1
|
Dagogo-Jack S. Leptin and Insulin Sensitivity: Endogenous Signals of Metabolic Homeostasis. J Clin Endocrinol Metab 2024; 109:e1402-e1403. [PMID: 37943695 DOI: 10.1210/clinem/dgad653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Xu Y, Zhu H, Li W, Chen D, Xu Y, Xu A, Ye D. Targeting adipokines in polycystic ovary syndrome and related metabolic disorders: from experimental insights to clinical studies. Pharmacol Ther 2022; 240:108284. [PMID: 36162728 DOI: 10.1016/j.pharmthera.2022.108284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects approximately 15% of women of reproductive age worldwide. It is the most prevalent endocrine disorder with marked risks for female infertility, type 2 diabetes mellitus (T2DM), psychiatric disorders and gynecological cancers. Although the pathophysiology of PCOS remains largely elusive, growing evidence suggests a close link with obesity and its related metabolic disorders. As a highly active endocrine cell population, hypertrophic adipocytes in obesity have disturbed production of a vast array of adipokines, biologically active peptides that exert pleiotropic effects on homeostatic regulation of glucose and lipid metabolism. In parallel with their crucial roles in the pathophysiology of obesity-induced metabolic diseases, adipokines have recently been identified as promising targets for novel therapeutic strategies for multiple diseases. Current treatments for PCOS are suboptimal with insufficient alleviation of all symptoms. Novel findings in adipokine-targeted agents may provide important insight into the development of new drugs for PCOS. This Review presents an overview of the current understanding of mechanisms that link PCOS to obesity and highlights emerging evidence of adipose-ovary crosstalk as a pivotal mediator of PCOS pathogenesis. We summarize recent findings of preclinical and clinical studies that reveal the therapeutic potential of adipokine-targeted novel approaches to PCOS and its related metabolic disorders. We also discuss the critical gaps in knowledge that need to be addressed to guide the development of adipokine-based novel therapies for PCOS.
Collapse
Affiliation(s)
- Yidan Xu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiqiu Zhu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiwei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Danxia Chen
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
4
|
Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev 2022; 23:e13430. [PMID: 35119166 PMCID: PMC9286785 DOI: 10.1111/obr.13430] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
Abstract
β-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the β-secretase responsible for the production of β-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic β-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.
Collapse
Affiliation(s)
- Hannah A Taylor
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lena Przemylska
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eva M Clavane
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Barden AE, Huang RC, Beilin LJ, Rauschert S, Tsai IJ, Oddy WH, Mori TA. Identifying young adults at high risk of cardiometabolic disease using cluster analysis and the Framingham 30-yr risk score. Nutr Metab Cardiovasc Dis 2022; 32:429-435. [PMID: 34895997 DOI: 10.1016/j.numecd.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Current strategies to reduce cardiovascular disease (CVD) risk in young adults are largely limited to those at extremes of risk. In cohort studies we have shown cluster analysis identified a large sub-group of adolescents with multiple risk factors. This study examined if individuals classified at 'high-risk' by cluster analysis could also be identified by their Framingham risk scores. METHODS AND RESULTS Raine Study data at 17- (n = 1048) and 20-years (n = 1120) identified high- and low-risk groups by cluster analysis using continuous measures of systolic BP, BMI, triglycerides and insulin resistance. We assessed:- CVD risk at 20-years using the Framingham 30 yr-risk-score in the high- and low-risk clusters, and cluster stability from adolescence to adulthood. Cluster analysis at 17- and 20-years identified a high-risk group comprising, 17.9% and 21.3%, respectively of the cohort. In contrast, only 1.2% and 3.4%, respectively, met the metabolic syndrome criteria, all of whom were within the high-risk cluster. Compared with the low-risk cluster, Framingham scores of the high-risk cluster were elevated in males (9.4%; 99%CI 8.3, 10.6 vs 6.0%; 99%CI 5.7, 6.2) and females (4.9%; 99%CI 4.4, 5.4 vs 3.2%; 99%CI 3.0, 3.3) (both P < 0.0001). A score >8 for males and >4 for females identified those at high CVD risk with 99% confidence. CONCLUSION Cluster analysis using multiple risk factors identified ∼20% of young adults at high CVD risk. Application of our Framingham 30 yr-risk cut-offs to individuals allows identification of more young people with multiple risk factors for CVD than conventional metabolic syndrome criteria.
Collapse
Affiliation(s)
- Anne E Barden
- Medical School, University of Western Australia, Australia.
| | - Rae-Chi Huang
- Medical School, University of Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Australia
| | | | - Sebastian Rauschert
- Medical School, University of Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Australia
| | - I-Jung Tsai
- Medical School, University of Western Australia, Australia
| | - Wendy H Oddy
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Trevor A Mori
- Medical School, University of Western Australia, Australia
| |
Collapse
|
6
|
Roth CL, von Schnurbein J, Elfers C, Moss A, Wabitsch M. Changes in Satiety Hormones in Response to Leptin Treatment in a Patient with Leptin Deficiency. Horm Res Paediatr 2019; 90:424-430. [PMID: 29996141 DOI: 10.1159/000489884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/04/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We tested whether leptin treatment affects secretion of satiety-related gut peptides and brain-derived neurotrophic factor (BDNF), which is a regulator of energy homeostasis downstream of hypothalamic leptin signaling. METHODS We report the case of a morbidly obese 14.7-year-old girl with a novel previously reported homozygous leptin gene mutation, in whom hormone secretion was evaluated in 30-min intervals for 10 h (07.30-17.30) to assess BDNF, insulin, glucagon-like peptide-1 (GLP-1), ghrelin, and peptide YY (PYY) secretion before as well as 11 and 46 weeks after start of metreleptin treatment. RESULTS Leptin substitution resulted in strong reductions of body fat and calorie intake. Insulin secretion increased by 58.9% after 11 weeks, but was reduced by -44.8% after 46 weeks compared to baseline. Similarly, GLP-1 increased after 11 weeks (+15.2%) and decreased after 46 weeks. PYY increased consistently (+5%/ +13.2%, after 11/46 weeks). Ghrelin decreased after 46 weeks (-11%). BDNF secretion was not affected by leptin treatment. CONCLUSION The strong increase in insulin and GLP-1 secretion after 11 weeks of metreleptin treatment cannot be explained by reduced adiposity and might contribute to improved central satiety. Observed changes of PYY can lead to increased satiety as well. However, leptin replacement does not seem to affect circulating BDNF levels.
