1
|
Maushart CI, Sun W, Othman A, Ghosh A, Senn JR, Fischer JGW, Madoerin P, Loeliger RC, Benz RM, Takes M, Zech CJ, Chirindel A, Beuschlein F, Reincke M, Wild D, Bieri O, Zamboni N, Wolfrum C, Betz MJ. Effect of high-dose glucocorticoid treatment on human brown adipose tissue activity: a randomised, double-blinded, placebo-controlled cross-over trial in healthy men. EBioMedicine 2023; 96:104771. [PMID: 37659283 PMCID: PMC10483510 DOI: 10.1016/j.ebiom.2023.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Glucocorticoids (GCs) are widely applied anti-inflammatory drugs that are associated with adverse metabolic effects including insulin resistance and weight gain. Previous research indicates that GCs may negatively impact brown adipose tissue (BAT) activity in rodents and humans. METHODS We performed a randomised, double-blinded cross-over trial in 16 healthy men (clinicaltrials.govNCT03269747). Participants received 40 mg of prednisone per day for one week or placebo. After a washout period of four weeks, participants crossed-over to the other treatment arm. Primary endpoint was the increase in resting energy expenditure (EE) in response to a mild-cold stimulus (cold-induced thermogenesis, CIT). Secondary outcomes comprised mean 18F-FDG uptake into supraclavicular BAT (SUVmean) as determined by FDG-PET/CT, volume of the BAT depot as well as fat content determined by MRI. The plasma metabolome and the transcriptome of supraclavicular BAT and of skeletal muscle biopsies after each treatment period were analysed. FINDINGS Sixteen participants were recruited to the trial and completed it successfully per protocol. After prednisone treatment resting EE was higher both during warm and cold conditions. However, CIT was similar, 153 kcal/24 h (95% CI 40-266 kcal/24 h) after placebo and 186 kcal/24 h (95% CI 94-277 kcal/24 h, p = 0.38) after prednisone. SUVmean of BAT after cold exposure was not significantly affected by prednisone (3.36 g/ml, 95% CI 2.69-4.02 g/ml, vs 3.07 g/ml, 95% CI 2.52-3.62 g/ml, p = 0.28). Results of plasma metabolomics and BAT transcriptomics corroborated these findings. RNA sequencing of muscle biopsies revealed higher expression of genes involved in calcium cycling. No serious adverse events were reported and adverse events were evenly distributed between the two treatments. INTERPRETATION Prednisone increased EE in healthy men possibly by altering skeletal muscle calcium cycling. Cold-induced BAT activity was not affected by GC treatment, which indicates that the unfavourable metabolic effects of GCs are independent from thermogenic adipocytes. FUNDING Grants from Swiss National Science Foundation (PZ00P3_167823), Bangerter-Rhyner Foundation and from Nora van der Meeuwen-Häfliger Foundation to MJB. A fellowship-grant from the Swiss National Science Foundation (SNF211053) to WS. Grants from German Research Foundation (project number: 314061271-TRR 205) and Else Kröner-Fresenius (grant support 2012_A103 and 2015_A228) to MR.
Collapse
Affiliation(s)
- Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - Wenfei Sun
- Institute of Food, Nutrition, and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Alaa Othman
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| | - Adhideb Ghosh
- Institute of Food, Nutrition, and Health, ETH Zurich, Schwerzenbach, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Jaël Rut Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - Jonas Gabriel William Fischer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - Philipp Madoerin
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Rahel Catherina Loeliger
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - Robyn Melanie Benz
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Martin Takes
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Christoph Johannes Zech
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Alin Chirindel
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University Zurich (UZH), Zurich, Switzerland; Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany.
| | - Martin Reincke
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany.
| | - Damian Wild
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Oliver Bieri
- Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| | - Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Othonos N, Pofi R, Arvaniti A, White S, Bonaventura I, Nikolaou N, Moolla A, Marjot T, Stimson RH, van Beek AP, van Faassen M, Isidori AM, Bateman E, Sadler R, Karpe F, Stewart PM, Webster C, Duffy J, Eastell R, Gossiel F, Cornfield T, Hodson L, Jane Escott K, Whittaker A, Kirik U, Coleman RL, Scott CAB, Milton JE, Agbaje O, Holman RR, Tomlinson JW. 11β-HSD1 inhibition in men mitigates prednisolone-induced adverse effects in a proof-of-concept randomised double-blind placebo-controlled trial. Nat Commun 2023; 14:1025. [PMID: 36823106 PMCID: PMC9950480 DOI: 10.1038/s41467-023-36541-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Glucocorticoids prescribed to limit inflammation, have significant adverse effects. As 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regenerates active glucocorticoid, we investigated whether 11β-HSD1 inhibition with AZD4017 could mitigate adverse glucocorticoid effects without compromising their anti-inflammatory actions. We conducted a proof-of-concept, randomized, double-blind, placebo-controlled study at Research Unit, Churchill Hospital, Oxford, UK (NCT03111810). 32 healthy male volunteers were randomized to AZD4017 or placebo, alongside prednisolone treatment. Although the primary endpoint of the study (change in glucose disposal during a two-step hyperinsulinemic, normoglycemic clamp) wasn't met, hepatic insulin sensitivity worsened in the placebo-treated but not in the AZD4017-treated group. Protective effects of AZD4017 on markers of lipid metabolism and bone turnover were observed. Night-time blood pressure was higher in the placebo-treated but not in the AZD4017-treated group. Urinary (5aTHF+THF)/THE ratio was lower in the AZD4017-treated but remained the same in the placebo-treated group. Most anti-inflammatory actions of prednisolone persisted with AZD4017 co-treatment. Four adverse events were reported with AZD4017 and no serious adverse events. Here we show that co-administration of AZD4017 with prednisolone in men is a potential strategy to limit adverse glucocorticoid effects.
Collapse
Affiliation(s)
- Nantia Othonos
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Riccardo Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Anastasia Arvaniti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Sarah White
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Ilaria Bonaventura
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Ahmad Moolla
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | | | - Ross Sadler
- Department of Immunology, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Paul M Stewart
- Faculty of Medicine & Health, University of Leeds, Clarendon Way, Leeds, LS2 9NL, UK
| | - Craig Webster
- Department of Pathology, University Hospitals Birmingham, NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Joanne Duffy
- Department of Pathology, University Hospitals Birmingham, NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Richard Eastell
- Mellanby Centre for Musculoskeletal Research, Department of Oncology & Metabolism, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, SR10 2RX, UK
| | - Fatma Gossiel
- Mellanby Centre for Musculoskeletal Research, Department of Oncology & Metabolism, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, SR10 2RX, UK
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - K Jane Escott
- Business Development & Licensing, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andrew Whittaker
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ufuk Kirik
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Ruth L Coleman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Charles A B Scott
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Joanne E Milton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Olorunsola Agbaje
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Rury R Holman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.
| |
Collapse
|
3
|
Hardy RS, Botfield H, Markey K, Mitchell JL, Alimajstorovic Z, Westgate CSJ, Sagmeister M, Fairclough RJ, Ottridge RS, Yiangou A, Storbeck KHH, Taylor AE, Gilligan LC, Arlt W, Stewart PM, Tomlinson JW, Mollan SP, Lavery GG, Sinclair AJ. 11βHSD1 Inhibition with AZD4017 Improves Lipid Profiles and Lean Muscle Mass in Idiopathic Intracranial Hypertension. J Clin Endocrinol Metab 2021; 106:174-187. [PMID: 33098644 PMCID: PMC7765633 DOI: 10.1210/clinem/dgaa766] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) determines prereceptor metabolism and activation of glucocorticoids within peripheral tissues. Its dysregulation has been implicated in a wide array of metabolic diseases, leading to the development of selective 11β-HSD1 inhibitors. We examined the impact of the reversible competitive 11β-HSD1 inhibitor, AZD4017, on the metabolic profile in an overweight female cohort with idiopathic intracranial hypertension (IIH). METHODS We conducted a UK multicenter phase II randomized, double-blind, placebo-controlled trial of 12-week treatment with AZD4017. Serum markers of glucose homeostasis, lipid metabolism, renal and hepatic function, inflammation and androgen profiles were determined and examined in relation to changes in fat and lean mass by dual-energy X-ray absorptiometry. RESULTS Patients receiving AZD4017 showed significant improvements in lipid profiles (decreased cholesterol, increased high-density lipoprotein [HDL] and cholesterol/HDL ratio), markers of hepatic function (decreased alkaline phosphatase and gamma-glutamyl transferase), and increased lean muscle mass (1.8%, P < .001). No changes in body mass index, fat mass, and markers of glucose metabolism or inflammation were observed. Patients receiving AZD4017 demonstrated increased levels of circulating androgens, positively correlated with changes in total lean muscle mass. CONCLUSIONS These beneficial metabolic changes represent a reduction in risk factors associated with raised intracranial pressure and represent further beneficial therapeutic outcomes of 11β-HSD1 inhibition by AZD4017 in this overweight IIH cohort. In particular, beneficial changes in lean muscle mass associated with AZD4017 may reflect new applications for this nature of inhibitor in the management of conditions such as sarcopenia.
