1
|
Nilsson I, Su EJ, Fredriksson L, Sahlgren BH, Bagoly Z, Moessinger C, Stefanitsch C, Ning FC, Zeitelhofer M, Muhl L, Lawrence ALE, Scotney PD, Lu L, Samén E, Ho H, Keep RF, Medcalf RL, Lawrence DA, Eriksson U. Thrombolysis exacerbates cerebrovascular injury after ischemic stroke via a VEGF-B dependent effect on adipose lipolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617532. [PMID: 39416206 PMCID: PMC11483068 DOI: 10.1101/2024.10.11.617532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cerebrovascular injuries leading to edema and hemorrhage after ischemic stroke are common. The mechanisms underlying these events and how they are connected to known risk factors for poor outcome, like obesity and diabetes, is relatively unknown. Herein we demonstrate that increased adipose tissue lipolysis is a dominating risk factor for the development of a compromised cerebrovasculature in ischemic stroke. Reducing adipose lipolysis by VEGF-B antagonism improved vascular integrity by reducing ectopic cerebrovascular lipid deposition. Thrombolytic therapy in ischemic stroke using tissue plasminogen activator (tPA) leads to increased risk of hemorrhagic complications, substantially limiting the use of thrombolytic therapy. We provide evidence that thrombolysis with tPA promotes adipose tissue lipolysis, leading to a rise in plasma fatty acids and lipid accumulation in the ischemic cerebrovasculature after stroke. VEGF-B blockade improved the efficacy and safety of thrombolysis suggesting the potential use of anti-VEGF-B therapy to extend the therapeutic window for stroke management.
Collapse
Affiliation(s)
- Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- These authors contributed equally
- Lead contact: (I.N.)
| | - Enming J. Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- These authors contributed equally
| | - Linda Fredriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Heller Sahlgren
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zsuzsa Bagoly
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, Department of Laboratory Medicine, Division of Clinical Laboratory Sciences, Faculty of Medicine, University of Debrecen, Hungary
| | - Christine Moessinger
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Stefanitsch
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Chenfei Ning
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Lisa E. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Li Lu
- Karolinska Experimental Research and Imaging Centre, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Heidi Ho
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Victoria, Australia
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert L. Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Victoria, Australia
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Gayger-Dias V, Vizuete AFK, Rodrigues L, Wartchow KM, Bobermin L, Leite MC, Quincozes-Santos A, Kleindienst A, Gonçalves CA. How S100B crosses brain barriers and why it is considered a peripheral marker of brain injury. Exp Biol Med (Maywood) 2023; 248:2109-2119. [PMID: 38058025 PMCID: PMC10800124 DOI: 10.1177/15353702231214260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.
Collapse
Affiliation(s)
- Vitor Gayger-Dias
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Adriana FK Vizuete
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Letícia Rodrigues
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Krista Minéia Wartchow
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10044, USA
| | - Larissa Bobermin
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Marina Concli Leite
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - André Quincozes-Santos
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany
| | - Carlos-Alberto Gonçalves
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| |
Collapse
|
3
|
Adrenomedullin in paraventricular nucleus attenuates adipose afferent reflex and sympathoexcitation via receptors mediated nitric oxide-gamma-aminobutyric acid A type receptor pathway in rats with obesity-related hypertension. J Hypertens 2023; 41:233-245. [PMID: 36583351 DOI: 10.1097/hjh.0000000000003301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypothalamic paraventricular nucleus (PVN) is an important central site for the control of the adipose afferent reflex (AAR) that increases sympathetic outflow and blood pressure in obesity-related hypertension (OH). METHOD In this study, we investigated the effects of nitric oxide (NO) and cardiovascular bioactive polypeptide adrenomedullin (ADM) in the PVN on AAR and sympathetic nerve activity (SNA) in OH rats induced by a high-fat diet. RESULTS The results showed that ADM, total neuronal NO synthase (nNOS) and phosphorylated-nNOS protein expression levels in the PVN of the OH rats were down-regulated compared to the control rats. The enhanced AAR in OH rats was attenuated by PVN acute application of NO donor sodium nitroprusside (SNP), but was strengthened by the nNOS inhibitor nNOS-I, guanylyl cyclase inhibitor (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, ODQ) and gamma-aminobutyric acid A type receptor (GABAA) antagonist Bicuculline. Moreover, PVN ADM microinjection not only decreased basal SNA but also attenuated the enhanced AAR in OH rats, which were effectively inhibited by ADM receptor antagonist ADM22-52, nNOS-I, ODQ or Bicuculline pretreatment. Bilateral PVN acute microinjection of ADM also caused greater increases in NO and cyclic guanosine monophosphate (cGMP) levels, and nNOS phosphorylation. Adeno-associated virus vectors encoding ADM (AAV-ADM) transfection in the PVN of OH rats not only decreased the elevated AAR, basal SNA and blood pressure (BP), but also increased the expression and activation of nNOS. Furthermore, AAV-ADM transfection improved vascular remodeling in OH rats. CONCLUSION Taken together, our data highlight the roles of ADM in improving sympathetic overactivation, enhanced AAR and hypertension, and its related mechanisms associated with receptors mediated NO-cGMP-GABAA pathway in OH condition.
Collapse
|
4
|
Wang YY, Lin SY, Chang CY, Wu CC, Chen WY, Huang WC, Liao SL, Wang WY, Chen CJ. α7 nicotinic acetylcholine receptor agonist improved brain injury and impaired glucose metabolism in a rat model of ischemic stroke. Metab Brain Dis 2023; 38:1249-1259. [PMID: 36662413 DOI: 10.1007/s11011-023-01167-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Vagus nerve stimulation through the action of acetylcholine can modulate inflammatory responses and metabolism. α7 Nicotinic Acetylcholine Receptor (α7nAChR) is a key component in the biological functions of acetylcholine. To further explore the health benefits of vagus nerve stimulation, this study aimed to investigate whether α7nAChR agonists offer beneficial effects against poststroke inflammatory and metabolic changes and to identify the underlying mechanisms in a rat model of stroke established by permanent cerebral ischemia. We found evidence showing that pretreatment with α7nAChR agonist, GTS-21, improved poststroke brain infarction size, impaired motor coordination, brain apoptotic caspase 3 activation, dysregulated glucose metabolism, and glutathione reduction. In ischemic cortical tissues and gastrocnemius muscles with GTS-21 pretreatment, macrophages/microglia M1 polarization-associated Tumor Necrosis Factor-α (TNF-α) mRNA, Cluster of Differentiation 68 (CD68) protein, and Inducible Nitric Oxide Synthase (iNOS) protein expression were reduced, while expression of anti-inflammatory cytokine IL-4 mRNA, and levels of M2 polarization-associated CD163 mRNA and protein were increased. In the gastrocnemius muscles, stroke rats showed a reduction in both glutathione content and Akt Serine 473 phosphorylation, as well as an elevation in Insulin Receptor Substrate-1 Serine 307 phosphorylation and Dynamin-Related Protein 1 Serine 616 phosphorylation. GTS-21 reversed poststroke changes in the gastrocnemius muscles. Overall, our findings, provide further evidence supporting the neuroprotective benefits of α7nAChR agonists, and indicate that they may potentially exert anti-inflammatory and metabolic effects peripherally in the skeletal muscle in an acute ischemic stroke animal model.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, 407, Taichung City, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, 407, Taichung City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, 112, Taipei City, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, 420, Taichung City, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, 402, Taichung City, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, 407, Taichung City, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, 402, Taichung City, Taiwan
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, 402, Taichung City, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, 407, Taichung City, Taiwan
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, 433, Taichung City, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, 407, Taichung City, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 404, Taichung City, Taiwan.
| |
Collapse
|
5
|
Yao M, Hao Y, Wang T, Xie M, Li H, Feng J, Feng L, Ma D. A review of stress-induced hyperglycaemia in the context of acute ischaemic stroke: Definition, underlying mechanisms, and the status of insulin therapy. Front Neurol 2023; 14:1149671. [PMID: 37025208 PMCID: PMC10070880 DOI: 10.3389/fneur.2023.1149671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
The transient elevation of blood glucose produced following acute ischaemic stroke (AIS) has been described as stress-induced hyperglycaemia (SIH). SIH is common even in patients with AIS who have no previous diagnosis of diabetes mellitus. Elevated blood glucose levels during admission and hospitalization are strongly associated with enlarged infarct size and adverse prognosis in AIS patients. However, insulin-intensive glucose control therapy defined by admission blood glucose for SIH has not achieved the desired results, and new treatment ideas are urgently required. First, we explore the various definitions of SIH in the context of AIS and their predictive value in adverse outcomes. Then, we briefly discuss the mechanisms by which SIH arises, describing the dual effects of elevated glucose levels on the central nervous system. Finally, although preclinical studies support lowering blood glucose levels using insulin, the clinical outcomes of intensive glucose control are not promising. We discuss the reasons for this phenomenon.
Collapse
Affiliation(s)
- Mengyue Yao
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Wang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Meizhen Xie
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Li
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Liangshu Feng
- Stroke Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
- Liangshu Feng
| | - Di Ma
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Di Ma
| |
Collapse
|
6
|
Duan H, Cheng Z, Yun HJ, Cai L, Tong Y, Han Z, Geng X, Ding Y. Serum Bilirubin Associated with Stroke Severity and Prognosis: Preliminary Findings on Liver Function after Acute Ischemic Stroke. Neurol Res 2023; 45:62-69. [PMID: 36165803 DOI: 10.1080/01616412.2022.2119724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This study investigates relationships between serum bilirubin, stroke severity, and prognosis of patients with acute ischemic stroke (AIS) to elucidate the roles of the liver in AIS. METHODS This retrospective study collected data from 527 patients diagnosed with AIS within 24 hours after their symptom onset. Stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS). Mild stroke was defined as NIHSS≤5. Prognosis was assessed with modified Rankin Scale (mRS) on 90 days after AIS and good prognosis was defined as mRS≤2. The patients were divided based on their total bilirubin (Tbil) and direct bilirubin (Dbil) levels to study these serum markers' association with the severity of stroke. Tbil levels were measured and compared with mRS on 90 days to analyze prognosis of mild stroke patients. RESULTS Both Tbil abnormal (NIHSS = 6.8 ± 5.3) and Dbil abnormal groups (NIHSS = 7.3 ± 5.7) had higher NIHSS scores on admission than the normal groups (p< 0.05 or p< 0.01, respectively). Severity of stroke at discharge was similar between these groups (p = 0.025 and 0.019, respectively). Serum bilirubin levels were independently associated with stroke severity on admission and discharge after risk factors were adjusted (p< 0.001 and p< 0.05, respectively; β (95%CI) were 0.116 (0.064-0.167) and 0.058 (0.012-0.103), respectively). The average Tbil levels of mild stroke with good prognosis was 15.1 ± 6.4umol/l versus 11.8 ± 3.1umol/l with poor prognosis; this difference was statistically significant (p = 0.003). The same difference was observed with Dtil levels but it did not reach a significant level. CONCLUSION High Tbil and Dbil level within 48 hours of symptom onset could be an independent marker of severity of stroke on admission and discharge for all AIS patients. For patient with mild stroke, elevation of bilirubin after AIS suggests a good prognosis. These findings imply that the liver play the key roles in the mechanism of AIS.
