1
|
Almutlaq RN, Pollock DM, Gohar EY. Endothelin receptor B is required for the blood pressure-lowering effect of G protein-coupled estrogen receptor 1 in ovariectomized rats. Am J Physiol Renal Physiol 2024; 327:F599-F609. [PMID: 39143913 PMCID: PMC11483081 DOI: 10.1152/ajprenal.00059.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
Activation of G protein-coupled estrogen receptor 1 (GPER1) elicits antihypertensive actions in different animal models. The endothelin-1 signaling system plays a fundamental role in blood pressure regulation. Lack of functional endothelin receptor B (ETB) evokes hypertension and salt sensitivity. GPER1 and ETB interact to promote urinary sodium excretion in female rats. We hypothesized that activation of GPER1 protects against hypertension and salt sensitivity induced by ETB antagonism in female rats. Female Sprague-Dawley rats were implanted with radiotelemetry. Animals were then subjected to ovariectomy and simultaneously implanted with minipumps to deliver either the GPER1 agonist G1 or its corresponding vehicle. Two weeks post surgery, we initiated treatment of rats with the ETB antagonist A-192621. Animals were maintained on a normal-salt diet and then challenged with a high-salt diet for an additional 5 days. Assessment of mean arterial blood pressure revealed an increase in vehicle-treated, but not G1-treated, rats in response to ovariectomy. A-192621 increased blood pressure in normal-salt diet-fed vehicle- and G1-treated rats. G1 improved the circadian blood pressure rhythms that were disrupted in A-192621-treated ovariectomized rats. Thus, although systemic GPER1 activation did not protect ovariectomized rats from hypertension and salt sensitivity induced by ETB antagonism, it maintained circadian blood pressure rhythms. Functional ETB is required to elicit the antihypertensive actions of GPER1. Additional studies are needed to improve our understanding of the interaction between G protein-coupled receptors in regulating circadian blood pressure rhythm.NEW & NOTEWORTHY Systemic G protein-coupled estrogen receptor 1 (GPER1) activation in rats prevents the increase in blood pressure evoked by ovariectomy. Blockade of endothelin receptor B negates the blood pressure-lowering impact of GPER1 in ovariectomized rats. Endothelin receptor B plays an important role in mediating the blood pressure-lowering action of GPER1 activation in female rats.
Collapse
Affiliation(s)
- Rawan N Almutlaq
- Cardiorenal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Cardiorenal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Eman Y Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Diaz-Zegarra LA, Espejo MS, Ibañez AM, Rando ME, Pagola LE, De Giusti VC, Aiello EA. Activation of G Protein-Coupled Estrogen Receptor (GPER) Negatively Modulates Cardiac Excitation-Contraction Coupling (ECC) through the PI3K/NOS/NO Pathway. Int J Mol Sci 2024; 25:8993. [PMID: 39201679 PMCID: PMC11354384 DOI: 10.3390/ijms25168993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
The G-protein-coupled estrogen receptor (GPER) has been described to exert several cardioprotective effects. However, the exact mechanism involved in cardiac protection remains unclear. The aim of this study is to investigate the role of GPER activation on excitation-contraction coupling (ECC) and the possibility that such effect participates in cardioprotection. The cardiac myocytes of male Wistar rats were isolated with a digestive buffer and loaded with Fura-2-AM for the measurement of intracellular calcium transient (CaT). Sarcomere shortening (SS) and L-type calcium current (ICaL) were also registered. The confocal technique was used to measure nitric oxide (NO) production in cells loaded with DAF-FM-diacetate. Cardiac myocytes exposed to 17-β-estradiol (E2, 10 nM) or G-1 (1 μM) for fifteen minutes decreased CaT, SS, and ICaL. These effects were prevented using G-36 (antagonist of GPER, 1 μM), L-Name (NO synthase -NOS- inhibitor, 100 nM), or wortmannin (phosphoinositide-3-kinase -PI3K- inhibitor, 100 nM). Moreover, G1 increased NO production, and this effect was abolished in the presence of wortmannin. We concluded that the selective activation of GPER with E2 or G1 in the isolated cardiac myocytes of male rats induced a negative inotropic effect due to the reduction in ICaL and the decrease in CaT. Finally, the pathway that we proposed to be implicated in these effects is PI3K-NOS-NO.
Collapse
Affiliation(s)
- Leandro A. Diaz-Zegarra
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| | - María S. Espejo
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
- Biomedicine Department, Health, Aarhus University, 8000 Aarhus, Midtjylland, Denmark
| | - Alejandro M. Ibañez
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| | - Mónica E. Rando
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| | - Lucia E. Pagola
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| | - Verónica C. De Giusti
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| | - Ernesto A. Aiello
- Centro de Investigaciones Cardiovasculares “Dr. Horacio E. Cingolani”, Facultad de Ciencias Médicas, Universidad Nacional de La Plata—CONICET, La Plata 1900, Buenos Aires, Argentina; (L.A.D.-Z.); (M.S.E.); (A.M.I.); (M.E.R.); (L.E.P.); (V.C.D.G.)
| |
Collapse
|
3
|
Saputra F, Hu SY, Kishida M. Exposure to nitrate and nitrite disrupts cardiovascular development through estrogen receptor in zebrafish embryos and larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01381-y. [PMID: 39026114 DOI: 10.1007/s10695-024-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Increasing nitrate concentration on surface and groundwater due to anthropogenic activities is an environmental concern. In this study, Tg(fli1: EGFP) zebrafish embryos were exposed to nitrate (NO3-) and nitrite (NO2-), and their cardiovascular development were investigated. Exposure to 10 mg/L NO3-N and 1 and 10 mg/L NO2-N decreased heart rate at 48-96-h post-fertilization (hpf), ventricular volume, and red blood cell flow rate at 96 hpf. Similar concentrations increased the number of embryos and larvae with pericardial edema and missing intersegmental and parachordal vessels in the caudal region at 48-96 hpf. Addition of ICI 182,720 (ICI) reversed the effects of nitrate and nitrite, suggesting estrogen receptors (ER) are involved. 10 mg/L NO3-N and 1 mg/L NO2-N decreased cardiovascular-related genes, gata4,5,6, hand2, nkx2.5, nkx2.7, tbx2a, tbx2b, and fgf1a. Gene expressions of ovarian aromatase and brain aromatase (cyp19a1a and cyp19a1b, respectively) decreased in the exposed groups, whereas ERs (esr1, esr2a, and esr2b) and nitric oxide synthase 2a (nos2a) increased. The effects on gene expression were also reversed by addition of ICI. Taken together, nitrate and nitrite disrupt cardiovascular system through ER in developing zebrafish, implying that environmental nitrate and nitrite contamination may be harmful to aquatic organisms.
Collapse
Affiliation(s)
- Febriyansyah Saputra
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mitsuyo Kishida
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
4
|
Adu-Amankwaah J, Adekunle AO, Tang Z, Bushi A, Tan R, Fu L, Gong Z, Ma Z, Mprah R, Ndzie Noah ML, Wowui PI, Ong'achwa Machuki J, Pan X, Li T, Sun H. Estradiol contributes to sex differences in resilience to sepsis-induced metabolic dysregulation and dysfunction in the heart via GPER-1-mediated PPARδ/NLRP3 signaling. Metabolism 2024; 156:155934. [PMID: 38762141 DOI: 10.1016/j.metabol.2024.155934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND AIM Clinically, septic males tend to have higher mortality rates, but it is unclear if this is due to sex differences in cardiac dysfunction, possibly influenced by hormonal variations. Cardiac dysfunction significantly contributes to sepsis-related mortality, primarily influenced by metabolic imbalances. Peroxisome proliferator-activated receptor delta (PPARδ) is a key player in cardiac metabolism and its activation has been demonstrated to favor sepsis outcomes. While estradiol (E2) is abundant and beneficial in females, its impact on PPARδ-mediated metabolism in the heart with regards to sex during sepsis remains unknown. METHODS AND RESULTS Here, we unveil that while sepsis diminishes PPARδ nuclear translocation and induces metabolic dysregulation, oxidative stress, apoptosis and dysfunction in the heart thereby enhancing mortality, these effects are notably more pronounced in males than females. Mechanistic experiments employing ovariectomized(OVX) mice, E2 administration, and G protein-coupled estrogen receptor 1(GPER-1) knockout (KO) mice revealed that under lipopolysaccharide (LPS)-induced sepsis, E2 acting via GPER-1 enhances cardiac electrical activity and function, promotes PPARδ nuclear translocation, and subsequently ameliorates cardiac metabolism while mitigating oxidative stress and apoptosis in females. Furthermore, PPARδ specific activation using GW501516 in female GPER-1-/- mice reduced oxidative stress, ultimately decreasing NLRP3 expression in the heart. Remarkably, targeted GPER-1 activation using G1 in males mirrors these benefits, improving cardiac electrical activity and function, and ultimately enhancing survival rates during LPS challenge. By employing NLRP3 KO mice, we demonstrated that the targeted GPER-1 activation mitigated injury, enhanced metabolism, and reduced apoptosis in the heart of male mice via the downregulation of NLRP3. CONCLUSION Our findings collectively illuminate the sex-specific cardiac mechanisms influencing sepsis mortality, offering insights into physiological and pathological dimensions. From a pharmacological standpoint, this study introduces specific GPER-1 activation as a promising therapeutic intervention for males under septic conditions. These discoveries advance our understanding of the sex differences in sepsis-induced cardiac dysfunction and also present a novel avenue for targeted interventions with potential translational impact.