Collapse
Affiliation(s)
- Rowan S Hardy
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Hannah Botfield
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Keira Markey
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - James L Mitchell
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Zerin Alimajstorovic
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Connar S J Westgate
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michael Sagmeister
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rebecca J Fairclough
- Emerging Innovations Unit, Discovery Sciences. BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ryan S Ottridge
- Birmingham Clinical Trials Unit, Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andreas Yiangou
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Karl-Heinz H Storbeck
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Matieland, South Africa
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Susan P Mollan
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
- Correspondence and Reprint Requests: Alexandra Sinclair, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK. E-mail:
| |
Collapse
|
4
|
Sakamuri A, Sakamuri SSVP, Kona SR, Jeyapal S, Ibrahim A. Diets with low n-6:n-3 PUFA ratio protects rats from fructose-induced dyslipidemia and associated hepatic changes: Comparison between 18:3 n-3 and long-chain n-3 PUFA. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102082. [PMID: 32169807 DOI: 10.1016/j.plefa.2020.102082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022]
Abstract
In the present study, we investigated the impact of substituting alpha-linolenic acid (ALA) or long-chain n-3 PUFA (eicosapentaenoic acid and docosahexaenoic acid) for linoleic acid and hence decreasing n-6:n-3 PUFA ratio on high-fructose diet-induced hypertriglyceridemia and associated hepatic changes. Weanling male Wistar rats were divided into four groups and fed with starch-diet (n-6:n-3 PUFA ratio 215:1) and high-fructose diets with different n-6:n-3 PUFA ratio (215:1, 2:1 with ALA and 5:1 with long-chain n-3 PUFA) for twenty-four weeks. Substitution of linoleic acid with ALA (n-6:n-3 PUFA ratio of 2) or long-chain n-3 PUFA (n-6:n-3 PUFA ratio of 5) protected the rats from fructose-induced dyslipidemia, hepatic oxidative stress and corrected lipogenic and proinflammatory gene expression. Both ALA and long-chain n-3 PUFA supplementation also reversed the fructose-induced upregulation of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) gene, which is involved in the generation of active glucocorticoids in tissues. Although both ALA and LC n-3 PUFA prevented fructose-induced dyslipidemia to a similar extent, compared to ALA, LC n-3 PUFA is more effective in preventing hepatic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Anil Sakamuri
- Department of lipid chemistry, National Institute of Nutrition, Hyderabad, India
| | - Siva S V P Sakamuri
- Department of lipid chemistry, National Institute of Nutrition, Hyderabad, India
| | - Suryam Reddy Kona
- Department of lipid chemistry, National Institute of Nutrition, Hyderabad, India
| | - Sugeedha Jeyapal
- Department of lipid chemistry, National Institute of Nutrition, Hyderabad, India
| | - Ahamed Ibrahim
- Department of lipid chemistry, National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
5
|
Abulizi A, Camporez JP, Zhang D, Samuel VT, Shulman GI, Vatner DF. Ectopic lipid deposition mediates insulin resistance in adipose specific 11β-hydroxysteroid dehydrogenase type 1 transgenic mice. Metabolism 2019; 93:1-9. [PMID: 30576689 PMCID: PMC6401251 DOI: 10.1016/j.metabol.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
CONTEXT Excessive adipose glucocorticoid action is associated with insulin resistance, but the mechanisms linking adipose glucocorticoid action to insulin resistance are still debated. We hypothesized that insulin resistance from excess glucocorticoid action may be attributed in part to increased ectopic lipid deposition in liver. METHODS We tested this hypothesis in the adipose specific 11β-hydroxysteroid dehydrogenase-1 (HSD11B1) transgenic mouse, an established model of adipose glucocorticoid excess. Tissue specific insulin action was assessed by hyperinsulinemic-euglycemic clamps, hepatic lipid content was measured, hepatic insulin signaling was assessed by immunoblotting. The role of hepatic lipid content was further probed by administration of the functionally liver-targeted mitochondrial uncoupler, Controlled Release Mitochondrial Protonophore (CRMP). FINDINGS High fat diet fed HSD11B1 transgenic mice developed more severe hepatic insulin resistance than littermate controls (endogenous suppression of hepatic glucose production was reduced by 3.8-fold, P < 0.05); this was reflected by decreased insulin-stimulated hepatic insulin receptor kinase tyrosine phosphorylation and AKT serine phosphorylation. Hepatic insulin resistance was associated with a 53% increase (P < 0.05) in hepatic triglyceride content, a 73% increase in diacylglycerol content (P < 0.01), and a 66% increase in PKCε translocation (P < 0.05). Hepatic insulin resistance was prevented with administration of CRMP by reversal of hepatic steatosis and prevention of hepatic diacylglycerol accumulation and PKCε activation. CONCLUSIONS These findings are consistent with excess adipose glucocorticoid activity being a predisposing factor for the development of lipid (diacylglycerol-PKCε)-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Abudukadier Abulizi
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - João-Paulo Camporez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Veterans Affairs Medical Center, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Daniel F Vatner
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Uchinaka A, Kawashima Y, Sano Y, Ito S, Sano Y, Nagasawa K, Matsuura N, Yoneda M, Yamada Y, Murohara T, Nagata K. Effects of ramelteon on cardiac injury and adipose tissue pathology in rats with metabolic syndrome. Ann N Y Acad Sci 2018. [DOI: 10.1111/nyas.13578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ayako Uchinaka
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yuri Kawashima
- Department of Medical Technology; Nagoya University School of Health Sciences; Nagoya Japan
| | - Yuki Sano
- Department of Medical Technology; Nagoya University School of Health Sciences; Nagoya Japan
| | - Shogo Ito
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yusuke Sano
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kai Nagasawa
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Natsumi Matsuura
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mamoru Yoneda
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yuichiro Yamada
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Toyoaki Murohara
- Department of Cardiology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kohzo Nagata
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
7
|
Woods CP, Hazlehurst JM, Tomlinson JW. Glucocorticoids and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2015; 154:94-103. [PMID: 26241028 DOI: 10.1016/j.jsbmb.2015.07.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the global obesity and metabolic disease epidemic and is rapidly becoming the leading cause of liver cirrhosis and indication for liver transplantation worldwide. The hallmark pathological finding in NAFLD is excess lipid accumulation within hepatocytes, but it is a spectrum of disease ranging from benign hepatic steatosis to steatohepatitis through to fibrosis, cirrhosis and risk of hepatocellular carcinoma. The exact pathophysiology remains unclear with a multi-hit hypothesis generally accepted as being required for inflammation and fibrosis to develop after initial steatosis. Glucocorticoids have been implicated in the pathogenesis of NAFLD across all stages. They have a diverse array of metabolic functions that have the potential to drive NAFLD acting on both liver and adipose tissue. In the fasting state, they are able to mobilize lipid, increasing fatty acid delivery and in the fed state can promote lipid accumulation. Their action is controlled at multiple levels and in this review will outline the evidence base for the role of GCs in the pathogenesis of NAFLD from cell systems, rodent models and clinical studies and describe interventional strategies that have been employed to modulate glucocorticoid action as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Conor P Woods
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Jonathon M Hazlehurst
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK.
| |
Collapse
|
8
|
Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat. BIOMED RESEARCH INTERNATIONAL 2015; 2015:895961. [PMID: 26273656 PMCID: PMC4529952 DOI: 10.1155/2015/895961] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/22/2022]
Abstract
Background. Nonalcoholic fatty liver disease (NAFLD) is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD. Aims. In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis. Methods. The concentration of fructose-drinking water (FDW) used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph. Results. After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density. Conclusion. We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration.
Collapse
|
9
|
Anderson A, Walker BR. 11β-HSD1 inhibitors for the treatment of type 2 diabetes and cardiovascular disease. Drugs 2014; 73:1385-93. [PMID: 23990334 DOI: 10.1007/s40265-013-0112-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inhibition of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) has been proposed as a novel therapeutic target for the treatment of type 2 diabetes mellitus. Over 170 new compounds targeting 11β-HSD1 have been developed. This article reviews the current published literature on compounds that have reached phase II clinical trials in patients with type 2 diabetes, and summarises the preclinical evidence that such agents may be useful for associated conditions, including peripheral vascular disease, coronary artery disease and cognitive decline. In clinical trials, 11β-HSD1 inhibitors have been well tolerated and have improved glycaemic control, lipid profile and blood pressure, and induced modest weight loss. The magnitude of the effects are small relative to other agents, so that further development of 11β-HSD1 inhibitors for the primary therapeutic indication of type 2 diabetes has stalled. Ongoing programmes are focused on additional benefits for cognitive function and other cardiovascular risk factors.
Collapse
Affiliation(s)
- Anna Anderson
- University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | | |
Collapse
|
10
|
Geer EB, Islam J, Buettner C. Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin North Am 2014; 43:75-102. [PMID: 24582093 PMCID: PMC3942672 DOI: 10.1016/j.ecl.2013.10.005] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glucocorticoids (GCs) are critical in the regulation of the stress response, inflammation and energy homeostasis. Excessive GC exposure results in whole-body insulin resistance, obesity, cardiovascular disease, and ultimately decreased survival, despite their potent anti-inflammatory effects. This apparent paradox may be explained by the complex actions of GCs on adipose tissue functionality. The wide prevalence of oral GC therapy makes their adverse systemic effects an important yet incompletely understood clinical problem. This article reviews the mechanisms by which supraphysiologic GC exposure promotes insulin resistance, focusing in particular on the effects on adipose tissue function and lipid metabolism.
