond. J Physiol Biochem 2014; 71:133-40. [PMID: 25432862 DOI: 10.1007/s13105-014-0371-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
Under physiological conditions, insulin secretion from pancreatic β-cells is tightly regulated by different factors, including nutrients, nervous system, and other hormones. Pancreatic β-cells are also influenced by paracrine and autocrine interactions. The results of rodent studies indicate that adenosine is present within pancreatic islets and is implicated in the regulation of insulin secretion; however, effects depend on adenosine and glucose concentrations. Moreover, species differences in adenosine action were found. In rat islets, low adenosine was demonstrated to decrease glucose-induced insulin secretion and this effect is mediated via adenosine A1 receptor. In the presence of high adenosine concentrations, other mechanisms are activated and glucose-induced insulin secretion is increased. It is also well established that suppression of adenosine action increases insulin-secretory response of β-cells to glucose. In mouse islets, low adenosine concentrations do not significantly affect insulin secretion. However, in the presence of higher adenosine concentrations, potentiation of glucose-induced insulin secretion was demonstrated. It is also known that upon stimulation of insulin secretion, both rat and mouse islets release ATP. In rat islets, ATP undergoes extracellular conversion to adenosine. However, mouse islets are unable to convert extracellularly ATP to adenosine and adenosine arises from intracellular ATP degradation.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland,
| | | |
Collapse
|
18
|
McCoy E, Street S, Taylor-Blake B, Yi J, Edwards M, Wightman M, Zylka M. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord. F1000Res 2014; 3:163. [PMID: 25717362 PMCID: PMC4329602 DOI: 10.12688/f1000research.4563.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 01/19/2023] Open
Abstract
Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides. Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5'-monophosphate (AMP) to adenosine in primary somatosensory neurons. Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons. Ectonucleoside triphosphate diphosphohydrolases (ENTPDs) comprise a class of enzymes that dephosphorylate extracellular ATP and ADP. Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3) was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG), in the dorsal horn of the spinal cord, and in free nerve endings in the skin. To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse. This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder. However, DRG and spinal cord tissues from Entpd3 (-/-) mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates. Additionally, using fast-scan cyclic voltammetry (FSCV), adenosine production was not impaired in the dorsal spinal cord of Entpd3 (-/-) mice when the substrate ADP was applied. Further, Entpd3 (-/-) mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3 (-/-) mice showed a modest reduction in β-alanine-mediated itch. Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord. Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.
Collapse
Affiliation(s)
- Eric McCoy
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Sarah Street
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Bonnie Taylor-Blake
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Jason Yi
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Martin Edwards
- Department of Chemistry, UNC Neuroscience Center, University of North Carolina, CB #3290, Chapel Hill, NC, 27599, USA
| | - Mark Wightman
- Department of Chemistry, UNC Neuroscience Center, University of North Carolina, CB #3290, Chapel Hill, NC, 27599, USA
| | - Mark Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| |
Collapse
|
19
|
McCoy E, Street S, Taylor-Blake B, Yi J, Edwards M, Wightman M, Zylka M. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord. F1000Res 2014; 3:163. [PMID: 25717362 PMCID: PMC4329602 DOI: 10.12688/f1000research.4563.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 10/21/2024] Open
Abstract
Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides. Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5'-monophosphate (AMP) to adenosine in primary somatosensory neurons. Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons. Ectonucleoside triphosphate diphosphohydrolases (ENTPDs) comprise a class of enzymes that dephosphorylate extracellular ATP and ADP. Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3) was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG), in the dorsal horn of the spinal cord, and in free nerve endings in the skin. To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse. This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder. However, DRG and spinal cord tissues from Entpd3 (-/-) mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates. Additionally, using fast-scan cyclic voltammetry (FSCV), adenosine production was not impaired in the dorsal spinal cord of Entpd3 (-/-) mice when the substrate ADP was applied. Further, Entpd3 (-/-) mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3 (-/-) mice showed a modest reduction in β-alanine-mediated itch. Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord. Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.