Collapse
Affiliation(s)
- Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | | | - Ziqing Tang
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ziyu Ma
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | | | | | | | - Xiuhua Pan
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
5
|
Corbi G, Comegna M, Vinciguerra C, Capasso A, Onorato L, Salucci AM, Rapacciuolo A, Cannavo A. Age and sex mediated effects of estrogen and Β3-adrenergic receptor on cardiovascular pathophysiology. Exp Gerontol 2024; 190:112420. [PMID: 38588751 DOI: 10.1016/j.exger.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for β-adrenergic receptors (βARs), which are essential regulators of mammalian physiology. It has in fact been shown that βARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences. Based on these premises, this review article focused on the β3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how β3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Advanced Biotechnologies - Franco Salvatore, Naples, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Capasso
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Onorato
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Rapacciuolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
6
|
Trujillo-Flores D, García-Mendoza JDJ. Atrial fibrillation de novo in acute coronary syndrome. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2024; 94:181-190. [PMID: 38648718 PMCID: PMC11160543 DOI: 10.24875/acm.23000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/15/2023] [Indexed: 04/25/2024] Open
Abstract
One of the complications during an acute coronary syndrome event is the presence of arrhythmias. Among them, those of the supraventricular type, especially atrial fibrillation, carry a poor prognosis both in the short and long term, being the cause of situations such as cerebrovascular event, ventricular arrhythmias, and increased mortality. The arrhythmia tends to appear in a certain population group with particular risk factors during the index event in approximately 10% of cases. Appropriate treatment at the time of its onset, thanks to the use of drugs that modulate heart rate, rhythm, and anticoagulant management in the most vulnerable groups, will lead to a less bleak outcome for these patients.
Collapse
Affiliation(s)
- David Trujillo-Flores
- Servicio de Consulta Externa de Cardiología
- Servicio de Hospitalización de Cardiología
- Servicio de Ecocardiografía
| | - José de J. García-Mendoza
- Departamento de Electrocardiografía. Clínica Hospital Instituto de Seguridad y Servicios Sociales de los Trabajadores al Servicios de los Poderes del Estado de Puebla, Tehuacán, Pue., México
| |
Collapse
|
7
|
Azizian H, Farhadi Z, Bader M, Alizadeh Ghalenoei J, Ghafari MA, Mahmoodzadeh S. GPER activation attenuates cardiac dysfunction by upregulating the SIRT1/3-AMPK-UCP2 pathway in postmenopausal diabetic rats. PLoS One 2023; 18:e0293630. [PMID: 38134189 PMCID: PMC10745199 DOI: 10.1371/journal.pone.0293630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2023] [Indexed: 12/24/2023] Open
Abstract
Postmenopausal diabetic women are at higher risk to develop cardiovascular diseases (CVD) compared with nondiabetic women. Alterations in cardiac cellular metabolism caused by changes in sirtuins are one of the main causes of CVD in postmenopausal diabetic women. Several studies have demonstrated the beneficial actions of the G protein-coupled estrogen receptor (GPER) in postmenopausal diabetic CVD. However, the molecular mechanisms by which GPER has a cardioprotective effect are still not well understood. In this study, we used an ovariectomized (OVX) type-two diabetic (T2D) rat model induced by high-fat diet/streptozotocin to investigate the effect of G-1 (GPER-agonist) on sirtuins, and their downstream pathways involved in regulation of cardiac metabolism and function. Animals were divided into five groups: Sham-Control, T2D, OVX+T2D, OVX+T2D+Vehicle, and OVX+T2D+G-1. G-1 was administrated for six weeks. At the end, hemodynamic factors were measured, and protein levels of sirtuins, AMP-activated protein kinase (AMPK), and uncoupling protein 2 (UCP2) were determined by Western blot analysis. In addition, cardiac levels of oxidative stress biomarkers were measured. The findings showed that T2D led to left ventricular dysfunction and signs of oxidative stress in the myocardium, which were accompanied by decreased protein levels of Sirt1/2/3/6, p-AMPK, and UCP2 in the heart. Moreover, the induction of the menopausal state exacerbated these changes. In contrast, treatment with G-1 ameliorated the hemodynamic changes associated with ovariectomy by increasing Sirt1/3, p-AMPK, UCP2, and improving oxidative status. The results provide evidence of the cardioprotective effects of GPER operating through Sirt1/3, p-AMPK, and UCP2, thereby improving cardiac function. Our results suggest that increasing Sirt1/3 levels may offer new therapeutic approaches for postmenopausal diabetic CVD.
Collapse
Affiliation(s)
- Hossein Azizian
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Zeinab Farhadi
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
- University of Lübeck, Institute for Biology, Lübeck, Germany
| | - Jalil Alizadeh Ghalenoei
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Amin Ghafari
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokoufeh Mahmoodzadeh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
8
|
Dai H, Tao S, Guan Y, Zhang Y, Yang Z, Jia J, Zhang X, Zhang G. Astragalus (Astragalus mongholicus) Improves Ventricular Remodeling via ESR1 Downregulation RhoA/ROCK Pathway. Int Heart J 2023; 64:1148-1156. [PMID: 37967985 DOI: 10.1536/ihj.23-265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Astragalus (Astragalus mongholicus) alleviates myocardial remodeling caused by hypertension. However, the detailed molecular mechanism is unclear. This study aims to investigate the effect of Astragalus on ventricular remodeling in ovariectomized spontaneous hypertensive rats (OVX-SHR).Female SHR/NCrl rats were subjected to bilateral ovariectomy to establish the OVX-SHR model and treated with Astragalus extract by gavage. The hemodynamics and cardiac function parameters were measured. HE and Masson staining were used to detect the pathological structure of myocardial remodeling and observe the hyperplasia of myocardial collagen fibers. The immunohistochemistry tested the level of α-SMA. The expression levels of inflammatory cytokines, IκB, p65, Cleaved-Caspase3, RhoA, and ROCK1/2 were detected using Western blot. The method of qRT-PCR measured the expression of matrix metalloproteinase (MMP-2 and MMP-9).Hemodynamic and cardiac function parameters were significantly improved after a high dose of Astragalus extract and Valsartan treatment. The myocardial integrity of the model group was significantly reduced, arranged loosely, and disordered, while the expression of α-SMA was increased. However, Astragalus extract and Valsartan treatments significantly reduced the pathological damage and α-SMA. The levels of TNF-α, IL-1β, IL-6, TGF-β, MMP-2, and MMP-9 in the model group were increased but decreased after Astragalus extract treatment. Adding an ESR1 inhibitor attenuated the improvement effect of Astragalus extract on myocardial remodeling and restored the expression of RhoA and ROCK1/2.Astragalus extract attenuates the cardiac damage in OVX-SHR by downregulating the RhoA/ROCK pathway through ESR1.
Collapse
Affiliation(s)
- Hualei Dai
- Department of Cardiology, The Affiliated Hospital of Yunnan University
- School of Medicine, Yunnan University
| | - Siming Tao
- Department of Cardiology, The Affiliated Hospital of Yunnan University
| | - Yingxia Guan
- Department of Cardiology, The Affiliated Hospital of Yunnan University
| | - Yijian Zhang
- Department of Cardiology, The Affiliated Hospital of Yunnan University
| | - Zhigang Yang
- Department of Cardiology, The Affiliated Hospital of Yunnan University
| | - Ji Jia
- Department of Cardiology, The Affiliated Hospital of Yunnan University
| | - Xinjin Zhang
- Department of Cardiology, The Affiliated Hospital of Yunnan University
| | - Guimin Zhang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yunnan University
| |
Collapse
|
9
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
10
|
Tokiwa H, Ueda K, Takimoto E. The emerging role of estrogen's non-nuclear signaling in the cardiovascular disease. Front Cardiovasc Med 2023; 10:1127340. [PMID: 37123472 PMCID: PMC10130590 DOI: 10.3389/fcvm.2023.1127340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Sexual dimorphism exists in the epidemiology of cardiovascular disease (CVD), which indicates the involvement of sexual hormones in the pathophysiology of CVD. In particular, ample evidence has demonstrated estrogen's protective effect on the cardiovascular system. While estrogen receptors, bound to estrogen, act as a transcription factor which regulates gene expressions by binding to the specific DNA sequence, a subpopulation of estrogen receptors localized at the plasma membrane induces activation of intracellular signaling, called "non-nuclear signaling" or "membrane-initiated steroid signaling of estrogen". Although the precise molecular mechanism of non-nuclear signaling as well as its physiological impact was unclear for a long time, recent development of genetically modified animal models and pathway-selective estrogen receptor stimulant bring new insights into this pathway. We review the published experimental studies on non-nuclear signaling of estrogen, and summarize its role in cardiovascular system, especially focusing on: (1) the molecular mechanism of non-nuclear signaling; (2) the design of genetically modified animals and pathway-selective stimulant of estrogen receptor.
Collapse
Affiliation(s)
- Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Muhammad A, Forcados GE, Yusuf AP, Abubakar MB, Sadiq IZ, Elhussin I, Siddique MAT, Aminu S, Suleiman RB, Abubakar YS, Katsayal BS, Yates CC, Mahavadi S. Comparative G-Protein-Coupled Estrogen Receptor (GPER) Systems in Diabetic and Cancer Conditions: A Review. Molecules 2022; 27:molecules27248943. [PMID: 36558071 PMCID: PMC9786783 DOI: 10.3390/molecules27248943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For many patients, diabetes Mellitus and Malignancy are frequently encountered comorbidities. Diabetes affects approximately 10.5% of the global population, while malignancy accounts for 29.4 million cases each year. These troubling statistics indicate that current treatment approaches for these diseases are insufficient. Alternative therapeutic strategies that consider unique signaling pathways in diabetic and malignancy patients could provide improved therapeutic outcomes. The G-protein-coupled estrogen receptor (GPER) is receiving attention for its role in disease pathogenesis and treatment outcomes. This review aims to critically examine GPER' s comparative role in diabetes mellitus and malignancy, identify research gaps that need to be filled, and highlight GPER's potential as a therapeutic target for diabetes and malignancy management. There is a scarcity of data on GPER expression patterns in diabetic models; however, for diabetes mellitus, altered expression of transport and signaling proteins has been linked to GPER signaling. In contrast, GPER expression in various malignancy types appears to be complex and debatable at the moment. Current data show inconclusive patterns of GPER expression in various malignancies, with some indicating upregulation and others demonstrating downregulation. Further research should be conducted to investigate GPER expression patterns and their relationship with signaling pathways in diabetes mellitus and various malignancies. We conclude that GPER has therapeutic potential for chronic diseases such as diabetes mellitus and malignancy.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna P.M.B. 65, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Md Abu Talha Siddique
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Rabiatu Bako Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Clayton C Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
12
|
Horvath C, Kararigas G. Sex-Dependent Mechanisms of Cell Death Modalities in Cardiovascular Disease. Can J Cardiol 2022; 38:1844-1853. [PMID: 36152770 DOI: 10.1016/j.cjca.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022] Open
Abstract
Despite currently available therapies, cardiovascular diseases (CVD) are among the leading causes of death globally. Biological sex is a critical determinant of the occurrence, progression and overall outcome of CVD. However, the underlying mechanisms are incompletely understood. A hallmark of CVD is cell death. Based on the inability of the human heart to regenerate, loss of functional cardiac tissue can lead to irreversible detrimental effects. Here, we summarize current knowledge on how biological sex affects cell death-related mechanisms in CVD. Initially, we discuss apoptosis and necrosis, but we specifically focus on the relatively newly recognized programmed necrosis-like processes: pyroptosis and necroptosis. We also discuss the role of 17β-estradiol (E2) in these processes, particularly in terms of inhibiting pyroptotic and necroptotic signaling. We put forward that a better understanding of the effects of biological sex and E2 might lead to the identification of novel targets with therapeutic potential.