Collapse
Affiliation(s)
- Eliza B Geer
- Division of Endocrinology, Mount Sinai Medical Center, One Gustave Levy Place, Box 1055, New York, NY 10029, USA.
| | - Julie Islam
- Division of Endocrinology and Metabolism, Beth Israel Medical Center, 317 East 17th Street, 8th Floor, New York, NY 10003, USA
| | - Christoph Buettner
- Division of Endocrinology, Mount Sinai Medical Center, One Gustave Levy Place, Box 1055, New York, NY 10029, USA
| |
Collapse
|
11
|
Vasiljević A, Veličković N, Bursać B, Djordjevic A, Milutinović DV, Nestorović N, Matić G. Enhanced prereceptor glucocorticoid metabolism and lipogenesis impair insulin signaling in the liver of fructose-fed rats. J Nutr Biochem 2013; 24:1790-7. [DOI: 10.1016/j.jnutbio.2013.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/18/2013] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
|
12
|
Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 2013; 93:1139-206. [PMID: 23899562 DOI: 10.1152/physrev.00020.2012] [Citation(s) in RCA: 568] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid action on target tissues is determined by the density of "nuclear" receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental "programming." The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.
Collapse
Affiliation(s)
- Karen Chapman
- Endocrinology Unit, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
13
|
Chapman KE, Coutinho AE, Zhang Z, Kipari T, Savill JS, Seckl JR. Changing glucocorticoid action: 11β-hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation. J Steroid Biochem Mol Biol 2013; 137:82-92. [PMID: 23435016 PMCID: PMC3925798 DOI: 10.1016/j.jsbmb.2013.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/22/2013] [Accepted: 02/04/2013] [Indexed: 12/18/2022]
Abstract
Since the discovery of cortisone in the 1940s and its early success in treatment of rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory therapies. However, cortisone itself is intrinsically inert. To be effective, it requires conversion to cortisol, the active glucocorticoid, by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Despite the identification of 11β-HSD in liver in 1953 (which we now know to be 11β-HSD1), its physiological role has been little explored until recently. Over the past decade, however, it has become apparent that 11β-HSD1 plays an important role in shaping endogenous glucocorticoid action. Acute inflammation is more severe with 11β-HSD1-deficiency or inhibition, yet in some inflammatory settings such as obesity or diabetes, 11β-HSD1-deficiency/inhibition is beneficial, reducing inflammation. Current evidence suggests both beneficial and detrimental effects may result from 11β-HSD1 inhibition in chronic inflammatory disease. Here we review recent evidence pertaining to the role of 11β-HSD1 in inflammation. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Karen E Chapman
- University/BHF Centre for Cardiovascular Sciences, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Gathercole LL, Lavery GG, Morgan SA, Cooper MS, Sinclair AJ, Tomlinson JW, Stewart PM. 11β-Hydroxysteroid dehydrogenase 1: translational and therapeutic aspects. Endocr Rev 2013; 34:525-55. [PMID: 23612224 DOI: 10.1210/er.2012-1050] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) interconverts the inactive glucocorticoid cortisone and its active form cortisol. It is widely expressed and, although bidirectional, in vivo it functions predominantly as an oxoreductase, generating active glucocorticoid. This allows glucocorticoid receptor activation to be regulated at a prereceptor level in a tissue-specific manner. In this review, we will discuss the enzymology and molecular biology of 11β-HSD1 and the molecular basis of cortisone reductase deficiencies. We will also address how altered 11β-HSD1 activity has been implicated in a number of disease states, and we will explore its role in the physiology and pathologies of different tissues. Finally, we will address the current status of selective 11β-HSD1 inhibitors that are in development and being tested in phase II trials for patients with the metabolic syndrome. Although the data are preliminary, therapeutic inhibition of 11β-HSD1 is also an exciting prospect for the treatment of a variety of other disorders such as osteoporosis, glaucoma, intracranial hypertension, and cognitive decline.
Collapse
Affiliation(s)
- Laura L Gathercole
- School of Clinical and Experimental Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston B15 2TH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Liu J, Kong X, Wang L, Qi H, Di W, Zhang X, Wu L, Chen X, Yu J, Zha J, Lv S, Zhang A, Cheng P, Hu M, Li Y, Bi J, Li Y, Hu F, Zhong Y, Xu Y, Ding G. Essential roles of 11β-HSD1 in regulating brown adipocyte function. J Mol Endocrinol 2013. [PMID: 23197361 DOI: 10.1530/jme-12-0099] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Brown adipose tissue (BAT) increases energy expenditure and is an attractive therapeutic target for obesity. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1), an amplifier of local glucocorticoid activity, has been shown to modulate white adipose tissue (WAT) metabolism and function. In this study, we investigated the roles of 11β-HSD1 in regulating BAT function. We observed a significant increase in the expression of BAT-specific genes, including UCP1, Cidea, Cox7a1, and Cox8b, in BVT.2733 (a selective inhibitor of 11β-HSD1)-treated and 11β-HSD1-deficient primary brown adipocytes of mice. By contrast, a remarkable decrease in BAT-specific gene expression was detected in brown adipocytes when 11β-HSD1 was overexpressed, which effect was reversed by BVT.2733 treatment. Consistent with the in vitro results, expression of a range of genes related to brown fat function in high-fat diet-fed mice treated with BVT.2733. Our results indicate that 11β-HSD1 acts as a vital regulator that controls the expression of genes related to brown fat function and as such may become a potential target in preventing obesity.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gerontology, First Hospital Affiliated to Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Prasad Sakamuri SSV, Sukapaka M, Prathipati VK, Nemani H, Putcha UK, Pothana S, Koppala SR, Ponday LRK, Acharya V, Veetill GN, Ayyalasomayajula V. Carbenoxolone treatment ameliorated metabolic syndrome in WNIN/Ob obese rats, but induced severe fat loss and glucose intolerance in lean rats. PLoS One 2012; 7:e50216. [PMID: 23284633 PMCID: PMC3524236 DOI: 10.1371/journal.pone.0050216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 10/22/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX) on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. METHODOLOGY/PRINCIPAL FINDINGS Subcutaneous injection of CBX (50 mg/kg body weight) or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment). Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. CONCLUSIONS/SIGNIFICANCE We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions.
Collapse
Affiliation(s)
- Siva Sankara Vara Prasad Sakamuri
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Mahesh Sukapaka
- Department of Animal Physiology, National Centre for Laboratory Animal Sciences, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Vijay Kumar Prathipati
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Harishankar Nemani
- Department of Animal Physiology, National Centre for Laboratory Animal Sciences, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Uday Kumar Putcha
- Department of Pathology, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabd, Andhra Pradesh, India
| | - Shailaja Pothana
- Department of Animal Physiology, National Centre for Laboratory Animal Sciences, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Swarupa Rani Koppala
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Lakshmi Raj Kumar Ponday
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Vani Acharya
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Giridharan Nappan Veetill
- Department of Animal Physiology, National Centre for Laboratory Animal Sciences, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Vajreswari Ayyalasomayajula
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
17
|
Wang XJ, Song ZG, Jiao HC, Lin H. Skeletal muscle fatty acids shift from oxidation to storage upon dexamethasone treatment in chickens. Gen Comp Endocrinol 2012; 179:319-30. [PMID: 23036730 DOI: 10.1016/j.ygcen.2012.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/10/2012] [Accepted: 09/17/2012] [Indexed: 11/30/2022]
Abstract
The effect of an exogenous glucocorticoid on the lipid metabolism and fatty acid pattern of skeletal muscle in broiler chickens (Gallus gallus domesticus) was investigated in vivo and in vitro. Male Arbor Acres chickens were subjected to dexamethasone (DEX) treatment for 3days. We found that DEX retarded body growth, facilitated lipid accumulation in adipose and skeletal muscle tissues, and elevated the thigh monounsaturated fatty acids (MUFA) to saturated fatty acids (SFA) ratio at fasted state. DEX-treated chickens exhibited increased stearoyl-CoA desaturase-1 (SCD1) activity and decreased carnitine palmitoyltransferase-1 (CPT1) activity in the thigh muscle under fasting conditions and in primary cultured myoblasts. Phosphorylation of AMP-activated protein kinase alpha at Thr172 did not occur in vivo but was increased in vitro by DEX. In cells exposed to DEX, fatty acid transport protein-1 mRNA expression and fatty acid storage were enhanced while fatty acid oxidation was repressed. In conclusion, in oxidative muscle of fasted chickens, DEX stimulated uptake of myocellular fatty acids which was stored with the modified MUFA to SFA ratio in a process that maybe involved SCD1 activation. The altered fatty acid composition together with the inactivation of CPT1 showed an increased tendency towards fatty acid accumulation as opposed to oxidation. These findings provide important insight concerning the influence of glucocorticoids on lipid metabolism.