Collapse
Affiliation(s)
- Eric McCoy
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Sarah Street
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Bonnie Taylor-Blake
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Jason Yi
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| | - Martin Edwards
- Department of Chemistry, UNC Neuroscience Center, University of North Carolina, CB #3290, Chapel Hill, NC, 27599, USA
| | - Mark Wightman
- Department of Chemistry, UNC Neuroscience Center, University of North Carolina, CB #3290, Chapel Hill, NC, 27599, USA
| | - Mark Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, University of North Carolina, CB #7545, Chapel Hill, NC, 27599, USA
| |
Collapse
|
20
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
21
|
Wang C, Geng B, Cui Q, Guan Y, Yang J. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β). J Diabetes 2014; 6:113-9. [PMID: 24134160 DOI: 10.1111/1753-0407.12098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/27/2013] [Accepted: 10/11/2013] [Indexed: 01/09/2023] Open
Abstract
Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed.
Collapse
Affiliation(s)
- Chunjiong Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | | | | | | | | |
Collapse
|
22
|
Syed SK, Kauffman AL, Beavers LS, Alston JT, Farb TB, Ficorilli J, Marcelo MC, Brenner MB, Bokvist K, Barrett DG, Efanov AM. Ectonucleotidase NTPDase3 is abundant in pancreatic β-cells and regulates glucose-induced insulin secretion. Am J Physiol Endocrinol Metab 2013; 305:E1319-26. [PMID: 24085034 DOI: 10.1152/ajpendo.00328.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular ATP released from pancreatic β-cells acts as a potent insulinotropic agent through activation of P2 purinergic receptors. Ectonucleotidases, a family of membrane-bound nucleotide-metabolizing enzymes, regulate extracellular ATP levels by degrading ATP and related nucleotides. Ectonucleotidase activity affects the relative proportion of ATP and its metabolites, which in turn will impact the level of purinergic receptor stimulation exerted by extracellular ATP. Therefore, we investigated the expression and role of ectonucleotidases in pancreatic β-cells. Of the ectonucleotidases studied, only ENTPD3 (gene encoding the NTPDase3 enzyme) mRNA was detected at fairly abundant levels in human and mouse pancreatic islets as well as in insulin-secreting MIN6 cells. ARL67156, a selective ectonucleotidase inhibitor, blocked degradation of extracellular ATP that was added to MIN6 cells. The compound also decreased degradation of endogenous ATP released from cells. Measurements of insulin secretion in MIN6 cells as well as in mouse and human pancreatic islets demonstrated that ARL67156 potentiated glucose-dependent insulin secretion. Downregulation of NTPDase3 expression in MIN6 cells with the specific siRNA replicated the effects of ARL67156 on extracellular ATP hydrolysis and insulin secretion. Our results demonstrate that NTPDase3 is the major ectonucleotidase in pancreatic β-cells in multiple species and that it modulates insulin secretion by controlling activation of purinergic receptors.
Collapse
Affiliation(s)
- Samreen K Syed
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling molecules in purinergic signalling cascades. This signalling takes place at the level of the pancreas, where the close apposition of various cells-endocrine, exocrine, stromal and immune cells-contributes to the integrated function. Following an introduction to diabetes, the pancreas and purinergic signalling, we will focus on the role of purinergic signalling and its changes associated with diabetes in the pancreas and selected tissues/organ systems affected by hyperglycaemia and other stress molecules of diabetes. Since this is the first review of this kind, a comprehensive historical angle is taken, and common and divergent roles of receptors for nucleotides and nucleosides in different organ systems will be given. This integrated picture will aid our understanding of the challenges of the potential and currently used drugs targeted to specific organ/cells or disorders associated with diabetes.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF UK
- Department of Pharmacology, Melbourne University, Melbourne, Australia
| | - Ivana Novak
- Molecular and Integrative Physiology, Department of Biology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
24
|
Chia JS, McRae JL, Thomas HE, Fynch S, Elkerbout L, Hill P, Murray-Segal L, Robson SC, Chen JF, d’Apice AJ, Cowan PJ, Dwyer KM. The protective effects of CD39 overexpression in multiple low-dose streptozotocin-induced diabetes in mice. Diabetes 2013; 62:2026-35. [PMID: 23364452 PMCID: PMC3661652 DOI: 10.2337/db12-0625] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Islet allograft survival limits the long-term success of islet transplantation as a potential curative therapy for type 1 diabetes. A number of factors compromise islet survival, including recurrent diabetes. We investigated whether CD39, an ectonucleotidase that promotes the generation of extracellular adenosine, would mitigate diabetes in the T cell-mediated multiple low-dose streptozotocin (MLDS) model. Mice null for CD39 (CD39KO), wild-type mice (WT), and mice overexpressing CD39 (CD39TG) were subjected to MLDS. Adoptive transfer experiments were performed to delineate the efficacy of tissue-restricted overexpression of CD39. The role of adenosine signaling was examined using mutant mice and pharmacological inhibition. The susceptibility to MLDS-induced diabetes was influenced by the level of expression of CD39. CD39KO mice developed diabetes more rapidly and with higher frequency than WT mice. In contrast, CD39TG mice were protected. CD39 overexpression conferred protection through the activation of adenosine 2A receptor and adenosine 2B receptor. Adoptive transfer experiments indicated that tissue-restricted overexpression of CD39 conferred robust protection, suggesting that this may be a useful strategy to protect islet grafts from T cell-mediated injury.
