1
|
Dastoor P, Muiler C, Garrison A, Egan M, Carlos Dos Reis D, Santos A, Ameen NA. Localization and function of humanized F508del-CFTR in mouse intestine following activation of serum glucocorticoid kinase 1 and Trikafta. Eur J Pharmacol 2024; 978:176771. [PMID: 38925289 DOI: 10.1016/j.ejphar.2024.176771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The CFTR modulator Trikafta has markedly improved lung disease for Cystic Fibrosis (CF) patients carrying the common delta F508 (F508del-CFTR) CFTR mutation. F508del-CFTR results in an apical trafficking defect and loss of function in CFTR-expressing epithelial cells. However, Trikafta has not resulted in improved gastrointestinal function in CF patients. A humanized mouse model of F508del-CFTR was recently generated to evaluate CFTR modulators and other compounds to treat human F508del-CFTR CF intestinal disease. Short-term (4 h) treatment of rats with Dexamethasone (Dex) potently activates serum glucocorticoid kinase 1 (SGK1) and increases CFTR apical traffic and ion transport in the native intestine. This study examined CFTR localization and ion transport in intestinal segments from humanized F508del-CFTR mice following treatment with Dex in the presence/absence of Trikafta. Dex treatment improved apical CFTR localization and function but was inconsistent along intestinal segments. Combined treatment with Dex and Trikafta was superior to Dex alone but inconsistently improved CFTR localization and function. These data suggest further optimization of humanized CF mouse models will be necessary to test the efficacy of compounds to treat human CF intestinal disease.
Collapse
Affiliation(s)
- Parinaz Dastoor
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, CT, USA.
| | - Caroline Muiler
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, CT, USA
| | - Alannah Garrison
- Department of Pediatric Pulmonary Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Marie Egan
- Department of Pediatric Pulmonary Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Diego Carlos Dos Reis
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, CT, USA.
| | - Anderson Santos
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nadia A Ameen
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, CT, USA; Department of Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Ciobanu C, Yanda M, Zeidan A, Izzi J, Guggino WB, Cebotaru L. Amelioration of airway and GI disease in G551D-CF ferrets by AAV1 and AAV6. Gene Ther 2024; 31:499-510. [PMID: 39069560 DOI: 10.1038/s41434-024-00469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Gene therapy for CF has concentrated on targeting the lung. Here we took a different approach by injecting into the cephalic vein and spraying into the trachea of G551D, CF ferrets either AAV1 or 6 containing Δ27-264-CFTR, a truncated version of CFTR. Treatment with the potentiator VX-770 was halted for 7 days before instillation to induce a disease phenotype. Indeed, all ferrets were pancreas-insufficient when they entered the study. Four ferrets (three receiving AAV1 and one AAV6) were necropsied 48 days after vector delivery, and four (three receiving AAV6, one AAV1) were euthanized or died prior to the planned necropsy. AAV1 or AAV6 vector genomes, mRNA expression, and CFTR protein were detected in all tracheal and lung samples and in the liver, pancreas, and ileum of the treated ferrets. Surface and basal airway cells, pancreatic and bile ducts, and ileal crypts and villi were successfully transduced. Obstruction of the airways accompanied by pulmonary hemorrhaging, plugged pancreatic and bile ducts as well as mucous plugs in the ileum were noticed in untreated but absent from transduced ferrets necropsied at 48 days. Transduction of G551D ferrets suggests that a combination of systemic and airway application may be the preferred route of delivery for CF.
Collapse
Affiliation(s)
- Cristian Ciobanu
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Murali Yanda
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Adi Zeidan
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica Izzi
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - William B Guggino
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Liudmila Cebotaru
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Teng L, Dedousis N, Adeshirlarijaney A, Kanshana JS, Liu M, Hodges CA, Kohan AB. Impaired intestinal free fatty acid transport followed by chylomicron malformation, not pancreatic insufficiency, cause metabolic defects in cystic fibrosis. J Lipid Res 2024; 65:100551. [PMID: 39002195 PMCID: PMC11301217 DOI: 10.1016/j.jlr.2024.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 07/15/2024] Open
Abstract
Intestinal disease is one of the earliest manifestations of cystic fibrosis (CF) in children and is closely tied to deficits in growth and nutrition, both of which are directly linked to future mortality. Patients are treated aggressively with pancreatic enzyme replacement therapy and a high-fat diet to circumvent fat malabsorption, but this does not reverse growth and nutritional defects. We hypothesized that defects in chylomicron production could explain why CF body weights and nutrition are so resistant to clinical treatments. We used gold standard intestinal lipid absorption and metabolism approaches, including mouse mesenteric lymph cannulation, in vivo chylomicron secretion kinetics, transmission electron microscopy, small intestinal organoids, and chylomicron metabolism assays to test this hypothesis. In mice expressing the G542X mutation in cystic fibrosis transmembrane conductance regulator (CFTR-/- mice), we find that defective FFA trafficking across the epithelium into enterocytes drives a chylomicron formation defect. Furthermore, G542X mice secrete small, triglyceride-poor chylomicrons into the lymph and blood. These defective chylomicrons are cleared into extraintestinal tissues at ∼10-fold faster than WT chylomicrons. This defect in FFA absorption resulting in dysfunctional chylomicrons cannot be explained by steatorrhea or pancreatic insufficiency and is maintained in primary small intestinal organoids treated with micellar lipids. These studies suggest that the ultrahigh-fat diet that most people with CF are counselled to follow may instead make steatorrhea and malabsorption defects worse by overloading the absorptive capacity of the CF small intestine.
Collapse
Affiliation(s)
- Lihong Teng
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nikolaos Dedousis
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aneseh Adeshirlarijaney
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jitendra S Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Craig A Hodges
- Department of Genetics and Genome Sciences and Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Alison B Kohan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Jiang M, Salari A, Stock C, Nikolovska K, Boedtkjer E, Amiri M, Seidler UE. The electroneutral Na +-HCO 3- cotransporter NBCn1 (SLC4A7) modulates colonic enterocyte pH i, proliferation, and migration. Am J Physiol Cell Physiol 2024; 326:C1625-C1636. [PMID: 38646790 PMCID: PMC11371319 DOI: 10.1152/ajpcell.00079.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
NBCn1 (SLC4A7) is one of the two major Na+-HCO3- cotransporters in the human colonic epithelium, expressed predominantly in the highly proliferating colonocytes at the cryptal base. Increased NBCn1 expression levels are reported in tumors, including colorectal cancer. The study explores its importance for maintenance of the intracellular pH (pHi), as well as the proliferative, adhesive, and migratory behavior of the self-differentiating Caco2BBe colonic tumor cell line. In the self-differentiating Caco2BBe cells, NBCn1 mRNA was highly expressed from the proliferative stage until full differentiation. The downregulation of NBCn1 expression by RNA interference affected proliferation and differentiation and decreased intracellular pH (pHi) of the cells in correlation with the degree of knockdown. In addition, a disturbed cell adhesion and reduced migratory speed were associated with NBCn1 knockdown. Murine colonic Nbcn1-/- enteroids also displayed reduced proliferative activity. In the migrating Caco2BBe cells, NBCn1 was found at the leading edge and in colocalization with the focal adhesion markers vinculin and paxillin, which suggests that NBCn1 is involved in the establishment of cell-matrix adhesion. Our data highlight the physiological significance of NBCn1 in modulating epithelial pH homeostasis and cell-matrix interactions in the proliferative region of the colonic epithelium and unravel the molecular mechanism behind pathological overexpression of this transporter in human colorectal cancers.NEW & NOTEWORTHY The transporter NBCn1 plays a central role in maintaining homeostasis within Caco2BBe colonic epithelial cells through its regulation of intracellular pH, matrix adhesion, migration, and proliferation. These observations yield valuable insights into the molecular mechanism of the aberrant upregulation of this transporter in human colorectal cancers.
Collapse
Affiliation(s)
- Min Jiang
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Azam Salari
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christian Stock
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Becker HM, Seidler UE. Bicarbonate secretion and acid/base sensing by the intestine. Pflugers Arch 2024; 476:593-610. [PMID: 38374228 PMCID: PMC11006743 DOI: 10.1007/s00424-024-02914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an essential part of directional fluid movement in the gut. Since the first description of "active" transport of HCO3- ions against a concentration gradient in the 1970s, the fundamental role of HCO3- transport for multiple intestinal functions has been recognized. The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel techniques and new findings in the molecular regulation of intestinal HCO3- transport in the different segments of the gut. We discuss human diseases with defects in intestinal HCO3- secretion and potential treatment strategies to increase luminal alkalinity. In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.
Collapse
Affiliation(s)
- Holger M Becker
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Reyes EA, Castillo-Azofeifa D, Rispal J, Wald T, Zwick RK, Palikuqi B, Mujukian A, Rabizadeh S, Gupta AR, Gardner JM, Boffelli D, Gartner ZJ, Klein OD. Epithelial TNF controls cell differentiation and CFTR activity to maintain intestinal mucin homeostasis. J Clin Invest 2023; 133:e163591. [PMID: 37643009 PMCID: PMC10575728 DOI: 10.1172/jci163591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
The gastrointestinal tract relies on the production, maturation, and transit of mucin to protect against pathogens and to lubricate the epithelial lining. Although the molecular and cellular mechanisms that regulate mucin production and movement are beginning to be understood, the upstream epithelial signals that contribute to mucin regulation remain unclear. Here, we report that the inflammatory cytokine tumor necrosis factor (TNF), generated by the epithelium, contributes to mucin homeostasis by regulating both cell differentiation and cystic fibrosis transmembrane conductance regulator (CFTR) activity. We used genetic mouse models and noninflamed samples from patients with inflammatory bowel disease (IBD) undergoing anti-TNF therapy to assess the effect of in vivo perturbation of TNF. We found that inhibition of epithelial TNF promotes the differentiation of secretory progenitor cells into mucus-producing goblet cells. Furthermore, TNF treatment and CFTR inhibition in intestinal organoids demonstrated that TNF promotes ion transport and luminal flow via CFTR. The absence of TNF led to slower gut transit times, which we propose results from increased mucus accumulation coupled with decreased luminal fluid pumping. These findings point to a TNF/CFTR signaling axis in the adult intestine and identify epithelial cell-derived TNF as an upstream regulator of mucin homeostasis.