Collapse
Affiliation(s)
- X J Wang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | | | | | | |
Collapse
|
18
|
Pereira CD, Azevedo I, Monteiro R, Martins MJ. 11β-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes Metab 2012; 14:869-81. [PMID: 22321826 DOI: 10.1111/j.1463-1326.2012.01582.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent evidence strongly argues for a pathogenic role of glucocorticoids and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in obesity and the metabolic syndrome, a cluster of risk factors for atherosclerotic cardiovascular disease and type 2 diabetes mellitus (T2DM) that includes insulin resistance (IR), dyslipidaemia, hypertension and visceral obesity. This has been partially prompted not only by the striking clinical resemblances between the metabolic syndrome and Cushing's syndrome (a state characterized by hypercortisolism that associates with metabolic syndrome components) but also from monogenic rodent models for the metabolic syndrome (e.g. the leptin-deficient ob/ob mouse or the leptin-resistant Zucker rat) that display overall increased secretion of glucocorticoids. However, systemic circulating glucocorticoids are not elevated in obese patients and/or patients with metabolic syndrome. The study of the role of 11β-HSD system shed light on this conundrum, showing that local glucocorticoids are finely regulated in a tissue-specific manner at the pre-receptor level. The system comprises two microsomal enzymes that either activate cortisone to cortisol (11β-HSD1) or inactivate cortisol to cortisone (11β-HSD2). Transgenic rodent models, knockout (KO) for HSD11B1 or with HSD11B1 or HSD11B2 overexpression, specifically targeted to the liver or adipose tissue, have been developed and helped unravel the currently undisputable role of the enzymes in metabolic syndrome pathophysiology, in each of its isolated components and in their prevention. In the transgenic HSD11B1 overexpressing models, different features of the metabolic syndrome and obesity are replicated. HSD11B1 gene deficiency or HSD11B2 gene overexpression associates with improvements in the metabolic profile. In face of these demonstrations, research efforts are now being turned both into the inhibition of 11β-HSD1 as a possible pharmacological target and into the role of dietary habits on the establishment or the prevention of the metabolic syndrome, obesity and T2DM through 11β-HSD1 modulation. We intend to review and discuss 11β-HSD1 and obesity, the metabolic syndrome and T2DM and to highlight the potential of its inhibition for therapeutic or prophylactic approaches in those metabolic diseases.
Collapse
Affiliation(s)
- C D Pereira
- Department of Biochemistry (U38/FCT), Faculty of Medicine, University of Porto, Portugal
| | | | | | | |
Collapse
|
19
|
Lavery GG, Zielinska AE, Gathercole LL, Hughes B, Semjonous N, Guest P, Saqib K, Sherlock M, Reynolds G, Morgan SA, Tomlinson JW, Walker EA, Rabbitt EH, Stewart PM. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11β-hydroxysteroid dehydrogenase type 1. Endocrinology 2012; 153:3236-48. [PMID: 22555437 PMCID: PMC3475725 DOI: 10.1210/en.2012-1019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11β-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11β-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11β-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11β-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11β-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11β-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA activation and to a crucial role of extrahepatic 11β-HSD1 expression, highlighting the contribution of cross talk between GC target tissues in determining metabolic phenotype.
Collapse
Affiliation(s)
- Gareth G Lavery
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li G, Hernandez-Ono A, Crooke RM, Graham MJ, Ginsberg HN. Antisense reduction of 11β-hydroxysteroid dehydrogenase type 1 enhances energy expenditure and insulin sensitivity independent of food intake in C57BL/6J mice on a Western-type diet. Metabolism 2012; 61:823-35. [PMID: 22209663 PMCID: PMC3319522 DOI: 10.1016/j.metabol.2011.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 01/16/2023]
Abstract
We recently reported that inhibition of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) by antisense oligonucleotide (ASO) improved hepatic lipid metabolism independent of food intake. In that study, 11β-HSD1 ASO-treated mice lost weight compared with food-matched control ASO-treated mice, suggesting treatment-mediated increased energy expenditure. We have now examined the effects of 11β-HSD1 ASO treatment on adipose tissue metabolism, insulin sensitivity, and whole-body energy expenditure. We used an ASO to knock down 11β-HSD1 in C57BL/6J mice consuming a Western-type diet (WTD). The 11β-HSD1 ASO-treated mice consumed less food, so food-matched control ASO-treated mice were also evaluated. We characterized body composition, gene expression of individual adipose depots, and measures of energy metabolism. We also investigated glucose/insulin tolerance as well as acute insulin signaling in several tissues. Knockdown of 11β-HSD1 protected against WTD-induced obesity by reducing epididymal, mesenteric, and subcutaneous white adipose tissue while activating thermogenesis in brown adipose tissue. The latter was confirmed by demonstrating increased energy expenditure in 11β-HSD1 ASO-treated mice. The 11β-HSD1 ASO treatment also protected against WTD-induced glucose intolerance and insulin resistance; this protection was associated with smaller cells and fewer macrophages in epididymal white adipose tissue as well as enhanced in vivo insulin signaling. Our results indicate that ASO-mediated inhibition of 11β-HSD1 can protect against several WTD-induced metabolic abnormalities. These effects are, at least in part, mediated by increases in the oxidative capacity of brown adipose tissue.
Collapse
Affiliation(s)
- Guoping Li
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - Rosanne M. Crooke
- Isis Pharmaceuticals, Inc., 1896 Rutherford Road, Carlsbad, CA 92008-7326, USA
| | - Mark J. Graham
- Isis Pharmaceuticals, Inc., 1896 Rutherford Road, Carlsbad, CA 92008-7326, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Corresponding Author: Henry N. Ginsberg, MD, Department of Medicine, PH 10-305, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032 , Phone: (212) 305-9562, Fax: (212) 305-3213
| |
Collapse
|
21
|
Wang JC, Gray NE, Kuo T, Harris CA. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci 2012; 2:19. [PMID: 22640645 PMCID: PMC3419133 DOI: 10.1186/2045-3701-2-19] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/28/2012] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids are steroid hormones that play critical and complex roles in the regulation of triglyceride (TG) homeostasis. Depending on physiological states, glucocorticoids can modulate both TG synthesis and hydrolysis. More intriguingly, glucocorticoids can concurrently affect these two processes in adipocytes. The metabolic effects of glucocorticoids are conferred by intracellular glucocorticoid receptors (GR). GR is a transcription factor that, upon binding to glucocorticoids, regulates the transcriptional rate of specific genes. These GR primary target genes further initiate the physiological and pathological responses of glucocorticoids. In this article, we overview glucocorticoid-regulated genes, especially those potential GR primary target genes, involved in glucocorticoid-regulated TG metabolism. We also discuss transcriptional regulators that could act with GR to participate in these processes. This knowledge is not only important for the fundamental understanding of steroid hormone actions, but also are essential for future therapeutic interventions against metabolic diseases associated with aberrant glucocorticoid signaling, such as insulin resistance, dyslipidemia, central obesity and hepatic steatosis.
Collapse
Affiliation(s)
- Jen-Chywan Wang
- Department of Nutritional Science & Toxicology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| | | | | | | |
Collapse
|
22
|
Effects of fatty acid treatments on the dexamethasone-induced intramuscular lipid accumulation in chickens. PLoS One 2012; 7:e36663. [PMID: 22623960 PMCID: PMC3356436 DOI: 10.1371/journal.pone.0036663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glucocorticoid has an important effect on lipid metabolism in muscles, and the type of fatty acid likely affects mitochondrial utilization. Therefore, we hypothesize that the different fatty acid types treatment may affect the glucocorticoid induction of intramuscular lipid accumulation. METHODOLOGY/PRINCIPAL FINDINGS The effect of dexamethasone (DEX) on fatty acid metabolism and storage in skeletal muscle of broiler chickens (Gallus gallus domesticus) was investigated with and without fatty acid treatments. Male Arbor Acres chickens (31 d old) were treated with either palmitic acid (PA) or oleic acid (OA) for 7 days, followed by DEX administration for 3 days (35-37 d old). The DEX-induced lipid uptake and oxidation imbalance, which was estimated by increased fatty acid transport protein 1 (FATP1) expression and decreased carnitine palmitoyl transferase 1 activity, contributed to skeletal muscle lipid accumulation. More sensitive than glycolytic muscle, the oxidative muscle in DEX-treated chickens showed a decrease in the AMP to ATP ratio, a decrease in AMP-activated protein kinase (AMPK) alpha phosphorylation and its activity, as well as an increase in the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal p70S6 kinase, without Akt activation. DEX-stimulated lipid deposition was augmented by PA, but alleviated by OA, in response to pathways that were regulated differently, including AMPK, mTOR and FATP1. CONCLUSIONS DEX-induced intramuscular lipid accumulation was aggravated by SFA but alleviated by unsaturated fatty acid. The suppressed AMPK and augmented mTOR signaling pathways were involved in glucocortcoid-mediated enhanced intramuscular fat accumulation.