Collapse
Affiliation(s)
- Joanne S.J. Chia
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Jennifer L. McRae
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
| | | | - Stacey Fynch
- St Vincent’s Institute, Fitzroy, Victoria, Australia
| | | | - Prue Hill
- Department of Pathology, St. Vincent’s Hospital, Melbourne, Victoria, Australia
| | - Lisa Murray-Segal
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
| | - Simon C. Robson
- Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Anthony J.F. d’Apice
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Peter J. Cowan
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Karen M. Dwyer
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Victoria, Australia
- Corresponding author: Karen M. Dwyer,
| |
Collapse
|
25
|
Burghoff S, Flögel U, Bongardt S, Burkart V, Sell H, Tucci S, Ikels K, Eberhard D, Kern M, Klöting N, Eckel J, Schrader J. Deletion of CD73 promotes dyslipidemia and intramyocellular lipid accumulation in muscle of mice. Arch Physiol Biochem 2013; 119:39-51. [PMID: 23398498 DOI: 10.3109/13813455.2012.755547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT CD73 converts extracellular AMP to adenosine which is well known to inhibit lipolysis. It is unknown, however, whether adenosine formed directly by CD73 is functionally relevant in this process. OBJECTIVE We therefore explored the effect of CD73-derived adenosine on body fat of aged mice. RESULTS In lean mice, extracellular adenosine formation by adipocytes is dependent on CD73. High fat diet down-regulates the expression of CD73 in wildtype mice similar to ob/ob mice. Transgenic mice chronically lacking CD73 (CD73(-/-)) gain significantly less body weight and show decreased superficial white fat content as well as increased serum free fatty acids and triglycerides. In addition, intramyocellular lipid levels are significantly increased. This phenotype is accompanied by an increase in blood glucose and serum insulin levels although insulin secretion and the level of insulin degrading enzyme are unaltered. Additionally, insulin-induced Akt phosphorylation is reduced in skeletal muscle of CD73(-/-) mice. CONCLUSION CD73-derived adenosine is functionally involved in body fat homeostasis.
Collapse
Affiliation(s)
- Sandra Burghoff
- Institute of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The CD39-adenosinergic axis in the pathogenesis of immune and nonimmune diabetes. J Biomed Biotechnol 2012; 2012:320495. [PMID: 23118504 PMCID: PMC3480695 DOI: 10.1155/2012/320495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus encompasses two distinct disease processes: autoimmune Type 1 (T1D) and nonimmune Type 2 (T2D) diabetes. Despite the disparate aetiologies, the disease phenotype of hyperglycemia and the associated complications are similar. In this paper, we discuss the role of the CD39-adenosinergic axis in the pathogenesis of both T1D and T2D, with particular emphasis on the role of CD39 and CD73.