Collapse
Affiliation(s)
- Honglian Duan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, Hebei, China
| | - Zhe Cheng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, Hebei, China
| | - Ho Jun Yun
- Department of Neuro Surgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Lipeng Cai
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, Hebei, China
| | - Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, Hebei, China
| | - Zhenzhen Han
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, Hebei, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, Hebei, China.,Department of Neuro Surgery, Wayne State University School of Medicine, Detroit, MI, United States.,Luhe Institute of Neuroscience, Capital Medical University, Beijing, Hebei, China
| | - Yuchuan Ding
- Department of Neuro Surgery, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
7
|
Zhou X, Kang C, Hu Y, Wang X. Study on insulin resistance and ischemic cerebrovascular disease: A bibliometric analysis via CiteSpace. Front Public Health 2023; 11:1021378. [PMID: 36950100 PMCID: PMC10025569 DOI: 10.3389/fpubh.2023.1021378] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Background It is reported that insulin resistance widely exists in non-diabetic patients with a recent history of transient ischemic attack (TIA) or ischemic stroke. There is currently strong evidence to prove the bidirectional effect of glucose metabolism disorders and stroke events. Therefore, it is necessary to retrospectively tease out the current status, hotspots, and frontiers of insulin resistance and ischemic cerebrovascular disease through CiteSpace. Materials and methods We searched the Web of Science (WOS) for studies related to insulin resistance and ischemic cerebrovascular disease from 1999 to April 2022, then downloaded the data into CiteSpace to generate a knowledge visualization map. Results A total of 1,500 publications relevant to insulin resistance and ischemic cerebrovascular disease were retrieved. The USA had the most articles on this topic, followed by PEOPLES R CHINA and JAPAN. WALTER N KERNAN was the most prolific author, whose research mainly focused on insulin resistance intervention after stroke (IRIS) trial. The most common keywords were myocardial ischemia, metabolic syndrome, ischemic stroke, cerebral ischemia, association, oxidative stress, inflammation, and adipose tissue. Major ongoing research trends include three aspects: (1) the association between insulin resistance and ischemic cerebrovascular disease in non-diabetic patients, (2) the intrinsic pathological mechanism between insulin resistance and ischemic cerebrovascular disease, and (3) early intervention of insulin resistance to improve the prognosis of stroke. Conclusion The results of this bibliometric study provide the current status and trends of clinical research publications in the field of insulin resistance and ischemic cerebrovascular disease. Insulin resistance is strongly associated with the occurrence of ischemic stroke, early neurological deterioration in stroke patients, post-stroke depression, and cerebral small vessel disease. Early treatment of insulin resistance can be an effective way to prevent the onset of ischemic stroke and improve stroke prognosis. This study may help researchers to identify hot topics and explore new research directions.
Collapse
Affiliation(s)
- Xue Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Kang
- Division of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - YuHong Hu
- Division of Cardiology, The 960th Hospital of the PLA Joint Logistic Support Force, Jinan, China
| | - XingChen Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: XingChen Wang
| |
Collapse
|
8
|
Wang YY, Lin SY, Chang CY, Wu CC, Chen WY, Liao SL, Chen YF, Wang WY, Chen CJ. Jak2 Inhibitor AG490 Improved Poststroke Central and Peripheral Inflammation and Metabolic Abnormalities in a Rat Model of Ischemic Stroke. Antioxidants (Basel) 2021; 10:antiox10121958. [PMID: 34943061 PMCID: PMC8750281 DOI: 10.3390/antiox10121958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Poststroke hyperglycemia and inflammation have been implicated in the pathogenesis of stroke. Janus Kinase 2 (Jak2), a catalytic signaling component for cytokine receptors such as Interleukin-6 (IL-6), has inflammatory and metabolic properties. This study aimed to investigate the roles of Jak2 in poststroke inflammation and metabolic abnormality in a rat model of permanent cerebral ischemia. Pretreatment with Jak2 inhibitor AG490 ameliorated neurological deficit, brain infarction, edema, oxidative stress, inflammation, caspase-3 activation, and Zonula Occludens-1 (ZO-1) reduction. Moreover, in injured cortical tissues, Tumor Necrosis Factor-α, IL-1β, and IL-6 levels were reduced with concurrent decreased NF-κB p65 phosphorylation, Signal Transducers and Activators of Transcription 3 phosphorylation, Ubiquitin Protein Ligase E3 Component N-Recognin 1 expression, and Matrix Metalloproteinase activity. In the in vitro study on bEnd.3 endothelial cells, AG490 diminished IL-6-induced endothelial barrier disruption by decreasing ZO-1 decline. Metabolically, administration of AG490 lowered fasting glucose, with improvements in glucose intolerance, plasma-free fatty acids, and plasma C Reactive Proteins. In conclusion, AG490 improved the inflammation and oxidative stress of neuronal, hepatic, and muscle tissues of stroke rats as well as impairing insulin signaling in the liver and skeletal muscles. Therefore, Jak2 blockades may have benefits for combating poststroke central and peripheral inflammation, and metabolic abnormalities.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei City 112, Taiwan;
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yu-Fan Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, Taichung City 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Correspondence: ; Tel.: +886-4-2359-2525 (ext. 4022)
| |
Collapse
|
9
|
Cui P, McCullough LD, Hao J. Brain to periphery in acute ischemic stroke: Mechanisms and clinical significance. Front Neuroendocrinol 2021; 63:100932. [PMID: 34273406 PMCID: PMC9850260 DOI: 10.1016/j.yfrne.2021.100932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 01/21/2023]
Abstract
The social and public health burdens of ischemic stroke have been increasing worldwide. In addition to focal brain damage, acute ischemic stroke (AIS) provokes systemic abnormalities across peripheral organs. AIS profoundly alters the autonomic nervous system, hypothalamic-pituitary-adrenal axis, and immune system, which further yield deleterious organ-specific consequences. Poststroke systemic pathological alterations in turn considerably contribute to the progression of ischemic brain injury, which accounts for the substantial impact of systemic complications on stroke outcomes. This review provides a comprehensive and updated pathophysiological model elucidating the systemic effects of AIS. To address their clinical significance and inform stroke management, we also outline the resulting systemic complications at particular stages of AIS and highlight the mechanisms. Future therapeutic strategies should attempt to integrate the treatment of primary brain lesions with interventions for secondary systemic complications, and should be tailored to patient individualized characteristics to optimize stroke outcomes.
Collapse
Affiliation(s)
- Pan Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Centre, Houston, TX 77030, USA
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
10
|
Zhang Z, Bao J. Recent Advances in Modification Approaches, Health Benefits, and Food Applications of Resistant Starch. STARCH-STARKE 2021. [DOI: 10.1002/star.202100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhongwei Zhang
- Yazhou Bay Science and Technology City Hainan Institute of Zhejiang University Yazhou Districut Sanya Hainan 572025 China
- Institute of Nuclear Agricultural Sciences College of Agriculture and Biotechnology Zhejiang University Zijingang Campus Hangzhou 310058 China
| | - Jinsong Bao
- Yazhou Bay Science and Technology City Hainan Institute of Zhejiang University Yazhou Districut Sanya Hainan 572025 China
- Institute of Nuclear Agricultural Sciences College of Agriculture and Biotechnology Zhejiang University Zijingang Campus Hangzhou 310058 China
| |
Collapse
|
11
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
12
|
Li C, Meng X, Pan Y, Li Z, Wang M, Wang Y. The Association Between Heart Rate Variability and 90-Day Prognosis in Patients With Transient Ischemic Attack and Minor Stroke. Front Neurol 2021; 12:636474. [PMID: 34122296 PMCID: PMC8193569 DOI: 10.3389/fneur.2021.636474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Low heart rate variability (HRV) is known to be associated with increased all-cause, cardiovascular, and cerebrovascular mortality but its association with clinical outcomes in patients with transient ischemic attack (TIA) or minor stroke is unclear. Methods: We selected TIA and minor stroke patients from a prospective registration study. From each continuous electrocardiograph (ECG) record, each QRS complex was detected and normal-to-normal (N-N) intervals were determined. The standard deviation of all N-N intervals (SDNN) and the square root of the mean squared differences of successive N-N intervals (RMSSD) were calculated. Logistic regression analysis and Cox regression analysis were performed to assess the outcomes of patients at 90 days, and the odds and risk ratios (OR/HR) of each index quartile were compared. Results: Compared with SDNN patients in the lowest quartile, neurological disability was significantly reduced in other quartile groups at 90 days, with significant differences [OR of group Q2 was 0.659; 95% confidence interval (CI), 0.482–0.900; p = 0.0088; OR of group Q3 was 0.662; 95% CI, 0.478–0.916; p = 0.0127; OR of group Q4 was 0.441; 95% CI, 0.305–0.639; p <0.0001]. Compared with the lowest quartile, the recurrence rate of TIA or minor stroke in patients of the two higher quartiles (Q3 and Q4) of SDNN was significantly reduced at 90 days (HR of Q3 group was 0.732; 95% CI, 0.539–0.995; p = 0.0461; HR of Q4 group was 0.528; 95% CI, 0.374–0.745; p = 0.0003). Conclusions: Based on our findings, autonomic dysfunction is an adverse indicator for neurological function prognosis and stroke recurrence 90 days after TIA or minor stroke.