Collapse
|
23
|
Czegle I, Csala M, Mandl J, Benedetti A, Karádi I, Bánhegyi G. G6PT-H6PDH-11βHSD1 triad in the liver and its implication in the pathomechanism of the metabolic syndrome. World J Hepatol 2012; 4:129-38. [PMID: 22567185 PMCID: PMC3345537 DOI: 10.4254/wjh.v4.i4.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/16/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
The metabolic syndrome, one of the most common clinical conditions in recent times, represents a combination of cardiometabolic risk determinants, including central obesity, glucose intolerance, insulin resistance, dyslipidemia, non-alcoholic fatty liver disease and hypertension. Prevalence of the metabolic syndrome is rapidly increasing worldwide as a consequence of common overnutrition and consequent obesity. Although a unifying picture of the pathomechanism is still missing, the key role of the pre-receptor glucocorticoid activation has emerged recently. Local glucocorticoid activation is catalyzed by a triad composed of glucose-6-phosphate-transporter, hexose-6-phosphate dehydrogenase and 11β-hydroxysteroid dehydrogenase type 1 in the endoplasmic reticulum. The elements of this system can be found in various cell types, including adipocytes and hepatocytes. While the contribution of glucocorticoid activation in adipose tissue to the pathomechanism of the metabolic syndrome has been well established, the relative importance of the hepatic process is less understood. This review summarizes the available data on the role of the hepatic triad and its role in the metabolic syndrome, by confronting experimental findings with clinical observations.
Collapse
Affiliation(s)
- Ibolya Czegle
- Ibolya Czegle, István Karádi, 3rd Department of Internal Medicine, Semmelweis University, 1125 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
24
|
van der Sluis RJ, van Puijvelde GH, Van Berkel TJ, Hoekstra M. Adrenalectomy stimulates the formation of initial atherosclerotic lesions: Reversal by adrenal transplantation. Atherosclerosis 2012; 221:76-83. [DOI: 10.1016/j.atherosclerosis.2011.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 01/26/2023]
|
25
|
Klusoňová P, Pátková L, Ergang P, Mikšík I, Zicha J, Kuneš J, Pácha J. Local metabolism of glucocorticoids in Prague hereditary hypertriglyceridemic rats--effect of hypertriglyceridemia and gender. Steroids 2011; 76:1252-9. [PMID: 21729713 DOI: 10.1016/j.steroids.2011.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11HSD1) is a microsomal NADPH-dependent oxidoreductase which elevates intracellular concentrations of active glucocorticoids. Data obtained from mouse strains with genetically manipulated 11HSD1 showed that local metabolism of glucocorticoids plays an important role in the development of metabolic syndrome. Tissue specific dysregulation of 11HSD1 was also found in other models of metabolic syndrome as well as in a number of clinical studies. Here, we studied local glucocorticoid action in the liver, subcutaneous adipose tissue (SAT) and skeletal muscles of male and female Prague hereditary hypertriglyceridemic rats (HHTg) and their normotriglyceridemic counterpart, the Wistar rats. 11HSD1 bioactivity was measured as a conversion of [(3)H]11-dehydrocorticosterone to [(3)H]corticosterone or vice versa. Additionally to express level of active 11HSD1 protein, enzyme activity was measured in tissue homogenates. mRNA abundance of 11HSD1, hexoso-6-phosphate dehydrogenase (H6PDH) and the glucocorticoid receptor (GR) was measured by real-time PCR. In comparison with normotriglyceridemic animals, female HHTg rats showed enhanced regeneration of glucocorticoids in the liver and the absence of any changes in SAT and skeletal muscle. In contrast to females, the glucocorticoid regeneration in males of HHTg rats was unchanged in liver, but stimulated in SAT and downregulated in muscle. Furthermore, SAT and skeletal muscle exhibited not only 11-reductase but also 11-oxidase catalyzed by 11HSD1. In females of both strains, 11-oxidase activity largely exceeded 11-reductase activity. No dramatic changes were found in the mRNA expression of H6PDH and GR. Our data provide evidence that the relationship between hypertriglyceridemia and glucocorticoid action is complex and gender specific.
Collapse
Affiliation(s)
- Petra Klusoňová
- Department of Epithelial Physiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
26
|
Effects of Glycyrrhizic Acid on Peroxisome Proliferator-Activated Receptor Gamma (PPARgamma), Lipoprotein Lipase (LPL), Serum Lipid and HOMA-IR in Rats. PPAR Res 2011; 2010:530265. [PMID: 20011054 PMCID: PMC2786009 DOI: 10.1155/2010/530265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 08/28/2009] [Indexed: 11/17/2022] Open
Abstract
Studies on ligand binding potential of glycyrrhizic acid, a potential agonist to PPARgamma, displayed encouraging results in amelioration of metabolic syndrome. The regulation of gene cassettes by PPARgamma affects glucose homeostasis, lipid, lipoprotein metabolism and adipogenesis. This study was performed to determine the effects of GA on total PPARgamma and LPL expression levels, lipid parameters and HOMA-IR. Oral administration of 100 mg/kg GA for 24 hours resulted in an increase in insulin sensitivity with decreases in blood glucose, serum insulin and HOMA-IR. Improvement in serum lipid parameters was also observed with a decrease in triacylglycerol, total cholesterol and LDL-cholesterol and an elevation in HDL-cholesterol. GA administration also resulted in up-regulation of total PPARgamma and LPL expression levels in the visceral and subcutaneous adipose tissues, abdominal and quadriceps femoris muscles, as well as liver and kidney, with a significant up-regulation only in the visceral adipose tissue, abdominal and quadriceps femoris muscles. Thus, oral administration of 100 mg/kg GA for 24 hours improved insulin sensitivity and lipid profiles and induced upregulation of total PPARgamma and LPL expression levels in all studied tissues.
Collapse
|
27
|
Li G, Hernandez-Ono A, Crooke RM, Graham MJ, Ginsberg HN. Effects of antisense-mediated inhibition of 11β-hydroxysteroid dehydrogenase type 1 on hepatic lipid metabolism. J Lipid Res 2011; 52:971-81. [PMID: 21364201 DOI: 10.1194/jlr.m013748] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) converts inactive 11-keto derivatives to active glucocorticoids within tissues and may play a role in the metabolic syndrome (MS). We used an antisense oligonucleotide (ASO) to knock down 11β-HSD1 in livers of C57BL/6J mice consuming a Western-type diet (WTD). 11β-HSD1 ASO-treated mice consumed less food, so we compared them to ad libitum-fed mice and to food-matched mice receiving control ASO. Knockdown of 11β-HSD1 directly protected mice from WTD-induced steatosis and dyslipidemia by reducing synthesis and secretion of triglyceride (TG) and increasing hepatic fatty acid oxidation. These changes in hepatic and plasma lipids were not associated with reductions in genes involved in de novo lipogenesis. However, protein levels of both sterol regulatory element-binding protein (SREBP) 1 and fatty acid synthase were significantly reduced in mice treated with 11β-HSD1 ASO. There was no change in hepatic secretion of apolipoprotein (apo)B, indicating assembly and secretion of smaller apoB-containing lipoproteins by the liver in the 11β-HSD1-treated mice. Our results indicate that inhibition of 11β-HSD1 by ASO treatment of WTD-fed mice resulted in improved plasma and hepatic lipid levels, reduced lipogenesis by posttranslational regulation, and secretion of similar numbers of apoB-containing lipoproteins containing less TG per particle.
Collapse
Affiliation(s)
- Guoping Li
- Department of Medicine, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
28
|
Morgan SA, Tomlinson JW. 11beta-hydroxysteroid dehydrogenase type 1 inhibitors for the treatment of type 2 diabetes. Expert Opin Investig Drugs 2011; 19:1067-76. [PMID: 20707593 DOI: 10.1517/13543784.2010.504713] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE OF THE FIELD The prevalence of obesity and type 2 diabetes is rising and reaching pandemic proportions. For this reason, identification of novel therapeutic targets is urgently needed. AREAS COVERED IN THIS REVIEW The endoluminal enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes glucocorticoid activation in key metabolic tissues including skeletal muscle, liver and adipose tissue, and is strongly implicated in the pathogenesis of obesity, type 2 diabetes and the metabolic syndrome. Selective 11beta-HSD1 inhibitors limit local glucocorticoid availability and improve insulin sensitivity, glucose tolerance, lipid profiles and atherosclerosis. To date, there is a paucity of clinical studies using selective 11beta-HSD1 inhibitors; however, early indications show that these compounds have great therapeutic potential. WHAT THE READER WILL GAIN We present a comprehensive overview of the background to the development of selective 11beta-HSD1 inhibitors, the preclinical data supporting 11beta-HSD1 as a therapeutic target, and the current status of clinical trials of these agents. TAKE HOME MESSAGE Selective 11beta-HSD1 inhibitors have the potential to improve insulin sensitivity and may ultimately add to the treatment options available for patients with type 2 diabetes. However, further clinical studies are urgently required.