Collapse
|
27
|
Caicedo A. Paracrine and autocrine interactions in the human islet: more than meets the eye. Semin Cell Dev Biol 2012; 24:11-21. [PMID: 23022232 DOI: 10.1016/j.semcdb.2012.09.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022]
Abstract
The pancreatic islet secretes the hormones insulin and glucagon to regulate glucose metabolism. To generate an adequate secretory response, islet endocrine cells must receive multiple regulatory signals relaying information about changes in the internal and external environments. Islet cells also need to be made aware about the functional status of neighboring cells through paracrine interactions. All this information is used to orchestrate a hormonal response that contributes to glucose homeostasis. Several neurotransmitters have been proposed to work as paracrine signals in the islet. Most of these, however, have yet to meet the criteria to be considered bona fide paracrine signals, in particular in human islets. Here, we review recent findings describing autocrine and paracrine signaling mechanisms in human islets. These recent results are showing an increasingly complex picture of paracrine interactions in the human islet and emphasize that results from other species cannot be readily extrapolated to the human context. Investigators are unveiling new signaling mechanisms or finding new roles for known paracrine signals in human islets. While it is too early to provide a synthesis, the field of islet research is defining the paracrine and autocrine components that will be used to generate models about how islet function is regulated. Meanwhile, the identified signaling pathways can be proposed as therapeutic targets for treating diabetes, a devastating disease affecting millions worldwide.
Collapse
Affiliation(s)
- Alejandro Caicedo
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
28
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 785] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
29
|
Abstract
Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming evidence for the role of purinergic signalling in the pathophysiology of the pancreas, and the new challenge is to understand how it is integrated with other pathological processes.
Collapse
Affiliation(s)
- G Burnstock
- University College Medical School, Autonomic Neuroscience Centre, Rowland Hill Street, London NW3 2PF, UK.
| | | |
Collapse
|
30
|
Yang GK, Squires PE, Tian F, Kieffer TJ, Kwok YN, Dale N. Glucose decreases extracellular adenosine levels in isolated mouse and rat pancreatic islets. Islets 2012; 4:64-70. [PMID: 22504862 PMCID: PMC3365802 DOI: 10.4161/isl.19037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pancreatic islets of Langerhans are responsible for the regulated release of the endocrine hormones insulin and glucagon that participate in the control of glucose homeostasis. Abnormal regulation of these hormones can result in glucose intolerance and lead to the development of diabetes. Numerous efforts have been made to better understand the physiological regulators of insulin and glucagon secretion. One of these regulators is the purine nucleoside, adenosine. Though exogenous application of adenosine has been demonstrated to stimulate glucagon release and inhibit insulin release, the physiological significance of this pathway has been unclear. We used a novel 7 µm enzyme-coated electrode biosensor to measure adenosine levels in isolated rodent islets. In the mouse islets, basal adenosine levels in the presence of 3 mM glucose were estimated to be 5.7 ± 0.6 µM. As glucose was increased, extracellular adenosine diminished. A 10-fold increase of extracellular KCl increased adenosine levels to 16.4 ± 2.0 µM. This release required extracellular Ca (2+) suggesting that it occurred via an exocytosis-dependent mechanism. We also found that while rat islets were able to convert exogenous ATP into adenosine, mouse islets were unable to do this. Our study demonstrates for the first time the basal levels of adenosine and its inverse relationship to extracellular glucose in pancreatic islets.