Collapse
Affiliation(s)
- Christian L Roth
- Seattle Children's Research Institute, Center for Integrative Brain Research, University of Washington, Department of Pediatrics, Seattle, Washington, USA,
| | - Julia von Schnurbein
- Division of Pediatric Endocrinology, Diabetes and Obesity Unit, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Clinton Elfers
- Seattle Children's Research Institute, Center for Integrative Brain Research, University of Washington, Department of Pediatrics, Seattle, Washington, USA
| | - Anja Moss
- Division of Pediatric Endocrinology, Diabetes and Obesity Unit, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity Unit, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Huang RC, Lillycrop KA, Beilin LJ, Godfrey KM, Anderson D, Mori TA, Rauschert S, Craig JM, Oddy WH, Ayonrinde OT, Pennell CE, Holbrook JD, Melton PE. Epigenetic Age Acceleration in Adolescence Associates With BMI, Inflammation, and Risk Score for Middle Age Cardiovascular Disease. J Clin Endocrinol Metab 2019; 104:3012-3024. [PMID: 30785999 PMCID: PMC6555851 DOI: 10.1210/jc.2018-02076] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
CONTEXT "Accelerated aging," assessed by adult DNA methylation, predicts cardiovascular disease (CVD). Adolescent accelerated aging might predict CVD earlier. We investigated whether epigenetic age acceleration (assessed age, 17 years) was associated with adiposity/CVD risk measured (ages 17, 20, and 22 years) and projected CVD by middle age. DESIGN DNA methylation measured in peripheral blood provided two estimates of epigenetic age acceleration: intrinsic (IEAA; preserved across cell types) and extrinsic (EEAA; dependent on cell admixture and methylation levels within each cell type). Adiposity was assessed by anthropometry, ultrasound, and dual-energy x-ray absorptiometry (ages 17, 20, and 22 years). CVD risk factors [lipids, homeostatic model assessment of insulin resistance (HOMA-IR), blood pressure, inflammatory markers] were assessed at age 17 years. CVD development by age 47 years was calculated by Framingham algorithms. Results are presented as regression coefficients per 5-year epigenetic age acceleration (IEAA/EEAA) for adiposity, CVD risk factors, and CVD development. RESULTS In 995 participants (49.6% female; age, 17.3 ± 0.6 years), EEAA (per 5 years) was associated with increased body mass index (BMI) of 2.4% (95% CI, 1.2% to 3.6%) and 2.4% (0.8% to 3.9%) at 17 and 22 years, respectively. EEAA was associated with increases of 23% (3% to 33%) in high-sensitivity C-reactive protein, 10% (4% to 17%) in interferon-γ-inducible protein of 10 kDa, and 4% (2% to 6%) in soluble TNF receptor 2, adjusted for BMI and HOMA-IR. EEAA (per 5 years) results in a 4% increase in hard endpoints of CVD by 47 years of age and a 3% increase, after adjustment for conventional risk factors. CONCLUSIONS Accelerated epigenetic age in adolescence was associated with inflammation, BMI measured 5 years later, and probability of middle age CVD. Irrespective of whether this is cause or effect, assessing epigenetic age might refine disease prediction.
Collapse
Affiliation(s)
- Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Correspondence and Reprint Requests: Rae-Chi Huang, MBBS, FRACP, PhD, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia. E-mail:
| | | | - Lawrence J Beilin
- Medical School, University of Western Australia, Perth, Western Australia Australia
| | - Keith M Godfrey
- Medical School, University of Western Australia, Perth, Western Australia Australia
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, Western Australia Australia
| | - Sebastian Rauschert
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Jeffrey M Craig
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
- Environmental and Genetic Epidemiology Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Wendy H Oddy
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Oyekoya T Ayonrinde
- Medical School, University of Western Australia, Perth, Western Australia Australia
| | - Craig E Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, University of Newcastle, Callaghan, New South Wales, Australia
| | | | - Phillip E Melton
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Rodriguez-Raecke R, Brünner YF, Kofoet A, Mutic S, Benedict C, Freiherr J. Odor Sensitivity After Intranasal Insulin Application Is Modulated by Gender. Front Endocrinol (Lausanne) 2018; 9:580. [PMID: 30356884 PMCID: PMC6190874 DOI: 10.3389/fendo.2018.00580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Obesity constitutes a global health care problem, and often eating habits are to blame. For intervention, a thorough understanding of energy intake and expenditure is needed. In recent years, the pivotal role of insulin in connection to energy intake was established. Olfactory sensitivity may be a target of cerebral insulin action to maintain body weight. With this experiment, we aimed to explore the influence of intranasal insulin on olfactory sensitivity for the odors n-butanol and peanut in a placebo-controlled, double-blind setting in a within-subject design. All subjects participated in two experimental sessions on separate days and received either intranasal insulin or placebo in a pseudorandomized order. Application was followed by two olfactory threshold tests for n-butanol and peanut in a pseudorandomized order. After a single dose of intranasal insulin (40 IU) or placebo (0.4 ml), olfactory sensitivity for the odorants n-butanol and peanut were examined in 30 healthy normosmic participants (14 females). Measured blood parameters revealed no decrease in plasma glucose, however, insulin, leptin and cortisol levels were affected following intranasal application. Females' but not males' olfactory sensitivity for n-butanol was lower after intranasal insulin administration vs. placebo. In contrast, olfactory sensitivity for peanut was not influenced by intranasal insulin application. Our results indicate that the effects of cortical insulin levels on processing of specific odors is likely modulated by gender, as central increase of insulin concentration led to a reduced olfactory sensitivity for n-butanol in women only, which might be due to differentially regulated insulin and leptin signaling in men and women.
Collapse
Affiliation(s)
- Rea Rodriguez-Raecke
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Aachen, Germany
- Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- *Correspondence: Rea Rodriguez-Raecke
| | - Yvonne F. Brünner
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Anja Kofoet
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Smiljana Mutic
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Aachen, Germany
| | | | - Jessica Freiherr
- Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Aachen, Germany
- Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- Jessica Freiherr
| |
Collapse
|
9
|
Gupta A, Beg M, Kumar D, Shankar K, Varshney S, Rajan S, Srivastava A, Singh K, Sonkar S, Mahdi AA, Dikshit M, Gaikwad AN. Chronic hyper-leptinemia induces insulin signaling disruption in adipocytes: Implications of NOS2. Free Radic Biol Med 2017; 112:93-108. [PMID: 28739528 DOI: 10.1016/j.freeradbiomed.2017.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 01/12/2023]
Abstract
Leptin, following its discovery, has developed a formidable interest in the scientific community to delineate its contribution towards overall metabolic homeostasis. Contradictory reports have been published on leptin administration effects on whole body insulin sensitivity. Following late reports, we surveyed human serum leptin levels along with other metabolic parameters including BMI and HOMA-IR. We found a positive correlation between leptin levels and insulin resistance parameters. Considering the presence of the long form of leptin receptor on adipocytes, we explored the effects of chronic physiological hyper-leptinemic exposure on adipocyte insulin sensitivity. Chronic leptin (50ng/ml) treatment in 3T3-L1 adipocytes decreased insulin-induced phosphorylation of nodal insulin signaling proteins along with reduced glucose uptake. Metabolic flux studies indicated mitochondrial dysfunction and reduced oxygen consumption rate. Leptin treatment also increased both cellular and mitochondrial superoxide levels concomitant to increased expression of nitric oxide synthase-2 (NOS2). Further, pharmacological depletion of NOS2 reversed leptin mediated effects on insulin signaling. In-vivo implantation of leptin osmotic pumps in C57BL/6 mice also decreased insulin responsiveness. Interestingly, these effects were lacking in NOS2 knockout strain. In conclusion, our studies put forward a potential link between leptin and adipocyte insulin responsiveness in an NOS2 dependent manner.