Collapse
Affiliation(s)
- Stuart A Morgan
- University of Birmingham, Centre for Endocrinology, Diabetes & Metabolism, Institute of Biomedical Research, School of Clinical and Experimental Medicine, 2nd floor, Room 230, Birmingham B15 2TH, UK
| | | |
Collapse
|
29
|
Abstract
Glucocorticoid action is mediated by glucocorticoid receptor (GR), which upon cortisol binding is activated and regulates the transcriptional expression of target genes and downstream physiological functions. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive cortisone to active cortisol. Since cortisol is also produced through biosynthesis in the adrenal glands, the total cortisol level in a given tissue is determined by both the circulating cortisol concentration and the local 11β-HSD1 activity. 11β-HSD1 is expressed in liver, adipose, brain, and placenta. Since it contributes to the local cortisol levels in these tissues, 11β-HSD1 plays a critical role in glucocorticoid action. The metabolic symptoms caused by glucocorticoid excess in Cushing's syndrome overlap with the characteristics of the metabolic syndrome, suggesting that increased glucocorticoid activity may play a role in the etiology of the metabolic syndrome. Consistent with this notion, elevated adipose expression of 11β-HSD1 induced metabolic syndrome-like phenotypes in mice. Thus, 11β-HSD1 is a proposed therapeutic target to normalize glucocorticoid excess in a tissue-specific manner and mitigate obesity and insulin resistance. Selective inhibitors of 11β-HSD1 are under development for the treatment of type 2 diabetes and other components of the metabolic syndrome.
Collapse
Affiliation(s)
- Minghan Wang
- Department of Metabolic Disorders, Amgen Inc., One Amgen Center Drive, Mail Stop 29-1-A, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
30
|
Gathercole LL, Stewart PM. Targeting the pre-receptor metabolism of cortisol as a novel therapy in obesity and diabetes. J Steroid Biochem Mol Biol 2010; 122:21-7. [PMID: 20347978 DOI: 10.1016/j.jsbmb.2010.03.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/07/2010] [Accepted: 03/21/2010] [Indexed: 01/08/2023]
Abstract
Due to its impact upon health and the economy, the mechanisms that contribute to the pathogenesis of obesity and the metabolic syndrome are under intense scrutiny. In addition to understanding the pathogenesis of disease it is important to design and trial novel therapies. Patients with cortisol excess, Cushing's syndrome, have a phenotype similar to that of the metabolic syndrome and as a result there is much interest the manipulation of glucocorticoid (GC) action as a therapeutic strategy. Intracellular GC levels are regulated by 11β-hydroxysteroid dehydrogenase (11β-HSD1) which converts inactive cortisone to cortisol, thereby increasing local GC action. There is an abundance of data implicating 11β-HSD1 in the pathogenesis of obesity, type 2 diabetes and the metabolic syndrome and 11β-HSD1 is an attractive therapeutic target. Selective 11β-HSD1 inhibitors, which do not act upon 11β-HSD2 (which inactivates cortisol to cortisone) are in development. So far studies have primarily been carried out in rodents, with results showing improvements in metabolic profile. Data are now beginning to emerge from human studies and the results are promising.
Collapse
Affiliation(s)
- Laura L Gathercole
- School of Clinical and Experimental Medicine, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
31
|
Morton NM. Obesity and corticosteroids: 11beta-hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease. Mol Cell Endocrinol 2010; 316:154-64. [PMID: 19804814 DOI: 10.1016/j.mce.2009.09.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 09/16/2009] [Accepted: 09/28/2009] [Indexed: 12/11/2022]
Abstract
The metabolic abnormalities found associated with high blood glucocorticoid levels (e.g. rare Cushing's syndrome) include insulin-resistance, visceral obesity, hypertension, dyslipidaemia and an increased risk of cardiovascular diseases. The same constellation of abnormalities is found in the highly prevalent idiopathic obesity/insulin-resistance (metabolic)-syndrome. It is now apparent that tissue-specific changes in cortisol metabolism explain these parallels rather than altered blood cortisol levels. Primary among these changes is increased intracellular glucocorticoid reactivation, catalysed by the enzyme 11beta-hydroxysteroid dehydrogenase type (HSD)-1 in obese adipose tissue. Liver, skeletal muscle, endocrine pancreas, blood vessels and leukocytes express 11beta-HSD1 and their potential role in metabolic disease is discussed. The weight of evidence, much of it gained from animal models, suggests that therapeutic inhibition of 11beta-HSD1 will be beneficial in most cellular contexts, with clinical trials supportive of this concept.
Collapse
Affiliation(s)
- Nicholas Michael Morton
- Molecular Metabolism Group after University of Edinburgh, Centre for Cardiovascular Sciences, Edinburgh, United Kingdom.
| |
Collapse
|
32
|
Hyatt MA, Keisler DH, Budge H, Symonds ME. Maternal parity and its effect on adipose tissue deposition and endocrine sensitivity in the postnatal sheep. J Endocrinol 2010; 204:173-9. [PMID: 19934248 PMCID: PMC2807923 DOI: 10.1677/joe-09-0358] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Maternal parity influences size at birth, postnatal growth and body composition with firstborn infants being more likely to be smaller with increased fat mass, suggesting that adiposity is set in early life. The precise effect of parity on fat mass and its endocrine sensitivity remains unclear and was, therefore, investigated in the present study. We utilised an established sheep model in which perirenal-abdominal fat mass (the major fat depot in the neonatal sheep) increases approximately 10-fold over the first month of life and focussed on the impact of parity on glucocorticoid sensitivity and adipokine expression in the adipocyte. Twin-bearing sheep of similar body weight and adiposity that consumed identical diets were utilised, and maternal blood samples were taken at 130 days of gestation. One offspring from each twin pair was sampled at 1 day of age, coincident with the time of maximal recruitment of uncoupling protein 1 (UCP1), whilst its sibling was sampled at 1 month, when UCP1 had disappeared. Plasma leptin was lower in nulliparous mothers than in multiparous mothers, and offspring of nulliparous mothers possessed more adipose tissue with increased mRNA abundance of leptin, glucocorticoid receptor and UCP2, adaptations that persisted up to 1 month of age when gene expression for interleukin-6 and adiponectin was also raised. The increase in fat mass associated with firstborn status is therefore accompanied by a resetting of the leptin and glucocorticoid axis within the adipocyte. Our findings emphasise the importance of parity in determining adipose tissue development and that firstborn offspring have an increased capacity for adipogenesis which may be critical in determining later adiposity.
Collapse
Affiliation(s)
- M A Hyatt
- Early Life Nutrition Research Unit, Academic Child Health, Division of Human DevelopmentSchool of Clinical Sciences, University HospitalE Floor East Block, Derby Road, Nottingham, NG7 2UHUK
| | - D H Keisler
- Department of Animal SciencesUniversity of MissouriColumbia, Missouri, 65201USA
| | - H Budge
- Early Life Nutrition Research Unit, Academic Child Health, Division of Human DevelopmentSchool of Clinical Sciences, University HospitalE Floor East Block, Derby Road, Nottingham, NG7 2UHUK
- Respiratory Biomedical Research UnitSchool of Clinical Sciences, University Hospital, University of NottinghamE Floor East Block, Derby Road, Nottingham, NG7 2UHUK
| | - M E Symonds
- Early Life Nutrition Research Unit, Academic Child Health, Division of Human DevelopmentSchool of Clinical Sciences, University HospitalE Floor East Block, Derby Road, Nottingham, NG7 2UHUK
- Respiratory Biomedical Research UnitSchool of Clinical Sciences, University Hospital, University of NottinghamE Floor East Block, Derby Road, Nottingham, NG7 2UHUK
- (Correspondence should be addressed to M E Symonds; )
| |
Collapse
|
33
|
Berthiaume M, Laplante M, Festuccia WT, Berger JP, Thieringer R, Deshaies Y. Preliminary report: pharmacologic 11beta-hydroxysteroid dehydrogenase type 1 inhibition increases hepatic fat oxidation in vivo and expression of related genes in rats fed an obesogenic diet. Metabolism 2010; 59:114-7. [PMID: 19766266 DOI: 10.1016/j.metabol.2009.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/22/2009] [Accepted: 07/14/2009] [Indexed: 11/16/2022]
Abstract
This study aimed to explore in a model of diet-induced steatosis the impact of pharmacologic 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibition, under conditions of unchanged ingestive behavior, on liver fat oxidation. Male Sprague-Dawley rats were fed an obesogenic diet and were continuously treated or not with an 11beta-HSD1 inhibitor (Compound A, 3 mg/[kg d]; Merck Research Laboratories, Rahway, NJ), after which liver expression of oxidative genes and in vivo hepatic fat oxidation were quantified. Treatment with Compound A reduced liver triglyceride concentration (-28%), increased hepatic expression of several genes coding for enzymes of mitochondrial and peroxisomal beta-oxidation, and concomitantly enhanced in vivo liver fat oxidation (+38%). The study demonstrates, under conditions that avoided changes in food intake seen in gene knockout or higher-dose pharmacologic models, the efficacy of 11beta-HSD1 inhibition to up-regulate hepatic fat oxidation gene expression, which functionally translates into enhanced hepatic lipid oxidation in vivo.