Collapse
Affiliation(s)
- Efren A. Reyes
- Department of Orofacial Sciences and Program in Craniofacial Biology, and
- Department of Pharmaceutical Chemistry and TETRAD Program, UCSF, San Francisco, California, USA
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences and Program in Craniofacial Biology, and
- Department of Regenerative Medicine, Genentech, Inc., South San Francisco, California, USA
| | - Jérémie Rispal
- Department of Orofacial Sciences and Program in Craniofacial Biology, and
| | - Tomas Wald
- Department of Orofacial Sciences and Program in Craniofacial Biology, and
| | - Rachel K. Zwick
- Department of Orofacial Sciences and Program in Craniofacial Biology, and
| | - Brisa Palikuqi
- Department of Orofacial Sciences and Program in Craniofacial Biology, and
| | - Angela Mujukian
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shervin Rabizadeh
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, Los Angeles, California, USA
| | | | - James M. Gardner
- Department of Surgery, and
- Diabetes Center, UCSF, San Francisco, California, USA
- Chan-Zuckerberg Biohub, San Francisco, California, USA
- The Center for Cellular Construction, San Francisco, California, USA
| | - Dario Boffelli
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, Los Angeles, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry and TETRAD Program, UCSF, San Francisco, California, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, and
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, Los Angeles, California, USA
| |
Collapse
|
7
|
Tenhami M, Polari L, Kujari H, Löyttyniemi E, Toivola DM, Voutilainen M. Keratin 7 expression in different anatomical parts of colonic epithelium in inflammatory bowel diseases and its prognostic value: a 3-year follow-up study. Sci Rep 2023; 13:11979. [PMID: 37488244 PMCID: PMC10366087 DOI: 10.1038/s41598-023-39066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
The diagnosis of inflammatory bowel diseases (IBD) may be challenging and their clinical course, characterized by relapses and spontaneous or drug-induced remissions, is difficult to predict. Novel prognostic biomarkers are needed. Keratin 7 (K7) is a cytoskeletal intermediate filament protein which is not normally expressed in the colonic epithelium. It was recently shown that K7 expression in the colonic epithelium is associated with ulcerative colitis and Crohn's disease, the two main subtypes of IBD. Here we investigated IBD associated K7 neo-expression in different regions of colon and terminal ileum. The correlation of the K7 expression with the inflammatory activity of the epithelium was analyzed in each region. The prognostic value of K7 was estimated by comparing the clinical disease activity after 3 years with the K7 expression at the time of enrollment. Our data shows that the level of K7 expression in inflamed epithelium varies depending on the anatomical region and it is the most pronounced in ascending and descending colon, but it did not predict the severity of IBD for the following 3 years. These results warrant future studies focusing on the biological role of K7 in colon and its utilization as potential IBD biomarker.
Collapse
Affiliation(s)
- Mervi Tenhami
- Division of Digestive Surgery, Turku University Hospital and University of Turku, P.O. Box 52, 20521, Turku, Finland.
| | - Lauri Polari
- Cell Biology, Biosciences, Åbo Akademi University, Turku, Finland
- InFlames Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Harry Kujari
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Åbo Akademi University, Turku, Finland
- InFlames Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Markku Voutilainen
- Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
8
|
Nickerson AJ, Rajendran VM. Dietary Na + depletion up-regulates NKCC1 expression and enhances electrogenic Cl - secretion in rat proximal colon. Cell Mol Life Sci 2023; 80:209. [PMID: 37458846 PMCID: PMC11073443 DOI: 10.1007/s00018-023-04857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
The corticosteroid hormone, aldosterone, markedly enhances K+ secretion throughout the colon, a mechanism critical to its role in maintaining overall K+ balance. Previous studies demonstrated that basolateral NKCC1 was up-regulated by aldosterone in the distal colon specifically to support K+ secretion-which is distinct from the more well-established role of NKCC1 in supporting luminal Cl- secretion. However, considerable segmental variability exists between proximal and distal colonic ion transport processes, especially concerning their regulation by aldosterone. Furthermore, delineating such region-specific effects has important implications for the management of various gastrointestinal pathologies. Experiments were therefore designed to determine whether aldosterone similarly up-regulates NKCC1 in the proximal colon to support K+ secretion. Using dietary Na+ depletion as a model of secondary hyperaldosteronism in rats, we found that proximal colon NKCC1 expression was indeed enhanced in Na+-depleted (i.e., hyperaldosteronemic) rats. Surprisingly, electrogenic K+ secretion was not detectable by short-circuit current (ISC) measurements in response to either basolateral bumetanide (NKCC1 inhibitor) or luminal Ba2+ (non-selective K+ channel blocker), despite enhanced K+ secretion in Na+-depleted rats, as measured by 86Rb+ fluxes. Expression of BK and IK channels was also found to be unaltered by dietary Na+ depletion. However, bumetanide-sensitive basal and agonist-stimulated Cl- secretion (ISC) were significantly enhanced by Na+ depletion, as was CFTR Cl- channel expression. These data suggest that NKCC1-dependent secretory pathways are differentially regulated by aldosterone in proximal and distal colon. Development of therapeutic strategies in treating pathologies related to aberrant colonic K+/Cl- transport-such as pseudo-obstruction or ulcerative colitis-may benefit from these findings.
Collapse
Affiliation(s)
- Andrew J Nickerson
- Departments of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Departments of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- University of Pittsburgh, S929 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, USA
| | - Vazhaikkurichi M Rajendran
- Departments of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA.
- Department of Medicine, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
9
|
Nakamura C, Ishizuka N, Yokoyama K, Yazaki Y, Tatsumi F, Ikumi N, Hempstock W, Ikari A, Yoshino Y, Hayashi H. Regulatory mechanisms of glucose absorption in the mouse proximal small intestine during fasting and feeding. Sci Rep 2023; 13:10838. [PMID: 37407613 DOI: 10.1038/s41598-023-38024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Fasting is known to alter the function of various organs and the mechanisms of glucose metabolism, which affect health outcomes and slow aging. However, it remains unclear how fasting and feeding affects glucose absorption function in the small intestine. We studied the effects of the fasting and feeding on glucose-induced short-circuit current (Isc) in vitro using an Ussing chamber technique. Glucose-induced Isc by SGLT1 was observed in the ileum, but little or no Isc was observed in the jejunum in ad libitum-fed mice. However, in mice fasted for 24-48 h, in addition to the ileum, robust glucose-induced Isc was observed over time in the jejunum. The expression of SGLT1 in the brush border membranes was significantly decreased in the jejunum under fed conditions compared to 48 h fasting, as analyzed by western blotting. Additionally, when mice were fed a 60% high glucose diet for 3 days, the increase in glucose-induced Isc was observed only in the ileum, and totally suppressed in the jejunum. An increase in Na+ permeability between epithelial cells was concomitantly observed in the jejunum of fasted mice. Transepithelial glucose flux was assessed using a non-metabolizable glucose analog, 14C-methyl α-D-glucopyranoside glucose (MGP). Regardless of whether fed or fasted, no glucose diffusion mechanism was observed. Fasting increased the SGLT1-mediated MGP flux in the jejunum. In conclusion, segment-dependent up- and down-regulation mechanisms during fasting and feeding are important for efficient glucose absorption once the fast is broken. Additionally, these mechanisms may play a crucial role in the small intestine's ability to autoregulate glucose absorption, preventing acute hyperglycemia when large amounts of glucose are ingested.
Collapse
Affiliation(s)
- Chisato Nakamura
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Noriko Ishizuka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kanako Yokoyama
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuyu Yazaki
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Fumiya Tatsumi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Naotaka Ikumi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Wendy Hempstock
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Department of Nursing, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
10
|
Carlos dos Reis D, Dastoor P, Santos AK, Sumigray K, Ameen NA. CFTR high expresser cells in cystic fibrosis and intestinal diseases. Heliyon 2023; 9:e14568. [PMID: 36967909 PMCID: PMC10031467 DOI: 10.1016/j.heliyon.2023.e14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the Cl-/HCO3 - channel implicated in Cystic Fibrosis, is critical to the pathophysiology of many gastrointestinal diseases. Defects in CFTR lead to intestinal dysfunction, malabsorption, obstruction, infection, inflammation, and cancer that increases morbidity and reduces quality of life. This review will focus on CFTR in the intestine and the implications of the subpopulation of CFTR High Expresser Cells (CHEs) in Cystic Fibrosis (CF), intestinal physiology and pathophysiology of intestinal diseases.
Collapse
Affiliation(s)
- Diego Carlos dos Reis
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
| | - Parinaz Dastoor
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
| | - Anderson Kenedy Santos
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Nadia A. Ameen
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT06510, USA
- Corresponding author. Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA.
| |
Collapse
|
11
|
Salari A, Zhou K, Nikolovska K, Seidler U, Amiri M. Human Colonoid-Myofibroblast Coculture for Study of Apical Na +/H + Exchangers of the Lower Cryptal Neck Region. Int J Mol Sci 2023; 24:ijms24054266. [PMID: 36901695 PMCID: PMC10001859 DOI: 10.3390/ijms24054266] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Cation and anion transport in the colonocyte apical membrane is highly spatially organized along the cryptal axis. Because of lack of experimental accessibility, information about the functionality of ion transporters in the colonocyte apical membrane in the lower part of the crypt is scarce. The aim of this study was to establish an in vitro model of the colonic lower crypt compartment, which expresses the transit amplifying/progenitor (TA/PE) cells, with accessibility of the apical membrane for functional study of lower crypt-expressed Na+/H+ exchangers (NHEs). Colonic crypts and myofibroblasts were isolated from human transverse colonic biopsies, expanded as three-dimensional (3D) colonoids and myofibroblast monolayers, and characterized. Filter-grown colonic myofibroblast-colonic epithelial cell (CM-CE) cocultures (myofibroblasts on the bottom of the transwell and colonocytes on the filter) were established. The expression pattern for ion transport/junctional/stem cell markers of the CM-CE monolayers was compared with that of nondifferentiated (EM) and differentiated (DM) colonoid monolayers. Fluorometric pHi measurements were performed to characterize apical NHEs. CM-CE cocultures displayed a rapid increase in transepithelial electrical resistance (TEER), paralleled by downregulation of claudin-2. They maintained proliferative activity and an expression pattern resembling TA/PE cells. The CM-CE monolayers displayed high apical Na+/H+ exchange activity, mediated to >80% by NHE2. Human colonoid-myofibroblast cocultures allow the study of ion transporters that are expressed in the apical membrane of the nondifferentiated colonocytes of the cryptal neck region. The NHE2 isoform is the predominant apical Na+/H+ exchanger in this epithelial compartment.