Collapse
Affiliation(s)
- Changhong Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Haidian Hospital, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Mengxing Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
13
|
Lin SY, Wang YY, Chang CY, Wu CC, Chen WY, Liao SL, Chen CJ. TNF-α Receptor Inhibitor Alleviates Metabolic and Inflammatory Changes in a Rat Model of Ischemic Stroke. Antioxidants (Basel) 2021; 10:antiox10060851. [PMID: 34073455 PMCID: PMC8228519 DOI: 10.3390/antiox10060851] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia and inflammation, with their augmented interplay, are involved in cases of stroke with poor outcomes. Interrupting this vicious cycle thus has the potential to prevent stroke disease progression. Tumor necrosis factor-α (TNF-α) is an emerging molecule, which has inflammatory and metabolic roles. Studies have shown that TNF-α receptor inhibitor R-7050 possesses neuroprotective, antihyperglycemic, and anti-inflammatory effects. Using a rat model of permanent cerebral ischemia, pretreatment with R-7050 offered protection against poststroke neurological deficits, brain infarction, edema, oxidative stress, and caspase 3 activation. In the injured cortical tissues, R-7050 reversed the activation of TNF receptor-I (TNFRI), NF-κB, and interleukin-6 (IL-6), as well as the reduction of zonula occludens-1 (ZO-1). In the in vitro study on bEnd.3 endothelial cells, R-7050 reduced the decline of ZO-1 levels after TNF-α-exposure. R-7050 also reduced the metabolic alterations occurring after ischemic stroke, such as hyperglycemia and increased plasma corticosterone, free fatty acids, C reactive protein, and fibroblast growth factor-15 concentrations. In the gastrocnemius muscles of rats with stroke, R-7050 improved activated TNFRI/NF-κB, oxidative stress, and IL-6 pathways, as well as impaired insulin signaling. Overall, our findings highlight a feasible way to combat stroke disease based on an anti-TNF therapy that involves anti-inflammatory and metabolic mechanisms.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan;
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan;
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Correspondence: ; Tel.: +886-4-2359-2525 (ext. 4022)
| |
Collapse
|
14
|
Kashiwazaki D, Tomita T, Shibata T, Yamamoto S, Hori E, Akioka N, Kuwayama N, Nakatsuji Y, Noguchi K, Kuroda S. Impact of Perihematomal Edema on Infectious Complications after Spontaneous Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2021; 30:105827. [PMID: 33932750 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Intracerebral hematoma involves two mechanisms leading to brain injury: the mechanical disruption of adjacent brain tissue by the hematoma and delayed neurological injury. Delayed neurological injury involves perihematomal edema (PHE) formation. Infectious complications following intracerebral hemorrhage (ICH) are a significant contributor to post-ICH recovery. We sought to identify a correlation between PHE volumes and infectious complications following ICH. We also sought to explore the clinical impact of this association. MATERIALS AND METHODS This retrospective study included 143 patients with spontaneous ICH. CT scans were performed on admission, and 3 h, 24 h, and 72 h following admission. Hematoma and PHE volumes were calculated using a semi-automatic method. The absolute PHE volume at each time point and changes in PHE volume (ΔPHE) were calculated. Neutrophil to lymphocyte ratio (NLR) and serum C-reactive protein (CRP) levels were measured from the obtained blood samples. Neurological deterioration (ND) was assessed in all patients. RESULTS Infectious complications were associated with ΔPHE72-24 (P < 0.01), whereas there was no association between infectious complications and ΔPHE24-3 (P = 0.09) or ΔPHE3-ad (P = 0.81). There was a positive correlation between ΔPHE72-24 and NLR (r = 0.85, 95% CI: 0.79-0.90, P < 0.01) and between ΔPHE72-24 and CRP levels (r = 0.89, 95% CI: 0.84-0.92, P < 0.01). The ND rate in the group of patients with infectious complications comorbid with high ΔPHE72-24 was higher than the other patient groups (P < 0.01). CONCLUSIONS This study revealed a correlation between ΔPHE72-24 and infectious complications after spontaneous ICH, which was associated with markers of systemic inflammation. This phenotype linkage is a negative cascade that drives ND.
Collapse
Affiliation(s)
- Daina Kashiwazaki
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takahiro Tomita
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takashi Shibata
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Shusuke Yamamoto
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Emiko Hori
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Naoki Akioka
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Naoya Kuwayama
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yuji Nakatsuji
- Department of Neurology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
15
|
Liao KY, Chen CJ, Hsieh SK, Pan PH, Chen WY. Interleukin-13 ameliorates postischemic hepatic gluconeogenesis and hyperglycemia in rat model of stroke. Metab Brain Dis 2020; 35:1201-1210. [PMID: 32632665 DOI: 10.1007/s11011-020-00596-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Hyperglycemia is a well-known indicator of stroke prognosis, and one-third of nondiabetic patients develop postischemic hyperglycemia during the acute phase of stroke; this is related to relatively poor prognosis, high mortality, and impaired neurological recovery. Interleukin-13 (IL-13), a member of the Th2 cytokine family, is involved in both the regulation of immune response and glucose metabolism. Thus, we investigated the mechanism of postischemic hyperglycemia and the role of IL-13 by using a permanent middle cerebral artery occlusion (MCAO) rat model. Our results indicated that postischemic hyperglycemia was accompanied with hyperinsulinemia and increased HOMA-IR, elevated hepatic gluconeogenesis, and suppressed insulin signaling. A shift towards inflammatory response was evident with results of elevated proinflammatory cytokines and increased expression of negative regulatory proteins, suggesting an ongoing vicious cycle of inflammatory-induced insulin-resistant hyperglycemia. IL-13 treatment counteracted the proinflammatory states and abolished the vicious cycle through enhancing STAT6 and STAT3, which mediated the immune and metabolic pathways respectively; these effects resolved the formerly described pathological changes of postischemic hyperglycemia and reduced infarction size in the MCAO rats. Our findings demonstrated the importance of Th1-Th2 balance in the peripheral glucose metabolism affected by acute ischemic stroke, which provides a new perspective for the prevention and control of postischemic hyperglycemia.
Collapse
Affiliation(s)
- Keng-Ying Liao
- Department of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., Taichung City, South Dist., 402, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sheng-Kuo Hsieh
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ping-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., Taichung City, South Dist., 402, Taiwan
- Department of Pediatrics, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., Taichung City, South Dist., 402, Taiwan.
| |
Collapse
|
16
|
Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103939] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
17
|
Effects of β-Adrenergic Blockade on Metabolic and Inflammatory Responses in a Rat Model of Ischemic Stroke. Cells 2020; 9:cells9061373. [PMID: 32492962 PMCID: PMC7349353 DOI: 10.3390/cells9061373] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke provokes an inflammatory response concurrent with both sympathetic nervous system activation and hyperglycemia. Currently, their crosstalk and consequences in stroke outcomes are of clinical attraction. We have provided experimental evidence showing the suppressive effects of the nonselective β-adrenoreceptor antagonist propranolol on hyperglycemia, inflammation, and brain injury in a rat model experiencing cerebral ischemia. Pretreatment with propranolol protected against postischemic brain infarction, edema, and apoptosis. The neuroprotection caused by propranolol was accompanied by a reduction in fasting glucose, fasting insulin, glucose tolerance impairment, plasma C-reactive protein, plasma free fatty acids, plasma corticosterone, brain oxidative stress, and brain inflammation. Pretreatment with insulin alleviated-while glucose augmented-postischemic brain injury and inflammation. Additionally, the impairment of insulin signaling in the gastrocnemius muscles was noted in rats with cerebral ischemia, with propranolol improving the impairment by reducing oxidative stress and tumor necrosis factor-α signaling. The anti-inflammatory effects of propranolol were further demonstrated in isoproterenol-stimulated BV2 and RAW264.7 cells through its ability to decrease cytokine production. Despite their potential benefits, stroke-associated hyperglycemia and inflammation are commonly linked with harmful consequences. Our findings provide new insight into the anti-inflammatory, neuroprotective, and hypoglycemic mechanisms of propranolol in combating neurodegenerative diseases, such as stroke.
Collapse
|
18
|
Yang M, Wang Y, Xiong X, Xie B, Liu J, Yin J, Zi L, Wang X, Tang Y, Huang C, Zhao Q. SK4 calcium-activated potassium channels activated by sympathetic nerves enhances atrial fibrillation vulnerability in a canine model of acute stroke. Heliyon 2020; 6:e03928. [PMID: 32420493 PMCID: PMC7215192 DOI: 10.1016/j.heliyon.2020.e03928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/24/2020] [Accepted: 05/01/2020] [Indexed: 12/02/2022] Open
Abstract
Background New-onset atrial fibrillation (AF) is common in patients with acute stroke (AS). Studies have shown that intermediate-conductance calcium-activated potassium channel channels (SK4) play an important role in cardiomyocyte automaticity. The aim of this study was to investigate the effects of SK4 on AF vulnerability in dogs with AS. Experimental Eighteen dogs were randomly divided into a control group, AS group and left stellate ganglion ablation (LSGA) group. In the control group, dogs received craniotomy without right middle cerebral artery occlusion (MCAO). AS dogs were established using a cerebral ischemic model with right MCAO. LSGA dogs underwent MCAO, and LSGA was performed. Results Three days later, the dispersion of the effective refractory period (dERP) and AF vulnerability in the AS group were significantly increased compared with those in the control group and LSGA group. However, no significant difference in dERP and AF vulnerability was found between the control group and the LSGA group. The SK4 inhibitor (TRAM-34) completely inhibited the inducibility of AF in AS dogs. SK4 expression and levels of noradrenaline (NE), β1-AR, p38 and c-Fos in the atrium were higher in the AS dogs than in the control group or LSGA group. However, no significant difference in SK4 expression or levels of NE, β1-AR, p38 and c-Fos in the left atrium was observed between the control group and LSGA group. Conclusion SK4 plays a key role in AF vulnerability in a canine model with AS. The effects of LSGA on AF vulnerability were associated with the p38 signaling pathways.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, 430060, PR China
| | - Baojun Xie
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan City, 430060, PR China
| | - Jia Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, 430060, PR China
| | - Junkui Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Liuliu Zi
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan City, 430060, PR China
- Corresponding author.