Collapse
Affiliation(s)
- Csaba Horvath
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
13
|
Francis AJ, Firth JM, Sanchez-Alonso JL, Gorelik J, MacLeod KT. GPER limits adverse changes to Ca 2+ signalling and arrhythmogenic activity in ovariectomised guinea pig cardiomyocytes. Front Physiol 2022; 13:1023755. [PMID: 36439245 PMCID: PMC9686394 DOI: 10.3389/fphys.2022.1023755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background: The increased risk of post-menopausal women developing abnormalities of heart function emphasises the requirement to understand the effect of declining oestrogen levels on cardiac electrophysiology and structure, and investigate possible therapeutic targets, namely the G protein-coupled oestrogen receptor 1 (GPER). Methods: Female guinea pigs underwent sham or ovariectomy (OVx) surgeries. Cardiomyocytes were isolated 150-days post-operatively. Membrane structure was assessed using di-8-ANEPPs staining and scanning ion conductance microscopy. Imunnohistochemistry (IHC) determined the localisation of oestrogen receptors. The effect of GPER activation on excitation-contraction coupling mechanisms were assessed using electrophysiological and fluorescence techniques. Downstream signalling proteins were investigated by western blot. Results: IHC staining confirmed the presence of nuclear oestrogen receptors and GPER, the latter prominently localised to the peri-nuclear region and having a clear striated pattern elsewhere in the cells. Following OVx, GPER expression increased and its activation reduced Ca2+ transient amplitude (by 40%) and sarcomere shortening (by 32%). In these cells, GPER activation reduced abnormal spontaneous Ca2+ activity, shortened action potential duration and limited drug-induced early after-depolarisation formation. Conclusion: In an animal species with comparable steroidogenesis and cardiac physiology to humans, we show the expression and localisation of all three oestrogen receptors in cardiac myocytes. We found that following oestrogen withdrawal, GPER expression increased and its activation limited arrhythmogenic behaviours in this low oestrogen state, indicating a potential cardioprotective role of this receptor in post-menopausal women.
Collapse
|
14
|
Khan MZI, Uzair M, Nazli A, Chen JZ. An overview on Estrogen receptors signaling and its ligands in breast cancer. Eur J Med Chem 2022; 241:114658. [PMID: 35964426 DOI: 10.1016/j.ejmech.2022.114658] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023]
Abstract
Estrogen governs the regulations of various pathological and physiological actions throughout the body in both males and females. Generally, 17β-estradiol an endogenous estrogen is responsible for different health problems in pre and postmenopausal women. The major activities of endogenous estrogen are executed by nuclear estrogen receptors (ERs) ERα and ERβ while non-genomic cytoplasmic pathways also govern cell growth and apoptosis. Estrogen accomplished a fundamental role in the formation and progression of breast cancer. In this review, we have hyphenated different studies regarding ERs and a thorough and detailed study of estrogen receptors is presented. This review highlights different aspects of estrogens ranging from receptor types, their isoforms, structures, signaling pathways of ERα, ERβ and GPER along with their crystal structures, pathological roles of ER, ER ligands, and therapeutic strategies to overcome the resistance.
Collapse
Affiliation(s)
| | - Muhammad Uzair
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Adila Nazli
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
15
|
Couch LS, Channon K, Thum T. Molecular Mechanisms of Takotsubo Syndrome. Int J Mol Sci 2022; 23:12262. [PMID: 36293121 PMCID: PMC9603071 DOI: 10.3390/ijms232012262] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Takotsubo syndrome (TTS) is a severe but reversible acute heart failure syndrome that occurs following high catecholaminergic stress. TTS patients are similar to those with acute coronary syndrome, with chest pain, dyspnoea and ST segment changes on electrocardiogram, but are characterised by apical akinesia of the left ventricle, with basal hyperkinesia in the absence of culprit coronary artery stenosis. The pathophysiology of TTS is not completely understood and there is a paucity of evidence to guide treatment. The mechanisms of TTS are thought to involve catecholaminergic myocardial stunning, microvascular dysfunction, increased inflammation and changes in cardiomyocyte metabolism. Here, we summarise the available literature to focus on the molecular basis for the pathophysiology of TTS to advance the understanding of the condition.
Collapse
Affiliation(s)
- Liam S. Couch
- Department of Cardiovascular Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Keith Channon
- Department of Cardiovascular Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, 30625 Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, 30625 Hannover, Germany
| |
Collapse
|
16
|
Premenopausal and postmenopausal women during the COVID-19 pandemic. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2022; 21:200-206. [PMID: 36254124 PMCID: PMC9551364 DOI: 10.5114/pm.2022.118695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/19/2022] [Indexed: 01/09/2023]
Abstract
The current global COVID-19 mortality rate is estimated to be around 3.4%; however, it is dependent on age, sex, and comorbidities. Epidemiological evidence shows gender disparities in COVID-19 severity and fatality, with non-menopausal females having milder severity and better outcomes than age-matched males. However, the difference vanishes when comparing postmenopausal women with age-matched men. It has been suggested that, to some extent, this is due to the protective role of female hormones, such as anti-Müllerian hormone and oestradiol (E2), in non-menopausal women. Oestrogens have been hypothesized to be crucial in modulating viral infection and the progression of the disease via an action on immune/inflammatory responses and angiotensin-converting enzyme type 2 expression. Hence, the most likely explanation is that, because the levels of oestrogen in females after menopause decrease, oestrogen no longer offers a beneficial effect as seen in younger females. The COVID-19 pandemic has highlighted the serious negative effects arising from the state of E2 deficiency. Therefore, hormone replacement therapy gains further support as the damaging effect of the decline in ovarian function affects many biological systems, and recently with the COVID-19 pandemic, oestrogen's vital role within the immune system has become quite clear. However, additional clinical investigations regarding hormone replacement therapy are urgently needed to further verify the protective and therapeutic effects of E2 on menopausal women with COVID-19.
Collapse
|
17
|
Gohar EY, Almutlaq RN, Fan C, Balkawade RS, Butt MK, Curtis LM. Does G Protein-Coupled Estrogen Receptor 1 Contribute to Cisplatin-Induced Acute Kidney Injury in Male Mice? Int J Mol Sci 2022; 23:ijms23158284. [PMID: 35955435 PMCID: PMC9368456 DOI: 10.3390/ijms23158284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Nephrotoxicity is the dose-limiting side-effect of the chemotherapeutic agent cisplatin (Cp). Recent evidence points to renal protective actions of G protein-coupled estrogen receptor 1 (GPER1). In addition, it has been shown that GPER1 signaling elicits protective actions against acute ischemic injuries that involve multiple organ systems; however, the involvement of GPER1 signaling in Cp-induced acute kidney injury (AKI) remains unclear. This study tested whether genetic deletion of GPER1 exacerbates Cp-induced AKI in male mice. We subjected male mice, homozygous (homo) and heterozygous (het) knockout for the GPER1 gene, and wild-type (WT) littermates to Cp or saline injections and assessed markers for renal injury on the third day after injections. We also determined serum levels of proinflammatory markers in saline and Cp-treated mice. Given the protective role of heme oxygenase-1 (HO-1) in Cp-mediated apoptosis, we also investigated genotypic differences in renal HO-1 abundance, cell death, and proliferation by Western blotting, the TUNEL assay, and Ki67 immunostaining, respectively. Cp increased serum creatinine, urea, and neutrophil gelatinase-associated lipocalin (NGAL) levels, the renal abundance of kidney injury molecule-1, and NGAL in all groups. Cp-induced AKI resulted in comparable histological evidence of injury in all genotypes. WT and homo mice showed greater renal HO-1 abundance in response to Cp. Renal HO-1 abundance was lower in Cp-treated homo, compared to Cp-treated WT mice. Of note, GPER1 deletion elicited a remarkable increase in renal apoptosis; however, no genotypic differences in cell proliferation were observed. Cp augmented kidney Ki67-positive counts, regardless of the genotype. Overall, our data do not support a role for GPER1 in mediating Cp-induced renal injury. GPER1 deletion promotes renal apoptosis and diminishes HO-1 induction in response to Cp, suggesting that GPER1 may play cytoprotective and anti-apoptotic actions in AKI. GPER1-induced regulation of HO-1 and apoptosis may offer novel therapeutic targets for the treatment of AKI.