Collapse
Affiliation(s)
- Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalpana Singh
- Department of Biochemistry, King George's Medical University, Lucknow 226003, India
| | - Satyendra Sonkar
- Department of Internal Medicine, King George's Medical University, Lucknow 226003, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow 226003, India
| | - Madhu Dikshit
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
10
|
Bharath LP, Ip BC, Nikolajczyk BS. Adaptive Immunity and Metabolic Health: Harmony Becomes Dissonant in Obesity and Aging. Compr Physiol 2017; 7:1307-1337. [PMID: 28915326 DOI: 10.1002/cphy.c160042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipose tissue (AT) is the primary energy reservoir organ, and thereby plays a critical role in energy homeostasis and regulation of metabolism. AT expands in response to chronic overnutrition or aging and becomes a major source of inflammation that has marked influence on systemic metabolism. The chronic, sterile inflammation that occurs in the AT during the development of obesity or in aging contributes to onset of devastating diseases such as insulin resistance, diabetes, and cardiovascular pathologies. Numerous studies have shown that inflammation in the visceral AT of humans and animals is a critical trigger for the development of metabolic syndrome. This work underscores the well-supported conclusion that the inflammatory immune response and metabolic pathways in the AT are tightly interwoven by multiple layers of relatively conserved mechanisms. During the development of diet-induced obesity or age-associated adiposity, cells of the innate and the adaptive immune systems infiltrate and proliferate in the AT. Macrophages, which dominate AT-associated immune cells in mouse models of obesity, but are less dominant in obese people, have been studied extensively. However, cells of the adaptive immune system, including T cells and B cells, contribute significantly to AT inflammation, perhaps more in humans than in mice. Lymphocytes regulate recruitment of innate immune cells into AT, and produce cytokines that influence the helpful-to-harmful inflammatory balance that, in turn, regulates organismal metabolism. This review describes inflammation, or more precisely, metabolic inflammation (metaflammation) with an eye toward the AT and the roles lymphocytes play in regulation of systemic metabolism during obesity and aging. © 2017 American Physiological Society. Compr Physiol 7:1307-1337, 2017.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Blanche C Ip
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Molecular Pharmacology, Physiology and Biotechnology, Center of Biomedical Engineering, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
11
|
Tchang BG, Shukla AP, Aronne LJ. Metreleptin and generalized lipodystrophy and evolving therapeutic perspectives. Expert Opin Biol Ther 2016; 15:1061-75. [PMID: 26063386 DOI: 10.1517/14712598.2015.1052789] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Metreleptin was recently approved by the Food and Drug Administration for the treatment of generalized lipodystrophy, a condition characterized by leptin deficiency. Its efficacy as hormone replacement therapy suggests broader applications in diseases also characterized by leptin abnormalities, such as familial partial lipodystrophy (FPLD), non-alcoholic fatty liver disease (NAFLD), and common obesity. Metreleptin, in conjunction with other pharmacologic interventions, has the potential to address one of the most widespread epidemics of our time, obesity. AREAS COVERED This review covers the physiology of leptin, the pharmacologic properties of recombinant methionyl human leptin (R-metHu-Leptin, metreleptin), evidence for metreleptin's efficacy in the treatment of generalized lipodystrophy from both completed and ongoing clinical trials, safety concerns, and future directions in metreleptin research. EXPERT OPINION Metreleptin's approval for generalized lipodystrophy is the first step in defining and expanding its role to other metabolic diseases. Clinical trials are underway to delineate its efficacy in FPLD, human immunodeficiency virus/highly active anti-retroviral therapy-associated acquired lipodystrophy (HAL), and NAFLD. Additionally, there is growing data that support a therapeutic role in obesity. One of the barriers to development, however, is metreleptin's safety and immunogenicity. Further advances in biologic compatibility are required before metreleptin can be approved for additional indications.
Collapse
Affiliation(s)
- Beverly G Tchang
- Weill Cornell Medical College, Comprehensive Weight Control Center, Division of Endocrinology, Diabetes & Metabolism , 1165 York Avenue, New York, NY, 10065 , USA
| | | | | |
Collapse
|
12
|
Assessment of cardiometabolic risk in children in population studies: underpinning developmental origins of health and disease mother-offspring cohort studies. J Nutr Sci 2015; 4:e12. [PMID: 26090093 PMCID: PMC4463019 DOI: 10.1017/jns.2014.69] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 09/30/2014] [Accepted: 11/11/2014] [Indexed: 12/25/2022] Open
Abstract
Pregnancy and birth cohorts have been utilised extensively to investigate the
developmental origins of health and disease, particularly in relation to understanding the
aetiology of obesity and related cardiometabolic disorders. Birth and pregnancy cohorts
have been utilised extensively to investigate this area of research. The aim of the
present review was twofold: first to outline the necessity of measuring cardiometabolic
risk in children; and second to outline how it can be assessed. The major outcomes thought
to have an important developmental component are CVD, insulin resistance and related
metabolic outcomes. Conditions such as the metabolic syndrome, type 2 diabetes and CHD all
tend to have peak prevalence in middle-aged and older individuals but assessments of
cardiometabolic risk in childhood and adolescence are important to define early causal
factors and characterise preventive measures. Typically, researchers investigating
prospective cohort studies have relied on the thesis that cardiovascular risk factors,
such as dyslipidaemia, hypertension and obesity, track from childhood into adult life. The
present review summarises some of the evidence that these factors, when measured in
childhood, may be of value in assessing the risk of adult cardiometabolic disease, and as
such proceeds to describe some of the methods for assessing cardiometabolic risk in
children.
Collapse
|
13
|
Paz-Filho G, Mastronardi CA, Licinio J. Leptin treatment: facts and expectations. Metabolism 2015; 64:146-56. [PMID: 25156686 DOI: 10.1016/j.metabol.2014.07.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/03/2014] [Accepted: 07/29/2014] [Indexed: 12/20/2022]
Abstract
Leptin has key roles in the regulation of energy balance, body weight, metabolism, and endocrine function. Leptin levels are undetectable or very low in patients with lipodystrophy, hypothalamic amenorrhea, and congenital leptin deficiency (CLD) due to mutations in the leptin gene. For these patients, leptin replacement therapy with metreleptin (a recombinant leptin analog) has improved or normalized most of their phenotypes, including normalization of endocrine axes, decrease in insulin resistance, and improvement of lipid profile and hepatic steatosis. Remarkable weight loss has been observed in patients with CLD. Due to its effects, leptin therapy has also been evaluated in conditions where leptin levels are normal or high, such as common obesity, diabetes (types 1 and 2), and Rabson-Mendenhall syndrome. A better understanding of the physiological roles of leptin may lead to the development of leptin-based therapies for other prevalent disorders such as obesity-associated nonalcoholic fatty liver disease, depression and dementia.
Collapse
Affiliation(s)
- Gilberto Paz-Filho
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Claudio A Mastronardi
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Julio Licinio
- South Australian Health and Medical Research Institute and Flinders University, Adelaide, Australia.
| |
Collapse
|
14
|
Carvalho AF, Rocha DQC, McIntyre RS, Mesquita LM, Köhler CA, Hyphantis TN, Sales PMG, Machado-Vieira R, Berk M. Adipokines as emerging depression biomarkers: a systematic review and meta-analysis. J Psychiatr Res 2014; 59:28-37. [PMID: 25183029 DOI: 10.1016/j.jpsychires.2014.08.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 12/15/2022]
Abstract
Adiponectin, leptin and resistin may play a role in the pathophysiology of major depressive disorder (MDD). However, differences in peripheral levels of these hormones are inconsistent across diagnostic and intervention studies. Therefore, we performed meta-analyses of diagnostic studies (i.e., MDD subjects versus healthy controls) and intervention investigations (i.e., pre-vs. post-antidepressant treatment) in MDD. Adiponectin (N = 1278; Hedge's g = -0.35; P = 0.16) and leptin (N = 893; Hedge's g = -0.018; P = 0.93) did not differ across diagnostic studies. Meta-regression analyses revealed that gender and depression severity explained the heterogeneity observed in adiponectin diagnostic studies, while BMI and the difference in BMI between MDD individuals and controls explained the heterogeneity of leptin diagnostic studies. Subgroup analyses revealed that adiponectin peripheral levels were significantly lower in MDD participants compared to controls when assayed with RIA, but not ELISA. Leptin levels were significantly higher in individuals with mild/moderate depression versus controls. Resistin serum levels were lower in MDD individuals compared to healthy controls (N = 298; Hedge's g = -0.25; P = 0.03). Leptin serum levels did not change after antidepressant treatment. However, heterogeneity was significant and sample size was low (N = 108); consequently meta-regression analysis could not be performed. Intervention meta-analyses could not be performed for adiponectin and resistin (i.e., few studies met inclusion criteria). In conclusion, this systematic review and meta-analysis underscored that relevant moderators/confounders (e.g., BMI, depression severity and type of assay) should be controlled for when considering the role of leptin and adiponectin as putative MDD diagnostic biomarkers.