| |
Collapse
|
19
|
Dai H, Yuan Y, Yin S, Zhang Y, Han Y, Sun L, Li T, Xu J, Sheng L, Gong Y, Li Y. Metoprolol Inhibits Profibrotic Remodeling of Epicardial Adipose Tissue in a Canine Model of Chronic Obstructive Sleep Apnea. J Am Heart Assoc 2020; 8:e011155. [PMID: 30686096 PMCID: PMC6405574 DOI: 10.1161/jaha.118.011155] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Whether chronic obstructive sleep apnea ( OSA ) could promote epicardial adipose tissue ( EAT ) secretion of profibrotic adipokines, and thereby contribute to atrial fibrosis, and the potential therapeutic effects of metoprolol remain unknown. Methods and Results A chronic OSA canine model was established by repeatedly clamping the endotracheal tube for and then reopening it for 4 hours every other day for 12 weeks. In a metoprolol treatment group, metoprolol succinate was administered daily for 12 weeks. The EAT infiltration and left atrial fibrosis were examined. The expressions of adipokines secreted by EAT and hypoxic 3T3-L1 adipocytes were detected. The changes in collagen synthesis, transforming growth factor-β1 expression, and cell differentiation and proliferation in cardiac fibroblasts induced by hypoxic 3T3-L1 adipocyte-derived conditioned medium were further analyzed. Chronic OSA induced infiltration of EAT into the left atrium. OSA enhanced the profibrotic effect of EAT on the adjacent atrial myocardium. Moreover, OSA induced profibrotic cytokine secretion from EAT . We also found that hypoxia induced adipokine secretion in cultured adipocytes, and the medium conditioned by the hypoxic adipocytes increased collagen and transforming growth factor-β1 protein expression and cell proliferation of cardiac fibroblasts. More importantly, metoprolol attenuated infiltration of EAT and alleviated the profibrotic effect of EAT by inhibiting adipokine secretion. Metoprolol also inhibited hypoxia-induced adipokine secretion in adipocytes and thereby blocked the hypoxic adipocyte-derived conditioned medium-induced fibrotic response of cardiac fibroblasts. Conclusions Chronic OSA enhanced the profibrotic effect of EAT on the neighboring atrial myocardium by stimulating the secretion of profibrotic adipokines from EAT , which was significantly attenuated by metoprolol. This study gives insights into mechanisms underlying OSA -induced atrial fibrillation and also provides experimental evidence for the protective effects of metoprolol.
Collapse
Affiliation(s)
- Hui Dai
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China.,2 Department of Emergency Xinhua Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yue Yuan
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Shuangli Yin
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Yun Zhang
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Yu Han
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Li Sun
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Tiankai Li
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Jicheng Xu
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Li Sheng
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Yongtai Gong
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| | - Yue Li
- 1 Department of Cardiology the First Affiliated Hospital Harbin Medical University Harbin China
| |
Collapse
|
20
|
Stoker C, Andreoli MF, Kass L, Bosquiazzo VL, Rossetti MF, Canesini G, Luque EH, Ramos JG. Perinatal exposure to bisphenol A (BPA) impairs neuroendocrine mechanisms regulating food intake and kisspetin system in adult male rats. Evidences of metabolic disruptor hypothesis. Mol Cell Endocrinol 2020; 499:110614. [PMID: 31606416 DOI: 10.1016/j.mce.2019.110614] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) is a compound used in the polymerization of plastic polycarbonates. It is an endocrine disruptor and it has been postulated to be an obesogen. Our objective was to determine the influence of perinatal exposure to BPA on body weight, hormone levels, metabolic parameters and hypothalamic signals that regulate food intake and kisspeptin system in adult male rats. Male rats were exposed to 50 μg/kg/day of BPA or vehicle from day 9 of gestation to weaning in the drinking water. Since weaning, they were fed with control or high fat diet for 20 weeks. Perinatal exposure to BPA impaired glucose homeostasis, induced obesity and increased food intake in adult male rats altering hypothalamic signals, partially mimicking and/or producing an exacerbation of the effects of feeding fat diet. We also observed an increase in kisspeptin expression by BPA exposure. Evidences shown in this work support the metabolic disruptor hypothesis for BPA.
Collapse
Affiliation(s)
- Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - M Florencia Andreoli
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Verónica L Bosquiazzo
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - M Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - G Canesini
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| |
Collapse
|
21
|
Chamarthi B, Vinik A, Ezrokhi M, Cincotta AH. Circadian-timed quick-release bromocriptine lowers elevated resting heart rate in patients with type 2 diabetes mellitus. Endocrinol Diabetes Metab 2020; 3:e00101. [PMID: 31922028 PMCID: PMC6947713 DOI: 10.1002/edm2.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Sympathetic nervous system (SNS) overactivity is a risk factor for insulin resistance and cardiovascular disease (CVD). We evaluated the impact of bromocriptine-QR, a dopamine-agonist antidiabetes medication, on elevated resting heart rate (RHR) (a marker of SNS overactivity in metabolic syndrome), blood pressure (BP) and the relationship between bromocriptine-QR's effects on RHR and HbA1c in type 2 diabetes subjects. DESIGN AND SUBJECTS RHR and BP changes were evaluated in this post hoc analysis of data from a randomized controlled trial in 1014 type 2 diabetes subjects randomized to bromocriptine-QR vs placebo added to standard therapy (diet ± ≤2 oral antidiabetes medications) for 24 weeks without concomitant antihypertensive or antidiabetes medication changes, stratified by baseline RHR (bRHR). RESULTS In subjects with bRHR ≥70 beats/min, bromocriptine-QR vs placebo reduced RHR by -3.4 beats/min and reduced BP (baseline 130/79; systolic, diastolic, mean arterial BP reductions [mm Hg]: -3.6 [P = .02], -1.9 [P = .05], -2.5 [P = .02]). RHR reductions increased with higher baseline HbA1c (bHbA1c) (-2.7 [P = .03], -5 [P = .002], -6.1 [P = .002] with bHbA1c ≤7, >7, ≥7.5%, respectively] in the bRHR ≥70 group and more so with bRHR ≥80 (-4.5 [P = .07], -7.8 [P = .015], -9.9 [P = .005]). Subjects with bRHR <70 had no significant change in RHR or BP. With bHbA1c ≥7.5%, %HbA1c reductions with bromocriptine-QR vs placebo were -0.50 (P = .04), -0.73 (P = .005) and -1.22 (P = .008) with bRHR <70, ≥70 and ≥80, respectively. With bRHR ≥70, the magnitude of bromocriptine-QR-induced RHR reduction was an independent predictor of bromocriptine-QR's HbA1c lowering effect. CONCLUSION Bromocriptine-QR lowers elevated RHR with concurrent decrease in BP and hyperglycaemia. These findings suggest a potential sympatholytic mechanism contributing to bromocriptine-QR's antidiabetes effect and potentially its previously demonstrated effect to reduce CVD events.
Collapse
Affiliation(s)
| | - Aaron Vinik
- Eastern Virginia Medical School Strelitz Diabetes CenterNorfolkVirginia
| | | | | |
Collapse
|
22
|
Fröhlich K, Macha K, Gerner ST, Bobinger T, Schmidt M, Dörfler A, Hilz MJ, Schwab S, Seifert F, Kallmünzer B, Winder K. Angioedema in Stroke Patients With Thrombolysis. Stroke 2019; 50:1682-1687. [PMID: 31182002 DOI: 10.1161/strokeaha.119.025260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Oral angioedema (OA) is a rare but life-threatening complication in patients with ischemic stroke receiving intravenous thrombolysis with r-tPA (recombinant tissue-type plasminogen activator). This study intended to determine associations between thrombolysis-related OA and ischemic stroke lesion sites using a voxel-wise lesion analysis. Methods- Prospective registry data were used to identify ischemic stroke patients with thrombolysis-related OA between 2002 and 2018. For the study registry, ethics approval was obtained by the Ethics Committee of the Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg (clinical registry registration: 377_17Bc). Ischemic stroke patients with thrombolysis treatment but without OA admitted in the years 2011 and 2012 comprised the control group. Ischemic lesions were manually outlined on magnetic resonance imaging (1.5T or 3T) or computed tomographic scans and transformed into stereotaxic space. We determined the lesion overlap and compared the absence or presence of OA voxel-wise between patients with and without lesions in a given voxel using the Liebermeister test. Stroke severity was rated using the National Institutes of Health Stroke Scale score, and blood pressure, heart rate, blood glucose levels, and body temperature were determined on admission. Results- Fifteen ischemic stroke patients with thrombolysis-related OA were identified. The voxel-wise analysis yielded associations between OA and ischemic lesions in the insulo-opercular region with a right hemispheric dominance. Mean blood pressure was significantly lower in patients with OA than in controls. Age, National Institutes of Health Stroke Scale scores, infarct volumes, heart rate, and blood glucose levels did not differ between patients with and without OA. Conclusions- The voxel-wise analysis linked thrombolysis-related OA to right insulo-opercular lesions. The lower blood pressure in patients with thrombolysis-related OA may reflect bradykinin effects causing vasodilatation and increasing vascular permeability.