Collapse
Affiliation(s)
- Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-0623
| | - Rawan N. Almutlaq
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.N.A.); (C.F.); (R.S.B.); (M.K.B.); (L.M.C.)
| | - Chunlan Fan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.N.A.); (C.F.); (R.S.B.); (M.K.B.); (L.M.C.)
| | - Rohan S. Balkawade
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.N.A.); (C.F.); (R.S.B.); (M.K.B.); (L.M.C.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.N.A.); (C.F.); (R.S.B.); (M.K.B.); (L.M.C.)
| | - Lisa M. Curtis
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.N.A.); (C.F.); (R.S.B.); (M.K.B.); (L.M.C.)
| |
Collapse
|
18
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2022; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil.,Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
19
|
Yu X, Nguyen P, Burns NC, Heaps CL, Stallone JN, Sohrabji F, Han G. Activation of G protein-coupled estrogen receptor fine-tunes age-related decreased vascular activities in the aortae of female and male rats. Steroids 2022; 183:108997. [PMID: 35314416 DOI: 10.1016/j.steroids.2022.108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hormone replacement therapy was found to be effective in cardiovascular protection only in younger women, not in older women. In this study, we tested whether G protein-coupled estrogen receptor 1 (GPER) activation improves vascular activities in response to ET-1 and ACh in aging rats. METHODS Isometric tension study was applied on aortic rings isolated from young adult (5-7 months) and reproductive senescent middle-aged (10-12 months) female Sprague Dawley rats and age matched males. RESULTS The aortic contractile response to ET-1 and the relaxation response to ACh were reduced in the female middle-aged rats compared to the female young adult rats. The presence of G-1, the GPER agonist, normalized the reduced vascular activities. Cyclooxygenase inhibitor, meclofenamate, blocked the increased constriction effect of G-1, but further enhanced relaxation effect of G-1. There was no significant difference in aortic reactivity to either ET-1 or ACh between the male middle-aged and young adult rats. The contractile response to ET-1 was not different within the same age of the two sex groups, but there was a remarkable difference in relaxation response to ACh between young adult females and males with better response in females. GPER activation greatly improved the aortic relaxation of both young adult and middle-aged females, but not the males. CONCLUSIONS Endothelial dysfunction occurs earlier in males, but in females, dysfunction delays until middle age. GPER activation improves the vascular activities in females, but not males. It is promising to employ GPER as a potential drug target in cardiovascular disease in women.
Collapse
Affiliation(s)
- Xuan Yu
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Peter Nguyen
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Nioka C Burns
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, TX, USA
| | - Cristine L Heaps
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - John N Stallone
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, TX, USA
| | - Guichun Han
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA; Department of Basic Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, KY, USA.
| |
Collapse
|
20
|
Manning JR, Thapa D, Zhang M, Stoner MW, Sembrat JC, Rojas M, Scott I. GPER-dependent estrogen signaling increases cardiac GCN5L1 expression. Am J Physiol Heart Circ Physiol 2022; 322:H762-H768. [PMID: 35245133 PMCID: PMC8977132 DOI: 10.1152/ajpheart.00024.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Reversible lysine acetylation regulates the activity of cardiac metabolic enzymes, including those controlling fuel substrate metabolism. Mitochondrial-targeted GCN5L1 and SIRT3 have been shown to regulate the acetylation status of mitochondrial enzymes, but the role that lysine acetylation plays in driving metabolic differences between male and female hearts is not currently known. In this study, we describe a significant difference in GCN5L1 levels between male and female mouse hearts, and in the hearts of women between post- and premenopausal age. We further find that estrogen drives GCN5L1 expression in a cardiac cell line and uses pharmacological approaches to determine the mechanism to be G protein-coupled estrogen receptor (GPER) activation, via translational regulation.NEW & NOTEWORTHY We demonstrate here for the first time that mitochondrial protein acetylation is increased in female hearts, associated with an increase in GCN5L1 levels through a GPER-dependent mechanism. These findings reveal a new potential mediator of divergent cardiac mitochondrial function between men and women.
Collapse
Affiliation(s)
- Janet R Manning
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dharendra Thapa
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manling Zhang
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W Stoner
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John C Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Iain Scott
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate. Int J Mol Sci 2022; 23:ijms23074009. [PMID: 35409368 PMCID: PMC8999971 DOI: 10.3390/ijms23074009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
The medical community recognizes sex-related differences in pathophysiology and cardiovascular disease outcomes (CVD), culminating with heart failure. In general, pre-menopausal women tend to have a better prognosis than men. Explaining why this occurs is not a simple matter. For decades, sex hormones like estrogens (Es) have been identified as one of the leading factors driving these sex differences. Indeed, Es seem protective in women as their decline, during and after menopause, coincides with an increased CV risk and HF development. However, clinical trials demonstrated that E replacement in post-menopause women results in adverse cardiac events and increased risk of breast cancer. Thus, a deeper understanding of E-related mechanisms is needed to provide a vital gateway toward better CVD prevention and treatment in women. Of note, sphingolipids (SLs) and their metabolism are strictly related to E activities. Among the SLs, ceramide and sphingosine 1-phosphate play essential roles in mammalian physiology, particularly in the CV system, and appear differently modulated in males and females. In keeping with this view, here we explore the most recent experimental and clinical observations about the role of E and SL metabolism, emphasizing how these factors impact the CV system.
Collapse
|
22
|
Singh R, Nasci VL, Guthrie G, Ertuglu LA, Butt MK, Kirabo A, Gohar EY. Emerging Roles for G Protein-Coupled Estrogen Receptor 1 in Cardio-Renal Health: Implications for Aging. Biomolecules 2022; 12:412. [PMID: 35327604 PMCID: PMC8946600 DOI: 10.3390/biom12030412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.
Collapse
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Ginger Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Lale A. Ertuglu
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| |
Collapse
|
23
|
Waqar A, Jain A, Joseph C, Srivastava K, Ochuba O, Alkayyali T, Poudel S. Cardioprotective Role of Estrogen in Takotsubo Cardiomyopathy. Cureus 2022; 14:e22845. [PMID: 35382214 PMCID: PMC8977075 DOI: 10.7759/cureus.22845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Takotsubo cardiomyopathy (TC) is a rare, reversible cause of left ventricular wall motion abnormality (LVWMA) that mimics the presentation of acute myocardial infarction (AMI). TC is usually preceded by an emotional or physical stressor and appears to be more common in postmenopausal women. Various pathophysiological hypotheses of TC have been proposed, but the exact mechanism of action remains elusive. Elevated levels of catecholamines leading to cardiac dysfunction are the most prevalent hypothesis. The protective role of estrogen in the development of cardiomyopathies has been studied extensively. International Takotsubo Diagnostic Criteria (InterTAK) and Mayo clinic diagnostic criteria both have the stipulation stating prevalence of TC is higher in postmenopausal women which hints towards the protective role of estrogen in the development of TC. To review the protective role of estrogen in the mechanism of this novel pathology, we searched Pubmed and Google scholar for the relevant articles by using keywords such as: “takotsubo cardiomyopathy”, “apical ballooning”, “broken heart syndrome”, “stress cardiomyopathy”, “left ventricle wall motion abnormality”, “estrogen”, “estradiol” and “sex hormones”. Our research revealed that although the prevalence of TC is greater in postmenopausal women as compared to men, the prognosis is worse in men. It also revealed the involvement of multiple cellular pathways under the influence of estrogen that could explain the cardioprotective effect of estrogen. Most of the articles found were based on animal studies, thus, there is an emphasis on future human studies. However, we strongly suggest evaluating estrogen levels as part of the initial workup for any patient presenting with signs and symptoms of cardiac pathology.
Collapse
|
24
|
Crescioli C. The Role of Estrogens and Vitamin D in Cardiomyocyte Protection: A Female Perspective. Biomolecules 2021; 11:1815. [PMID: 34944459 PMCID: PMC8699224 DOI: 10.3390/biom11121815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Women experience a dramatical raise in cardiovascular events after menopause. The decline in estrogens is pointed to as the major responsible trigger for the increased risk of cardiovascular disease (CVD). Indeed, the menopausal transition associates with heart macro-remodeling, which results from a fine-tuned cell micro-remodeling. The remodeling of cardiomyocytes is a biomolecular response to several physiologic and pathologic stimuli, allowing healthy adaptation in normal conditions or maladaptation in an unfavorable environment, ending in organ architecture disarray. Estrogens largely impinge on cardiomyocyte remodeling, but they cannot fully explain the sex-dimorphism of CVD risk. Albeit cell remodeling and adaptation are under multifactorial regulation, vitamin D emerges to exert significant protective effects, controlling some intracellular paths, often shared with estrogen signaling. In post-menopause, the unfavorable association of hypoestrogenism-D hypovitaminosis may converge towards maladaptive remodeling and contribute to increased CVD risk. The aim of this review is to overview the role of estrogens and vitamin D in female cardiac health, speculating on their potential synergistic effect in cardiomyocyte remodeling, an issue that is not yet fully explored. Further learning the crosstalk between these two steroids in the biomolecular orchestration of cardiac cell fate during adaptation may help the translational approach to future cardioprotective strategies for women health.
Collapse
Affiliation(s)
- Clara Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|
25
|
Wang X, Ma J, Zhang S, Li Z, Hong Z, Jiang L, Duan W, Liu J. G Protein-Coupled Estrogen Receptor 30 Reduces Transverse Aortic Constriction-Induced Myocardial Fibrosis in Aged Female Mice by Inhibiting the ERK1/2 -MMP-9 Signaling Pathway. Front Pharmacol 2021; 12:731609. [PMID: 34803680 PMCID: PMC8603421 DOI: 10.3389/fphar.2021.731609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
The incidence of cardiovascular diseases was significantly increased in postmenopausal women. The protection of estrogen in the cardiovascular system has been further reported for decades. Although menopausal hormone therapy has been used in many clinical trials, the debatable results indicate that the studies for elucidating the precise molecular mechanism are urgently required. G protein-coupled estrogen receptor 30 (GPR30) is a membrane receptor of estrogen and displays protective roles in diverse cardiovascular diseases. Previous studies have revealed that ERK1/2-mediated MMP-9 signaling was involved in ischemic heart diseases. However, the role of ERK1/2-mediated MMP-9 signaling in the protection of GPR30 against cardiac hypertrophy in aged female mice has not been investigated. Our present study demonstrated that GPR30 overexpression and its agonist G1 co-administration reduced transverse aortic constriction-induced myocardial fibrosis and preserved cardiac function in aged female mice. MMP-9 expression was markedly increased via ERK1/2 phosphorylation in transverse aortic constriction-injured myocardium of aged female mice. Further results showed that GPR30/G1 activation decreased MMP-9 expression via ERK1/2 inhibition, which further reduced TGF-β1 expression. Inhibition of the ERK1/2 signaling pathway by its inhibitor PD98059 suppressed the induction of the cardiomyocyte MMP-9 level caused by the GRP30 antagonist G15 and inhibited TGF-β1 expression in cardiac fibroblast in vitro. In summary, our results from in vivo and in vitro studies indicated that GPR30 activation inhibited myocardial fibrosis and preserved cardiac function via inhibiting ERK-mediated MMP-9 expression. Thus, the present study may provide the novel drug targets for prevention and treatment of cardiac pathological hypertrophy in postmenopausal women.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuaishuai Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ziwei Hong
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
26
|
Ferreira C, Trindade F, Ferreira R, Neves JS, Leite-Moreira A, Amado F, Santos M, Nogueira-Ferreira R. Sexual dimorphism in cardiac remodeling: the molecular mechanisms ruled by sex hormones in the heart. J Mol Med (Berl) 2021; 100:245-267. [PMID: 34811581 DOI: 10.1007/s00109-021-02169-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is growing in prevalence, due to an increase in aging and comorbidities. Heart failure with reduced ejection fraction (HFrEF) is more common in men, whereas heart failure with preserved ejection fraction (HFpEF) has a higher prevalence in women. However, the reasons for these epidemiological trends are not clear yet. Since HFpEF affects mostly postmenopausal women, sex hormones should play a pivotal role in HFpEF development. Furthermore, for HFpEF, contrary to HFrEF, effective therapeutic approaches are missing. Interestingly, studies evidenced that some therapies can have better results in women than in HFpEF men, emphasizing the necessity of understanding these observations at a molecular level. Thus, herein, we review the molecular mechanisms of estrogen and androgen actions in the heart in physiological conditions and explain how its dysregulation can lead to disease development. This clarification is essential in the road for an effective personalized management of HF, particularly HFpEF, towards the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Cláudia Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Department of Cardiology, Hospital Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rita Nogueira-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Center (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal.