Collapse
Affiliation(s)
- André F Carvalho
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| | - Davi Q C Rocha
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Roger S McIntyre
- Departments of Pharmacology and Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University of Toronto, Toronto, ON, Canada
| | - Lucas M Mesquita
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Cristiano A Köhler
- Memory Research Laboratory, Brain Institute (ICe), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Thomas N Hyphantis
- Department of Psychiatry, Medical School, University of Ioaninna, Ioaninna, Greece
| | - Paulo M G Sales
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Rodrigo Machado-Vieira
- National Institute of Mental Health (NIMH), Bethesda, USA; Laboratory of Neuroscience, LIM-27, Department and Institute of Psychiatry, University of São Paulo, USP, Brazil; Center for Interdisciplinary Research in Applied Neuroscience (NAPNA), USP, Brazil
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Vic., Australia; Florey Institute of Neuroscience and Mental Health, Australia; Orygen Youth Health Research Centre, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
15
|
Abstract
Heritability of obesity and body weight variation is high. Molecular genetic studies have led to the identification of mutations in a few genes, with a major effect on obesity (major genes and monogenic forms). Analyses of these genes have helped to unravel important pathways and have created a more profound understanding of body weight regulation. For most individuals, a polygenic basis is relevant for the genetic predisposition to obesity. Small effect sizes are conveyed by the polygenic variants. Hence, only if a number of these variants is harboured, a sizeable phenotypic effect is detectable. Most, if not all, of the genes relevant to weight regulation are expressed in the hypothalamus. This underscores the major role of this region of the brain in body weight regulation.
Collapse
Affiliation(s)
- Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| | - Anna-Lena Volckmar
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| |
Collapse
|
16
|
Feng H, Zheng L, Feng Z, Zhao Y, Zhang N. The role of leptin in obesity and the potential for leptin replacement therapy. Endocrine 2013; 44:33-9. [PMID: 23274948 DOI: 10.1007/s12020-012-9865-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/15/2012] [Indexed: 12/13/2022]
Abstract
Leptin (from the Greek word "lepto'' meaning "thin") is a 167-amino acid peptide hormone encoded by the obesity (ob) gene and secreted by white adipocytes. Blood leptin concentrations are increased in obese individuals. Leptin is a satiety hormone that provides negative feedback to the hypothalamus, controlling appetite and energy expenditure. Leptin binds to presynaptic GABAergic neurons to produce its effect, raising the distinct possibility that GABAergic axon terminals are the ultimate subcellular site of action for its effects. Released into the circulation, leptin crosses the blood-brain barrier and binds to leptin receptors, influencing the activity of various hypothalamic neurons, as well as encoding orexigenic and anorexigenic neuropeptides. Moreover, leptin affects a wide range of metabolic functions in the peripheral tissue. In this review, we discuss some physiologic functions of leptin, including effects on obesity and some effects of leptin replacement therapy.
Collapse
Affiliation(s)
- Helin Feng
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, 050011, China.
| | | | | | | | | |
Collapse
|
17
|
Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, Paruthi J, Mantzoros CS. Leptin's role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev 2013; 34:377-412. [PMID: 23475416 PMCID: PMC3660716 DOI: 10.1210/er.2012-1053] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leptin is an adipocyte-secreted hormone that has been proposed to regulate energy homeostasis as well as metabolic, reproductive, neuroendocrine, and immune functions. In the context of open-label uncontrolled studies, leptin administration has demonstrated insulin-sensitizing effects in patients with congenital lipodystrophy associated with relative leptin deficiency. Leptin administration has also been shown to decrease central fat mass and improve insulin sensitivity and fasting insulin and glucose levels in HIV-infected patients with highly active antiretroviral therapy (HAART)-induced lipodystrophy, insulin resistance, and leptin deficiency. On the contrary, the effects of leptin treatment in leptin-replete or hyperleptinemic obese individuals with glucose intolerance and diabetes mellitus have been minimal or null, presumably due to leptin tolerance or resistance that impairs leptin action. Similarly, experimental evidence suggests a null or a possibly adverse role of leptin treatment in nonlipodystrophic patients with nonalcoholic fatty liver disease. In this review, we present a description of leptin biology and signaling; we summarize leptin's contribution to glucose metabolism in animals and humans in vitro, ex vivo, and in vivo; and we provide insights into the emerging clinical applications and therapeutic uses of leptin in humans with lipodystrophy and/or diabetes.
Collapse
Affiliation(s)
- Hyun-Seuk Moon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Amitani M, Asakawa A, Amitani H, Inui A. The role of leptin in the control of insulin-glucose axis. Front Neurosci 2013; 7:51. [PMID: 23579596 PMCID: PMC3619125 DOI: 10.3389/fnins.2013.00051] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
Obesity and diabetes mellitus are great public health concerns throughout the world because of their increasing incidence and prevalence. Leptin, the adipocyte hormone, is well known for its role in the regulation of food intake and energy expenditure. In addition to the regulation of appetite and satiety that recently has attracted much attentions, insight has also been gained into the critical role of leptin in the control of the insulin-glucose axis, peripheral glucose and insulin responsiveness. Since the discovery of leptin, leptin has been taken for its therapeutic potential to obesity and diabetes. Recently, the therapeutic effects of central leptin gene therapy have been reported in insulin-deficient diabetes in obesity animal models such as ob/ob mise, diet-induced obese mice, and insulin-deficient type 1 diabetes mice, and also in patients with inactivating mutations in the leptin gene. Herein, we review the role of leptin in regulating feeding behavior and glucose metabolism and also the therapeutic potential of leptin in obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Marie Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima, Japan
| | | | | | | |
Collapse
|
19
|
|
20
|
Berman SM, Paz-Filho G, Wong ML, Kohno M, Licinio J, London ED. Effects of leptin deficiency and replacement on cerebellar response to food-related cues. CEREBELLUM (LONDON, ENGLAND) 2013; 12:59-67. [PMID: 22576622 PMCID: PMC3569483 DOI: 10.1007/s12311-012-0360-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Leptin affects eating behavior partly by altering the response of the brain to food-related stimuli. The effects of leptin on brain structure have been observed in the cerebellum, where leptin receptors are most densely expressed, but the function of leptin in the cerebellum remains unclear. We performed a nonrandomized, prospective interventional study of three adults with genetically mediated leptin deficiency. FMRI was recorded three times each year during years 5 and 6 of leptin replacement treatment. Session 1 of each year occurred after 10 months of continuous daily replacement, session 2 after 33-37 days without leptin, and session 3 at 14-23 days after daily replacement was restored. Statistical parametric mapping software (SPM5) was employed to contrast the fMRI blood oxygenation level-dependent response to images of high-calorie foods versus images of brick walls. Covariate analyses quantified the effects of the duration of leptin replacement and concomitant changes in body mass on the cerebral responses. Longer duration of replacement was associated with more activation by food images in a ventral portion of the posterior lobe of the cerebellum, while simultaneous decreases in body mass were associated with decreased activation in a more dorsal portion of the same lobe. These findings indicate that leptin replacement reversibly alters neural function within the posterior cerebellum and modulates plasticity-dependent brain physiology in response to food cues. The results suggest an underexplored role for the posterior cerebellum in the regulation of leptin-mediated processes related to food intake.