Collapse
Affiliation(s)
- Kilian Fröhlich
- From the Department of Neurology (K.F., K.M., S.T.G., T.B., M.J.H., S.S., F.S., B.K., K.W.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Kosmas Macha
- From the Department of Neurology (K.F., K.M., S.T.G., T.B., M.J.H., S.S., F.S., B.K., K.W.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Stefan T Gerner
- From the Department of Neurology (K.F., K.M., S.T.G., T.B., M.J.H., S.S., F.S., B.K., K.W.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Tobias Bobinger
- From the Department of Neurology (K.F., K.M., S.T.G., T.B., M.J.H., S.S., F.S., B.K., K.W.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Manuel Schmidt
- Department of Neuroradiology (M.S., A.D.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Arnd Dörfler
- Department of Neuroradiology (M.S., A.D.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Max J Hilz
- From the Department of Neurology (K.F., K.M., S.T.G., T.B., M.J.H., S.S., F.S., B.K., K.W.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY (M.J.H.)
| | - Stefan Schwab
- From the Department of Neurology (K.F., K.M., S.T.G., T.B., M.J.H., S.S., F.S., B.K., K.W.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Frank Seifert
- From the Department of Neurology (K.F., K.M., S.T.G., T.B., M.J.H., S.S., F.S., B.K., K.W.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Bernd Kallmünzer
- From the Department of Neurology (K.F., K.M., S.T.G., T.B., M.J.H., S.S., F.S., B.K., K.W.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Klemens Winder
- From the Department of Neurology (K.F., K.M., S.T.G., T.B., M.J.H., S.S., F.S., B.K., K.W.), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| |
Collapse
|
23
|
Luger S, Schwebler A, Vutukuri R, Bouzas NF, Labocha S, Schreiber Y, Brunkhorst R, Steinmetz H, Pfeilschifter J, Pfeilschifter W. Beta adrenoceptor blockade ameliorates impaired glucose tolerance and alterations of the cerebral ceramide metabolism in an experimental model of ischemic stroke. Ther Adv Neurol Disord 2018; 11:1756286418769830. [PMID: 29774054 PMCID: PMC5949927 DOI: 10.1177/1756286418769830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Sphingolipids are versatile signaling molecules derived from membrane lipids of eukaryotic cells. Ceramides regulate cellular processes such as proliferation, differentiation and apoptosis and are involved in cellular stress responses. Experimental evidence suggests a pivotal role of sphingolipids in the pathogenesis of cardiovascular diseases, including ischemic stroke. A neuroprotective effect has been shown for beta-adrenergic antagonists in rodent stroke models and supported by observational clinical data. However, the exact underlying pathophysiological mechanisms are still under investigation. We aimed to examine the influence of propranolol on the ceramide metabolism in the stroke-affected brain. Methods: Mice were subjected to 60 or 180 min transient middle cerebral artery occlusion (tMCAO) and infarct size, functional neurological deficits, glucose tolerance, and brain ceramide levels were assessed after 12, 24, and 72 h to evaluate whether the latter two processes occur in a similar time frame. Next, we assessed the effects of propranolol (10 mg/kg bw) at 0, 4 and 8 h after tMCAO and FTY720 (fingolimod; 1 mg/kg) on infarct size, functional outcome, immune cell counts and brain ceramide levels at 24 h after 60 min tMCAO. Results: We found a temporal coincidence between stroke-associated impaired glucose tolerance and brain ceramide accumulation. Whereas propranolol reduced ischemic lesion size, improved functional outcome and reduced brain ceramide accumulation without an effect on circulating immune cells, FTY720 showed the known neuroprotective effect and strong reduction of circulating immune cells without affecting brain ceramide accumulation. Conclusions: Propranolol ameliorates both stroke-associated impairment of glucose tolerance and brain ceramide accumulation which are temporally linked, strengthening the evidence for a role of the sympathetic nervous system in regulating post-stroke glucose metabolism and its metabolic consequences in the brain.
Collapse
Affiliation(s)
- Sebastian Luger
- Department of Neurology, Goethe University, Frankfurt am Main, Germany; Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Annette Schwebler
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | | | - Sandra Labocha
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Robert Brunkhorst
- Department of Neurology, Goethe University, Frankfurt am Main, Germany; Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Waltraud Pfeilschifter
- Department of Neurology, Goethe University, Neurovascular Lipid Signalling Group (NLSG), Schleusenweg 2-16, Frankfurt am Main, 60528, Germany
| |
Collapse
|
24
|
Bai W, Li W, Ning YL, Li P, Zhao Y, Yang N, Jiang YL, Liang ZP, Jiang DP, Wang Y, Zhang M, Zhou YG. Blood Glutamate Levels Are Closely Related to Acute Lung Injury and Prognosis after Stroke. Front Neurol 2018; 8:755. [PMID: 29403427 PMCID: PMC5785722 DOI: 10.3389/fneur.2017.00755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/29/2017] [Indexed: 11/13/2022] Open
Abstract
Background Acute lung injury (ALI) is a serious complication of stroke that occurs with a high incidence. Our preclinical results indicated that ALI might be related to blood glutamate levels after brain injury. The purpose of this study was to assess dynamic changes in blood glutamate levels in patients with stroke and to determine the correlation between blood glutamate levels, ALI, and long-term prognosis after stroke. Methods Venous blood samples were collected from controls and patients with stroke at admission and on the third and seventh day after the onset of stroke. Patients were followed for 3 months. The correlations among blood glutamate levels, severities of stroke and ALI, and long-term outcomes were analyzed, and the predictive values of blood glutamate levels and severity scores for ALI were assessed. Results In this study, a total of 384 patients with stroke were enrolled, with a median age of 59 years. Patients showed significantly increased blood glutamate levels within 7 days of stroke onset (p < 0.05), and patients with more severe injuries showed higher blood glutamate levels. Moreover, blood glutamate levels were closely related to the occurrence (adjusted odds ratio, 3.022, p = 0.003) and severity (p < 0.001) of ALI and the long-term prognosis after stroke (p < 0.05), and they were a more accurate predictor of ALI than the more commonly used severity scores (p < 0.01). Conclusion These results indicated that an increased blood glutamate level was closely related to the development of ALI and a poor prognosis after stroke. Clinical Trial Registration http://www.chictr.org.cn, identifier ChiCTR-RPC-15006770.
Collapse
Affiliation(s)
- Wei Bai
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Li
- Department of Neurology, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ya-Lei Ning
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ping Li
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan Zhao
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Yang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu-Lin Jiang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ze-Ping Liang
- Department of ICU, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Dong-Po Jiang
- Department of ICU, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Department of Neurology, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Meng Zhang
- Department of Neurology, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Haley MJ, Mullard G, Hollywood KA, Cooper GJ, Dunn WB, Lawrence CB. Adipose tissue and metabolic and inflammatory responses to stroke are altered in obese mice. Dis Model Mech 2017; 10:1229-1243. [PMID: 28798136 PMCID: PMC5665457 DOI: 10.1242/dmm.030411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Obesity is an independent risk factor for stroke, although several clinical studies have reported that obesity improves stroke outcome. Obesity is hypothesised to aid recovery by protecting against post-stroke catabolism. We therefore assessed whether obese mice had an altered metabolic and inflammatory response to stroke. Obese ob/ob mice underwent a 20-min middle cerebral artery occlusion and 24-h reperfusion. Lipid metabolism and expression of inflammatory cytokines were assessed in the plasma, liver and adipose tissue. The obese-specific metabolic response to stroke was assessed in plasma using non-targeted ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) metabolomics coupled with univariate and multivariate analysis. Obesity had no effect on the extent of weight loss 24 h after stroke but affected the metabolic and inflammatory responses to stroke, predominantly affecting lipid metabolism. Specifically, obese mice had increases in plasma free fatty acids and expression of adipose lipolytic enzymes. Metabolomics identified several classes of metabolites affected by stroke in obese mice, including fatty acids and membrane lipids (glycerophospholipids, lysophospholipids and sphingolipids). Obesity also featured increases in inflammatory cytokines in the plasma and adipose tissue. Overall, these results demonstrate that obesity affected the acute metabolic and inflammatory response to stroke and suggest a potential role for adipose tissue in this effect. These findings could have implications for longer-term recovery and also further highlight the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers for stroke. However, further work is required to assess whether these changes translate into long-term effects on recovery. Summary: Obesity, a co-morbidity for stroke, affected the acute metabolic and inflammatory response to stroke, highlighting the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers.
Collapse
Affiliation(s)
- Michael J Haley
- Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Graham Mullard
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
| | - Katherine A Hollywood
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Garth J Cooper
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland 1020, New Zealand.,Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Warwick B Dunn
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catherine B Lawrence
- Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
26
|
Lazzarino GP, Andreoli MF, Rossetti MF, Stoker C, Tschopp MV, Luque EH, Ramos JG. Cafeteria diet differentially alters the expression of feeding-related genes through DNA methylation mechanisms in individual hypothalamic nuclei. Mol Cell Endocrinol 2017; 450:113-125. [PMID: 28479374 DOI: 10.1016/j.mce.2017.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
We evaluated the effect of cafeteria diet (CAF) on the mRNA levels and DNA methylation state of feeding-related neuropeptides, and neurosteroidogenic enzymes in discrete hypothalamic nuclei. Besides, the expression of steroid hormone receptors was analyzed. Female rats fed with CAF from weaning increased their energy intake, body weight, and fat depots, but did not develop metabolic syndrome. The increase in energy intake was related to an orexigenic signal of paraventricular (PVN) and ventromedial (VMN) nuclei, given principally by upregulation of AgRP and NPY. This was mildly counteracted by the arcuate nucleus, with decreased AgRP expression and increased POMC and kisspeptin expression. CAF altered the transcription of neurosteroidogenic enzymes in PVN and VMN, and epigenetic mechanisms associated with differential promoter methylation were involved. The changes observed in the hypothalamic nuclei studied could add information about their differential role in food intake control and how their action is disrupted in obesity.
Collapse
Affiliation(s)
- Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - María Florencia Andreoli
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - María Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - María Virgina Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Enrique Hugo Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
27
|
Harada S, Tokuyama S. [Involvement of communication system between brain and peripheral tissues on the development of post-ischemic glucose intolerance induced by cerebral neuronal damage]. Nihon Yakurigaku Zasshi 2016; 148:34-38. [PMID: 27430677 DOI: 10.1254/fpj.148.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
28
|
Jeong SI, Shin JA, Cho S, Kim HW, Lee JY, Kang JL, Park EM. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice. Neurobiol Aging 2016; 44:74-84. [PMID: 27318135 DOI: 10.1016/j.neurobiolaging.2016.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/05/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.