Collapse
Affiliation(s)
- Gary K. Yang
- Department of Cellular and Physiological Sciences; University of British Columbia; Vancouver, BC Canada
| | - Paul E. Squires
- School of Life Sciences; University of Warwick; Coventry, West Midlands, UK
| | - Faming Tian
- School of Life Sciences; University of Warwick; Coventry, West Midlands, UK
- Sarissa Biomedical Ltd.; Coventry, West Midlands, UK
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences; University of British Columbia; Vancouver, BC Canada
- Department of Surgery; University of British Columbia; Vancouver, BC Canada
| | - Yin Nam Kwok
- Department of Cellular and Physiological Sciences; University of British Columbia; Vancouver, BC Canada
| | - Nicholas Dale
- School of Life Sciences; University of Warwick; Coventry, West Midlands, UK
- * Correspondence to: Nicholas Dale;
| |
Collapse
|
31
|
Current world literature. Curr Opin Organ Transplant 2011; 16:650-60. [PMID: 22068023 DOI: 10.1097/mot.0b013e32834dd969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
33
|
Lavoie EG, Gulbransen BD, Martín-Satué M, Aliagas E, Sharkey KA, Sévigny J. Ectonucleotidases in the digestive system: focus on NTPDase3 localization. Am J Physiol Gastrointest Liver Physiol 2011; 300:G608-20. [PMID: 21233276 DOI: 10.1152/ajpgi.00207.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides and adenosine are biologically active molecules that bind members of the P2 and P1 receptor families, respectively. In the digestive system, these receptors modulate various functions, including salivary, gastric, and intestinal epithelial secretion and enteric neurotransmission. The availability of P1 and P2 ligands is modulated by ectonucleotidases, enzymes that hydrolyze extracellular nucleotides into nucleosides. Nucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase are the dominant ectonucleotidases at physiological pH. While there is some information about the localization of ecto-5'-nucleotidase and NTPDase1 and -2, the distribution of NTPDase3 in the digestive system is unknown. We examined the localization of these ectonucleotidases, with a focus on NTPDase3, in the gastrointestinal tract and salivary glands. NTPDase1, -2, and -3 are responsible for ecto-ATPase activity in these tissues. Semiquantitative RT-PCR, immunohistochemistry, and in situ enzyme activity revealed the presence of NTPDase3 in some epithelial cells in serous acini of salivary glands and mucous acini and duct cells of sublingual salivary glands, in cells from the stratified esophageal and forestomach epithelia, and in some enteroendocrine cells of the gastric antrum. Interestingly, NTPDase2 and ecto-5'-nucleotidase are coexpressed with NTPDase3 in salivary gland cells and stratified epithelia. In the colon, neurons express NTPDase3 and glial cells express NTPDase2. Ca(2+) imaging experiments demonstrate that NTPDases regulate P2 receptor ligand availability in the enteric nervous system. In summary, the specific localization of NTPDase3 in the digestive system suggests functional roles of the enzyme, in association with NTPDase2 and ecto-5'-nucleotidase, in epithelial functions such as secretion and in enteric neurotransmission.
Collapse
Affiliation(s)
- Elise G Lavoie
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Knowles AF. The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 2011; 7:21-45. [PMID: 21484095 DOI: 10.1007/s11302-010-9214-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/21/2010] [Indexed: 01/05/2023] Open
Abstract
The first comprehensive review of the ubiquitous "ecto-ATPases" by Plesner was published in 1995. A year later, a lymphoid cell activation antigen, CD39, that had been cloned previously, was shown to be an ecto-ATPase. A family of proteins, related to CD39 and a yeast GDPase, all containing the canonical apyrase conserved regions in their polypeptides, soon started to expand. They are now recognized as members of the GDA1_CD39 protein family. Because proteins in this family hydrolyze nucleoside triphosphates and diphosphates, a unifying nomenclature, nucleoside triphosphate diphopshohydrolases (NTPDases), was established in 2000. Membrane-bound NTPDases are either located on the cell surface or membranes of intracellular organelles. Soluble NTPDases exist in the cytosol and may be secreted. In the last 15 years, molecular cloning and functional expression have facilitated biochemical characterization of NTPDases of many organisms, culminating in the recent structural determination of the ecto-domain of a mammalian cell surface NTPDase and a bacterial NTPDase. The first goal of this review is to summarize the biochemical, mutagenesis, and structural studies of the NTPDases. Because of their ability in hydrolyzing extracellular nucleotides, the mammalian cell surface NTPDases (the ecto-NTPDases) which regulate purinergic signaling have received the most attention. Less appreciated are the functions of intracellular NTPDases and NTPDases of other organisms, e.g., bacteria, parasites, Drosophila, plants, etc. The second goal of this review is to summarize recent findings which demonstrate the involvement of the NTPDases in multiple and diverse physiological processes: pathogen-host interaction, plant growth, eukaryote cell protein and lipid glycosylation, eye development, and oncogenesis.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA,
| |
Collapse
|