Collapse
Affiliation(s)
- Azam Salari
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Kunyan Zhou
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (U.S.); (M.A.); Tel.: +49-511-532-9427 (U.S.); Fax: +49-511-532-8428 (U.S.)
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (U.S.); (M.A.); Tel.: +49-511-532-9427 (U.S.); Fax: +49-511-532-8428 (U.S.)
| |
Collapse
|
12
|
Loss of Slc12a2 specifically in pancreatic β-cells drives metabolic syndrome in mice. PLoS One 2022; 17:e0279560. [PMID: 36580474 PMCID: PMC9799326 DOI: 10.1371/journal.pone.0279560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022] Open
Abstract
The risk of type-2 diabetes and cardiovascular disease is higher in subjects with metabolic syndrome, a cluster of clinical conditions characterized by obesity, impaired glucose metabolism, hyperinsulinemia, hyperlipidemia and hypertension. Diuretics are frequently used to treat hypertension in these patients, however, their use has long been associated with poor metabolic outcomes which cannot be fully explained by their diuretic effects. Here, we show that mice lacking the diuretic-sensitive Na+K+2Cl-cotransporter-1 Nkcc1 (Slc12a2) in insulin-secreting β-cells of the pancreatic islet (Nkcc1βKO) have reduced in vitro insulin responses to glucose. This is associated with islet hypoplasia at the expense of fewer and smaller β-cells. Remarkably, Nkcc1βKO mice excessively gain weight and progressive metabolic syndrome when fed a standard chow diet ad libitum. This is characterized by impaired hepatic insulin receptor activation and altered lipid metabolism. Indeed, overweight Nkcc1βKO but not lean mice had fasting and fed hyperglycemia, hypertriglyceridemia and non-alcoholic steatohepatitis. Notably, fasting hyperinsulinemia was detected earlier than hyperglycemia, insulin resistance, glucose intolerance and increased hepatic de novo gluconeogenesis. Therefore, our data provide evidence supporting the novel hypothesis that primary β-cell defects related to Nkcc1-regulated intracellular Cl-homeostasis and β-cell growth can result in the development of metabolic syndrome shedding light into additional potential mechanisms whereby chronic diuretic use may have adverse effects on metabolic homeostasis in susceptible individuals.
Collapse
|
13
|
Dolan B, Ermund A, Martinez-Abad B, Johansson ME, Hansson GC. Clearance of small intestinal crypts involves goblet cell mucus secretion by intracellular granule rupture and enterocyte ion transport. Sci Signal 2022; 15:eabl5848. [PMID: 36126118 PMCID: PMC9749883 DOI: 10.1126/scisignal.abl5848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Goblet cells in the small intestinal crypts contain large numbers of mucin granules that are rapidly discharged to clean bacteria from the crypt. Because acetylcholine released by neuronal and nonneuronal cells controls many aspects of intestinal epithelial function, we used tissue explants and organoids to investigate the response of the small intestinal crypt to cholinergic stimulation. The activation of muscarinic acetylcholine receptors initiated a coordinated and rapid emptying of crypt goblet cells that flushed the crypt contents into the intestinal lumen. Cholinergic stimulation induced an expansion of the granule contents followed by intracellular rupture of the mucin granules. The mucus expanded intracellularly before the rupture of the goblet cell apical membrane and continued to expand after its release into the crypt lumen. The goblet cells recovered from membrane rupture and replenished their stores of mucin granules. Mucus secretion from the goblet cells depended on Ca2+ signaling and the expansion of the mucus in the crypt depended on gap junctions and on ion and water transport by enterocytes adjacent to the goblet cells. This distinctive mode of mucus secretion, which we refer to as "expanding secretion," efficiently cleans the small intestine crypt through coordinated mucus, ion, and fluid secretion by goblet cells and enterocytes.
Collapse
Affiliation(s)
- Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, 405 30 Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, 405 30 Gothenburg, Sweden
| | - Beatriz Martinez-Abad
- Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin E.V. Johansson
- Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
14
|
Tan X, Kini A, Römermann D, Seidler U. The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice. Int J Mol Sci 2022; 23:ijms23179993. [PMID: 36077390 PMCID: PMC9456459 DOI: 10.3390/ijms23179993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Mutations in the CFTR chloride channel result in intestinal obstructive episodes in cystic fibrosis (CF) patients and in CF animal models. In this study, we explored the possibility of reducing the frequency of obstructive episodes in cftr−/− mice through the oral application of a gut-selective NHE3 inhibitor tenapanor and searched for the underlying mechanisms involved. Sex- and age-matched cftr+/+ and cftr−/− mice were orally gavaged twice daily with 30 mg kg−1 tenapanor or vehicle for a period of 21 days. Body weight and stool water content was assessed daily and gastrointestinal transit time (GTT) once weekly. The mice were sacrificed when an intestinal obstruction was suspected or after 21 days, and stool and tissues were collected for further analysis. Twenty-one day tenapanor application resulted in a significant increase in stool water content and stool alkalinity and a significant decrease in GTT in cftr+/+ and cftr−/− mice. Tenapanor significantly reduced obstructive episodes to 8% compared to 46% in vehicle-treated cftr−/− mice and prevented mucosal inflammation. A decrease in cryptal hyperproliferation, mucus accumulation, and mucosal mast cell number was also observed in tenapanor- compared to vehicle-treated, unobstructed cftr−/− mice. Overall, oral tenapanor application prevented obstructive episodes in CFTR-deficient mice and was safe in cftr+/+ and cftr−/− mice. These results suggest that tenapanor may be a safe and affordable adjunctive therapy in cystic fibrosis patients to alleviate constipation and prevent recurrent DIOS.
Collapse
Affiliation(s)
| | | | | | - Ursula Seidler
- Correspondence: ; Tel.: +49-5115-329-427; Fax: +49-5115-328-428
| |
Collapse
|
15
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
16
|
Ahsan MK, dos Reis DC, Barbieri A, Sumigray KD, Nottoli T, Salas PJ, Ameen NA. Loss of Serum Glucocorticoid-Inducible Kinase 1 SGK1 Worsens Malabsorption and Diarrhea in Microvillus Inclusion Disease (MVID). J Clin Med 2022; 11:jcm11144179. [PMID: 35887942 PMCID: PMC9319011 DOI: 10.3390/jcm11144179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Microvillus inclusion disease (MVID), a lethal congenital diarrheal disease, results from loss of function mutations in the apical actin motor myosin VB (MYO5B). How loss of MYO5B leads to both malabsorption and fluid secretion is not well understood. Serum glucocorticoid-inducible kinase 1 (SGK1) regulates intestinal carbohydrate and ion transporters including cystic fibrosis transmembrane conductance regulator (CFTR). We hypothesized that loss of SGK1 could reduce CFTR fluid secretion and MVID diarrhea. Using CRISPR-Cas9 approaches, we generated R26CreER;MYO5Bf/f conditional single knockout (cMYO5BKO) and R26CreER;MYO5Bf/f;SGK1f/f double knockout (cSGK1/MYO5B-DKO) mice. Tamoxifen-treated cMYO5BKO mice resulted in characteristic features of human MVID including severe diarrhea, microvillus inclusions (MIs) in enterocytes, defective apical traffic, and depolarization of transporters. However, apical CFTR distribution was preserved in crypts and depolarized in villus enterocytes, and CFTR high expresser (CHE) cells were observed. cMYO5BKO mice displayed increased phosphorylation of SGK1, PDK1, and the PDK1 target PKCι in the intestine. Surprisingly, tamoxifen-treated cSGK1/MYO5B-DKO mice displayed more severe diarrhea than cMYO5BKO, with preservation of apical CFTR and CHE cells, greater fecal glucose and reduced SGLT1 and GLUT2 in the intestine. We conclude that loss of SGK1 worsens carbohydrate malabsorption and diarrhea in MVID.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Department of Pediatrics, Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06510, USA; (M.K.A.); (D.C.d.R.)
| | - Diego Carlos dos Reis
- Department of Pediatrics, Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06510, USA; (M.K.A.); (D.C.d.R.)
| | - Andrea Barbieri
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Kaelyn D. Sumigray
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Timothy Nottoli
- Genome Editing Center, Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Pedro J. Salas
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, FL 33146, USA;
| | - Nadia A. Ameen
- Department of Pediatrics, Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06510, USA; (M.K.A.); (D.C.d.R.)
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Correspondence:
| |
Collapse
|
17
|
Bhattacharya R, Blankenheim Z, Scott PM, Cormier RT. CFTR and Gastrointestinal Cancers: An Update. J Pers Med 2022; 12:868. [PMID: 35743652 PMCID: PMC9224611 DOI: 10.3390/jpm12060868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic Fibrosis (CF) is a disease caused by mutations in the CFTR gene that severely affects the lungs as well as extra-pulmonary tissues, including the gastrointestinal (GI) tract. CFTR dysfunction resulting from either mutations or the downregulation of its expression has been shown to promote carcinogenesis. An example is the enhanced risk for several types of cancer in patients with CF, especially cancers of the GI tract. CFTR also acts as a tumor suppressor in diverse sporadic epithelial cancers in many tissues, primarily due to the silencing of CFTR expression via multiple mechanisms, but especially due to epigenetic regulation. This review provides an update on the latest research linking CFTR-deficiency to GI cancers, in both CF patients and in sporadic GI cancers, with a particular focus on cancer of the intestinal tract. It will discuss changes in the tissue landscape linked to CFTR-deficiency that may promote cancer development such as breakdowns in physical barriers, microbial dysbiosis and inflammation. It will also discuss molecular pathways and mechanisms that act upstream to modulate CFTR expression, such as by epigenetic silencing, as well as molecular pathways that act downstream of CFTR-deficiency, such as the dysregulation of the Wnt/β-catenin and NF-κB signaling pathways. Finally, it will discuss the emerging CFTR modulator drugs that have shown promising results in improving CFTR function in CF patients. The potential impact of these modulator drugs on the treatment and prevention of GI cancers can provide a new example of personalized cancer medicine.