Collapse
Affiliation(s)
- Sae Im Jeong
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jin A Shin
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sunghee Cho
- Department of Neurology/Neuroscience, Brain & Mind Research Institute, Weill Cornell Medical College at Burke Medical Research Institute, White Plains, NY, USA
| | - Hye Won Kim
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ji Yoon Lee
- School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Lin SY, Wang YY, Chuang YH, Chen CJ. Skeletal muscle proteolysis is associated with sympathetic activation and TNF-α-ubiquitin-proteasome pathway in liver cirrhotic rats. J Gastroenterol Hepatol 2016; 31:890-6. [PMID: 26395120 DOI: 10.1111/jgh.13159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/28/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM This study examined the effects of adrenergic blockade on muscle wasting and expression of the ubiquitin-proteasome system, tumor necrosis factor-α (TNF-α) and its signaling pathways in skeletal muscles of cirrhotic rats. METHODS Cirrhosis was induced by bile duct ligation in adult male Sprague-Dawley rats for 5 weeks. Oral administration of propranolol (75 mg/kg per day) and intraperitoneal administration of TNF-α receptor antagonist (100 µg/kg per day) were delivered for the last 7 and 14 days experimental periods, respectively. RESULTS Bile duct ligation caused a reduction of myosin heavy chain protein and muscle wasting. The release of free tyrosine and 3-methylhistidine, MAFbx and MuRF-1 ubiquitin ligase expression, myosin heavy chain protein ubiquitination, and 20S proteasome activity were higher in skeletal muscles of cirrhotic rats than in sham controls. In addition, circulating norepinephrine, protein levels of muscle TNF-α, TNF-α receptor-1, and TNF receptor-associated factor-2, phosphorylation of IKK-α/β, IκB-α, and p65, and NF-κB activity were also increased. Administration of propranolol and TNF-α receptor antagonist led to reduction of post-receptor actions of TNF-α and ubiquitin-proteasome activity in cirrhotic rats. CONCLUSIONS Our findings suggest a potential role of the sympathetic system, in association with pro-inflammatory responses, in the pathogenesis of muscle wasting in liver cirrhosis.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Division of Endocrinology and Metabolism.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Yu Wang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | - Chun-Jung Chen
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital
| |
Collapse
|
30
|
Chen WY, Mao FC, Liu CH, Kuan YH, Lai NW, Wu CC, Chen CJ. Chromium supplementation improved post-stroke brain infarction and hyperglycemia. Metab Brain Dis 2016; 31:289-97. [PMID: 26477944 DOI: 10.1007/s11011-015-9749-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/11/2015] [Indexed: 12/17/2022]
Abstract
Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.
Collapse
Affiliation(s)
- Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Frank Chiahung Mao
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hsin Liu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | - Nai-Wei Lai
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Financial and Computational Mathematics, Providence University, Taichung, Taiwan
| | - Chun-Jung Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Taichung City, 407, Taiwan.
| |
Collapse
|
31
|
Shin JA, Jeong SI, Kim M, Yoon JC, Kim HS, Park EM. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice. Brain Behav Immun 2015; 50:221-231. [PMID: 26184082 DOI: 10.1016/j.bbi.2015.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/26/2015] [Accepted: 07/12/2015] [Indexed: 01/22/2023] Open
Abstract
Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.
Collapse
Affiliation(s)
- Jin A Shin
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, 158-710, Republic of Korea
| | - Sae Im Jeong
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, 158-710, Republic of Korea
| | - Minsuk Kim
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Joo Chun Yoon
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, 158-710, Republic of Korea; Department of Microbiology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Hee-Sun Kim
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, 158-710, Republic of Korea; Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, 158-710, Republic of Korea.
| |
Collapse
|
32
|
Cho YS, Cho JH, Shin BN, Cho GS, Kim IH, Park JH, Ahn JH, Ohk TG, Cho BR, Kim YM, Hong S, Won MH, Lee JC. Ischemic preconditioning maintains the immunoreactivities of glucokinase and glucokinase regulatory protein in neurons of the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 2015; 12:4939-46. [PMID: 26134272 PMCID: PMC4581829 DOI: 10.3892/mmr.2015.4021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/15/2015] [Indexed: 01/06/2023] Open
Abstract
Glucokinase (GK) is involved in the control of blood glucose homeostasis. In the present study, the effect of ischemic preconditioning (IPC) on the immunoreactivities of GK and its regulatory protein (GKRP) following 5 min of transient cerebral ischemia was investigated in gerbils. The gerbils were randomly assigned to four groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia, followed by 1 day of recovery. In the ischemia-operated group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) at 5 days post-ischemia; however, in the IPC+ischemia-operated group, the neurons in the SP were well protected. Following immunohistochemical investigation, the immunoreactivities of GK and GKRP in the neurons of the SP were markedly decreased in the CA1, but not the CA2/3, from 2 days post-ischemia, and were almost undetectable in the SP 5 days post-ischemia. In the IPC + ischemia-operated group, the immunoreactivities of GK and GKRP in the SP of the CA1 were similar to those in the sham-group. In brief, the findings of the present study demonstrated that IPC notably maintained the immunoreactivities of GK and GKRP in the neurons of the SP of CA1 following ischemia-reperfusion. This indicated that GK and GKRP may be necessary for neuron survival against transient cerebral ischemia.
Collapse
Affiliation(s)
- Young Shin Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Taek Geun Ohk
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Byung-Ryul Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| |
Collapse
|
33
|
|
34
|
van Dijk G, van Heijningen S, Reijne AC, Nyakas C, van der Zee EA, Eisel ULM. Integrative neurobiology of metabolic diseases, neuroinflammation, and neurodegeneration. Front Neurosci 2015; 9:173. [PMID: 26041981 PMCID: PMC4434977 DOI: 10.3389/fnins.2015.00173] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease with a number of leading mechanisms, including neuroinflammation, processing of amyloid precursor protein (APP) to amyloid β peptide, tau protein hyperphosphorylation, relocalization, and deposition. These mechanisms are propagated by obesity, the metabolic syndrome and type-2 diabetes mellitus. Stress, sedentariness, dietary overconsumption of saturated fat and refined sugars, and circadian derangements/disturbed sleep contribute to obesity and related metabolic diseases, but also accelerate age-related damage and senescence that all feed the risk of developing AD too. The complex and interacting mechanisms are not yet completely understood and will require further analysis. Instead of investigating AD as a mono- or oligocausal disease we should address the disease by understanding the multiple underlying mechanisms and how these interact. Future research therefore might concentrate on integrating these by “systems biology” approaches, but also to regard them from an evolutionary medicine point of view. The current review addresses several of these interacting mechanisms in animal models and compares them with clinical data giving an overview about our current knowledge and puts them into an integrated framework.
Collapse
Affiliation(s)
- Gertjan van Dijk
- Department Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Steffen van Heijningen
- Department Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Aaffien C Reijne
- Department Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands ; Systems Biology Centre for Energy Metabolism and Ageing, University Medical Center, University of Groningen Groningen, Netherlands
| | - Csaba Nyakas
- Department Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Eddy A van der Zee
- Department Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Ulrich L M Eisel
- Department Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands ; University Centre of Psychiatry, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| |
Collapse
|
35
|
Abstract
Acute systemic inflammatory reaction superimposed on chronic low-grade inflammation accompanies acute ischemic stroke. Elevated blood levels of systemic inflammatory markers such as IL-6 or C-reactive protein are associated with an unfavorable functional outcome and increased mortality after stroke. Animal studies have demonstrated a causal relationship between systemic inflammation and ischemic brain damage. The mechanisms linking systemic inflammation with poor outcome include increased neutrophil infiltration of cerebral cortex, disruption of the blood-brain barrier, impaired tissue reperfusion, increased platelet activation and microvascular coagulation and complement-dependent brain injury. Non-selective (e.g., by statins) or selective (e.g., by inhibition of IL-6) attenuation of systemic inflammation, enhancement of systemic anti-inflammatory response (e.g., by infusion of IL-1 receptor antagonist), prevention of infections that exacerbate systemic inflammation or inhibition of neuronal pathways triggering inflammatory reaction are potential therapeutic targets in stroke patients. This review discusses the relationship between systemic inflammation, cerebral ischemia and prognosis in the context of therapeutic strategies.
Collapse
Affiliation(s)
- Tomasz Dziedzic
- Department of Neurology, Jagiellonian University Medical Collage, ul. Botaniczna 3, 31-503 Kraków, Poland
| |
Collapse
|
36
|
Andreoli MF, Stoker C, Rossetti MF, Alzamendi A, Castrogiovanni D, Luque EH, Ramos JG. Withdrawal of dietary phytoestrogens in adult male rats affects hypothalamic regulation of food intake, induces obesity and alters glucose metabolism. Mol Cell Endocrinol 2015; 401:111-9. [PMID: 25486512 DOI: 10.1016/j.mce.2014.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022]
Abstract
The absence of phytoestrogens in the diet during pregnancy has been reported to result in obesity later in adulthood. We investigated whether phytoestrogen withdrawal in adult life could alter the hypothalamic signals that regulate food intake and affect body weight and glucose homeostasis. Male Wistar rats fed from conception to adulthood with a high phytoestrogen diet were submitted to phytoestrogen withdrawal by feeding a low phytoestrogen diet, or a high phytoestrogen-high fat diet. Withdrawal of dietary phytoestrogens increased body weight, adiposity and energy intake through an orexigenic hypothalamic response characterized by upregulation of AGRP and downregulation of POMC. This was associated with elevated leptin and T4, reduced TSH, testosterone and estradiol, and diminished hypothalamic ERα expression, concomitant with alterations in glucose tolerance. Removing dietary phytoestrogens caused manifestations of obesity and diabetes that were more pronounced than those induced by the high phytoestrogen-high fat diet intake.
Collapse
Affiliation(s)
- María Florencia Andreoli
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Laboratorio de Endocrinología y Tumores Hormonodependientes, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Laboratorio de Endocrinología y Tumores Hormonodependientes, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Laboratorio de Endocrinología y Tumores Hormonodependientes, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana Alzamendi
- Unidad de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-CICPBA), La Plata, Argentina
| | - Daniel Castrogiovanni
- Unidad de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular IMBICE (CONICET-CICPBA), La Plata, Argentina
| | - Enrique H Luque
- Laboratorio de Endocrinología y Tumores Hormonodependientes, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Laboratorio de Endocrinología y Tumores Hormonodependientes, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
37
|
Jotic A, Milicic T, Covickovic Sternic N, Kostic VS, Lalic K, Jeremic V, Mijajlovic M, Lukic L, Rajkovic N, Civcic M, Macesic M, Seferovic JP, Stanarcic J, Aleksic S, Lalic NM. Decreased Insulin Sensitivity and Impaired Fibrinolytic Activity in Type 2 Diabetes Patients and Nondiabetics with Ischemic Stroke. Int J Endocrinol 2015; 2015:934791. [PMID: 26089903 PMCID: PMC4452095 DOI: 10.1155/2015/934791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
We analyzed (a) insulin sensitivity (IS), (b) plasma insulin (PI), and (c) plasminogen activator inhibitor-1 (PAI-1) in type 2 diabetes (T2D) patients with (group A) and without (group B) atherothrombotic ischemic stroke (ATIS), nondiabetics with ATIS (group C), and healthy controls (group D). IS was determined by minimal model (Si). Si was lower in A versus B (1.18 ± 0.67 versus 2.82 ± 0.61 min-1/mU/L × 104; P < 0.001) and in C versus D (3.18 ± 0.93 versus 6.13 ± 1.69 min-1/mU/L × 104; P < 0.001). PI and PAI-1 were higher in A versus B (PI: 19.61 ± 4.08 versus 14.91 ± 1.66 mU/L; P < 0.001, PAI-1: 7.75 ± 1.04 versus 4.57 ± 0.72 mU/L; P < 0.001) and in C versus D (PI: 15.14 ± 2.20 versus 7.58 ± 2.05 mU/L; P < 0.001, PAI-1: 4.78 ± 0.98 versus 3.49 ± 1.04 mU/L; P < 0.001). Si correlated with PAI-1 in T2D patients and nondiabetics, albeit stronger in T2D. Binary logistic regression identified insulin, PAI-1, and Si as independent predictors for ATIS in T2D patients and nondiabetics. The results imply that insulin resistance and fasting hyperinsulinemia might exert their atherogenic impact through the impaired fibrinolysis.
