1
|
Islam RA, Han X, Shaligram S, Esfandiarei M, Stallone JN, Rahimian R. Sexual Dimorphism in Impairment of Acetylcholine-Mediated Vasorelaxation in Zucker Diabetic Fatty (ZDF) Rat Aorta: A Monogenic Model of Obesity-Induced Type 2 Diabetes. Int J Mol Sci 2024; 25:11328. [PMID: 39457110 PMCID: PMC11508232 DOI: 10.3390/ijms252011328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Several reports, including our previous studies, indicate that hyperglycemia and diabetes mellitus exert differential effects on vascular function in males and females. This study examines sex differences in the vascular effects of type 2 diabetes (T2D) in an established monogenic model of obesity-induced T2D, Zucker Diabetic Fatty (ZDF) rats. Acetylcholine (ACh) responses were assessed in phenylephrine pre-contracted rings before and after apocynin, a NADPH oxidase (NOX) inhibitor. The mRNA expressions of aortic endothelial NOS (eNOS), and key NOX isoforms were also measured. We demonstrated the following: (1) diabetes had contrasting effects on aortic vasorelaxation in ZDF rats, impairing relaxation to ACh in females while enhancing it in male ZDF rats; (2) inhibition of NOX, a major source of superoxide in vasculature, restored aortic vasorelaxation in female ZDF rats; and (3) eNOS and NOX4 mRNA expressions were elevated in female (but not male) ZDF rat aortas compared to their respective leans. This study highlights sexual dimorphism in ACh-mediated vasorelaxation in the aorta of ZDF rats, suggesting that superoxide may play a role in the impaired vasorelaxation observed in female ZDF rats.
Collapse
Affiliation(s)
- Rifat Ara Islam
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, Stockton, CA 94115, USA;
| | - Sonali Shaligram
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| | - Mitra Esfandiarei
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - John N. Stallone
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute for Comparative Cardiovascular Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA;
| | - Roshanak Rahimian
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| |
Collapse
|
2
|
Siddiqui SH, Rossi NF. Acute Intake of Fructose Increases Arterial Pressure in Humans: A Meta-Analysis and Systematic Review. Nutrients 2024; 16:219. [PMID: 38257112 PMCID: PMC10818414 DOI: 10.3390/nu16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Hypertension is a major cardiac risk factor. Higher blood pressures are becoming more prevalent due to changing dietary habits. Here, we evaluated the impact on blood pressure in human subjects after acutely ingesting fructose using meta-analysis. A total of 89 studies were collected from four different electronic databases from 1 January 2008 to 1 August 2023. Of these studies, 10 were selected that fulfilled all the criteria for this meta-analysis. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP), and blood glucose level were analyzed using the Cohen's d analysis or standardized mean difference at a confidence interval (CI) of 95%. The SBP, DBP, and MAP showed medium effect size; HR and glucose level displayed small effect size. The standardized mean difference of normal diet groups and fructose diet groups showed a significant increase in SBP (p = 0.04, REM = 2.30), and DBP (p = 0.03, REM = 1.48) with heterogeneity of 57% and 62%, respectively. Acute fructose ingestion contributes to an increase in arterial pressure in humans. The different parameters of arterial pressure in humans correlated with each other. These findings support further rigorous investigation, retrospective of necessity, into the effect of chronic dietary of fructose in humans in order to better understand the impact on long term arterial pressure.
Collapse
Affiliation(s)
| | - Noreen F. Rossi
- Department of Physiology, Wayne State University, 540 E. Canfield Ave. Scott 5473, Detroit, MI 48201, USA;
| |
Collapse
|
3
|
Coşkunsever D, Olukman M, Jannini E, Sansone A, Varrassi G. Effect of Angiotensin 1-7 Peptide Agonist AVE 0991 on Diabetic Endothelial Dysfunction in an Experimental Animal Model: A Possible Tool to Treat Diabetic Erectile Dysfunction. Cureus 2023; 15:e48770. [PMID: 38098900 PMCID: PMC10719545 DOI: 10.7759/cureus.48770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Background The renin-angiotensin system and its metabolites are crucial in the pathogenesis and progression of complications of diabetes. Aim In this study, we aimed to evaluate the effect of angiotensin 1-7 non-peptide agonist AVE 0991 (576 ug/kg/day i.p.) on diabetic endothelial dysfunction. Materials and methods In this experimental animal study, we investigated the effects of angiotensin 1-7 non-peptide agonist AVE 0991 (576 ug/kg/day i.p.) treatment in male Wistar rats. Diabetes was created via injecting streptozotocin (55 mg/kg/i.p., single dose). Following the cavernous tissue submaximal phenylephrine contraction, relaxation responses were obtained by applying electrical field stimulation (0.5 ms, 40 V) for 15 seconds at 2, 4, 8, 16, 32, and 64 Hz, with two-minute intervals, respectively. To evaluate the effect of nitric oxide, the responses were compared by incubating with 100 mM N(gamma)-nitro-L-arginine methyl ester (L-NAME) for 20 minutes. Additionally, Y-27632 and sodium nitroprusside responses were evaluated in tissues contracted with submaximal doses of phenylephrine. Results Following a submaximal contraction of phenylephrine in the aorta rings, relaxation responses obtained with acetylcholine, sodium nitroprusside, and Y-27632 were impaired in diabetic rats; however, significant results were obtained with treatment. Although there was no significance between the groups in the electrical field stimulation responses, there was a significant dose-dependent difference in the treatment group in this parameter after L-NAME, sodium nitroprusside, and Y-27632 relaxation. Conclusions We determined that treatment with a non-peptide receptor antagonist of angiotensin 1-7, an enzyme detected in the aortic and cavernosum endothelium, may be a promising alternative for treating the complications of diabetes.