Collapse
Affiliation(s)
| | | | - Patricia M. Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA or (R.B.); (Z.B.)
| | - Robert T. Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA or (R.B.); (Z.B.)
| |
Collapse
|
18
|
Do C, Evans GJ, DeAguero J, Escobar GP, Lin HC, Wagner B. Dysnatremia in Gastrointestinal Disorders. Front Med (Lausanne) 2022; 9:892265. [PMID: 35646996 PMCID: PMC9136014 DOI: 10.3389/fmed.2022.892265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 01/19/2023] Open
Abstract
The primary solute of the milieu intérieur is sodium and accompanying anions. The solvent is water. The kidneys acutely regulate homeostasis in filtration, secretion, and resorption of electrolytes, non-electrolytes, and minerals while balancing water retention and clearance. The gastrointestinal absorptive and secretory functions enable food digestion and water absorption needed to sustain life. Gastrointestinal perturbations including vomiting and diarrhea can lead to significant volume and electrolyte losses, overwhelming the renal homeostatic compensatory mechanisms. Dysnatremia, potassium and acid-base disturbances can result from gastrointestinal pathophysiologic processes. Understanding the renal and gastrointestinal contributions to homeostatis are important for the clinical evaluation of perturbed volume disturbances.
Collapse
Affiliation(s)
- Catherine Do
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,New Mexico Veterans Administration Health Care System, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Gretta J. Evans
- University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Joshua DeAguero
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - G. Patricia Escobar
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Henry C. Lin
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, United States
| | - Brent Wagner
- Division of Nephrology, Department of Medicine, Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, United States,New Mexico Veterans Administration Health Care System, Albuquerque, NM, United States,University of New Mexico Health Sciences Center, Albuquerque, NM, United States,*Correspondence: Brent Wagner
| |
Collapse
|
19
|
Ren LL, Zhou JY, Liang SJ, Wang XQ. Impaired intestinal stem cell activity in ETEC infection: enterotoxins, cyclic nucleotides, and Wnt signaling. Arch Toxicol 2022; 96:1213-1225. [PMID: 35226135 DOI: 10.1007/s00204-021-03213-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) in humans and animals colonizes the intestine and thereafter secrets heat-stable enterotoxin (ST) with or without heat-labile enterotoxin (LT), which triggers massive fluid and electrolyte secretion into the gut lumen. The crosstalk between the cyclic nucleotide-dependent protein kinase/cystic fibrosis transmembrane conductance regulator (cAMP or cGMP/CFTR) pathway involved in ETEC-induced diarrhea channels, and the canonical Wnt/β-catenin signaling pathway leads to changes in intestinal stem cell (ISC) fates, which are strongly associated with developmental disorders caused by diarrhea. We review how alterations in enterotoxin-activated ion channel pathways and the canonical Wnt/β-catenin signaling pathway can explain inhibited intestinal epithelial activity, characterize alterations in the crosstalk of cyclic nucleotides, and predict harmful effects on ISCs in targeted therapy. Besides, we discuss current deficits in the understanding of enterotoxin-intestinal epithelial cell activity relationships that should be considered when interpreting sequelae of diarrhea.
Collapse
Affiliation(s)
- Lu-Lu Ren
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Shao-Jie Liang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Tam RY, van Dorst JM, McKay I, Coffey M, Ooi CY. Intestinal Inflammation and Alterations in the Gut Microbiota in Cystic Fibrosis: A Review of the Current Evidence, Pathophysiology and Future Directions. J Clin Med 2022; 11:jcm11030649. [PMID: 35160099 PMCID: PMC8836727 DOI: 10.3390/jcm11030649] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting autosomal recessive multisystem disease. While its burden of morbidity and mortality is classically associated with pulmonary disease, CF also profoundly affects the gastrointestinal (GI) tract. Chronic low-grade inflammation and alterations to the gut microbiota are hallmarks of the CF intestine. The etiology of these manifestations is likely multifactorial, resulting from cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, a high-fat CF diet, and the use of antibiotics. There may also be a bidirectional pathophysiological link between intestinal inflammation and changes to the gut microbiome. Additionally, a growing body of evidence suggests that these GI manifestations may have significant clinical associations with growth and nutrition, quality of life, and respiratory function in CF. As such, the potential utility of GI therapies and long-term GI outcomes are areas of interest in CF. Further research involving microbial modulation and multi-omics techniques may reveal novel insights. This article provides an overview of the current evidence, pathophysiology, and future research and therapeutic considerations pertaining to intestinal inflammation and alterations in the gut microbiota in CF.
Collapse
Affiliation(s)
- Rachel Y. Tam
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Josie M. van Dorst
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
| | - Isabelle McKay
- Wagga Wagga Base Hospital, Wagga Wagga, NSW 2650, Australia;
| | - Michael Coffey
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
| | - Chee Y. Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (R.Y.T.); (J.M.v.D.); (M.C.)
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney, NSW 2031, Australia
- Correspondence:
| |
Collapse
|
21
|
Whittamore JM, Hatch M. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021; 12:2835-2875. [PMID: 34964122 DOI: 10.1002/cphy.c210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Pearce SC, Suntornsaratoon P, Kishida K, Al‐Jawadi A, Guardia J, Nadler I, Flores J, Shiarella R, Auvinen M, Yu S, Gao N, Ferraris RP. Expression of SARS-CoV-2 entry factors, electrolyte, and mineral transporters in different mouse intestinal epithelial cell types. Physiol Rep 2021; 9:e15061. [PMID: 34755492 PMCID: PMC8578880 DOI: 10.14814/phy2.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) and transmembrane proteases (TMPRSS) are multifunctional proteins required for SARS-CoV-2 infection or for amino acid (AA) transport, and are abundantly expressed in mammalian small intestine, but the identity of the intestinal cell type(s) and sites of expression are unclear. Here we determined expression of SARS-CoV-2 entry factors in different cell types and then compared it to that of representative AA, electrolyte, and mineral transporters. We tested the hypothesis that SARS-CoV-2, AA, electrolyte, and mineral transporters are expressed heterogeneously in different intestinal cell types by making mouse enteroids enriched in enterocytes (ENT), goblet (GOB), Paneth (PAN), or stem (ISC) cells. Interestingly, the expression of ACE2 was apical and modestly greater in ENT, the same pattern observed for its associated AA transporters B0 AT1 and SIT1. TMPRSS2 and TMPRSS4 were more highly expressed in crypt-residing ISC. Expression of electrolyte transporters was dramatically heterogeneous. DRA, NBCe1, and NHE3 were greatest in ENT, while those of CFTR and NKCC1 that play important roles in secretory diarrhea, were mainly expressed in ISC and PAN that also displayed immunohistochemically abundant basolateral NKCC1. Intestinal iron transporters were generally expressed higher in ENT and GOB, while calcium transporters were expressed mainly in PAN. Heterogeneous expression of its entry factors suggests that the ability of SARS-CoV-2 to infect the intestine may vary with cell type. Parallel cell-type expression patterns of ACE2 with B0 AT1 and SIT1 provides further evidence of ACE2's multifunctional properties and importance in AA absorption.
Collapse
Affiliation(s)
- Sarah C. Pearce
- Department of Pharmacology, Physiology and NeurosciencesNew Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
- Present address:
USDA‐ARS National Laboratory for Agriculture and the Environment1015 N. University Blvd.AmesIowa50011USA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology and NeurosciencesNew Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
- Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Kunihiro Kishida
- Department of Pharmacology, Physiology and NeurosciencesNew Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
- Present address:
Department of Science and Technology on Food SafetyKindai UniversityWakayama649‐6493Japan
| | - Arwa Al‐Jawadi
- Department of Pharmacology, Physiology and NeurosciencesNew Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
- Present address:
Thermo Fisher Scientific5823 Newton DriveCarlsbadCalifornia92008USA
| | - Joshua Guardia
- Department of Pharmacology, Physiology and NeurosciencesNew Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
| | - Ian Nadler
- Department of Pharmacology, Physiology and NeurosciencesNew Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
| | - Juan Flores
- Department of Biological SciencesLife Science CenterRutgers UniversityNewarkNew JerseyUSA
| | - Reilly Shiarella
- Department of Pharmacology, Physiology and NeurosciencesNew Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
| | - Madelyn Auvinen
- Department of Pharmacology, Physiology and NeurosciencesNew Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
| | - Shiyan Yu
- Department of Biological SciencesLife Science CenterRutgers UniversityNewarkNew JerseyUSA
| | - Nan Gao
- Department of Biological SciencesLife Science CenterRutgers UniversityNewarkNew JerseyUSA
| | - Ronaldo P. Ferraris
- Department of Pharmacology, Physiology and NeurosciencesNew Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
| |
Collapse
|
23
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
24
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
25
|
Abstract
Cystic Fibrosis (CF) is the commonest inherited genetic disorder in Caucasians due to a mutation in the gene CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), and it should be considered as an Inherited Colorectal Cancer (CRC) Syndrome. In the United States, physicians of CF Foundation established the “Developing Innovative Gastroenterology Speciality Training Program” to increase the research on CF in gastrointestinal and hepatobiliary diseases. The risk to develop a CRC is 5–10 times higher in CF patients than in the general population and even greater in CF patients receiving immunosuppressive therapy due to organ transplantation (30-fold increased risk relative to the general population). Colonoscopy should be considered the best screening for CRC in CF patients. The screening colonoscopy should be started at the age of 40 in CF patients and, if negative, a new colonoscopy should be performed every 5 years and every 3 years if adenomas are detected. For transplanted CF patients, the screening colonoscopy could be started at the age of 35, in transplanted patients at the age of 30 and, if before, at the age of 30. CF transplanted patients, between the age of 35 and 55, must repeat colonoscopy every 3 years. Our review draws attention towards the clinically relevant development of CRC in CF patients, and it may pave the way for further screenings and studies.