Collapse
Affiliation(s)
- Aleksandra Jotic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Tanja Milicic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Nadezda Covickovic Sternic
- Clinic for Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 6, 11000 Belgrade, Serbia
| | - Vladimir S. Kostic
- Clinic for Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 6, 11000 Belgrade, Serbia
| | - Katarina Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Veljko Jeremic
- Department for Operations Research and Statistics, Faculty of Organizational Sciences, University of Belgrade, Jove Ilica 154, 11 000 Belgrade, Serbia
| | - Milija Mijajlovic
- Clinic for Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 6, 11000 Belgrade, Serbia
| | - Ljiljana Lukic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Natasa Rajkovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Milorad Civcic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Marija Macesic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Jelena P. Seferovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Jelena Stanarcic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Sandra Aleksic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Nebojsa M. Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
- *Nebojsa M. Lalic:
| |
Collapse
|
38
|
De Raedt S, De Vos A, De Keyser J. Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area? J Neurol Sci 2014; 348:24-34. [PMID: 25541326 DOI: 10.1016/j.jns.2014.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 01/04/2023]
Abstract
Impaired autonomic function, characterized by a predominance of sympathetic activity, is common in patients with acute ischemic stroke. This review describes methods to measure autonomic dysfunction in stroke patients. It summarizes a potential relationship between ischemic stroke-associated autonomic dysfunction and factors that have been associated with worse outcome, including cardiac complications, blood pressure variability changes, hyperglycemia, immune depression, sleep disordered breathing, thrombotic effects, and malignant edema. Involvement of the insular cortex has been suspected to play an important role in causing sympathovagal imbalance, but its exact role and that of other brain regions remain unclear. Although sympathetic overactivity in patients with ischemic stroke appears to be a negative prognostic factor, it remains to be seen whether therapeutic strategies that reduce sympathetic activity or increase parasympathetic activity might improve outcome.
Collapse
Affiliation(s)
- Sylvie De Raedt
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Aurelie De Vos
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Jacques De Keyser
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Neurology, Universitair Medisch Centrum Groningen, Groningen, The Netherlands.
| |
Collapse
|
39
|
Zhang S, Zuo W, Guo XF, He WB, Chen NH. Cerebral glucose transporter: The possible therapeutic target for ischemic stroke. Neurochem Int 2014; 70:22-9. [DOI: 10.1016/j.neuint.2014.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/02/2014] [Accepted: 03/08/2014] [Indexed: 02/01/2023]
|
40
|
Wang YY, Lin SY, Chuang YH, Sheu WHH, Tung KC, Chen CJ. Activation of hepatic inflammatory pathways by catecholamines is associated with hepatic insulin resistance in male ischemic stroke rats. Endocrinology 2014; 155:1235-46. [PMID: 24437486 DOI: 10.1210/en.2013-1593] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Patients who experience acute ischemic stroke may develop hyperglycemia, even in the absence of diabetes. In the current study we determined the effects of acute stroke on hepatic insulin signaling, TNF-α expression, endoplasmic reticulum (ER) stress, the activities of c-Jun N-terminal kinase (JNK), inhibitor κB kinase β (IKK-β), and nuclear factor-κB (NF-κB) pathways. Rats with cerebral ischemia developed higher blood glucose, and insulin levels, and insulin resistance index, as well as hepatic gluconeogenic enzyme expression compared with the sham-treated group. The hepatic TNF-α mRNA and protein levels were elevated in stroke rats in association with increased ER stress, phosphorylation of JNK1/2 and IKK-β proteins, IκB/NF-κB signaling, and phosphorylation of insulin receptor-1 (IRS-1) at serine residue. The basal and insulin-stimulated tyrosine phosphorylation of IRS-1 and AKT proteins was reduced. In addition, acute stroke increased circulating catecholamines in association with hepatic adrenergic signaling activation. After administration of a nonselective β-adrenergic receptor blocker (propranolol) before induction of cerebral ischemic injury, hepatic adrenergic transduction, TNF-α expression, ER stress, and the activation of the JNK1/2, IKK-β, and NF-κB pathways, and serine phosphorylation of IRS-1 were all attenuated. In contrast, the phosphorylated IRS-1 at tyrosine site and AKT levels were partially restored with improved poststroke hyperglycemia and insulin resistance index. These results suggest that acute ischemic stroke can activate proinflammatory pathways in the liver by the catecholamines and is associated with the development of hepatic insulin resistance.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Division of Family Medicine (Y.Y.W.), Division of Endocrinology and Metabolism (S.Y. L., Y.H.C., W.H.H.S.), Department of Medical Research (C.J.C.), Taichung Veterans General Hospital, Taichung, Taiwan; and Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan (Y.Y.W., K.C.T.); and School of Medicine, National Yang Ming University, Taipei, Taiwan (Y.Y.W, S.Y.L., W.H.H.S.)
| | | | | | | | | | | |
Collapse
|
41
|
Micozkadioglu H. Higher diastolic blood pressure at admission and antiedema therapy is associated with acute kidney injury in acute ischemic stroke patients. Int J Nephrol Renovasc Dis 2014; 7:101-5. [PMID: 24570596 PMCID: PMC3933720 DOI: 10.2147/ijnrd.s59443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antiedema therapy with mannitol and furosemide is widely used for prevention and management of cerebral edema, elevated intracranial pressure, and cerebral hernia. There are some reports about mannitol and furosemide as risk factors of acute kidney injury (AKI). We investigated the risk factors for AKI including antiedema therapy in acute ischemic stroke patients. The subjects were 129 patients with acute ischemic stroke including 56 females and 73 males with a mean age 68.16±12.29 years. Patients were divided into two groups: patients with AKI and without AKI according to Acute Kidney Injury Network criteria. All patients had undergone cranial, carotid, and vertebral artery evaluation with magnetic resonance imaging. The number of patients with AKI was 14 (10.9%). Subjects experiencing atrial fibrillation (P=0.043) and higher diastolic blood pressure (DBP) (P=0.032) treated with mannitol (P=0.019) and furosemide (P=0.019) disclosed significant association with AKI. Regression analysis revealed that higher DBP (P=0.029) and management with mannitol (P=0.044) were the risk factors for AKI. Higher DBP at admission is the most important risk factor for AKI. However antiedema therapy should be used carefully in patients with acute ischemic stroke. Serum creatinine levels or estimated glomerular filtration rate should be watched frequently to prevent AKI.
Collapse
Affiliation(s)
- Hasan Micozkadioglu
- Department of Nephrology, Faculty of Medicine Hospital of Adana, Baskent University School of Medicine, Adana, Turkey
| |
Collapse
|
42
|
Santisteban MM, Zubcevic J, Baekey DM, Raizada MK. Dysfunctional brain-bone marrow communication: a paradigm shift in the pathophysiology of hypertension. Curr Hypertens Rep 2013; 15:377-89. [PMID: 23715920 PMCID: PMC3714364 DOI: 10.1007/s11906-013-0361-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology of hypertension involves autonomic nervous system dysfunction, as well as a multitude of immune responses. However, the close interplay of these systems in the development and establishment of high blood pressure and its associated pathophysiology remains elusive and is the subject of extensive investigation. It has been proposed that an imbalance of the neuro-immune systems is a result of an enhancement of the "proinflammatory sympathetic" arm in conjunction with dampening of the "anti-inflammatory parasympathetic" arm of the autonomic nervous system. In addition to the neuronal modulation of the immune system, it is proposed that key inflammatory responses are relayed back to the central nervous system and alter the neuronal communication to the periphery. The overall objective of this review is to critically discuss recent advances in the understanding of autonomic immune modulation, and propose a unifying hypothesis underlying the mechanisms leading to the development and maintenance of hypertension, with particular emphasis on the bone marrow, as it is a crucial meeting point for neural, immune, and vascular networks.
Collapse
Affiliation(s)
- Monica M. Santisteban
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine. 1600 SW Archer Road, PO Box 100274, Gainesville, FL 32610
| | - Jasenka Zubcevic
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine. 1600 SW Archer Road, PO Box 100274, Gainesville, FL 32610
| | - David M. Baekey
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine. 1600 SW Archer Road, PO Box 100144, Gainesville, FL 32610
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine. 1600 SW Archer Road, PO Box 100274, Gainesville, FL 32610
| |
Collapse
|
43
|
Park S, Kim DS, Kang S. Exercise training attenuates cerebral ischemic hyperglycemia by improving hepatic insulin signaling and β-cell survival. Life Sci 2013; 93:153-60. [PMID: 23782996 DOI: 10.1016/j.lfs.2013.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/01/2013] [Accepted: 06/07/2013] [Indexed: 01/04/2023]
Abstract
AIMS Preventing hyperglycemia after acute stroke attenuates complications of cerebral ischemia and reduces the risk of mortality. We investigated whether regular exercise prevents neuronal cell death and post-stroke hyperglycemia in gerbils after cerebral ischemia. MAIN METHODS Cerebral ischemia was induced by carotid artery occlusion for 8min. The gerbils that underwent ischemic or sham operations were randomly subdivided into exercise (ran on inclined treadmill at 20m/min for 30min 5days per week for 1week prior to surgery) or non-exercise groups. Gerbils were fed a 40% fat diet and after 28days, glucose metabolism, serum cytokine levels and cognitive function was measured. KEY FINDINGS Artery occlusion resulted in a 64% reduction in hippocampal CA1 neurons in comparison to the sham gerbils, and caused decreased neuronal mass and impaired cognitive function. Exercise partially prevented neuronal death and improved ischemia-induced glucose intolerance. Ischemia decreased hepatic insulin signaling and exacerbated insulin resistance whereas exercise prevented the disturbance. Insulin secretion was lower in ischemic gerbils than sham gerbils, due to lowered pancreatic β-cell mass caused by increased β-cell apoptosis and decreased β-cell proliferation, which were also prevented by exercise. Increase of apoptosis was associated with elevated caspase-3 activity, consistent with increased serum tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels. SIGNIFICANCE Hippocampal neuronal cell death induces hyperglycemia due to attenuated hepatic insulin signaling and decreased β-cell mass by increased β-cell apoptosis through increased TNF-α and IL-1β levels. Exercise partially prevents this phenomenon suggesting that exercise training may provide neuroprotective benefits from cerebral ischemic hyperglycemia.