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
27
|
Zhang X, Li T, Cheng HJ, Wang H, Ferrario CM, Groban L, Cheng CP. Chronic GPR30 agonist therapy causes restoration of normal cardiac functional performance in a male mouse model of progressive heart failure: Insights into cellular mechanisms. Life Sci 2021; 285:119955. [PMID: 34520767 DOI: 10.1016/j.lfs.2021.119955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/21/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023]
Abstract
AIMS G protein-coupled estrogen receptor 30 (GPR30) activation by its agonist, G1, exhibits beneficial actions in female with heart failure (HF). Recent evidence indicates its cardiovascular benefits may also include male as well. However, whether and how GPR30 activation may limit HF progression and have a salutary role in males is unknown. We hypothesized that chronic G1 treatment improves LV and cardiomyocyte function, [Ca2+]i regulation and β-adrenergic reserve, thus limiting HF progression in male. MAIN METHODS We compared left ventricle (LV) and myocyte function, [Ca2+]i transient ([Ca2+]iT) and β-AR modulation in control male mice (12/group) and isoproterenol-induced HF (150 mg/kg s.c. for 2 days). Two weeks after isoproterenol injection, HF mice received placebo, or G1 (150 μg/kg/day s.c. mini-pump) for 2 weeks. KEY FINDINGS Isoproterenol-treated mice exhibited HF with preserved ejection fraction (HFpEF) at 2-weeks and progressed to HF with reduced EF (HFrEF) at 4-weeks, manifested by significantly increased LV time constant of relaxation (τ), decreased EF and mitral flow (dV/dtmax), which were accompanied by reduced myocyte contraction (dL/dtmax), relaxation (dR/dtmax) and [Ca2+]iT. Acute isoproterenol-superfusion caused significantly smaller increases in dL/dtmax, dR/dtmax and [Ca2+]iT. G1 treatment in HF increased basal and isoproterenol-stimulated increases in EF and LV contractility of EES. Importantly, G1 improved basal and isoproterenol-stimulated dL/dtmax, dR/dtmax and [Ca2+]iT to control levels and restored normal cardiac β-AR subtypes modulation. SIGNIFICANCE Chronic G1 treatment restores normal myocyte basal and β-AR-stimulated contraction, relaxation, and [Ca2+]iT, thereby reversing LV dysfunction and playing a rescue role in a male mouse model of HF.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Tiankai Li
- Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heng-Jie Cheng
- Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Che Ping Cheng
- Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| |
Collapse
|
28
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
29
|
Adekunle AO, Adzika GK, Mprah R, Ndzie Noah ML, Adu-Amankwaah J, Rizvi R, Akhter N, Sun H. Predominance of Heart Failure With Preserved Ejection Fraction in Postmenopausal Women: Intra- and Extra-Cardiomyocyte Maladaptive Alterations Scaffolded by Estrogen Deficiency. Front Cell Dev Biol 2021; 9:685996. [PMID: 34660569 PMCID: PMC8511782 DOI: 10.3389/fcell.2021.685996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains a public health concern as it is associated with high morbidity and death rates. In particular, heart failure with preserved ejection fraction (HFpEF) represents the dominant (>50%) form of HF and mostly occurring among postmenopausal women. Hence, the initiation and progression of the left ventricular diastolic dysfunctions (LVDD) (a typically clinical manifestation of HFpEF) in postmenopausal women have been attributed to estrogen deficiency and the loss of its residue cardioprotective effects. In this review, from a pathophysiological and immunological standpoint, we discuss the probable multiple pathomechanisms resulting in HFpEF, which are facilitated by estrogen deficiency. The initial discussions recap estrogen and estrogen receptors (ERs) and β-adrenergic receptors (βARs) signaling under physiological/pathological states to facilitate cardiac function/dysfunction, respectively. By reconciling these prior discussions, attempts were made to explain how the loss of estrogen facilitates the disruptions both ERs and βARs-mediated signaling responsible for; the modulation of intra-cardiomyocyte calcium homeostasis, maintenance of cardiomyocyte cytoskeletal and extracellular matrix, the adaptive regulation of coronary microvascular endothelial functions and myocardial inflammatory responses. By scaffolding the disruption of these crucial intra- and extra-cardiomyocyte physiological functions, estrogen deficiency has been demonstrated to cause LVDD and increase the incidence of HFpEF in postmenopausal women. Finally, updates on the advancements in treatment interventions for the prevention of HFpEF were highlighted.
Collapse
Affiliation(s)
| | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | | | - Nazma Akhter
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
30
|
Biomediators in Polycystic Ovary Syndrome and Cardiovascular Risk. Biomolecules 2021; 11:biom11091350. [PMID: 34572562 PMCID: PMC8467803 DOI: 10.3390/biom11091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is extremely heterogeneous in terms of clinical manifestations. The variability of the syndrome's phenotype is derived from the genetic and molecular heterogeneity, with a great deal of environmental factors that may have long-term health consequences, such as metabolic and cardiovascular (CV) diseases. There is no doubt that women with PCOS suffer from metabolic complications more than their age-matched counterparts in the general population and at an earlier age. Obesity, low steroid hormone-binding globulin (SHBG), hyperandrogenemia, insulin resistance, and compensatory hyperinsulinemia are biomediators and early predictors of metabolic complications in PCOS. Doubts remain about the real risk of CV diseases in PCOS and the molecular mechanisms at the basis of CV complications. Based on that assumption, this review will present the available evidence on the potential implications of some biomediators, in particular, hyperandrogenism, estrogen-progesterone imbalance, insulin resistance, and low SHBG, in the processes leading to CV disease in PCOS, with the final aim to propose a more accurate CV risk assessment.
Collapse
|
31
|
Sun Y, Sangam S, Guo Q, Wang J, Tang H, Black SM, Desai AA. Sex Differences, Estrogen Metabolism and Signaling in the Development of Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:719058. [PMID: 34568460 PMCID: PMC8460911 DOI: 10.3389/fcvm.2021.719058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex and devastating disease with a poor long-term prognosis. While women are at increased risk for developing PAH, they exhibit superior right heart function and higher survival rates than men. Susceptibility to disease risk in PAH has been attributed, in part, to estrogen signaling. In contrast to potential pathological influences of estrogen in patients, studies of animal models reveal estrogen demonstrates protective effects in PAH. Consistent with this latter observation, an ovariectomy in female rats appears to aggravate the condition. This discrepancy between observations from patients and animal models is often called the "estrogen paradox." Further, the tissue-specific interactions between estrogen, its metabolites and receptors in PAH and right heart function remain complex; nonetheless, these relationships are essential to characterize to better understand PAH pathophysiology and to potentially develop novel therapeutic and curative targets. In this review, we explore estrogen-mediated mechanisms that may further explain this paradox by summarizing published literature related to: (1) the synthesis and catabolism of estrogen; (2) activity and functions of the various estrogen receptors; (3) the multiple modalities of estrogen signaling in cells; and (4) the role of estrogen and its diverse metabolites on the susceptibility to, and progression of, PAH as well as their impact on right heart function.
Collapse
Affiliation(s)
- Yanan Sun
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shreya Sangam
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| | - Qiang Guo
- Department of Critical Care Medicine, Suzhou Dushu Lake Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stephen M. Black
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL, United States
- Center for Translational Science and Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL, United States
| | - Ankit A. Desai
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
32
|
Schiffrin EL. Oestrogen receptors and T cells determine how sex affects aldosterone-induced hypertension. Cardiovasc Res 2021; 117:655-657. [PMID: 32533825 DOI: 10.1093/cvr/cvaa170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ernesto L Schiffrin
- Department of Medicine, Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
33
|
Delgado NTB, Rouver WDN, Freitas-Lima LC, Vieira-Alves I, Lemos VS, dos Santos RL. Sex Differences in the Vasodilation Mediated by G Protein-Coupled Estrogen Receptor (GPER) in Hypertensive Rats. Front Physiol 2021; 12:659291. [PMID: 34393807 PMCID: PMC8359777 DOI: 10.3389/fphys.2021.659291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The protective effect of estrogen on the vasculature cannot be explained only by its action through the receptors ERα and ERβ. G protein-coupled estrogen receptors (GPER)-which are widely distributed throughout the cardiovascular system-may also be involved in this response. However, little is known about GPER actions in hypertension. Therefore, in this study we evaluated the vascular response mediated by GPER using a specific agonist, G-1, in spontaneously hypertensive rats (SHR). We hypothesized that G-1 would induce a relaxing response in resistance mesenteric arteries from SHR of both sexes. METHODS G-1 concentration-response curves (1 nM-10 μM) were performed in mesenteric arteries from SHR of both sexes (10-12-weeks-old, weighing 180-250 g). The effects of G-1 were evaluated before and after endothelial removal and incubation for 30 min with the inhibitors L-NAME (300 μM) and indomethacin (10 μM) alone or combined with clotrimazole (0.75 μM) or catalase (1,000 units/mL). GPER immunolocalization was also investigated, and vascular hydrogen peroxide (H2O2) and ROS were evaluated using dichlorofluorescein (DCF) and dihydroethidium (DHE) staining, respectively. RESULTS GPER activation promoted a similar relaxing response in resistance mesenteric arteries of female and male hypertensive rats, but with the participation of different endothelial mediators. Males appear to be more dependent on the NO pathway, followed by the H2O2 pathway, and females on the endothelium and H2O2 pathway. CONCLUSION These findings show that the GPER agonist G-1 can induce a relaxing response in mesenteric arteries from hypertensive rats of both sexes in a similar way, albeit with differential participation of endothelial mediators. These results contribute to the understanding of GPER activation on resistance mesenteric arteries in essential hypertension.