Collapse
|
26
|
Stumpff F, Manneck D, Martens H. News in caecal signalling: the role of propionate in microbial-epithelial crosstalk. Pflugers Arch 2021; 473:853-854. [PMID: 34028588 PMCID: PMC8164575 DOI: 10.1007/s00424-021-02579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Friederike Stumpff
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| | - David Manneck
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Holger Martens
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| |
Collapse
|
27
|
Nickerson AJ, Rajendran VM. Aldosterone up-regulates basolateral Na + -K + -2Cl - cotransporter-1 to support enhanced large-conductance K + channel-mediated K + secretion in rat distal colon. FASEB J 2021; 35:e21606. [PMID: 33908679 PMCID: PMC9777186 DOI: 10.1096/fj.202100203r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Na+ -K+ -2Cl- cotransporter-1 (NKCC1) facilitates basolateral K+ and Cl- uptake, supporting their efflux across mucosal membranes of colonic epithelial cells. NKCC1 activity has also been shown to be critical for electrogenic K+ secretion induced by aldosterone, which is known to stimulate large-conductance K+ (BK) channel expression in mucosal membranes. This study was aimed to (1) identify whether aldosterone enhances NKCC1 expression specifically to support BK-mediated K+ secretion and (2) to determine whether increased NKCC1 supports electrogenic Cl- secretion in parallel to K+ secretion. Dietary Na+ depletion was used to induce secondary hyperaldosteronism in rats, or aldosterone was administered ex vivo to rat distal colonic mucosae. NKCC1-dependent electrogenic K+ or Cl- secretion was measured as a function of short circuit current (ISC ). qRT-PCR, western blot, and immunofluorescence analyses were performed using standard techniques. Aldosterone enhanced NKCC1 and BKα expression and electrogenic K+ secretion in the distal colon, which was inhibited by either serosal bumetanide (NKCC1 inhibitor) or mucosal iberiotoxin (IbTX; BK channel blocker), but not TRAM-34 (IK channel blocker). Expression of NKCC1 and BKα proteins was enhanced in crypt cells of hyper-aldosterone rats. However, neither NKCC1-dependent Cl- secretion nor CFTR (apical Cl- channel) expression was enhanced by aldosterone. We conclude that aldosterone enhances NKCC1 to support BK-mediated K+ secretion independently of Cl- secretion in the distal colon. The regulation of NKCC1 expression/K+ secretion by aldosterone may be a therapeutic target in treating gastrointestinal disorders associated with alterations in colonic K+ transport, such as colonic pseudo-obstruction, and hyperkalemia associated with renal disease.
Collapse
Affiliation(s)
- Andrew J. Nickerson
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Vazhaikkurichi M. Rajendran
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
- Departments of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
28
|
Stephens CE, Whittamore JM, Hatch M. The role of NHE3 (Slc9a3) in oxalate and sodium transport by mouse intestine and regulation by cAMP. Physiol Rep 2021; 9:e14828. [PMID: 33904662 PMCID: PMC8077127 DOI: 10.14814/phy2.14828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal oxalate transport involves Cl−/HCO3− exchangers but how this transport is regulated is not currently known. NHE3 (Slc9a3), an apical Na+/H+ exchanger, is an established target for regulation of electroneutral NaCl absorption working in concert with Cl−/HCO3− exchangers. To test whether NHE3 could be involved in regulation of intestinal oxalate transport and renal oxalate handling we compared urinary oxalate excretion rates and intestinal transepithelial fluxes of 14C‐oxalate and 22Na+ between NHE3 KO and wild‐type (WT) mice. NHE3 KO kidneys had lower creatinine clearance suggesting reduced GFR, but urinary oxalate excretion rates (µmol/24 h) were similar compared to the WT but doubled when expressed as a ratio of creatinine. Intestinal transepithelial fluxes of 14C‐oxalate and 22Na+ were measured in the distal ileum, cecum, and distal colon. The absence of NHE3 did not affect basal net transport rates of oxalate or sodium across any intestinal section examined. Stimulation of intracellular cAMP with forskolin (FSK) and 3‐isobutyl‐1‐methylxanthine (IBMX) led to an increase in net oxalate secretion in the WT distal ileum and cecum and inhibition of sodium absorption in the cecum and distal colon. In NHE3 KO cecum, cAMP stimulation of oxalate secretion was impaired suggesting the possibility of a role for NHE3 in this process. Although, there is little evidence for a role of NHE3 in basal intestinal oxalate fluxes, NHE3 may be important for cAMP stimulation of oxalate in the cecum and for renal handling of oxalate.
Collapse
Affiliation(s)
- Christine E Stephens
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jonathan M Whittamore
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Palma AG, Soares Machado M, Lira MC, Rosa F, Rubio MF, Marino G, Kotsias BA, Costas MA. Functional relationship between CFTR and RAC3 expression for maintaining cancer cell stemness in human colorectal cancer. Cell Oncol (Dordr) 2021; 44:627-641. [PMID: 33616840 DOI: 10.1007/s13402-021-00589-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE CFTR mutations not only cause cystic fibrosis, but also increase the risk of colorectal cancer. A putative role of CFTR in colorectal cancer patients without cystic fibrosis has so far, however, not been investigated. RAC3 is a nuclear receptor coactivator that has been found to be overexpressed in several human tumors, and to be required for maintaining cancer stemness. Here, we investigated the functional relationship between CFTR and RAC3 for maintaining cancer stemness in human colorectal cancer. METHODS Cancer stemness was investigated by analysing the expression of stem cell markers, clonogenic growth and selective retention of fluorochrome, using stable transfection of shCFTR or shRAC3 in HCT116 colorectal cancer cells. In addition, we performed pathway enrichment and network analyses in both primary human colorectal cancer samples (TCGA, Xena platform) and Caco-2 colorectal cancer cells including (1) CD133+ or CD133- side populations and (2) CFTRwt or CFTRmut cells (ConsensusPathDB, STRING, Cytoscape, GeneMANIA). RESULTS We found that the CD133+ side population expresses higher levels of RAC3 and CFTR than the CD133- side population. RAC3 overexpression increased CFTR expression, whereas CFTR downregulation inhibited the cancer stem phenotype. CFTR mRNA levels were found to be increased in colorectal cancer samples from patients without cystic fibrosis compared to those with CFTR mutations, and this correlated with an increased expression of RAC3. The expression pattern of a gene set involved in inflammatory response and nuclear receptor modulation in CD133+ Caco-2 cells was found to be shared with that in CFTRwt Caco-2 cells. These genes may contribute to colorectal cancer development. CONCLUSIONS CFTR may play a non-tumor suppressor role in colorectal cancer development and maintenance involving enhancement of the expression of a set of genes related to cancer stemness and development in patients without CFTR mutations.
Collapse
Affiliation(s)
- Alejandra Graciela Palma
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina
| | - Mileni Soares Machado
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina
| | - María Cecilia Lira
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina
| | - Francisco Rosa
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina
| | - María Fernanda Rubio
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - Gabriela Marino
- CONICET, Buenos Aires, Argentina.,Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO, Buenos Aires, Argentina
| | - Basilio Aristidis Kotsias
- CONICET, Buenos Aires, Argentina.,Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO, Buenos Aires, Argentina
| | - Mónica Alejandra Costas
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina. .,CONICET, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Buddington RK, Wong T, Howard SC. Paracellular Filtration Secretion Driven by Mechanical Force Contributes to Small Intestinal Fluid Dynamics. Med Sci (Basel) 2021; 9:medsci9010009. [PMID: 33572202 PMCID: PMC7931054 DOI: 10.3390/medsci9010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Studies of fluid secretion by the small intestine are dominated by the coupling with ATP-dependent generation of ion gradients, whereas the contribution of filtration secretion has been overlooked, possibly by the lack of a known mechanistic basis. We measured apical fluid flow and generation of hydrostatic pressure gradients by epithelia of cultured mouse enterocytes, Caco-2 and T-84 cells, and fibroblasts exposed to mechanical force provided by vigorous aeration and in response to ion gradients, inhibitors of ion channels and transporters and in vitro using intact mouse and rat small intestine. We describe herein a paracellular pathway for unidirectional filtration secretion that is driven by mechanical force, requires tight junctions, is independent of ionic and osmotic gradients, generates persistent hydrostatic pressure gradients, and would contribute to the fluid shifts that occur during digestion and diarrhea. Zinc inhibits the flow of fluid and the paracellular marker fluorescein isothyocyanate conjugated dextran (MW = 4 kD) across epithelia of cultured enterocytes (>95%; p < 0.001) and intact small intestine (>40%; p = 0.03). We propose that mechanical force drives fluid secretion through the tight junction complex via a “one-way check valve” that can be regulated. This pathway of filtration secretion complements chloride-coupled fluid secretion during high-volume fluid flow. The role of filtration secretion in the genesis of diarrhea in intact animals needs further study. Our findings may explain a potential linkage between intestinal motility and intestinal fluid dynamics.
Collapse
Affiliation(s)
- Randal K. Buddington
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA;
- Babies Taking Flight, Memphis, TN 38117, USA
- Correspondence: ; Tel.: +1-662-418-2666
| | - Thomas Wong
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA;
| | - Scott C. Howard
- Department of Acute and Tertiary Care, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA;
| |
Collapse
|
31
|
Amiri M, Seidler UE, Nikolovska K. The Role of pH i in Intestinal Epithelial Proliferation-Transport Mechanisms, Regulatory Pathways, and Consequences. Front Cell Dev Biol 2021; 9:618135. [PMID: 33553180 PMCID: PMC7862550 DOI: 10.3389/fcell.2021.618135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023] Open
Abstract
During the maturation of intestinal epithelial cells along the crypt/surface axis, a multitude of acid/base transporters are differentially expressed in their apical and basolateral membranes, enabling processes of electrolyte, macromolecule, nutrient, acid/base and fluid secretion, and absorption. An intracellular pH (pHi)-gradient is generated along the epithelial crypt/surface axis, either as a consequence of the sum of the ion transport activities or as a distinctly regulated entity. While the role of pHi on proliferation, migration, and tumorigenesis has been explored in cancer cells for some time, emerging evidence suggests an important role of the pHi in the intestinal stem cells (ISCs) proliferative rate under physiological conditions. The present review highlights the current state of knowledge about the potential regulatory role of pHi on intestinal proliferation and differentiation.