Collapse
Affiliation(s)
- Magalie Berthiaume
- Centre de recherche de l'IUCPQ, Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 4G5
| | | | | | | | | | | |
Collapse
|
34
|
Morgan SA, Sherlock M, Gathercole LL, Lavery GG, Lenaghan C, Bujalska IJ, Laber D, Yu A, Convey G, Mayers R, Hegyi K, Sethi JK, Stewart PM, Smith DM, Tomlinson JW. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes 2009; 58:2506-15. [PMID: 19675138 PMCID: PMC2768185 DOI: 10.2337/db09-0525] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 07/16/2009] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity. RESEARCH DESIGN AND METHODS Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11beta-HSD1 inhibition upon insulin signaling and action. RESULTS Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer(307) insulin receptor substrate (IRS)-1. 11beta-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11beta-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer(307) IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11beta-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer(307) IRS1 decreased and pThr(308) Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression. CONCLUSIONS Prereceptor facilitation of glucocorticoid action via 11beta-HSD1 increases pSer(307) IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11beta-HSD1 inhibition decreases pSer(307) IRS1, increases pThr(308) Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action.
Collapse
Affiliation(s)
- Stuart A. Morgan
- Centre for Endocrinology, Diabetes and Metabolism, Institute of Biomedical Research, School of Clinical & Experimental Medicine, University of Birmingham, Birmingham, U.K
| | - Mark Sherlock
- Centre for Endocrinology, Diabetes and Metabolism, Institute of Biomedical Research, School of Clinical & Experimental Medicine, University of Birmingham, Birmingham, U.K
| | - Laura L. Gathercole
- Centre for Endocrinology, Diabetes and Metabolism, Institute of Biomedical Research, School of Clinical & Experimental Medicine, University of Birmingham, Birmingham, U.K
| | - Gareth G. Lavery
- Centre for Endocrinology, Diabetes and Metabolism, Institute of Biomedical Research, School of Clinical & Experimental Medicine, University of Birmingham, Birmingham, U.K
| | - Carol Lenaghan
- AstraZeneca Diabetes & Obesity Drug Discovery, Mereside, Alderley Park, Macclesfield, Cheshire, U.K
| | - Iwona J. Bujalska
- Centre for Endocrinology, Diabetes and Metabolism, Institute of Biomedical Research, School of Clinical & Experimental Medicine, University of Birmingham, Birmingham, U.K
| | - David Laber
- AstraZeneca Diabetes & Obesity Drug Discovery, Mereside, Alderley Park, Macclesfield, Cheshire, U.K
| | - Alice Yu
- AstraZeneca Diabetes & Obesity Drug Discovery, Mereside, Alderley Park, Macclesfield, Cheshire, U.K
| | - Gemma Convey
- AstraZeneca Diabetes & Obesity Drug Discovery, Mereside, Alderley Park, Macclesfield, Cheshire, U.K
| | - Rachel Mayers
- AstraZeneca Diabetes & Obesity Drug Discovery, Mereside, Alderley Park, Macclesfield, Cheshire, U.K
| | - Krisztina Hegyi
- Department of Clinical Biochemistry, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Jaswinder K. Sethi
- Department of Clinical Biochemistry, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Paul M. Stewart
- Centre for Endocrinology, Diabetes and Metabolism, Institute of Biomedical Research, School of Clinical & Experimental Medicine, University of Birmingham, Birmingham, U.K
| | - David M. Smith
- AstraZeneca Diabetes & Obesity Drug Discovery, Mereside, Alderley Park, Macclesfield, Cheshire, U.K
| | - Jeremy W. Tomlinson
- Centre for Endocrinology, Diabetes and Metabolism, Institute of Biomedical Research, School of Clinical & Experimental Medicine, University of Birmingham, Birmingham, U.K
| |
Collapse
|
35
|
Baudrand R, Carvajal CA, Riquelme A, Morales M, Solis N, Pizarro M, Escalona A, Boza C, Pérez G, Domínguez A, Arrese M, Fardella CE. Overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in hepatic and visceral adipose tissue is associated with metabolic disorders in morbidly obese patients. Obes Surg 2009; 20:77-83. [PMID: 19690925 DOI: 10.1007/s11695-009-9937-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 07/31/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND The enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes intracellular glucocorticoid reactivation by conversion of cortisone to cortisol in different tissues and have been implicated in several metabolic disorders associated with obesity. The aim of this study was to evaluate the 11beta-HSD1 expression in liver, visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) in morbidly obese patients undergoing bariatric surgery and its correlations with clinical, anthropometric, and biochemical variables. METHODS A prospective study was conducted over a 27-month period. Hepatic, VAT, and SAT samples were obtained at the time of surgery. 11beta-HSD1 and 18S gene expression was measured using real-time quantitative reverse transcriptase-polymerase chain reaction. RESULTS Forty nine patients met the inclusion criteria [mean age: 42.2 +/- 10 years, body mass index (BMI): 42 +/- 6 kg/m(2), 71% women and 63% with metabolic syndrome (MS)]. 11beta-HSD1 mRNA levels were higher in liver than fat tissue (p < 0.001), being higher in SAT than in VAT (p < 0.001) without gender-specific differences. Hepatic expression of 11beta-HSD1 correlated positively with SAT and VAT, alanine aminotransferase (ALT), and serum glucose and was inversely associated with BMI. 11beta-HSD1 mRNA in VAT correlated positively with insulinemia, ALT, and LDL cholesterol. There were no associations between 11beta-HSD1 mRNA in SAT and the variables analyzed. CONCLUSIONS 11beta-HSD1 expression is higher in liver in comparison to adipose tissue in obese patients. The observed correlations between hepatic and VAT 11beta-HSD1 expression with dyslipidemia and insulin resistance suggest that this enzyme might have a pathogenic role in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- René Baudrand
- Department of Endocrinology, Faculty Of Medicine, Pontificia Universidad Católica De Chile, Lira 85, 5 Masculine Piso, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lipoprotein lipase expression, serum lipid and tissue lipid deposition in orally-administered glycyrrhizic acid-treated rats. Lipids Health Dis 2009; 8:31. [PMID: 19638239 PMCID: PMC2729303 DOI: 10.1186/1476-511x-8-31] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/29/2009] [Indexed: 02/06/2023] Open
Abstract
Background The metabolic syndrome (MetS) is a cluster of metabolic abnormalities comprising visceral obesity, dyslipidaemia and insulin resistance (IR). With the onset of IR, the expression of lipoprotein lipase (LPL), a key regulator of lipoprotein metabolism, is reduced. Increased activation of glucocorticoid receptors results in MetS symptoms and is thus speculated to have a role in the pathophysiology of the MetS. Glycyrrhizic acid (GA), the bioactive constituent of licorice roots (Glycyrrhiza glabra) inhibits 11β-hydroxysteroid dehydrogenase type 1 that catalyzes the activation of glucocorticoids. Thus, oral administration of GA is postulated to ameliorate the MetS. Results In this study, daily oral administration of 50 mg/kg of GA for one week led to significant increase in LPL expression in the quadriceps femoris (p < 0.05) but non-significant increase in the abdominal muscle, kidney, liver, heart and the subcutaneous and visceral adipose tissues (p > 0.05) of the GA-treated rats compared to the control. Decrease in adipocyte size (p > 0.05) in both the visceral and subcutaneous adipose tissue depots accompanies such selective induction of LPL expression. Consistent improvement in serum lipid parameters was also observed, with decrease in serum free fatty acid, triacylglycerol, total cholesterol and LDL-cholesterol but elevated HDL-cholesterol (p > 0.05). Histological analysis using tissue lipid staining with Oil Red O showed significant decrease in lipid deposition in the abdominal muscle and quadriceps femoris (p < 0.05) but non-significant decrease in the heart, kidney and liver (p > 0.05). Conclusion Results from this study may imply that GA could counteract the development of visceral obesity and improve dyslipidaemia via selective induction of tissue LPL expression and a positive shift in serum lipid parameters respectively, and retard the development of IR associated with tissue steatosis.
Collapse
|
37
|
Lloyd DJ, Helmering J, Cordover D, Bowsman M, Chen M, Hale C, Fordstrom P, Zhou M, Wang M, Kaufman SA, Véniant MM. Antidiabetic effects of 11beta-HSD1 inhibition in a mouse model of combined diabetes, dyslipidaemia and atherosclerosis. Diabetes Obes Metab 2009; 11:688-99. [PMID: 19527482 DOI: 10.1111/j.1463-1326.2009.01034.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM 11 beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is considered to contribute to the aetiology of the metabolic syndrome, and specific inhibitors have begun to emerge as treatments for insulin resistance and other facets of the syndrome, including atherosclerosis. Given the role of glucocorticoids and 11beta-HSD1 in the anti-inflammatory response and the involvement of inflammation in the development of atherosclerosis, 11beta-HSD1 inhibition may exacerbate atherosclerosis. Our aim was to investigate in vivo the effects of a specific 11beta-HSD1 inhibitor (2922) on atherosclerosis while assessing glucose homeostasis. METHODS We conducted a 12-week study administering 2922 (at three doses, 3, 10 and 100 mg/kg body weight) in Ldlr 3KO (Ldlr(-/-)Apob(100/100)Lep(ob/ob)) mice, a genetic model of obesity, insulin resistance, dyslipidaemia and atherosclerosis. Rosiglitazone and simvastatin were used to test the responsiveness of our model in both types of therapy. RESULTS 2922 was effective in reducing 11beta-HSD1 activity in inguinal adipose tissue (>90% for 100 mg/kg) and was efficacious in improving glucose homeostasis at doses > or =10 mg/kg. Plasma insulin, blood glucose, glucose tolerance and homeostatic model assessment indices were all improved in mice treated with 2922 (100 mg/kg) compared with control animals. Despite an improvement in these parameters, no differences were observed in body weight, adipose or lean tissue masses in the 2922-treated mice. Interestingly, circulating lipids, proinflammatory cytokines and atherosclerosis were unaltered in response to 2922, although a small reduction in LDL cholesterol was detected. CONCLUSIONS Importantly, 11beta-HSD1 inhibition leads to improved glucose metabolism and does not result in a worsening of atherosclerotic lesion area, yet retained antidiabetic potential in the face of multiple severe metabolic aberrations. This study reinforces the potential use of 11beta-HSD1 inhibitors in patients with the metabolic syndrome without negatively impacting atherosclerosis.