Collapse
Affiliation(s)
- Steven M. Berman
- Department of Psychiatry and Biobehavioral Sciences and the Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
- Brain Research Institute, University of California Los Angeles, Los Angeles, California 90024
| | - Gilberto Paz-Filho
- Department of Translational Medicine, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia 0200
| | - Ma-Li Wong
- Department of Translational Medicine, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia 0200
| | - Milky Kohno
- Department of Psychiatry and Biobehavioral Sciences and the Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
| | - Julio Licinio
- Department of Translational Medicine, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia 0200
| | - Edythe D. London
- Department of Psychiatry and Biobehavioral Sciences and the Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
- Brain Research Institute, University of California Los Angeles, Los Angeles, California 90024
| |
Collapse
|
21
|
Paz-Filho G, Mastronardi C, Wong ML, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab 2012; 16:S549-S555. [PMID: 23565489 PMCID: PMC3602983 DOI: 10.4103/2230-8210.105571] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insulinemia and insulin resistance. The understanding of the effects of leptin on the glucose-insulin homeostasis will lead to the development of leptin-based therapies against diabetes and other insulin resistance syndromes. In these review, we summarize the interactions between leptin and insulin, and their effects on the glucose metabolism.
Collapse
Affiliation(s)
- Gilberto Paz-Filho
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Claudio Mastronardi
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ma-Li Wong
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Julio Licinio
- Department of Translational Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
22
|
Burgos-Ramos E, Canelles S, Perianes-Cachero A, Arilla-Ferreiro E, Argente J, Barrios V. Adipose tissue promotes a serum cytokine profile related to lower insulin sensitivity after chronic central leptin infusion. PLoS One 2012; 7:e46893. [PMID: 23056516 PMCID: PMC3462753 DOI: 10.1371/journal.pone.0046893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022] Open
Abstract
Obesity is an inflammatory state characterized by an augment in circulating inflammatory factors. Leptin may modulate the synthesis of these factors by white adipose tissue decreasing insulin sensitivity. We have examined the effect of chronic central administration of leptin on circulating levels of cytokines and the possible relationship with cytokine expression and protein content as well as with leptin and insulin signaling in subcutaneous and visceral adipose tissues. In addition, we analyzed the possible correlation between circulating levels of cytokines and peripheral insulin resistance. We studied 18 male Wistar rats divided into controls (C), those treated icv for 14 days with a daily dose of 12 μg of leptin (L) and a pair-fed group (PF) that received the same food amount consumed by the leptin group. Serum leptin and insulin were measured by ELISA, mRNA levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-10 and tumor necrosis factor-α (TNF-α) by real time PCR and serum and adipose tissue levels of these cytokines by multiplexed bead immunoassay. Serum leptin, IL-2, IL-4, IFN-γ and HOMA-IR were increased in L and TNF-α was decreased in PF and L. Serum leptin and IL-2 levels correlate positively with HOMA-IR index and negatively with serum glucose levels during an ip insulin tolerance test. In L, an increase in mRNA levels of IL-2 was found in both adipose depots and IFN-γ only in visceral tissue. Activation of leptin signaling was increased and insulin signaling decreased in subcutaneous fat of L. In conclusion, leptin mediates the production of inflammatory cytokines by adipose tissue independent of its effects on food intake, decreasing insulin sensitivity.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Arancha Perianes-Cachero
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Eduardo Arilla-Ferreiro
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
23
|
Chetboun M, Abitbol G, Rozenberg K, Rozenfeld H, Deutsch A, Sampson SR, Rosenzweig T. Maintenance of redox state and pancreatic beta-cell function: role of leptin and adiponectin. J Cell Biochem 2012; 113:1966-76. [PMID: 22253064 DOI: 10.1002/jcb.24065] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Whereas oxidative stress is linked to cellular damage, reactive oxygen species (ROS) are also believed to be involved in the propagation of signaling pathways. Studies on the role of ROS in pancreatic beta-cell physiology, in contrast to pathophysiology, have not yet been reported. In this study we investigate the importance of maintaining cellular redox state on pancreatic beta-cell function and viability, and the effects of leptin and adiponectin on this balance. Experiments were conducted on RINm and MIN6 pancreatic beta-cells. Leptin (1-100 ng/ml) and adiponectin (1-100 nM) increased ROS accumulation, as was determined by DCFDA fluorescence. Using specific inhibitors, we found that the increase in ROS levels was mediated by NADPH oxidase (Nox), but not by AMP kinase (AMPK) or phosphatidyl inositol 3 kinase (PI3K). Leptin and adiponectin increased beta-cell number as detected by the XTT method, but did not affect apoptosis, indicating that the increased cell number results from increased proliferation. The adipokines-induced increase in viability is ROS dependent as this effect was abolished by N-acetyl-L-cysteine (NAC) or PEG-catalase. In addition, insulin secretion was found to be regulated by alterations in redox state, but not by adipokines. Finally, the effects of the various treatments on activity and mRNA expression of several antioxidant enzymes were determined. Both leptin and adiponectin reduced mRNA levels of superoxide dismutase (SOD)1. Adiponectin also decreased SOD activity and increased catalase and glutathione peroxidase (GPx) activities in the presence of H2O2. The results of this study show that leptin and adiponectin, by inducing a physiological increase in ROS levels, may be positive regulators of beta-cell mass.
Collapse
Affiliation(s)
- Moria Chetboun
- Department of Molecular Biology, Ariel University Center of Samaria, Ariel, Israel
| | | | | | | | | | | | | |
Collapse
|
24
|
Vatier C, Gautier JF, Vigouroux C. Therapeutic use of recombinant methionyl human leptin. Biochimie 2012; 94:2116-25. [PMID: 22464954 DOI: 10.1016/j.biochi.2012.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/13/2012] [Indexed: 01/11/2023]
Abstract
Recombinant methionyl human leptin (r-metHuLeptin) was first used as a replacement therapy in patients bearing inactivating mutations in the leptin gene. In this indication, it was shown since 1999 to be very efficient in inducing a dramatic weight loss in rare children and adults with severe obesity due to the lack of leptin. These first clinical trials clearly showed that r-metHuLeptin acted centrally to reduce food intake, inducing loss of fat mass, and to correct metabolic alterations, immune and neuroendocrine defects. A few years later, r-metHuLeptin was also shown to reverse the metabolic complications associated with lipodystrophic syndromes, due to primary defects in fat storage, which induce leptin deficiency. The beneficial effects, which could be mediated by central and/or peripheral mechanisms, are thought to mainly involve the lowering effects of leptin on ectopic lipid storage, in particular in liver and muscles, reducing insulin resistance. Interestingly, r-metHuLeptin therapy also reversed the hypothalamic-pituitary-gonadal axis dysfunctions associated with hypothalamic amenorrhea. However, if r-metHuLeptin treatment has been shown to be dramatically efficient in leptin-deficient states, its very limited effect in inducing weight loss in common obese patients revealed that, in patients with adequate leptin secretion, mechanisms of leptin resistance and leptin tolerance prevent r-metHuLeptin from inducing any additional effects. This review will present the current data about the effects of r-metHuLeptin therapy in humans, and discuss the recent perspectives of this therapy in new indications.