Collapse
|
32
|
|
33
|
Kaji I, Roland JT, Watanabe M, Engevik AC, Goldstein AE, Hodges CA, Goldenring JR. Lysophosphatidic Acid Increases Maturation of Brush Borders and SGLT1 Activity in MYO5B-deficient Mice, a Model of Microvillus Inclusion Disease. Gastroenterology 2020; 159:1390-1405.e20. [PMID: 32534933 PMCID: PMC8240502 DOI: 10.1053/j.gastro.2020.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIM Myosin VB (MYO5B) is an essential trafficking protein for membrane recycling in gastrointestinal epithelial cells. The inactivating mutations of MYO5B cause the congenital diarrheal disease, microvillus inclusion disease (MVID). MYO5B deficiency in mice causes mislocalization of SGLT1 and NHE3, but retained apical function of CFTR, resulting in malabsorption and secretory diarrhea. Activation of lysophosphatidic acid (LPA) receptors can improve diarrhea, but the effect of LPA on MVID symptoms is unclear. We investigated whether LPA administration can reduce the epithelial deficits in MYO5B-knockout mice. METHODS Studies were conducted with tamoxifen-induced, intestine-specific knockout of MYO5B (VilCreERT2;Myo5bflox/flox) and littermate controls. Mice were given LPA, an LPAR2 agonist (GRI977143), or vehicle for 4 days after a single injection of tamoxifen. Apical SGLT1 and CFTR activities were measured in Üssing chambers. Intestinal tissues were collected, and localization of membrane transporters was evaluated by immunofluorescence analysis in tissue sections and enteroids. RNA sequencing and enrichment analysis were performed with isolated jejunal epithelial cells. RESULTS Daily administration of LPA reduced villus blunting, frequency of multivesicular bodies, and levels of cathepsins in intestinal tissues of MYO5B-knockout mice compared with vehicle administration. LPA partially restored the brush border height and the localization of SGLT1 and NHE3 in small intestine of MYO5B-knockout mice and enteroids. The SGLT1-dependent short-circuit current was increased and abnormal CFTR activities were decreased in jejunum from MYO5B-knockout mice given LPA compared with vehicle. CONCLUSIONS LPA may regulate a MYO5B-independent trafficking mechanism and brush border maturation, and therefore be developed for treatment of MVID.
Collapse
Affiliation(s)
- Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Joseph T. Roland
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan
| | | | - Amy C. Engevik
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan
| | - Anna E. Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan
| | - Craig A. Hodges
- Cystic Fibrosis Mouse Models Resource Center, Case Western Reserve University, Cleveland, OH
| | - James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan,Cell and Developmental Biology, Vanderbilt University School of Medicine, Sapporo, Japan,Nashville Veterans Affairs Medical Center, Nashville TN
| |
Collapse
|
34
|
Gene Expression Changes Accompanying the Duodenal Adenoma-Carcinoma Sequence in Familial Adenomatous Polyposis. Clin Transl Gastroenterol 2020; 10:e00053. [PMID: 31211760 PMCID: PMC6613862 DOI: 10.14309/ctg.0000000000000053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Duodenal cancer in familial adenomatous polyposis (FAP) arises from adenomas. Differentially expressed genes (DEGs) in the duodenal adenoma-carcinoma pathway have been identified in murine FAP models, but similar data in patients with FAP are limited. Identifying such changes may have significance in understanding duodenal polyposis therapies and identifying cancer biomarkers. We performed a genome-wide transcriptional analysis to describe the duodenal adenoma-carcinoma sequence and determine changes distinguishing patients with FAP with and without duodenal cancer.
Collapse
|
35
|
Merli AM, Vieujean S, Massot C, Blétard N, Quesada Calvo F, Baiwir D, Mazzucchelli G, Servais L, Wéra O, Oury C, de Leval L, Sempoux C, Manzini R, Bluemel S, Scharl M, Rogler G, De Pauw E, Coimbra Marques C, Colard A, Vijverman A, Delvenne P, Louis E, Meuwis MA. Solute carrier family 12 member 2 as a proteomic and histological biomarker of dysplasia and neoplasia in ulcerative colitis. J Crohns Colitis 2020; 15:jjaa168. [PMID: 32920643 DOI: 10.1093/ecco-jcc/jjaa168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) patients have a greater risk of developing colorectal cancer through inflammation-dysplasia-carcinoma sequence of transformation. The histopathological diagnosis of dysplasia is therefore of critical clinical relevance, but dysplasia may be difficult to distinguish from inflammatory changes. METHODS A proteomic pilot study on 5 UC colorectal dysplastic patients highlighted proteins differentially distributed between paired dysplastic, inflammatory and normal tissues. The best candidate marker was selected and immunohistochemistry confirmation was performed on AOM/DSS mouse model lesions, 37 UC dysplasia, 14 UC cancers, 23 longstanding UC, 35 sporadic conventional adenomas, 57 sporadic serrated lesions and 82 sporadic colorectal cancers. RESULTS Differential proteomics found 11 proteins significantly more abundant in dysplasia compared to inflammation, including Solute carrier family 12 member 2 (SLC12A2) which was confidently identified with 8 specific peptides and was below the limit of quantitation in both inflammatory and normal colon. SLC12A2 immunohistochemical analysis confirmed the discrimination of preneoplastic and neoplastic lesions from inflammatory lesions in mice, UC and in sporadic contexts. A specific SLC12A2 staining pattern termed "loss of gradient" reached 89% sensitivity, 95% specificity and 92% accuracy for UC-dysplasia diagnosis together with an inter-observer agreement of 95.24% (multirater κfree of 0.90; IC95%: 0.78 - 1.00). Such discrimination could not be obtained by Ki67 staining. This specific pattern was also associated with sporadic colorectal adenomas and cancers. CONCLUSIONS We found a specific SLC12A2 immunohistochemical staining pattern in precancerous and cancerous colonic UC-lesions which could be helpful for diagnosing dysplasia and cancer in UC and non-UC patients.
Collapse
Affiliation(s)
- Angela-Maria Merli
- Laboratory of Translational Gastroenterology, University of Liège, Liège, Belgium
| | - Sophie Vieujean
- Laboratory of Translational Gastroenterology, University of Liège, Liège, Belgium
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | - Charlotte Massot
- Laboratory of Translational Gastroenterology, University of Liège, Liège, Belgium
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | - Noella Blétard
- Pathological Anatomy and Cytology, University Hospital CHU of Liège, Liège, Belgium
| | | | | | | | - Laurence Servais
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Odile Wéra
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Laurence de Leval
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Roberto Manzini
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sena Bluemel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium
| | - C Coimbra Marques
- Abdominal Surgery Department, University Hospital CHU of Liège, Liège, Belgium
| | - Arnaud Colard
- Department of Gastroenterology, CHC Clinique Saint-Joseph, Liège, Belgium
| | - Anne Vijverman
- Department of Gastroenterology, CHR Citadelle, Liège, Belgium
| | - Philippe Delvenne
- Pathological Anatomy and Cytology, University Hospital CHU of Liège, Liège, Belgium
| | - Edouard Louis
- Laboratory of Translational Gastroenterology, University of Liège, Liège, Belgium
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
- Equally contributed to this work
| | - Marie-Alice Meuwis
- Laboratory of Translational Gastroenterology, University of Liège, Liège, Belgium
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
- Equally contributed to this work
| |
Collapse
|
36
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
37
|
Ahsan MK, Figueroa-Hall L, Baratta V, Garcia-Milian R, Lam TT, Hoque K, Salas PJ, Ameen NA. Glucocorticoids and serum- and glucocorticoid-inducible kinase 1 are potent regulators of CFTR in the native intestine: implications for stress-induced diarrhea. Am J Physiol Gastrointest Liver Physiol 2020; 319:G121-G132. [PMID: 32567324 PMCID: PMC7500270 DOI: 10.1152/ajpgi.00076.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nongenomic glucocorticoid (GC) and serum- and glucocorticoid-inducible kinase 1 (SGK1) signaling regulate ion transport, but CFTR has not been investigated in the intestine. We examined GC, SGK1, and phosphatidylinositol 3-kinase (PI3K) kinase signaling of CFTR ion transport in native intestine and the role of GCs on mRNA, protein, surface expression, and cyclic guanosine monophosphate (cGMP)-elicited diarrhea. Rats were treated with dexamethasone (DEXA; 2 mg/kg ip) or DMSO for 1, 4, and 24 h. Cyclic adenosine monophosphate (cAMP)-activated ion transport was examined in the presence or absence of SGK1 and PI3K inhibitors. Phosphorylation of SGK1, phosphoinositide-dependent kinase 1, and Akt kinases was confirmed by immunoblots using phosphor-specific antibodies. Tissue lysates were analyzed by mass spectrometry. CFTR and SGK1 mRNA were measured by quantitative PCR. Changes in total and surface CFTR protein were determined. The role of GC in cGMP-activated CFTR ion transport was examined. GC synergistically increased CFTR ion transport by SGK1 and PI3K signaling and increased CFTR protein without altering SGK1 or CFTR mRNA. GC induced highest levels of CFTR protein at 4 h that were associated with marked increase in surface CFTR, phosphorylation of the ubiquitin ligase neural precursor cell expressed developmentally downregulated 4-like (Nedd4-2), and 14-3-3ε, supporting their roles in surface retention and stability. Coimmunoprecipitation of CFTR, Nedd4-2, and 14-3-3ε indicated that assembly of this complex is a likely effector of the SGK and Akt pathways. Mass spectrometry identified phosphorylated peptides in relevant proteins. GC-SGK1 potently regulates CFTR in the intestine and is implicated in diarrheal disease.NEW & NOTEWORTHY This is the first study to examine the mechanisms of glucocorticoid, serum- and glucocorticoid-inducible kinase 1, and nongenomic kinase signaling of CFTR in the native intestine. We identified unique and druggable intestine-specific factors of the pathway that are targets for treating stress-induced diarrhea.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, Connecticut
| | - Leandra Figueroa-Hall
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, Connecticut
| | - Vanessa Baratta
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.,Mass Spectrometry and Proteomics Resource, W. M. Keck Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut
| | - Kazi Hoque
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Pedro J Salas
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Nadia A Ameen
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, Connecticut.,Department of Pediatrics, Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
38
|
Scott P, Anderson K, Singhania M, Cormier R. Cystic Fibrosis, CFTR, and Colorectal Cancer. Int J Mol Sci 2020; 21:E2891. [PMID: 32326161 PMCID: PMC7215855 DOI: 10.3390/ijms21082891] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF), caused by biallelic inactivating mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, has recently been categorized as a familial colorectal cancer (CRC) syndrome. CF patients are highly susceptible to early, aggressive colorectal tumor development. Endoscopic screening studies have revealed that by the age of forty 50% of CF patients will develop adenomas, with 25% developing aggressive advanced adenomas, some of which will have already advanced to adenocarcinomas. This enhanced risk has led to new CF colorectal cancer screening recommendations, lowering the initiation of endoscopic screening to age forty in CF patients, and to age thirty in organ transplant recipients. The enhanced risk for CRC also extends to the millions of people (more than 10 million in the US) who are heterozygous carriers of CFTR gene mutations. Further, lowered expression of CFTR is reported in sporadic CRC, where downregulation of CFTR is associated with poor survival. Mechanisms underlying the actions of CFTR as a tumor suppressor are not clearly understood. Dysregulation of Wnt/β-catenin signaling and disruption of intestinal stem cell homeostasis and intestinal barrier integrity, as well as intestinal dysbiosis, immune cell infiltration, stress responses, and intestinal inflammation have all been reported in human CF patients and in animal models. Notably, the development of new drug modalities to treat non-gastrointestinal pathologies in CF patients, especially pulmonary disease, offers hope that these drugs could be repurposed for gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | - Robert Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (P.S.); (K.A.); (M.S.)