Collapse
Affiliation(s)
| | - Wender do Nascimento Rouver
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Ildernandes Vieira-Alves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Roger Lyrio dos Santos
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
34
|
(Sex differences in cardiac tolerance to ischemia-reperfusion injury - the role of mitochondria). COR ET VASA 2021. [DOI: 10.33678/cor.2021.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Anjos M, Fontes-Oliveira M, Costa VM, Santos M, Ferreira R. An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity. Life Sci 2021; 280:119760. [PMID: 34166713 DOI: 10.1016/j.lfs.2021.119760] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
Cardiotoxicity is a major side effect of the chemotherapeutic drug doxorubicin (Dox), which is further exacerbated when it is combined with trastuzumab, a standard care approach for Human Epidermal growth factor Receptor-type 2 (HER2) positive cancer patients. However, the molecular mechanisms of the underlying cardiotoxicity of this combination are still mostly elusive. Increased oxidative stress, impaired energetic substrate uses and topoisomerase IIB inhibition are among the biological processes proposed to explain Dox-induced cardiomyocyte dysfunction. Since cardiomyocytes express HER2, trastuzumab can also damage these cells by interfering with neuroregulin-1 signaling and mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt and focal adhesion kinase (FAK)-dependent pathways. Nevertheless, Dox and trastuzumab target other cardiac cell types, such as endothelial cells, fibroblasts, cardiac progenitor cells and leukocytes, which can contribute to the clinical cardiotoxicity observed. This review aims to summarize the current knowledge on the cardiac signaling pathways modulated by these two antineoplastic drugs highly used in the management of breast cancer, not only focusing on cardiomyocytes but also to broaden the knowledge of the potential impact on other cells found in the heart.
Collapse
Affiliation(s)
- Miguel Anjos
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Vera M Costa
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mário Santos
- Cardiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal; UMIB, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
36
|
Niță AR, Knock GA, Heads RJ. Signalling mechanisms in the cardiovascular protective effects of estrogen: With a focus on rapid/membrane signalling. Curr Res Physiol 2021; 4:103-118. [PMID: 34746830 PMCID: PMC8562205 DOI: 10.1016/j.crphys.2021.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In modern society, cardiovascular disease remains the biggest single threat to life, being responsible for approximately one third of worldwide deaths. Male prevalence is significantly higher than that of women until after menopause, when the prevalence of CVD increases in females until it eventually exceeds that of men. Because of the coincidence of CVD prevalence increasing after menopause, the role of estrogen in the cardiovascular system has been intensively researched during the past two decades in vitro, in vivo and in observational studies. Most of these studies suggested that endogenous estrogen confers cardiovascular protective and anti-inflammatory effects. However, clinical studies of the cardioprotective effects of hormone replacement therapies (HRT) not only failed to produce proof of protective effects, but also revealed the potential harm estrogen could cause. The "critical window of hormone therapy" hypothesis affirms that the moment of its administration is essential for positive treatment outcomes, pre-menopause (3-5 years before menopause) and immediately post menopause being thought to be the most appropriate time for intervention. Since many of the cardioprotective effects of estrogen signaling are mediated by effects on the vasculature, this review aims to discuss the effects of estrogen on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) with a focus on the role of estrogen receptors (ERα, ERβ and GPER) in triggering the more recently discovered rapid, or membrane delimited (non-genomic), signaling cascades that are vital for regulating vascular tone, preventing hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Ana-Roberta Niță
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
| | - Greg A. Knock
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Richard J. Heads
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- Cardiovascular Research Section, King’s BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King’s College London, UK
| |
Collapse
|
37
|
Gohar EY, Almutlaq RN, Daugherty EM, Butt MK, Jin C, Pollock JS, Pollock DM, De Miguel C. Activation of G protein-coupled estrogen receptor 1 ameliorates proximal tubular injury and proteinuria in Dahl salt-sensitive female rats. Am J Physiol Regul Integr Comp Physiol 2021; 320:R297-R306. [PMID: 33407017 PMCID: PMC7988769 DOI: 10.1152/ajpregu.00267.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Recent evidence indicates a crucial role for G protein-coupled estrogen receptor 1 (GPER1) in the maintenance of cardiovascular and kidney health in females. The current study tested whether GPER1 activation ameliorates hypertension and kidney damage in female Dahl salt-sensitive (SS) rats fed a high-salt (HS) diet. Adult female rats were implanted with telemetry transmitters for monitoring blood pressure and osmotic minipumps releasing G1 (selective GPER1 agonist, 400 μg/kg/day ip) or vehicle. Two weeks after pump implantation, rats were shifted from a normal-salt (NS) diet (0.4% NaCl) to a matched HS diet (4.0% NaCl) for 2 wk. Twenty-four hour urine samples were collected during both diet periods and urinary markers of kidney injury were assessed. Histological assessment of kidney injury was conducted after the 2-wk HS diet period. Compared with values during the NS diet, 24-h mean arterial pressure markedly increased in response to HS, reaching similar values in vehicle-treated and G1-treated rats. HS also significantly increased urinary excretion of protein, albumin, nephrin (podocyte damage marker), and KIM-1 (proximal tubule injury marker) in vehicle-treated rats. Importantly, G1 treatment prevented the HS-induced proteinuria, albuminuria, and increase in KIM-1 excretion but not nephrinuria. Histological analysis revealed that HS-induced glomerular damage did not differ between groups. However, G1 treatment preserved proximal tubule brush-border integrity in HS-fed rats. Collectively, our data suggest that GPER1 activation protects against HS-induced proteinuria and albuminuria in female Dahl SS rats by preserving proximal tubule brush-border integrity in a blood pressure-independent manner.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rawan N Almutlaq
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth M Daugherty
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maryam K Butt
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
38
|
Findikli HA, Erdoğan M. Serum G protein-coupled estrogen receptor-1 levels and its relation with death in patients with sepsis: a prospective study. Minerva Anestesiol 2021; 87:549-555. [PMID: 33591138 DOI: 10.23736/s0375-9393.20.14855-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The sex hormone estrogen has an immune-supporting role in both trauma and sepsis-related to its immune-modulator role. The aim of the current study was to examine the prognostic role of (serum G Protein-coupled estrogen receptor-1) GPER-1 in sepsis and sepsis-related mortality. METHODS Prospective evaluation was made of the data on a total 160 patients followed-up in the Intensive Care Unit because of sepsis. Patients were separated into two groups as survivor and non-survivor group. The Sequential Organ Failure Assessment (SOFA) Score, APACHE II Score and Charlson Comorbidity Index (CCI) were calculated for each patient. Serum GPER-1 levels were evaluated for each patient. RESULTS Compared with non-survivors, the surviving patients were determined with significantly higher levels of PLT, CRP, GPER-1, SOFA, and APACHE II scores. The GPER-1 levels showed a significant positive correlation with CRP levels, SOFA, and APACHE II scores. ROC curve analysis demonstrated 85.7% sensitivity and 72.1% specificity of GPER-1 to predict 28-day mortality. GPER-1 and APACHE II scores were determined to be an independent prognostic factor for predicting mortality. CONCLUSIONS Serum GPER-1 can be used as a new prognostic factor for survival in patients diagnosed with sepsis.
Collapse
Affiliation(s)
- Hüseyin A Findikli
- Department of Internal Medicine, Kahramanmaraş Necip Fazil City Hospital, Kahramanmaraş, Turkey -
| | - Murat Erdoğan
- Department of Intensive Care Unit and Internal Diseases, Adana City Training And Research Hospital, Adana, Turkey
| |
Collapse
|
39
|
Leptin administration during lactation leads to different nutritional, biometric, hemodynamic, and cardiac outcomes in prepubertal and adult female Wistar rats. J Dev Orig Health Dis 2021; 12:870-875. [PMID: 33517945 DOI: 10.1017/s2040174420001312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Literature reports that insults, such as hormonal disturbances, during critical periods of development may modulate organism physiology and metabolism favoring cardiovascular diseases (CVDs) later in life. Studies show that leptin administration during lactation leads to cardiovascular dysfunction in young and adult male Wistar rats. However, there are sex differences regarding CVD. Thus, the present work aimed to investigate neonatal leptin administration's consequences on different outcomes in female rats at prepubertal and adult age. Newborn Wistar female rats were divided into two groups, Leptin and Control, receiving daily subcutaneous injections of this adipokine (8 μg/100 g) or saline for the first 10 of 21 d of lactation. Nutritional, biometric, hemodynamic, and echocardiographic parameters, as well as maximal effort ergometer performance, were determined at postnatal days (PND) 30 and 150. Leptin group presented lower food intake (p = 0.0003) and higher feed efficiency (p = 0.0058) between PND 21 and 30. Differences concerning echocardiographic parameters revealed higher left ventricle internal diameter (LVID) in systole (p = 0.0051), as well as lower left ventricle ejection fraction (LVEF) (p = 0.0111) and fractional shortening (FS) (p = 0.0405) for this group at PND 30. Older rats treated with leptin during lactation presented only higher LVID in systole (p = 0.0270). Systolic blood pressure and maximum effort ergometer test performance was similar between groups at both ages. These data suggest that nutritional, biometric, and cardiac outcomes due to neonatal leptin administration in female rats are age-dependent.