Collapse
Affiliation(s)
- Camille Vatier
- INSERM, UMR_S938, Centre de Recherches Saint-Antoine, Paris F-75012, France.
| | | | | |
Collapse
|
25
|
Abstract
Age-related changes in leptin and adiponectin levels remain controversial, being affected by inconsistent normalisation for adiposity and body fat distribution in the literature. In a cross-sectional study on 210 Caucasians (127 women, eighty-three men, 18-78 years, BMI 16.8-46.8 kg/m²), we investigated the effect of age on adipokine levels independent of fat mass (FM measured by densitometry), visceral and subcutaneous adipose tissue volumes (VAT and SAT assessed by whole-body MRI). Adiponectin levels increased with age in both sexes, whereas leptin levels decreased with age in women only. There was an age-related increase in VAT (as a percentage of total adipose tissue, VAT%TAT), associated with a decrease in SAT(legs)%TAT. Adiposity was the main predictor of leptin levels, with 75.1 % of the variance explained by %FM in women and 76.6 % in men. Independent of adiposity, age had a minor contribution to the variance in leptin levels (5.2 % in women only). The variance in adiponectin levels explained by age was 14.1 % in women and 5.1 % in men. In addition, independent and inverse contributions to the variance in adiponectin levels were found for truncal SAT (explaining additional 3.0 % in women and 9.1 % in men) and VAT%TAT (explaining additional 13.0 % in men). In conclusion, age-related changes in leptin and adiponectin levels are opposite to each other and partly independent of adiposity and body fat distribution. Normalisation for adiposity but not for body fat distribution is required for leptin. Adiponectin levels are adversely affected by subcutaneous and visceral trunk fat.
Collapse
|
26
|
The alpha linolenic acid content of flaxseed is associated with an induction of adipose leptin expression. Lipids 2011; 46:1043-52. [PMID: 22031167 PMCID: PMC3213345 DOI: 10.1007/s11745-011-3619-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/27/2011] [Indexed: 12/31/2022]
Abstract
Dietary flaxseed has cardioprotective effects that may be achieved through its rich content of the omega-3 fatty acid, alpha linolenic acid (ALA). Because ALA can be stored in adipose tissue, it is possible that some of its beneficial actions may be due to effects it has on the adipose tissue. We investigated the effects of dietary flaxseed both with and without an atherogenic cholesterol-enriched diet to determine the effects of dietary flaxseed on the expression of the adipose cytokines leptin and adiponectin. Rabbits were fed one of four diets: a regular (RG) diet, or a regular diet with added 0.5% cholesterol (CH), or 10% ground flaxseed (FX), or both (CF) for 8 weeks. Levels of leptin and adiponectin expression were assessed by RT-PCR in visceral adipose tissue. Consumption of flaxseed significantly increased plasma and adipose levels of ALA. Leptin protein and mRNA expression were lower in CH animals and were elevated in CF animals. Changes in leptin expression were strongly and positively correlated with adipose ALA levels and inversely correlated with levels of en face atherosclerosis. Adiponectin expression was not significantly affected by any of the dietary interventions. Our data demonstrate that the type of fat in the diet as well as its caloric content can specifically influence leptin expression. The findings support the hypothesis that the beneficial cardiovascular effects associated with flaxseed consumption may be related to a change in leptin expression.
Collapse
|
27
|
Johnston JM, Greco SJ, Hamzelou A, Ashford JW, Tezapsidis N. Repositioning leptin as a therapy for Alzheimer's disease. ACTA ACUST UNITED AC 2011; 8:481-490. [PMID: 22121334 DOI: 10.2217/thy.11.57] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The data from the initial clinical trials utilizing recombinant human leptin as an obesity therapy were published in 1998. Since then, numerous studies have been described which address dosage, safety and efficacy of leptin replacement for a variety of disorders with diverse patient groups, including pediatric and adult subjects. We review the current clinical trial data, demonstrate that leptin administration is safe for long term use in humans, and summarize reported cognitive benefits. The functions of leptin in neuroprotection and cognition have been largely overlooked. Accumulating data suggest a very significant application of leptin may be a therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Jane M Johnston
- Neurotez, Inc., 991 Highway 22, Suite 200A Bridgewater, NJ 08807, USA
| | | | | | | | | |
Collapse
|
28
|
Paz-Filho G, Mastronardi C, Delibasi T, Wong ML, Licinio J. Congenital leptin deficiency: diagnosis and effects of leptin replacement therapy. ACTA ACUST UNITED AC 2011; 54:690-7. [PMID: 21340154 DOI: 10.1590/s0004-27302010000800005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/27/2010] [Indexed: 01/05/2023]
Abstract
To describe our 10-year experience in treating leptin-deficient humans. Three adults and one boy presented with childhood-onset morbid obesity, hypogonadism and family history of obesity and early death. Serum leptin was inappropriately low. A recessive C105T leptin gene mutation was identified. Metabolic and endocrine assessments were conducted, before and while on and off leptin. The adults' body mass index decreased from 51.2 ± 2.5 to 29.5 ± 2.8 kg/m(2). Serum lipids normalized, insulin resistance decreased, and one of the initially diabetic females became normoglycemic. Hypogonadotropic hypogonadism was reversed, and other changes were observed in the adrenal, sympathetic, somatotropic and thyroid functions. Leptin replacement therapy reverses endocrine and metabolic alterations associated with leptin deficiency. Some of these results may be extrapolated to other diseases.
Collapse
Affiliation(s)
- Gilberto Paz-Filho
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | | | | | | |
Collapse
|
29
|
London ED, Berman SM, Chakrapani S, Delibasi T, Monterosso J, Erol HK, Paz-Filho G, Wong ML, Licinio J. Short-term plasticity of gray matter associated with leptin deficiency and replacement. J Clin Endocrinol Metab 2011; 96:E1212-20. [PMID: 21613360 PMCID: PMC3146795 DOI: 10.1210/jc.2011-0314] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Leptin affects neurogenesis, neuronal growth, and viability. We previously reported that leptin supplementation increased gray matter (GM) concentration in the anterior cingulate gyrus (ACG), cerebellum, and inferior parietal lobule, areas that are also involved in food intake. OBJECTIVE The aim of this study was to report the changes in brain structure at different states of leptin supplementation. DESIGN We conducted a nonrandomized trial. SETTING AND PATIENTS We studied three adults with congenital leptin deficiency due to a mutation in the leptin gene. INTERVENTION Patients received treatment with recombinant methionyl human leptin, with annual 11- to 36-d periods of treatment withholding followed by treatment restoration over 3 yr. MAIN OUTCOME MEASURES GM concentration (by voxel-based morphometry analysis of magnetic resonance scans) was correlated with body mass index (BMI) and leptin supplementation. RESULTS Annually withholding leptin supplementation for several weeks increased BMI and reversed the original effects of leptin in the cerebellum and ACG. The changes in the ACG were consistent with an indirect effect of leptin mediated through increased BMI. In the cerebellum, where leptin receptors are most dense, GM changes appeared to be direct effects of leptin. Leptin restoration did not lead to recovery of GM in the short term but did lead to an unexpected GM increase in the posterior half of the left thalamus, particularly the pulvinar nucleus. CONCLUSION These findings provide the first in vivo evidence of remarkably plastic, reversible, and regionally specific effects of leptin on human brain morphology. They suggest that leptin may have therapeutic value in modulating plasticity-dependent brain functions.