Collapse
Affiliation(s)
- D J Lloyd
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hadoke PWF, Iqbal J, Walker BR. Therapeutic manipulation of glucocorticoid metabolism in cardiovascular disease. Br J Pharmacol 2009; 156:689-712. [PMID: 19239478 DOI: 10.1111/j.1476-5381.2008.00047.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The therapeutic potential for manipulation of glucocorticoid metabolism in cardiovascular disease was revolutionized by the recognition that access of glucocorticoids to their receptors is regulated in a tissue-specific manner by the isozymes of 11beta-hydroxysteroid dehydrogenase. Selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 have been shown recently to ameliorate cardiovascular risk factors and inhibit the development of atherosclerosis. This article addresses the possibility that inhibition of 11beta-hydroxsteroid dehydrogenase type 1 activity in cells of the cardiovascular system contributes to this beneficial action. The link between glucocorticoids and cardiovascular disease is complex as glucocorticoid excess is linked with increased cardiovascular events but glucocorticoid administration can reduce atherogenesis and restenosis in animal models. There is considerable evidence that glucocorticoids can interact directly with cells of the cardiovascular system to alter their function and structure and the inflammatory response to injury. These actions may be regulated by glucocorticoid and/or mineralocorticoid receptors but are also dependent on the 11beta-hydroxysteroid dehydrogenases which may be expressed in cardiac, vascular (endothelial, smooth muscle) and inflammatory (macrophages, neutrophils) cells. The activity of 11beta-hydroxysteroid dehydrogenases in these cells is dependent upon differentiation state, the action of pro-inflammaotory cytokines and the influence of endogenous inhibitors (oxysterols, bile acids). Further investigations are required to clarify the link between glucocorticoid excess and cardiovascular events and to determine the mechanism through which glucocorticoid treatment inhibits atherosclerosis/restenosis. This will provide greater insights into the potential benefit of selective 11beta-hydroxysteroid dehydrogenase inhibitors in treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Patrick W F Hadoke
- Centre for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.
| | | | | |
Collapse
|
39
|
Additive action of 11beta-HSD1 inhibition and PPAR-gamma agonism on hepatic steatosis and triglyceridemia in diet-induced obese rats. Int J Obes (Lond) 2009; 33:601-4. [PMID: 19223847 DOI: 10.1038/ijo.2009.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Both 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) inhibition and peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonism reduce liver and plasma lipids in rodents through partly distinct mechanisms. This study aimed to assess their additivity of action on liver and plasma lipids in a model of diet-induced steatosis. Rats were fed an obesogenic diet and were treated either with an 11beta-HSD1 inhibitor (Compound A, 3 mg kg(-1) day(-1)) or rosiglitazone (RSG, 5 mg kg(-1) day(-1)) or both for 6 weeks. Compound A and RSG reduced liver steatosis and triglyceridemia, and did so additively when given in combination. The 11beta-HSD1 inhibitor had no effect on serum adiponectin, but increased liver adiponectin receptor type 2 (Adipo-R2) mRNA levels. Conversely, RSG increased serum adiponectin, a likely mediator of its antisteatotic action, but had no effect per se on the Adipo-R2 expression. mRNA levels of representative genes of fatty acid oxidation tended to be increased by both compounds. The study shows that combined 11beta-HSD1 inhibition and PPAR-gamma agonism additively reduce liver steatosis and triglyceridemia, which may eventually prove therapeutically useful.
Collapse
|
40
|
Bibliography. Current world literature. Nutrition and metabolism. Curr Opin Lipidol 2009; 20:63-72. [PMID: 19106709 DOI: 10.1097/mol.0b013e32832402a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Bujalska IJ, Hewitt KN, Hauton D, Lavery GG, Tomlinson JW, Walker EA, Stewart PM. Lack of hexose-6-phosphate dehydrogenase impairs lipid mobilization from mouse adipose tissue. Endocrinology 2008; 149:2584-91. [PMID: 18218694 PMCID: PMC2329282 DOI: 10.1210/en.2007-1705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In adipose tissue, glucocorticoids regulate lipogenesis and lipolysis. Hexose-6-phosphate dehydrogenase (H6PDH) is an enzyme located in the endoplasmic reticulum that provides a cofactor for the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), regulating the set point of its activity and allowing for tissue-specific activation of glucocorticoids. The aim of this study was to examine the adipose tissue biology of the H6PDH null (H6PDH/KO) mouse. Real-time PCR analysis confirmed similar mRNA levels of 11beta-HSD1 and glucocorticoid receptor-alpha in wild-type (WT) and H6PDH/KO mice in liver and gonadal fat depots. Microsomal 11beta-HSD1 protein levels shown by Western blot analysis corresponded well with mRNA expression in gonadal fat of WT and H6PDH/KO mice. Despite this, the enzyme directionality in these tissues changed from predominately oxoreductase in WT to exclusively dehydrogenase activity in the H6PDH/KO mice. In the fed state, H6PDH/KO mice had reduced adipose tissue mass, but histological examination revealed no difference in average adipocyte size between genotypes. mRNA expression levels of the key lipogenic enzymes, acetyl CoA carboxylase, adiponutrin, and stearoyl-coenzyme A desaturase-2, were decreased in H6PDH/KO mice, indicative of impaired lipogenesis. In addition, lipolysis rates were also impaired in the H6PDH/KO as determined by lack of mobilization of fat and no change in serum free fatty acid concentrations upon fasting. In conclusion, in the absence of H6PDH, the set point of 11beta-HSD1 enzyme activity is switched from predominantly oxoreductase to dehydrogenase activity in adipose tissue; as a consequence, this leads to impairment of fat storage and mobilization.
Collapse
Affiliation(s)
- Iwona J Bujalska
- Division of medical Sciences (Medicine), University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Hughes KA, Webster SP, Walker BR. 11-Beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors in Type 2 diabetes mellitus and obesity. Expert Opin Investig Drugs 2008; 17:481-96. [DOI: 10.1517/13543784.17.4.481] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Webster SP, Pallin TD. 11β-Hydroxysteroid dehydrogenase type 1 inhibitors as therapeutic agents. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.12.1407] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Nuotio-Antar AM, Hachey DL, Hasty AH. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. Am J Physiol Endocrinol Metab 2007; 293:E1517-28. [PMID: 17878220 DOI: 10.1152/ajpendo.00522.2007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids, which are well established to regulate body fat mass distribution, adipocyte lipolysis, hepatic gluconeogenesis, and hepatocyte VLDL secretion, are speculated to play a role in the pathology of metabolic syndrome. Recent focus has been on the activity of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which is capable of regenerating, and thus amplifying, glucocorticoids in key metabolic tissues such as liver and adipose tissue. To determine the effects of global 11beta-HSD1 inhibition on metabolic syndrome risk factors, we subcutaneously injected "Western"-type diet-fed hyperlipidemic mice displaying moderate or severe obesity [LDL receptor (LDLR)-deficient (LDLR(-/-)) mice and mice derived from heterozygous agouti (A(y)/a) and homozygous LDLR(-/-) breeding pairs (A(y)/a;LDLR(-/-) mice)] with the nonselective 11beta-HSD inhibitor carbenoxolone for 4 wk. Body composition throughout the study, end-point fasting plasma, and extent of hepatic steatosis and atherosclerosis were assessed. This route of treatment led to detection of high levels of carbenoxolone in liver and fat and resulted in decreased weight gain due to reduced body fat mass in both mouse models. However, only A(y)/a;LDLR(-/-) mice showed an effect of 11beta-HSD1 inhibition on fasting insulin and plasma lipids, coincident with a reduction in VLDL due to mildly increased VLDL clearance and dramatically decreased hepatic triglyceride production. A(y)/a;LDLR(-/-) mice also showed a greater effect of the drug on reducing atherosclerotic lesion formation. These findings indicate that subcutaneous injection of an 11beta-HSD1 inhibitor allows for the targeting of the enzyme in not only liver, but also adipose tissue, and attenuates many metabolic syndrome risk factors, with more pronounced effects in cases of severe obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Alli M Nuotio-Antar
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|