| |
Collapse
|
39
|
Dayama G, Priya S, Niccum DE, Khoruts A, Blekhman R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med 2020; 12:12. [PMID: 31992345 PMCID: PMC6988342 DOI: 10.1186/s13073-020-0710-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians. It is caused by mutations in the CFTR gene, leading to poor hydration of mucus and impairment of the respiratory, digestive, and reproductive organ functions. Advancements in medical care have led to markedly increased longevity of patients with cystic fibrosis, but new complications have emerged, such as early onset of colorectal cancer. Although the pathogenesis of colorectal cancer in cystic fibrosis remains unclear, altered host-microbe interactions might play a critical role. To investigate this, we characterized changes in the microbiome and host gene expression in the colonic mucosa of cystic fibrosis patients relative to healthy controls, and identified host gene-microbiome interactions in the colon of cystic fibrosis patients. METHODS We performed RNA-seq on colonic mucosa samples from cystic fibrosis patients and healthy controls to determine differentially expressed host genes. We also performed 16S rRNA sequencing to characterize the colonic mucosal microbiome and identify gut microbes that are differentially abundant between patients and healthy controls. Lastly, we modeled associations between relative abundances of specific bacterial taxa in the gut mucosa and host gene expression. RESULTS We find that 1543 genes, including CFTR, show differential expression in the colon of cystic fibrosis patients compared to healthy controls. These genes are enriched with functions related to gastrointestinal and colorectal cancer, such as metastasis of colorectal cancer, tumor suppression, p53, and mTOR signaling pathways. In addition, patients with cystic fibrosis show decreased gut microbial diversity, decreased abundance of butyrate producing bacteria, such as Ruminococcaceae and Butyricimonas, and increased abundance of other taxa, such as Actinobacteria and Clostridium. An integrative analysis identified colorectal cancer-related genes, including LCN2 and DUOX2, for which gene expression is correlated with the abundance of colorectal cancer-associated bacteria, such as Ruminococcaceae and Veillonella. CONCLUSIONS In addition to characterizing host gene expression and mucosal microbiome in cystic fibrosis patients, our study explored the potential role of host-microbe interactions in the etiology of colorectal cancer in cystic fibrosis. Our results provide biomarkers that may potentially serve as targets for stratifying risk of colorectal cancer in patients with cystic fibrosis.
Collapse
Affiliation(s)
- Gargi Dayama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - David E Niccum
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Khoruts
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
40
|
Forteza R, Ahsan MK, Cartón-García F, Arango D, Ameen NA, Salas PJ. Glucocorticoids and myosin5b loss of function induce heightened PKA signaling in addition to membrane traffic defects. Mol Biol Cell 2019; 30:3076-3089. [PMID: 31664880 PMCID: PMC6938243 DOI: 10.1091/mbc.e18-07-0415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Loss-of-function mutations in the nonconventional myosin Vb (Myo5b) result in microvillus inclusion disease (MVID) and massive secretory diarrhea that often begins at birth. Myo5b mutations disrupt the apical recycling endosome (ARE) and membrane traffic, resulting in reduced surface expression of apical membrane proteins. ARE disruption also results in constitutive phosphoinositide-dependent kinase 1 gain of function. In MVID, decreased surface expression of apical anion channels involved in Cl- extrusion, such as cystic fibrosis transmembrane conductance regulator (CFTR), should reduce fluid secretion into the intestinal lumen. But the opposite phenotype is observed. To explain this contradiction and the onset of diarrhea, we hypothesized that signaling effects downstream from Myo5b loss of function synergize with higher levels of glucocorticoids to activate PKA and CFTR. Data from intestinal cell lines, human MVID, and Myo5b KO mouse intestine revealed changes in the subcellular redistribution of PKA activity to the apical pole, increased CFTR phosphorylation, and establishment of apical cAMP gradients in Myo5b-defective cells exposed to physiological levels of glucocorticoids. These cells also displayed net secretory fluid fluxes and transepithelial currents mainly from PKA-dependent Cl- secretion. We conclude that Myo5b defects result in PKA stimulation that activates residual channels on the surface when intestinal epithelia are exposed to glucocorticoids at birth.
Collapse
Affiliation(s)
- Radia Forteza
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - M Kaimul Ahsan
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT 06510
| | - Fernando Cartón-García
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital Research Institute (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital Research Institute (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain
| | - Nadia A Ameen
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT 06510
| | - Pedro J Salas
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
41
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
42
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
43
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Ahsan MK, Tchernychev B, Kessler MM, Solinga RM, Arthur D, Linde CI, Silos-Santiago I, Hannig G, Ameen NA. Linaclotide activates guanylate cyclase-C/cGMP/protein kinase-II-dependent trafficking of CFTR in the intestine. Physiol Rep 2018; 5:5/11/e13299. [PMID: 28592587 PMCID: PMC5471438 DOI: 10.14814/phy2.13299] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/10/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
The transmembrane receptor guanylyl cyclase‐C (GC‐C), expressed on enterocytes along the intestine, is the molecular target of the GC‐C agonist peptide linaclotide, an FDA‐approved drug for treatment of adult patients with Irritable Bowel Syndrome with Constipation and Chronic Idiopathic Constipation. Polarized human colonic intestinal cells (T84, CaCo‐2BBe) rat and human intestinal tissues were employed to examine cellular signaling and cystic fibrosis transmembrane conductance regulator (CFTR)‐trafficking pathways activated by linaclotide using confocal microscopy, in vivo surface biotinylation, and protein kinase‐II (PKG‐II) activity assays. Expression and activity of GC‐C/cGMP pathway components were determined by PCR, western blot, and cGMP assays. Fluid secretion as a marker of CFTR cell surface translocation was determined using in vivo rat intestinal loops. Linaclotide treatment (30 min) induced robust fluid secretion and translocation of CFTR from subapical compartments to the cell surface in rat intestinal loops. Similarly, linaclotide treatment (30 min) of T84 and CaCo‐2BBe cells increased cell surface CFTR levels. Linaclotide‐induced activation of the GC‐C/cGMP/PKGII signaling pathway resulted in elevated intracellular cGMP and pVASPser239 phosphorylation. Inhibition or silencing of PKGII significantly attenuated linaclotide‐induced CFTR trafficking to the apical membrane. Inhibition of protein kinase‐A (PKA) also attenuated linaclotide‐induced CFTR cell surface trafficking, implying cGMP‐dependent cross‐activation of PKA pathway. Together, these findings support linaclotide‐induced activation of the GC‐C/cGMP/PKG‐II/CFTR pathway as the major pathway of linaclotide‐mediated intestinal fluid secretion, and that linaclotide‐dependent CFTR activation and recruitment/trafficking of CFTR from subapical vesicles to the cell surface is an important step in this process.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, Connecticut
| | - Boris Tchernychev
- Department of Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Marco M Kessler
- Department of Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Robert M Solinga
- Department of Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | - Gerhard Hannig
- Department of Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Nadia A Ameen
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, Connecticut .,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
45
|
Das S, Jayaratne R, Barrett KE. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea. Cell Mol Gastroenterol Hepatol 2018; 6:33-45. [PMID: 29928670 PMCID: PMC6007821 DOI: 10.1016/j.jcmgh.2018.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Every year, enteric infections and associated diarrhea kill millions of people. The situation is compounded by increases in the number of enteric pathogens that are acquiring resistance to antibiotics, as well as (hitherto) a relative paucity of information on host molecular targets that may contribute to diarrhea. Many forms of diarrheal disease depend on the dysregulation of intestinal ion transporters, and an associated imbalance between secretory and absorptive functions of the intestinal epithelium. A number of major transporters have been implicated in the pathogenesis of diarrheal diseases and thus an understanding of their expression, localization, and regulation after infection with various bacteria, viruses, and protozoa likely will prove critical in designing new therapies. This article surveys our understanding of transporters that are modulated by specific pathogens and the mechanism(s) involved, thereby illuminating targets that might be exploited for new therapeutic approaches.