Collapse
Affiliation(s)
- Edythe D London
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90024, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Leptin is a pleiotropic cytokine-like hormone that is involved in the regulation of energy intake and expenditure, neuroendocrine function, immunity and lipid and glucose metabolism. The few humans with genetically based leptin deficiency provide a unique model to assess those effects. We have identified five Turkish patients (one male and two female adults; one boy and one girl) with congenital leptin deficiency due to a missense mutation in the leptin gene. Four of these patients were treated with physiological doses of recombinant methionyl human leptin. Body composition, brain structure and function, behaviour, immunity and endocrine and metabolic parameters were evaluated before and during treatment. Our results showed that leptin has peripheral, hypothalamic and extra-hypothalamic effects. Within the endocrine system, leptin regulates the circadian rhythms of cortisol, thyroid-stimulating hormone, luteinizing hormone and follicle-stimulating hormone. In the brain, leptin controls energy balance and body weight, and plays a role on neurogenesis and brain function. Leptin is a key element of the adiposinsular axis, enhances immune response, and regulates inflammation, coagulation, fibrinolysis and platelet aggregation. Our 10-year experience in treating these unique patients provided valuable data on the peripheral and central effects of leptin. Those results can be taken into account for the development of leptin-based therapies for other diseases.
Collapse
Affiliation(s)
- G Paz-Filho
- Department of Translational Medicine, John Curtin School of Medicine, The Australian National University, Canberra, Australia
| | | | | |
Collapse
|
31
|
Mittendorfer B, Horowitz JF, DePaoli AM, McCamish MA, Patterson BW, Klein S. Recombinant human leptin treatment does not improve insulin action in obese subjects with type 2 diabetes. Diabetes 2011; 60:1474-7. [PMID: 21411512 PMCID: PMC3292320 DOI: 10.2337/db10-1302] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Leptin therapy improves insulin sensitivity in people with leptin deficiency, but it is not known whether it improves insulin action in people who are not leptin deficient. The purpose of the current study was to determine whether leptin treatment has weight loss-independent effects on insulin action in obese subjects with type 2 diabetes. RESEARCH DESIGN AND METHODS We conducted a randomized, placebo-controlled trial in obese subjects (BMI: 35.4 ± 0.6 kg/m(2); mean ± SE) with newly diagnosed type 2 diabetes. Subjects were randomized to treatment with placebo (saline), low-dose (30 mg/day), or high-dose (80 mg/day) recombinant methionyl human (r-Met hu) leptin for 14 days. Multiorgan insulin sensitivity before and after treatment was evaluated by using the hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotopically labeled tracer infusions to measure glucose, glycerol, and fatty acid kinetics. RESULTS Low-dose and high-dose leptin treatment resulted in a threefold (P < 0.01) and 150-fold (P < 0.001) increase in basal plasma leptin concentrations, respectively. However, neither low-dose nor high-dose therapy had an effect on insulin-mediated suppression of glucose, glycerol, or palmitate rates of appearance into plasma compared with placebo. In addition, leptin treatment did not increase insulin-mediated stimulation of glucose disposal compared with placebo (14.3 ± 3.1, 18.4 ± 3.6, 16.7 ± 2.4 vs. 17.5 ± 2.5, 20.7 ± 3.0, 19.1 ± 3.3 μmol/kg body wt/min before vs. after treatment in the placebo, low-dose, and high-dose leptin groups, respectively). CONCLUSIONS r-Met hu leptin does not have weight loss-independent, clinically important effects on insulin sensitivity in obese people with type 2 diabetes.
Collapse
Affiliation(s)
- Bettina Mittendorfer
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey F. Horowitz
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Bruce W. Patterson
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Klein
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, Missouri
- Corresponding author: Samuel Klein,
| |
Collapse
|
32
|
Kalra SP. Pivotal role of leptin-hypothalamus signaling in the etiology of diabetes uncovered by gene therapy: a new therapeutic intervention? Gene Ther 2011; 18:319-25. [PMID: 21209624 DOI: 10.1038/gt.2010.164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of diabetes mellitus has soared to epidemic proportion worldwide. The debilitating chronic hyperglycemia is caused by either lack of insulin as in diabetes type 1 or its ineffectiveness as in diabetes type 2. Frequent replacement of insulin with or without insulin analogs for optimum glycemic control are the conventional cumbersome therapies. Recent application of leptin gene transfer technology has uncovered the participation of adipocytes-derived leptin-dependent hypothalamic neural signaling in glucose homeostasis and demonstrated that a breakdown in this communication due to leptin insufficiency in the hypothalamus underlies the etiology of chronic hyperglycemia. Reinstatement of central leptin sufficiency by hyperleptinemia produced either by intravenous leptin infusion or a single systemic injection of recombinant adenovirus vector encoding leptin gene suppressed hyperglycemia and evoked euglycemia only transiently in rodent models of diabetes type 1. In contrast, stable restoration of leptin sufficiency, solely in the hypothalamus, with biologically active leptin transduced by an intracerebroventicular injection of recombinant adeno-associated virus vector encoding leptin gene (rAAV-lep) abolished hyperglycemia and imposed euglycemia through the extended duration of experiment by stimulating glucose disposal in the periphery in models of diabetes type 1. Further, similar hypothalamic leptin transgene expression abrogated chronic hyperglycemia and hyperinsulinemia, the predisposing risk factors of the age and environmentally acquired diabetes type 2, and instituted euglycemia by independently activating relays that stimulate glucose metabolism and repress hyperinsulinemia and improve insulin sensitivity in the periphery. Consequently, this durable antidiabetic efficacy of one time rAAV-lep neurotherapy offers a potential novel substitute for insulin therapy following preclinical trials in subhuman primates and humans.
Collapse
Affiliation(s)
- S P Kalra
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610-0244, USA.
| |
Collapse
|
33
|
Andreev VP, Dwivedi RC, Paz-Filho G, Krokhin OV, Wong ML, Wilkins JA, Licinio J. Dynamics of plasma proteome during leptin-replacement therapy in genetically based leptin deficiency. THE PHARMACOGENOMICS JOURNAL 2010; 11:174-90. [PMID: 20458342 DOI: 10.1038/tpj.2010.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of leptin-replacement therapy on the plasma proteome of three unique adults with genetically based leptin deficiency were studied longitudinally during the course of recombinant human leptin-replacement treatment. Quantitative proteomics analysis was performed in plasma samples collected during four stages: before leptin treatment was initiated, after 1.5 and 6 years of leptin-replacement treatment, and after 7 weeks of temporary interruption of leptin-replacement therapy. Of 500 proteins reliably identified and quantitated in those four stages, about 100 were differentially abundant twofold or more in one or more stages. Synchronous dynamics of abundances of about 90 proteins was observed reflecting both short- and long-term effects of leptin-replacement therapy. Pathways and processes enriched with overabundant synchronous proteins were cell adhesion, cytoskeleton remodeling, cell cycle, blood coagulation, glycolysis, and gluconeogenesis. Plausible common regulators of the above synchronous proteins were identified using transcription regulation network analysis. The generated network included two transcription factors (c-Myc and androgen receptor) that are known to activate each other through a double-positive feedback loop, which may represent a potential molecular mechanism for the long-term effects of leptin-replacement therapy. Our findings may help to elucidate the effects of leptin on insulin resistance.