Collapse
Affiliation(s)
| | | | | | - Andrea Sansone
- Systems Medicine, University of Rome "Tor Vergata", Rome, ITA
| | | |
Collapse
|
4
|
Sadie-Van Gijsen H, Kotzé-Hörstmann L. Rat models of diet-induced obesity and metabolic dysregulation: Current trends, shortcomings and considerations for future research. Obes Res Clin Pract 2023; 17:449-457. [PMID: 37788944 DOI: 10.1016/j.orcp.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Rat diet-induced obesity and metabolic dysregulation (DIO/DIMD) is widely used as a pre-clinical model for human obesity and for testing weight-loss interventions. The aim of this review was to utilise a systematic literature survey of rat DIO/DIMD studies as a tool to document trends around study design and metabolic outcomes of these studies, and to consider ways in which the design of these studies may be improved to enhance the relevance thereof for human obesity research. In total, 110 comparisons between control and obesogenic dietary groups were included in the survey. Young male rats were found to be the model of choice, but fewer than 50% of studies provided comprehensive information about diet composition and energy intake. In addition, it was found that the majority of expected DIO/DIMD responses (hyperglycemia, hyperinsulinemia, dyslipidemia, hypoadiponectinemia) occurred at < 80% frequency, drawing into question the concept of a "typical" or "appropriate" response. We discuss the impact of differences in diet composition and energy intake on metabolic outcomes against the context of large heterogeneity of obesogenic diets employed in rat DIO/DIMD studies, and provide recommendations for the improvement of reporting standards around diet composition and dietary intake. In addition, we highlight the lack of data from female and older rats and describe considerations around the inclusion of sex and age as a variable in rat DIO/DIMD studies, aiming towards improving the applicability of these studies as a model of human obesity, which is most prevalent in women and older individuals.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa.
| | - Liske Kotzé-Hörstmann
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa; Institute for Sport and Exercise Medicine (ISEM), Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa
| |
Collapse
|
5
|
Razan MR, Amissi S, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. Moderate-Intensity Exercise Improves Mesenteric Arterial Function in Male UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) Rats: A Shift in the Relative Importance of Endothelium-Derived Relaxing Factors (EDRF). Biomedicines 2023; 11:biomedicines11041129. [PMID: 37189747 DOI: 10.3390/biomedicines11041129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The beneficial cardiovascular effects of exercise are well documented, however the mechanisms by which exercise improves vascular function in diabetes are not fully understood. This study investigates whether there are (1) improvements in blood pressure and endothelium-dependent vasorelaxation (EDV) and (2) alterations in the relative contribution of endothelium-derived relaxing factors (EDRF) in modulating mesenteric arterial reactivity in male UC Davis type-2 diabetes mellitus (UCD-T2DM) rats, following an 8-week moderate-intensity exercise (MIE) intervention. EDV to acetylcholine (ACh) was measured before and after exposure to pharmacological inhibitors. Contractile responses to phenylephrine and myogenic tone were determined. The arterial expressions of endothelial nitric oxide (NO) synthase (eNOS), cyclooxygenase (COX), and calcium-activated potassium channel (KCa) channels were also measured. T2DM significantly impaired EDV, increased contractile responses and myogenic tone. The impairment of EDV was accompanied by elevated NO and COX importance, whereas the contribution of prostanoid- and NO-independent (endothelium-derived hyperpolarization, EDH) relaxation was not apparent compared to controls. MIE 1) enhanced EDV, while it reduced contractile responses, myogenic tone and systolic blood pressure (SBP), and 2) caused a shift away from a reliance on COX toward a greater reliance on EDH in diabetic arteries. We provide the first evidence of the beneficial effects of MIE via the altered importance of EDRF in mesenteric arterial relaxation in male UCD-T2DM rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Said Amissi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Rifat Ara Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
6
|