Collapse
|
40
|
da Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen Receptors: Therapeutic Perspectives for the Treatment of Cardiac Dysfunction after Myocardial Infarction. Int J Mol Sci 2021; 22:E525. [PMID: 33430254 PMCID: PMC7825655 DOI: 10.3390/ijms22020525] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptors (ER) mediate functions beyond their endocrine roles, as modulation of cardiovascular, renal, and immune systems through anti-inflammatory and anti-apoptotic effects, preventing necrosis of cardiomyocytes and endothelial cells, and attenuating cardiac hypertrophy. Estradiol (E2) prevents cardiac dysfunction, increases nitric oxide synthesis, and reduces the proliferation of vascular cells, yielding protective effects, regardless of gender. Such actions are mediated by ER (ER-alpha (ERα), ER-beta (ERβ), or G protein-coupled ER (GPER)) through genomic or non-genomic pathways, which regulate cardiovascular function and prevent tissue remodeling. Despite the extensive knowledge on the cardioprotective effects of estrogen, clinical studies conducted on myocardial infarction (MI) and cardiovascular diseases still include favorable and unfavorable profiles. The purpose of this review is to provide up-to-date information regarding molecular, preclinical, and clinical aspects of cardiovascular E2 effects and ER modulation as a potential therapeutic target for the treatment of MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Matheus L. C. A. Tacco
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Sophia C. P. Marinho
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
- Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
41
|
Phungphong S, Kijtawornrat A, Wattanapermpool J, Bupha-Intr T. Improvement in cardiac function of ovariectomized rats by antioxidant tempol. Free Radic Biol Med 2020; 160:239-245. [PMID: 32763410 DOI: 10.1016/j.freeradbiomed.2020.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/27/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
Abstract
A rise in heart disease incidence in women after menopause has led to investigations into the role of female sex hormones on cardiac function. Although various adverse changes in cardiac contractile function following loss of female sex hormones have been reported, a clear mechanism of action has never been characterized. In order to examine whether an elevation in oxidative stress is a major cause of cardiac contractile dysfunction after female sex hormone deprivation, cardiac functions of ovariectomized rats with and without supplementation of superoxide scavenger tempol were compared to those of sham-operated controls. Chronic deprivation of female sex hormones reduced total oxidative capacity and increased plasma carbonyl protein content. Tempol supplementation of ovariectomized rats significantly ameliorated plasma oxidative stress status. Echocardiography demonstrated a significant decrease in left ventricular ejection fraction in ovariectomized rats, which was completely prevented by tempol supplementation. Decreased myocardial contractility occurs with reduced maximum myofilament force of contraction and amplitude of transient intracellular Ca2+ concentration, both phenomena completely attenuated by tempol supplementation. However, tempol only partially prevented shift of heart myosin heavy chain from dominant α-to β-isoform of ovariectomized rats. Immunoblot analysis of protein carbonylation indicated that tempol supplementation significantly reduced the level of cardiac myofibrillar proteins oxidation increased in ovariectomized rat heart. Taken together, the results indicate changes of cardiac contractile machinery following loss of female sex hormones were, in part, due to an increase in oxidative stress, and antioxidant supplementation could be considered another potential prevention measure in postmenopausal women.
Collapse
Affiliation(s)
- Sukanya Phungphong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
42
|
An acute estrogen receptor agonist enhances protective effects of cardioplegia in hearts from aging male and female mice. Exp Gerontol 2020; 141:111093. [DOI: 10.1016/j.exger.2020.111093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023]
|
43
|
Gohar EY. G protein-coupled estrogen receptor 1 as a novel regulator of blood pressure. Am J Physiol Renal Physiol 2020; 319:F612-F617. [PMID: 32893662 DOI: 10.1152/ajprenal.00045.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying hypertension are multifaceted and incompletely understood. New evidence suggests that G protein-coupled estrogen receptor 1 (GPER1) mediates protective actions within the cardiovascular and renal systems. This mini-review focuses on recent advancements in our understanding of the vascular, renal, and cardiac GPER1-mediated mechanisms that influence blood pressure regulation. We emphasize clinical and basic evidence that suggests GPER1 as a novel target to aid therapeutic strategies for hypertension. Furthermore, we discuss current controversies and challenges facing GPER1-related research.
Collapse
Affiliation(s)
- Eman Y Gohar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
44
|
Firth JM, Yang HY, Francis AJ, Islam N, MacLeod KT. The Effect of Estrogen on Intracellular Ca 2+ and Na + Regulation in Heart Failure. ACTA ACUST UNITED AC 2020; 5:901-912. [PMID: 33015413 PMCID: PMC7524784 DOI: 10.1016/j.jacbts.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
During the progression toward heart failure, indicators of in vivo whole-heart function suggest greater impairment in the absence of estrogen. At the single cardiac myocyte level, the absence of estrogen results in further reduction of Ca2+ transient amplitudes, further slowing of transient decay kinetics, less SR Ca2+ content, and a further increase in Ca2+ spark frequencies and spark-mediated SR leak compared with animals with normal estrus cycles. Cardiac myocyte Na+ regulation is also more disrupted in the absence of estrogen.
Contradictory findings of estrogen supplementation in cardiac disease highlight the need to investigate the involvement of estrogen in the progression of heart failure in an animal model that lacks traditional comorbidities. Heart failure was induced by aortic constriction (AC) in female guinea pigs. Selected AC animals were ovariectomized (ACOV), and a group of these received 17β-estradiol supplementation (ACOV+E). One hundred-fifty days post-AC surgery, left-ventricular myocytes were isolated, and their electrophysiology and Ca2+ and Na+ regulation were examined. Long-term absence of ovarian hormones exacerbates the decline in cardiac function during the progression to heart failure. Estrogen supplementation reverses these aggravating effects.
Collapse
Key Words
- AC, aortic constriction
- ACOV+E, aortic constriction with ovariectomy, supplemented with 17β-estradiol
- ACOV, aortic constriction with ovariectomy
- FS, fractional shortening
- ICa, l-type Ca2+ channel current (cadmium-sensitive)
- INa,L, late Na+ current (ranolazine-sensitive)
- NCX, Na+/Ca2+ exchange
- OV, ovariectomy
- SERCA, Sarco/endoplasmic reticulum Ca2+-ATPase
- SR, sarcoplasmic reticulum
- calcium regulation
- cardiomyocytes
- estrogen
- excitation-contraction coupling
- female
- heart failure
Collapse
Affiliation(s)
- Jahn M Firth
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Hsiang-Yu Yang
- Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (R.O.C.)
| | - Alice J Francis
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Najah Islam
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Kenneth T MacLeod
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
45
|
Zhang J, Vardy E, Muise ES, Wang TM, Visconti R, Vadlamudi A, Pinto S, Peier AM. Utilizing Designed Receptors Exclusively Activated by Designer Drug Chemogenetic Tools to Identify Beneficial G Protein-Coupled Receptor Signaling for Fibrosis. J Pharmacol Exp Ther 2020; 375:357-366. [PMID: 32848074 DOI: 10.1124/jpet.120.000103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Fibrosis or accumulation of extracellular matrix is an evolutionarily conserved mechanism adopted by an organism as a response to chronic injury. Excessive fibrosis, however, leads to disruption of organ homeostasis and is a common feature of many chronic diseases. G protein-coupled receptors (GPCRs) are important cell signaling mediators and represent molecular targets for many Food and Drug Administration-approved drugs. To identify new targets for fibrosis, we used a synthetic GPCR system named designed receptors exclusively activated by designer drugs (DREADDs) to probe signaling pathways essential for fibrotic response. We found that upon expression in human lung fibroblasts, activation of Gq- and Gs-DREADDs abrogated the induction of TGFβ-induced fibrosis marker genes. Genome-wide transcriptome analysis identified dysregulation of multiple GPCRs in lung fibroblasts treated with TGFβ To investigate endogenous GPCR modulating TGFβ signaling, we selected 13 GPCRs that signal through Gq or Gs and activated them by using specific agonists. We examined the impact of each agonist and how activation of endogenous GPCR affects TGFβ signaling. Among the agonists examined, prostaglandin receptor agonists demonstrated the strongest inhibitory effect on fibrosis. Together, we have demonstrated that the DREADDs system is a valuable tool to identify beneficial GPCR signaling for fibrosis. This study in fibroblasts has served as a proof of concept and allowed us to further develop in vivo models for fibrosis GPCR discovery. SIGNIFICANCE STATEMENT: Fibrosis is the hallmark of many end-stage cardiometabolic diseases, and there is an unmet medical need to discover new antifibrotic therapies, reduce disease progression, and bring clinically meaningful efficacy to patients. Our work utilizes designed receptors exclusively activated by designer drug chemogenetic tools to identify beneficial GPCR signaling for fibrosis, providing new insights into GPCR drug discovery.
Collapse
Affiliation(s)
- Ji Zhang
- Departments of Cardiometabolic Diseases (J.Z., S.P.), Screening and Compound Profiling (E.V., R.V., A.V., A.M.P.), GpGx (E.S.M.), and Translational Biomarkers (T.-M.W.), MRL, Merck & Co., Inc., Kenilworth, New Jersey; and Kallyope Inc., New York, New York (E.V., S.P.)
| | - Eyal Vardy
- Departments of Cardiometabolic Diseases (J.Z., S.P.), Screening and Compound Profiling (E.V., R.V., A.V., A.M.P.), GpGx (E.S.M.), and Translational Biomarkers (T.-M.W.), MRL, Merck & Co., Inc., Kenilworth, New Jersey; and Kallyope Inc., New York, New York (E.V., S.P.)
| | - Eric S Muise
- Departments of Cardiometabolic Diseases (J.Z., S.P.), Screening and Compound Profiling (E.V., R.V., A.V., A.M.P.), GpGx (E.S.M.), and Translational Biomarkers (T.-M.W.), MRL, Merck & Co., Inc., Kenilworth, New Jersey; and Kallyope Inc., New York, New York (E.V., S.P.)
| | - Tzu-Ming Wang
- Departments of Cardiometabolic Diseases (J.Z., S.P.), Screening and Compound Profiling (E.V., R.V., A.V., A.M.P.), GpGx (E.S.M.), and Translational Biomarkers (T.-M.W.), MRL, Merck & Co., Inc., Kenilworth, New Jersey; and Kallyope Inc., New York, New York (E.V., S.P.)