Collapse
Affiliation(s)
- V P Andreev
- Department of Psychiatry and Behavioral Sciences, Center on Pharmacogenomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sun Q, van Dam RM, Meigs JB, Franco OH, Mantzoros CS, Hu FB. Leptin and soluble leptin receptor levels in plasma and risk of type 2 diabetes in U.S. women: a prospective study. Diabetes 2010; 59:611-8. [PMID: 19959759 PMCID: PMC2828671 DOI: 10.2337/db09-1343] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We prospectively examined plasma levels of leptin and soluble leptin receptor (sOB-R), as well as their interactions with other diabetes risk factors, in relation to type 2 diabetes to elucidate the complex relation between these two biomarkers and diabetes risk. RESEARCH DESIGN AND METHODS Of 32,826 Nurses' Health Study participants who provided blood samples during 1989-1990, 1,054 incident case subjects of type 2 diabetes were identified and confirmed during 1990-2004 and 1,254 matched control subjects were selected. Plasma leptin and sOB-R levels were measured among these participants. RESULTS After multivariate adjustment for BMI, lifestyle practices, and dietary factors, sOB-R levels were significantly associated with a lower risk of type 2 diabetes. In comparison with women in the lowest quintile, the ORs (95% CI) of developing type 2 diabetes were 0.73 (0.55-0.96), 0.51 (0.38-0.68), 0.42 (0.31-0.57), and 0.39 (0.28-0.54; P for trend < 0.0001) for women in the second to fifth quintiles of sOB-R levels, respectively. In contrast, plasma leptin levels were not significantly associated with the risk of type 2 diabetes: The OR (95% CI) was 0.82 (0.62-1.10; P for trend = 0.46) comparing the highest with the lowest quintile of leptin levels. sOB-R levels were consistently associated with a decreased risk of type 2 diabetes at various levels of leptin or high-molecular-weight adiponectin. CONCLUSIONS These data suggest a strong inverse association between plasma sOB-R levels and risk of type 2 diabetes, independent of BMI, leptin, and adiponectin levels.
Collapse
Affiliation(s)
- Qi Sun
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Transcription factor AP-2beta inhibits expression and secretion of leptin, an insulin-sensitizing hormone, in 3T3-L1 adipocytes. Int J Obes (Lond) 2010; 34:670-8. [PMID: 20065963 DOI: 10.1038/ijo.2009.295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND We have previously reported an association between the activator protein-2beta (AP-2beta) transcription factor gene and type 2 diabetes. This gene is preferentially expressed in adipose tissue, and subjects with a disease-susceptible allele of AP-2beta showed stronger AP-2beta expression in adipose tissue than those without the susceptible allele. Furthermore, overexpression of AP-2beta led to lipid accumulation and induced insulin resistance in 3T3-L1 adipocytes. RESULT We found that overexpression of AP-2beta in 3T3-L1 adipocytes decreased the promoter activity of leptin, and subsequently decreased both messenger RNA (mRNA) and protein expression and secretion. Furthermore, knockdown of endogenous AP-2beta by RNA-interference increased mRNA and protein expression of leptin. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed specific binding of AP-2beta to leptin promoter regions in vitro and in vivo. In addition, site-directed mutagenesis of the AP-2-binding site located between position +34 and +42 relative to the transcription start site abolished the inhibitory effect of AP-2beta. Our results clearly showed that AP-2beta directly inhibited insulin-sensitizing hormone leptin expression by binding to its promoter. CONCLUSION AP-2beta modulated the expression of leptin through direct interaction with its promoter region.
Collapse
|
36
|
Blüher S, Shah S, Mantzoros CS. Leptin deficiency: clinical implications and opportunities for therapeutic interventions. J Investig Med 2009; 57:784-8. [PMID: 19730134 PMCID: PMC5501320 DOI: 10.2310/jim.0b013e3181b9163d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and energy expenditure leading to a morbidly obese phenotype and a disrupted regulation in neuroendocrine and immune function and in glucose and fat metabolism. Observational and interventional studies in humans with (complete) congenital leptin deficiency caused by mutations in the leptin gene or with relative leptin deficiency as seen in states of negative energy balance such as lipoatrophy, anorexia nervosa, or exercise-induced hypothalamic and neuroendocrine dysfunction have contributed to the elucidation of the pathophysiological role of leptin in these conditions and of the clinical significance of leptin administration in these subjects. More specifically, interventional studies have demonstrated that several neuroendocrine, metabolic, or immune disturbances in these states could be restored by leptin administration. Leptin replacement therapy is currently available through a compassionate use program for congenital complete leptin deficiency and under an expanded access program to subjects with leptin deficiency associated with congenital or acquired lipoatrophy. In addition, leptin remains a potentially forthcoming treatment for several other states of energy deprivation including anorexia nervosa or milder forms of hypothalamic amenorrhea pending appropriate clinical trials.
Collapse
Affiliation(s)
- Susan Blüher
- Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Sunali Shah
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
37
|
Abstract
Dyslipidaemias, particularly those characterized by the 'atherogenic profile' of high low-density lipoprotein-cholesterol and triglycerides and low high-density lipoprotein-cholesterol, are the major modifiable risk factor for atherosclerosis. The search for drugs to favourably alter such lipid profiles, reducing the associated morbidity and mortality, remains a major research focus. Niacin (nicotinic acid) is the most effective agent available for increasing high-density lipoprotein-cholesterol, but its use is associated with side effects that negatively affect patient compliance: these appear to arise largely as a result of production of prostaglandin D(2) and its subsequent activation of the DP(1) receptor. Desire to reduce the side effects (and improve pharmacokinetic parameters) has led to the development of a number of agonists that have differing effects, both in terms of clinical potency and the severity of adverse effects. The recent discovery of the niacin G-protein-coupled receptor HM74A (GPR109A) has clarified the distinction between the mechanism whereby niacin exerts its therapeutic effects and the mechanisms responsible for the generation of side effects. This has allowed the development of new drugs that show great potential for the treatment of dyslipidaemia. However, recent advances in understanding of the contribution of prostaglandin metabolism to vascular wall health suggest that some of the beneficial effects of niacin may well result from activation of the same pathways responsible for the adverse reactions. The purpose of this review is to emphasize that the search for agonists that show higher tolerability must take into account all aspects of signalling through this receptor.
Collapse
Affiliation(s)
- Helen Vosper
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, UK.
| |
Collapse
|
38
|
Ross AP, Bartness TJ, Mielke JG, Parent MB. A high fructose diet impairs spatial memory in male rats. Neurobiol Learn Mem 2009; 92:410-6. [PMID: 19500683 DOI: 10.1016/j.nlm.2009.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/18/2009] [Accepted: 05/27/2009] [Indexed: 01/25/2023]
Abstract
Over the past three decades there has been a substantial increase in the amount of fructose consumed by North Americans. Recent evidence from rodents indicates that hippocampal insulin signaling facilitates memory and excessive fructose consumption produces hippocampal insulin resistance. Based on this evidence, the present study tested the hypothesis that a high fructose diet would impair hippocampal-dependent memory. Adult male Sprague-Dawley rats (postnatal day 61) were fed either a control (0% fructose) or high fructose diet (60% of calories). Food intake and body mass were measured regularly. After 19 weeks, the rats were given 3 days of training (8 trials/day) in a spatial version of the water maze task, and retention performance was probed 48 h later. The high fructose diet did not affect acquisition of the task, but did impair performance on the retention test. Specifically, rats fed a high fructose diet displayed significantly longer latencies to reach the area where the platform had been located, made significantly fewer approaches to that area, and spent significantly less time in the target quadrant than did control diet rats. There was no difference in swim speed between the two groups. The retention deficits correlated significantly with fructose-induced elevations of plasma triglyceride concentrations. Consequently, the impaired spatial water maze retention performance seen with the high fructose diet may have been attributable, at least in part, to fructose-induced increases in plasma triglycerides.
Collapse
Affiliation(s)
- A P Ross
- Department of Psychology, Georgia State University, Atlanta, GA 30302-5030, USA
| | | | | | | |
Collapse
|
39
|
Oral EA, Burant C. Leptin and insulin resistance: good, bad, or still unclear? Am J Physiol Endocrinol Metab 2009; 296:E394-5, author reply E396. [PMID: 19171843 DOI: 10.1152/ajpendo.90914.2008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|