Berenyiova A, Cebova M, Aydemir BG, Golas S, Majzunova M, Cacanyiova S. Vasoactive Effects of Chronic Treatment with Fructose and Slow-Releasing H2S Donor GYY-4137 in Spontaneously Hypertensive Rats: The Role of Nitroso and Sulfide Signalization. Int J Mol Sci 2022; 23:ijms23169215. [PMID: 36012477 PMCID: PMC9409378 DOI: 10.3390/ijms23169215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Increased fructose consumption induces metabolic-syndrome-like pathologies and modulates vasoactivity and the participation of nitric oxide (NO) and hydrogen sulfide (H2S). We investigated whether a slow-releasing H2S donor, GYY-4137, could exert beneficial activity in these conditions. We examined the effect of eight weeks of fructose intake on the blood pressure, biometric parameters, vasoactive responses, and NO and H2S pathways in fructose-fed spontaneously hypertensive rats with or without three weeks of GYY-4137 i.p. application. GYY-4137 reduced triacylglycerol levels and blood pressure, but not adiposity, and all were increased by fructose intake. Fructose intake generally enhanced endothelium-dependent vasorelaxation, decreased adrenergic contraction, and increased protein expression of interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), and concentration of conjugated dienes in the left ventricle (LV). Although GYY-4137 administration did not affect vasorelaxant responses, it restored disturbed contractility, LV oxidative damage and decreased protein expression of TNFα in fructose-fed rats. While the participation of endogenous H2S in vasoactive responses was not affected by fructose treatment, the expression of H2S-producing enzyme cystathionine β-synthase in the LV was increased, and the stimulation of the NO signaling pathway improved endothelial function in the mesenteric artery. On the other hand, chronic treatment with GYY-4137 increased the expression of H2S-producing enzyme cystathionine γ-lyase in the LV and stimulated the beneficial pro-relaxant and anti-contractile activity of endogenous H2S in thoracic aorta. Our results suggest that sulfide and nitroso signaling pathways could trigger compensatory vasoactive responses in hypertensive rats with metabolic disorder. A slow H2S-releasing donor could partially amend metabolic-related changes and trigger beneficial activity of endogenous H2S.
Collapse
Affiliation(s)
- Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
| | - Martina Cebova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
| | - Basak Gunes Aydemir
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
| | - Samuel Golas
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
| | - Miroslava Majzunova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 841-04 Bratislava, Slovakia
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841-04 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
7
|
Kotzé-Hörstmann L, Cois A, Johnson R, Mabasa L, Shabalala S, Van Jaarsveld PJ, Sadie-Van Gijsen H. Characterization and Comparison of the Divergent Metabolic Consequences of High-Sugar and High-Fat Diets in Male Wistar Rats. Front Physiol 2022; 13:904366. [PMID: 35860656 PMCID: PMC9290519 DOI: 10.3389/fphys.2022.904366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Diet-induced obesity (DIO) in laboratory rodents can serve as a model with which to study the pathophysiology of obesity, but obesogenic diets (high-sugar and/or high-fat) are often poorly characterised and simplistically aimed at inducing metabolic derangements for the purpose of testing the therapeutic capacity of natural products and other bioactive compounds. Consequently, our understanding of the divergent metabolic responses to different obesogenic diet formulations is limited. The aim of the present study was to characterise and compare differences in the metabolic responses induced by low-fat, medium-fat/high-sugar and high-fat diets in rats through multivariate statistical modelling. Young male Wistar rats were randomly assigned to CON (laboratory chow, low-fat), OB1 (high-sugar, medium-fat) or OB2 (high-fat) dietary groups (n = 24 each) for 17 weeks, after which metabolic responses were characterised. Projection-based multivariate analyses (principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA)) were used to explore the associations between measures of body composition and metabolism. Furthermore, we conducted a systematic literature survey to examine reporting trends in rat dietary intervention studies, and to determine how the metabolic responses observed in the present study compared to other recently published studies. The OB1 and OB2 dietary regimens resulted in distinct metabolic profiles, with OB1 characterised by perturbations in insulin homeostasis and adipose tissue secretory function, while OB2 was characterised by altered lipid and liver metabolism. This work therefore confirms, by means of direct comparison, that differences in dietary composition have a profound impact on metabolic and pathophysiological outcomes in rodent models of DIO. However, through our literature survey we demonstrate that dietary composition is not reported in the majority of rat dietary intervention studies, suggesting that the impact of dietary composition is often not considered during study design or data interpretation. This hampers the usefulness of such studies to provide enhanced mechanistic insights into DIO, and also limits the translatability of such studies within the context of human obesity.