Collapse
Key Words
- ATP, adenosine triphosphate
- ATPase, adenosine triphosphatase
- CDI, Clostridium difficile infection
- CFTR, cystic fibrosis transmembrane conductance regulator
- CLCA1, chloride channel accessory 1
- CT, cholera toxin
- CXCR2, C-X-C motif chemokine receptor 2
- DRA, down-regulated in adenoma
- Diarrhea
- ENaC, epithelial sodium channel
- EPEC, enteropathogenic Escherichia coli
- ETEC, enterotoxigenic Escherichia coli
- Enteric Pathogen
- Epithelium
- EspG, Escherichia coli secreted protein G
- GPR39, G-protein coupled receptor 39
- Ion Transport
- KCC, potassium-chloride cotransporter
- LPA, lysophosphatidic acid
- LT, heat-labile toxin
- NHE, sodium/hydrogen exchanger
- NHERF2, sodium/hydrogen exchanger regulatory factor 2
- NKCC, sodium-potassium-2 chloride cotransporter
- ORT, oral rehydration therapy
- PKC, protein kinase C
- SGLT1, sodium-glucose cotransporter 1
- SLC, solute carrier
- ST, heat-stabile toxin
- TNF, tumor necrosis factor
- Tcd, Clostridium difficile toxin
- ZnR, zinc sensing receptor
- cAMP, adenosine 3′,5′-cyclic monophosphate
Collapse
Affiliation(s)
- Soumita Das
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California
| | - Rashini Jayaratne
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kim E. Barrett
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California,Correspondence Address correspondence to: Kim E. Barrett, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0063. fax: (858) 246-1788.
| |
Collapse
|
46
|
Kumar A, Malhotra P, Coffing H, Priyamvada S, Anbazhagan AN, Krishnan HR, Gill RK, Alrefai WA, Gavin DP, Pandey SC, Dudeja PK, Saksena S. Epigenetic modulation of intestinal Na +/H + exchanger-3 expression. Am J Physiol Gastrointest Liver Physiol 2018; 314:G309-G318. [PMID: 29167115 PMCID: PMC5899241 DOI: 10.1152/ajpgi.00293.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 01/31/2023]
Abstract
Na+/H+ exchanger-3 (NHE3) is crucial for intestinal Na+ absorption, and its reduction has been implicated in infectious and inflammatory bowel diseases (IBD)-associated diarrhea. Epigenetic mechanisms such as DNA methylation are involved in the pathophysiology of IBD. Whether changes in DNA methylation are involved in modulating intestinal NHE3 gene expression is not known. Caco-2 and HuTu 80 cells were used as models of human intestinal epithelial cells. Normal C57/BL6, wild-type, or growth arrest and DNA damage-inducible 45b (GADD45b) knockout (KO) mice were used as in vivo models. NHE3 gene DNA methylation levels were assessed by MBDCap (MethyMiner) assays. Results demonstrated that in vitro methylation of NHE3 promoter construct (p-1509/+127) cloned into a cytosine guanine dinucleotide-free lucia vector decreased the promoter activity in Caco-2 cells. DNA methyltransferase inhibitor 5-azacytidine (10 μM, 24 h) caused a significant decrease in DNA methylation of the NHE3 gene and concomitantly increased NHE3 expression in Caco-2 cells. Similarly, 5-azacytidine treatment increased NHE3 mRNA levels in HuTu 80 cells. 5-Azacytidine treatment for 3 wk (10 mg/kg body wt ip, 3 times/wk) also resulted in an increase in NHE3 expression in the mouse ileum and colon. Small-interfering RNA knockdown of GADD45b (protein involved in DNA demethylation) in Caco-2 cells decreased NHE3 mRNA expression. Furthermore, there was a significant decrease in NHE3 mRNA and protein expression in the ileum and colon of GADD45b KO mice. Our findings demonstrate that NHE3 gene expression is regulated by changes in its DNA methylation. NEW & NOTEWORTHY Our studies for the first time demonstrate that Na+/H+ exchanger-3 gene expression is regulated by an epigenetic mechanism involving DNA methylation.
Collapse
Affiliation(s)
- Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Pooja Malhotra
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Hayley Coffing
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Harish R Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago , Chicago, Illinois
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - David P Gavin
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| |
Collapse
|
47
|
Yin J, Tse CM, Avula LR, Singh V, Foulke-Abel J, de Jonge HR, Donowitz M. Molecular Basis and Differentiation-Associated Alterations of Anion Secretion in Human Duodenal Enteroid Monolayers. Cell Mol Gastroenterol Hepatol 2018; 5:591-609. [PMID: 29930980 PMCID: PMC6009799 DOI: 10.1016/j.jcmgh.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Human enteroids present a novel tool to study human intestinal ion transport physiology and pathophysiology. The present study describes the contributions of Cl- and HCO3- secretion to total cyclic adenosine monophosphate (cAMP)-stimulated electrogenic anion secretion in human duodenal enteroid monolayers and the relevant changes after differentiation. METHODS Human duodenal enteroids derived from 4 donors were grown as monolayers and differentiated by a protocol that includes the removal of Wnt3A, R-spondin1, and SB202190 for 5 days. The messenger RNA level and protein expression of selected ion transporters and carbonic anhydrase isoforms were determined by quantitative real-time polymerase chain reaction and immunoblotting, respectively. Undifferentiated and differentiated enteroid monolayers were mounted in the Ussing chamber/voltage-current clamp apparatus, using solutions that contained as well as lacked Cl- and HCO3-/CO2, to determine the magnitude of forskolin-induced short-circuit current change and its sensitivity to specific inhibitors that target selected ion transporters and carbonic anhydrase(s). RESULTS Differentiation resulted in a significant reduction in the messenger RNA level and protein expression of cystic fibrosis transmembrane conductance regulator, (CFTR) Na+/K+/2Cl- co-transporter 1 (NKCC1), and potassium channel, voltage gated, subfamily E, regulatory subunit 3 (KCNE3); and, conversely, increase of down-regulated-in-adenoma (DRA), electrogenic Na+/HCO3- co-transporter 1 (NBCe1), carbonic anhydrase 2 (CA2), and carbonic anhydrase 4 (CA4). Both undifferentiated and differentiated enteroids showed active cAMP-stimulated anion secretion that included both Cl- and HCO3- secretion as the magnitude of total active anion secretion was reduced after the removal of extracellular Cl- or HCO3-/CO2. The magnitude of total anion secretion in differentiated enteroids was approximately 33% of that in undifferentiated enteroids, primarily owing to the reduction in Cl- secretion with no significant change in HCO3- secretion. Anion secretion was consistently lower but detectable in differentiated enteroids compared with undifferentiated enteroids in the absence of extracellular Cl- or HCO3-/CO2. Inhibiting CFTR, NKCC1, carbonic anhydrase(s), cAMP-activated K+ channel(s), and Na+/K+-adenosine triphosphatase reduced cAMP-stimulated anion secretion in both undifferentiated and differentiated enteroids. CONCLUSIONS Human enteroids recapitulate anion secretion physiology of small intestinal epithelium. Enteroid differentiation is associated with significant alterations in the expression of several ion transporters and carbonic anhydrase isoforms, leading to a reduced but preserved anion secretory phenotype owing to markedly reduced Cl- secretion but no significant change in HCO3- secretion.
Collapse
Key Words
- AE2, anion exchanger 2
- Bicarbonate Secretion
- CA, carbonic anhydrase
- CFTR, cystic fibrosis transmembrane conductance regulator
- Chloride Secretion
- DRA
- DRA, down-regulated-in-adenoma
- Ion Transport
- Isc, short-circuit current
- KRB, Krebs–Ringer bicarbonate
- NBC, Na+/HCO3- co-transporter
- NBCe1, electrogenic Na+/HCO3- co-transporter 1
- NHE, Na+/H+ exchanger
- NKCC1, Na+/K+/2Cl- co-transporter 1
- SDS, sodium dodecyl sulfate
- SITS, 4-Acetamido-4′-isothiocyanato-2,2′-stilbenedisulfonic acid disodium salt hydrate
- TER, transepithelial electrical resistance
- cAMP, cyclic adenosine monophosphate
- mRNA, messenger ribonucleic acid
- qRT-PCR, quantitative real-time polymerase chain reaction
- ΔIsc, change in short-circuit current
Collapse
Affiliation(s)
- Jianyi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung-Ming Tse
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leela Rani Avula
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hugo R. de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Correspondence Address correspondence to: Mark Donowitz, MD, Johns Hopkins University School of Medicine, 720 Rutland Avenue, 925 Ross Research Building, Baltimore, Maryland 21205. fax: (410) 955-9677.
| |
Collapse
|
48
|
Guimbellot J, Sharma J, Rowe SM. Toward inclusive therapy with CFTR modulators: Progress and challenges. Pediatr Pulmonol 2017; 52:S4-S14. [PMID: 28881097 PMCID: PMC6208153 DOI: 10.1002/ppul.23773] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
Abstract
Cystic fibrosis is caused by gene mutations that result in an abnormal Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein on the surface of cells. CFTR modulators are a novel class of drugs that directly target the molecular defect. CFTR modulators include potentiators that result in improved activity of the channel; correctors that help the protein traffic to the cell surface properly; and readthrough agents that restore full-length CFTR by suppression of premature termination codons, among other novel classes more recently established. While some of these drugs, CFTR potentiators in particular, have provided remarkable improvements for CF patients, others have yet to achieve profoundly improved outcomes, and many CF patients are not yet impacted by CFTR modulators due to lack of knowledge regarding susceptibility of their mutations to treatment. One limitation to expanding these types of therapies to the maximum number of patients with CF is the lack of rigorously validated clinical biomarkers that can determine efficacy on an individual basis, as well as few pre-clinical tools that can predict whether an individual with a rare combination of mutant alleles will respond to a particular CFTR modulator regimen. In this review, we discuss the various groups of CFTR modulators and their status in clinical development, as well as address the current literature on biomarkers, pre-clinical cell-based tools, and the role of pharmacometrics in creating therapeutic strategies to improve the lives of all patients with cystic fibrosis, regardless of their specific mutation.
Collapse
Affiliation(s)
- Jennifer Guimbellot
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jyoti Sharma
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
49
|
Quinton PM. Both Ways at Once: Keeping Small Airways Clean. Physiology (Bethesda) 2017; 32:380-390. [DOI: 10.1152/physiol.00013.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
The small airways of the lungs are under constant assault from the pathogens and debris in the air that they must conduct to alveoli. Although hygiene is of paramount importance for respiratory health, the underlying principles of airway clearance have not been well integrated or established. Newly emerging concepts of simultaneous absorption and secretion of airway surface liquid (ASL) and the role of [Formula: see text] in the maturation of mucins have advanced from experimental evidence as well as observations from the congenital disease cystic fibrosis (CF) to present a novel model that integrates microanatomy with organ physiology to meet the constant challenge of cleaning small airways.
Collapse
|
50
|
Fenton RA, Poulsen SB, de la Mora Chavez S, Soleimani M, Dominguez Rieg JA, Rieg T. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis. Kidney Int 2017; 92:397-414. [PMID: 28385297 DOI: 10.1016/j.kint.2017.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 11/30/2022]
Abstract
The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3loxloxCre) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3loxloxCre mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3loxloxCre mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3loxloxCre mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3loxloxCre mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3loxloxCre mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified.
Collapse
Affiliation(s)
- Robert A Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren B Poulsen
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark; VA San Diego Healthcare System, San Diego, California, USA
| | | | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|