| | - Richard Visconti
- Departments of Cardiometabolic Diseases (J.Z., S.P.), Screening and Compound Profiling (E.V., R.V., A.V., A.M.P.), GpGx (E.S.M.), and Translational Biomarkers (T.-M.W.), MRL, Merck & Co., Inc., Kenilworth, New Jersey; and Kallyope Inc., New York, New York (E.V., S.P.)
| | - Ashita Vadlamudi
- Departments of Cardiometabolic Diseases (J.Z., S.P.), Screening and Compound Profiling (E.V., R.V., A.V., A.M.P.), GpGx (E.S.M.), and Translational Biomarkers (T.-M.W.), MRL, Merck & Co., Inc., Kenilworth, New Jersey; and Kallyope Inc., New York, New York (E.V., S.P.)
| | - Shirly Pinto
- Departments of Cardiometabolic Diseases (J.Z., S.P.), Screening and Compound Profiling (E.V., R.V., A.V., A.M.P.), GpGx (E.S.M.), and Translational Biomarkers (T.-M.W.), MRL, Merck & Co., Inc., Kenilworth, New Jersey; and Kallyope Inc., New York, New York (E.V., S.P.)
| | - Andrea M Peier
- Departments of Cardiometabolic Diseases (J.Z., S.P.), Screening and Compound Profiling (E.V., R.V., A.V., A.M.P.), GpGx (E.S.M.), and Translational Biomarkers (T.-M.W.), MRL, Merck & Co., Inc., Kenilworth, New Jersey; and Kallyope Inc., New York, New York (E.V., S.P.)
| |
Collapse
|
46
|
Shabbir S, Hafeez A, Rafiq MA, Khan MJ. Estrogen shields women from COVID-19 complications by reducing ER stress. Med Hypotheses 2020; 143:110148. [PMID: 32759016 PMCID: PMC7390780 DOI: 10.1016/j.mehy.2020.110148] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
Estrogen hormone acts as a potential key player in providing immunity against certain viral infection. It is found to be associated in providing immunity against acute lungs inflammation and influenza virus by modulating cytokines storm and mediating adaptive immune alterations respectively. Women are less affected by SARS-CoV-2 infection because of the possible influence of estrogen hormone as compared to men. We hypothesized that SARS-CoV-2 causes stress in endoplasmic reticulum (ER) which in turn aggravates the infection, estrogen hormone might play key role in decreasing ER stress by activating estrogen mediated signaling pathways, results in unfolded protein response (UPR). Estrogen governs degradation of phosphotidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol triphosphate (IP3) with the help of phospholipase C. IP3 start in-fluxing Ca+2 ions that helps in UPR activation. To support our hypothesis, we analyzed the data of 162,392 COVID-19 patients to determine the relation of this disease with gender. We observed that 26% of women and 74% of men were affected by SARS-CoV-2. It indicated that women are less affected because of the possible influence of estrogen hormone in women.
Collapse
|
47
|
Aryan L, Younessi D, Zargari M, Banerjee S, Agopian J, Rahman S, Borna R, Ruffenach G, Umar S, Eghbali M. The Role of Estrogen Receptors in Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21124314. [PMID: 32560398 PMCID: PMC7352426 DOI: 10.3390/ijms21124314] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular Diseases (CVDs) are the leading cause of death globally. More than 17 million people die worldwide from CVD per year. There is considerable evidence suggesting that estrogen modulates cardiovascular physiology and function in both health and disease, and that it could potentially serve as a cardioprotective agent. The effects of estrogen on cardiovascular function are mediated by nuclear and membrane estrogen receptors (ERs), including estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled ER (GPR30 or GPER). Receptor binding in turn confers pleiotropic effects through both genomic and non-genomic signaling to maintain cardiovascular homeostasis. Each ER has been implicated in multiple pre-clinical cardiovascular disease models. This review will discuss current reports on the underlying molecular mechanisms of the ERs in regulating vascular pathology, with a special emphasis on hypertension, pulmonary hypertension, and atherosclerosis, as well as in regulating cardiac pathology, with a particular emphasis on ischemia/reperfusion injury, heart failure with reduced ejection fraction, and heart failure with preserved ejection fraction.
Collapse
|
48
|
Manrique-Acevedo C, Chinnakotla B, Padilla J, Martinez-Lemus LA, Gozal D. Obesity and cardiovascular disease in women. Int J Obes (Lond) 2020; 44:1210-1226. [PMID: 32066824 PMCID: PMC7478041 DOI: 10.1038/s41366-020-0548-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
As the prevalence of obesity continues to grow worldwide, the health and financial burden of obesity-related comorbidities grows too. Cardiovascular disease (CVD) is clearly associated with increased adiposity. Importantly, women are at higher risk of CVD when obese and insulin resistant, in particular at higher risk of developing heart failure with preserved ejection fraction and ischemic heart disease. Increased aldosterone and mineralocorticoid receptor activation, aberrant estrogenic signaling and elevated levels of androgens are among some of the proposed mechanisms explaining the heightened CVD risk. In addition to traditional cardiovascular risk factors, understanding nontraditional risk factors specific to women, like excess weight gain during pregnancy, preeclampsia, gestational diabetes, and menopause are central to designing personalized interventions aimed to curb the epidemic of CVD. In the present review, we examine the available evidence supporting a differential cardiovascular impact of increased adiposity in women compared with men and the proposed pathophysiological mechanisms behind these differences. We also discuss women-specific cardiovascular risk factors associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Bhavana Chinnakotla
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Department of Child Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
49
|
Gohar EY, Daugherty EM, Aceves JO, Sedaka R, Obi IE, Allan JM, Soliman RH, Jin C, De Miguel C, Lindsey SH, Pollock JS, Pollock DM. Evidence for G-Protein-Coupled Estrogen Receptor as a Pronatriuretic Factor. J Am Heart Assoc 2020; 9:e015110. [PMID: 32390531 PMCID: PMC7660860 DOI: 10.1161/jaha.119.015110] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Background The novel estrogen receptor, G-protein-coupled estrogen receptor (GPER), is responsible for rapid estrogen signaling. GPER activation elicits cardiovascular and nephroprotective effects against salt-induced complications, yet there is no direct evidence for GPER control of renal Na+ handling. We hypothesized that GPER activation in the renal medulla facilitates Na+ excretion. Methods and Results Herein, we show that infusion of the GPER agonist, G1, to the renal medulla increased Na+ excretion in female Sprague Dawley rats, but not male rats. We found that GPER mRNA expression and protein abundance were markedly higher in outer medullary tissues from females relative to males. Blockade of GPER in the renal medulla attenuated Na+ excretion in females. Given that medullary endothelin 1 is a well-established natriuretic factor that is regulated by sex and sex steroids, we hypothesized that GPER activation promotes natriuresis via an endothelin 1-dependent pathway. To test this mechanism, we determined the effect of medullary infusion of G1 after blockade of endothelin receptors. Dual endothelin receptor subtype A and endothelin receptor subtype B antagonism attenuated G1-induced natriuresis in females. Unlike males, female mice with genetic deletion of GPER had reduced endothelin 1, endothelin receptor subtype A, and endothelin receptor subtype B mRNA expression compared with wild-type controls. More important, we found that systemic GPER activation ameliorates the increase in mean arterial pressure induced by ovariectomy. Conclusions Our data uncover a novel role for renal medullary GPER in promoting Na+ excretion via an endothelin 1-dependent pathway in female rats, but not in males. These results highlight GPER as a potential therapeutic target for salt-sensitive hypertension in postmenopausal women.
Collapse
MESH Headings
- Animals
- Cyclopentanes/pharmacology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Estradiol/metabolism
- Estrogens/pharmacology
- Female
- Kidney Medulla/drug effects
- Kidney Medulla/metabolism
- Male
- Mice, Knockout
- Natriuresis/drug effects
- Ovariectomy
- Quinolines/pharmacology
- Rats, Sprague-Dawley
- Receptor, Endothelin A/genetics
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/metabolism
- Receptors, Estrogen/deficiency
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sex Factors
- Signal Transduction
Collapse
Affiliation(s)
- Eman Y. Gohar
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | | | - Jeffrey O. Aceves
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Randee Sedaka
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Ijeoma E. Obi
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - J. Miller Allan
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Reham H. Soliman
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Chunhua Jin
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Carmen De Miguel
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Sarah H. Lindsey
- Department of PharmacologySchool of MedicineTulane UniversityNew OrleansLA
| | - Jennifer S. Pollock
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - David M. Pollock
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| |
Collapse
|
50
|
2-Methoxyestradiol Attenuates Angiotensin II-Induced Hypertension, Cardiovascular Remodeling, and Renal Injury. J Cardiovasc Pharmacol 2020; 73:165-177. [PMID: 30839510 DOI: 10.1097/fjc.0000000000000649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estradiol may antagonize the adverse cardiovascular effects of angiotensin II (Ang II). We investigated the effects of 2-methoxyestradiol (2-ME), a nonestrogenic estradiol metabolite, on Ang II-induced cardiovascular and renal injury in male rats. First, we determined the effects of 2-ME on Ang II-induced acute changes in blood pressure, renal hemodynamics, and excretory function. Next, we investigated the effects of 2-ME and 2-hydroxyestardiol (2-HE) on hypertension and cardiovascular and renal injury induced by chronic infusion of Ang II. Furthermore, the effects of 2-ME on blood pressure and cardiovascular remodeling in the constricted aorta (CA) rat model and on isoproterenol-induced (ISO) cardiac hypertrophy and fibrosis were examined. 2-ME had no effects on Ang II-induced acute changes in blood pressure, renal hemodynamics, or glomerular filtration rate. Both 2-ME and 2-HE reduced hypertension, cardiac hypertrophy, proteinuria, and mesangial expansion induced by chronic Ang II infusions. In CA rats, 2-ME attenuated cardiac hypertrophy and fibrosis and reduced elevated blood pressure above the constriction. Notably, 2-ME reduced both pressure-dependent (above constriction) and pressure-independent (below constriction) vascular remodeling. 2-ME had no effects on ISO-induced renin release yet reduced ISO-induced cardiac hypertrophy and fibrosis. This study shows that 2-ME protects against cardiovascular and renal injury due to chronic activation of the renin-angiotensin system. This study reports for the first time that in vivo 2-ME reduces trophic (pressure-independent) effects of Ang II and related cardiac and vascular remodeling.
Collapse
|