Collapse
Affiliation(s)
- Sunmin Park
- Dept. of Food & Nutrition, College of Natural Science, Obesity/Diabetes Research Institutes, Hoseo University, Asan-Si, South Korea.
| | | | | |
Collapse
|
44
|
Huang SS, Lu YJ, Huang JP, Wu YT, Day YJ, Hung LM. The essential role of endothelial nitric oxide synthase activation in insulin-mediated neuroprotection against ischemic stroke in diabetes. J Vasc Surg 2013; 59:483-91. [PMID: 23663869 DOI: 10.1016/j.jvs.2013.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/06/2013] [Accepted: 03/15/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Stroke patients with diabetes have a higher mortality rate, worse neurologic outcome, and more severe disability than those without diabetes. Results from clinical trials comparing the outcomes of stroke seen with intensive glycemic control in diabetic individuals are conflicting. Therefore, the present study was aimed to identify the key factor involved in the neuroprotective action of insulin beyond its hypoglycemic effects in streptozotocin-diabetic rats with ischemic stroke. METHODS Long-Evans male rats were divided into three groups (control, diabetes, and diabetes treated with insulin) and subjected to focal cerebral ischemia-reperfusion (FC I/R) injury. RESULTS Hyperglycemia aggravated FC I/R injuries with an increase in cerebral infarction and neurologic deficits, inhibition of glucose uptake and membrane-trafficking activity of glucose transporter 1, and reduction of Akt and endothelial nitric oxide synthase (eNOS) phosphorylation in the cerebrum. Insulin treatment alleviated hyperglycemia and the symptoms of diabetes in streptozotocin-diabetic rats. Insulin administration also significantly decreased cerebral infarction and neurologic deficits and increased phosphorylation of Akt and eNOS protein in the cerebrum of FC I/R-injured diabetic rats. However, the glucose uptake and membrane trafficking activity of glucose transporter 1 in the cerebrum were not restored by insulin treatment. Coadministration of the eNOS inhibitor, N-iminoethyl-L-ornithine, with insulin abrogated beneficial effects of insulin on cerebral infarct volume and neurologic deficits in FC I/R-injured diabetic rats without affecting the hypoglycemic action of insulin. CONCLUSIONS These results suggest that eNOS activation is required for the neuroprotection of insulin against ischemic stroke in patients with diabetes.
Collapse
Affiliation(s)
- Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, Chung Shan Medical University and Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Jhu Lu
- Department and Graduate Institute of Biomedical Sciences and Healthy Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jiung-Pang Huang
- Department and Graduate Institute of Biomedical Sciences and Healthy Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yang-Tzu Wu
- Department and Graduate Institute of Biomedical Sciences and Healthy Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yuan-Ji Day
- Graduate Institute of Clinical Medical Sciences, Chang Gung University and Department of Anesthesiology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Li-Man Hung
- Department and Graduate Institute of Biomedical Sciences and Healthy Aging Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| |
Collapse
|
45
|
Wang YY, Chen CJ, Lin SY, Chuang YH, Sheu WHH, Tung KC. Hyperglycemia is associated with enhanced gluconeogenesis in a rat model of permanent cerebral ischemia. Mol Cell Endocrinol 2013; 367:50-6. [PMID: 23279876 DOI: 10.1016/j.mce.2012.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/25/2022]
Abstract
Hyperglycemia is common after acute stroke. In the acute phase of stroke (within 24h), rats with permanent cerebral ischemia developed higher fasting blood glucose and insulin levels in association with up-regulation of hepatic gluconeogenic gene expression, including phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase. In addition, hepatic gluconeogenesis-associated positive regulators, such as FoxO1, CAATT/enhancer-binding proteins (C/EBPs), and cAMP responsive element-binding protein (CREB), were up-regulated. For insulin signaling transduction, phosphorylation of insulin receptor (IR), insulin receptor substrate-1 (IRS1) at the tyrosine residue, Akt, and AMP-activated protein kinase (AMPK), were attenuated in the liver, while negative regulators of insulin action, including phosphorylation of p38, c-Jun N-terminal kinase (JNK), and insulin receptor substrate-1 (IRS1) at the serine residue, were increased. In addition, the brains of rats with stroke exhibited a reduction in phosphorylation of IRS1 at the tyrosine residue and Akt. Circulating cortisol, glucagon, C-reactive protein (CRP), monocyte chemoattractant protein 1 (MCP-1), and resistin levels were elevated, but adiponectin was reduced. Our data suggest that cerebral ischemic insults might modify intracellular and extracellular environments, favoring hepatic gluconeogenesis and the consequences of hyperglycemia.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther 2013; 138:428-40. [PMID: 23458610 DOI: 10.1016/j.pharmthera.2013.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/13/2022]
Abstract
Hypertension is an epidemic health concern and a major risk factor for the development of cardiovascular disease. Although there are available treatment strategies for hypertension, numerous hypertensive patients do not have their clinical symptoms under control and it is imperative that new avenues to treat or prevent high blood pressure in these patients are developed. It is well established that increases in sympathetic nervous system (SNS) outflow and enhanced renin-angiotensin system (RAS) activity are common features of hypertension and various pathological conditions that predispose individuals to hypertension. More recently, hypertension has also become recognized as an immune condition and accumulating evidence suggests that interactions between the RAS, SNS and immune systems play a role in blood pressure regulation. This review summarizes what is known about the interconnections between the RAS, SNS and immune systems in the neural regulation of blood pressure. Based on the reviewed studies, a model for RAS/neuroimmune interactions during hypertension is proposed and the therapeutic potential of targeting RAS/neuroimmune interactions in hypertensive patients is discussed. Special emphasis is placed on the applicability of the proposed model to obesity-related hypertension.
Collapse
|
47
|
Extreme insulin resistance in a patient with diabetes ketoacidosis and acute myocardial infarction. Case Rep Endocrinol 2013; 2013:520904. [PMID: 23424687 PMCID: PMC3568915 DOI: 10.1155/2013/520904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/12/2012] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia is common in hospitalized patients and associated with adverse clinical outcomes. In hospitalized patients, multiple factors contribute to hyperglycemia, such as underlying medical conditions, pathophysiological stress, and medications. The development of transient insulin resistance is a known cause of hyperglycemia in both diabetic and nondiabetic patients. Though physicians are familiar with common diseases that are known to be associated with insulin resistance, the majority of us rarely come across a case of extreme insulin resistance. Here, we report a case of prolonged course of extreme insulin resistance in a patient admitted with diabetic ketoacidosis (DKA) and acute myocardial infarction (MI). The main purpose of this paper is to review the literature to identify the underlying mechanisms of extreme insulin resistance in a patient with DKA and MI. We will also briefly discuss the different clinical conditions that are associated with insulin resistance and a general approach to a patient with severe insulin resistance.
Collapse
|
48
|
Peterson MD, Gordon PM, Hurvitz EA, Burant CF. Secondary muscle pathology and metabolic dysregulation in adults with cerebral palsy. Am J Physiol Endocrinol Metab 2012; 303:E1085-93. [PMID: 22912367 PMCID: PMC3492860 DOI: 10.1152/ajpendo.00338.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebral palsy (CP) is caused by an insult to or malformation of the developing brain which affects motor control centers and causes alterations in growth, development, and overall health throughout the life span. In addition to the disruption in development caused by the primary neurological insult, CP is associated with exaggerated sedentary behaviors and a hallmark accelerated progression of muscle pathology compared with typically developing children and adults. Factors such as excess adipose tissue deposition and altered partitioning, insulin resistance, and chronic inflammation may increase the severity of muscle pathology throughout adulthood and lead to cardiometabolic disease risk and/or early mortality. We describe a model of exaggerated health risk represented in adults with CP and discuss the mechanisms and secondary consequences associated with chronic sedentary behavior, obesity, aging, and muscle spasticity. Moreover, we highlight novel evidence that implicates aberrant inflammation in CP as a potential mechanism linking both metabolic and cognitive dysregulation in a cyclical pattern.
Collapse
Affiliation(s)
- Mark D Peterson
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
49
|
Perioperative glucose control in neurosurgical patients. Anesthesiol Res Pract 2012; 2012:690362. [PMID: 22400022 PMCID: PMC3286889 DOI: 10.1155/2012/690362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/29/2011] [Accepted: 10/21/2011] [Indexed: 02/06/2023] Open
Abstract
Many neurosurgery patients may have unrecognized diabetes or may develop stress-related hyperglycemia in the perioperative period. Diabetes patients have a higher perioperative risk of complications and have longer hospital stays than individuals without diabetes. Maintenance of euglycemia using intensive insulin therapy (IIT) continues to be investigated as a therapeutic tool to decrease morbidity and mortality associated with derangements in glucose metabolism due to surgery. Suboptimal perioperative glucose control may contribute to increased morbidity, mortality, and aggravate concomitant illnesses. The challenge is to minimize the effects of metabolic derangements on surgical outcomes, reduce blood glucose excursions, and prevent hypoglycemia. Differences in cerebral versus systemic glucose metabolism, time course of cerebral response to injury, and heterogeneity of pathophysiology in the neurosurgical patient populations are important to consider in evaluating the risks and benefits of IIT. While extremes of glucose levels are to be avoided, there are little data to support an optimal blood glucose level or recommend a specific use of IIT for euglycemia maintenance in the perioperative management of neurosurgical patients. Individualized treatment should be based on the local level of blood glucose control, outpatient treatment regimen, presence of complications, nature of the surgical procedure, and type of anesthesia administered.
Collapse
|
50
|
Vascular Targets for Ischemic Stroke Treatment. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|