Collapse
Affiliation(s)
- Liske Kotzé-Hörstmann
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Annibale Cois
- Division of Health Systems and Public Health, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Rabia Johnson
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Lawrence Mabasa
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Samukelisiwe Shabalala
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Paul J. Van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Hanél Sadie-Van Gijsen
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Hanél Sadie-Van Gijsen,
| |
Collapse
|
8
|
Kanan Y, Hackett SF, Taneja K, Khan M, Campochiaro PA. Oxidative stress-induced alterations in retinal glucose metabolism in Retinitis Pigmentosa. Free Radic Biol Med 2022; 181:143-153. [PMID: 35134532 PMCID: PMC8891093 DOI: 10.1016/j.freeradbiomed.2022.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Retinitis pigmentosa occurs due to mutations that cause rod photoreceptor degeneration. Once most rods are lost, gradual degeneration of cone photoreceptors occurs. Oxidative damage and abnormal glucose metabolism have been implicated as contributors to cone photoreceptor death. Herein, we show increased phosphorylation of key enzymes of glucose metabolism in the retinas of rd10 mice, a model of RP, and retinas of wild type mice with paraquat-induced oxidative stress, thereby inhibiting these key enzymes. Dietary supplementation with glucose and pyruvate failed to overcome the inhibition, but increased reducing equivalents in the retina and improved cone function and survival. Dichloroacetate reversed the increased phosphorylation of pyruvate dehydrogenase in rd10 retina and increased histone acetylation and levels of TP53-induced glycolysis and apoptosis regulator (TIGAR), which redirected glucose metabolism toward the pentose phosphate pathway. These data indicate that oxidative stress induced damage can be reversed by shifting glycolytic intermediates toward the pentose phosphate pathway which increases reducing equivalents and provides photoreceptor protection.
Collapse
Affiliation(s)
- Yogita Kanan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean F Hackett
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Taneja
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mahmood Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Campochiaro
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Tsirimiagkou C, Argyris A, Karatzi K, Konstantina N, Sfikakis PP, Protogerou AD. Dietary sugars and subclinical vascular damage in moderate-to-high cardiovascular risk adults. Nutr Metab Cardiovasc Dis 2022; 32:98-108. [PMID: 34823975 DOI: 10.1016/j.numecd.2021.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The association between dietary sugars and vascular damage has been scarcely examined out of the context of established cardiovascular disease. We aimed to investigate the association between different types of sugars with subclinical atheromatosis and arteriosclerosis, in individuals free of cardiovascular disease being, however, at moderate-to-high cardiovascular risk. METHODS AND RESULTS Two 24-h dietary recalls were conducted to estimate sugars intake. Subclinical atheromatosis was assessed by B-mode ultrasonography and arteriosclerosis (arterial stiffness) via tonometry (carotid-to-femoral pulse wave velocity). Multiple logistic regression analysis was performed to determine the relationship of quartiles of total sugars, monosaccharides and disaccharides with atheromatosis and arteriosclerosis, adjusting for potential confounders [Odds Ratio (95%Confidence Interval)]. In 901 participants (52.4 ± 13.8 years, 45.2% males), total sugars intake was not associated with any type of subclinical vascular damage. Subjects at 4th quartile of lactose intake (15.3 ± 5.5 g/day) had lower probability to present atheromatosis compared to those at 1st quartile (0.00 ± 0.01 g/day) even in the fully adjusted model [0.586 (0.353-0.974)]. Subjects at 3rd quartile of total disaccharides intake and particularly sucrose (15.1 ± 2.2 g/day) had higher probability to present arteriosclerosis compared to those at 1st quartile (3.0 ± 1.9 g/day) even after adjustment for all potential confounders [2.213 (1.110-4.409)]. CONCLUSIONS Overall, the present data suggest a distinct role of each type of sugars on vascular damage. These observations highlight the need for further studies investigating not only foods rich in sugars, but sugars as separate components of food as they probably contribute via different ways on the development of arterial pathologies.
Collapse
Affiliation(s)
- Christiana Tsirimiagkou
- Cardiovascular Prevention & Research Unit, Clinic & Laboratory of Pathophysiology, Department of Medicine, National and Kapodistrian University of Athens, Greece; Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Greece
| | - Antonios Argyris
- Cardiovascular Prevention & Research Unit, Clinic & Laboratory of Pathophysiology, Department of Medicine, National and Kapodistrian University of Athens, Greece
| | - Kalliopi Karatzi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece; Hellenic Foundation for Cardiovascular Health and Nutrition, Athens, Greece
| | - Ntouska Konstantina
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Greece
| | - Petros P Sfikakis
- 1st Department of Propaedeutic and Internal Medicine & Joint Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Greece
| | - Athanase D Protogerou
- Cardiovascular Prevention & Research Unit, Clinic & Laboratory of Pathophysiology, Department of Medicine, National and Kapodistrian University of Athens, Greece; Hellenic Foundation for Cardiovascular Health and Nutrition, Athens, Greece.
| |
Collapse
|
10
|
Akther F, Razan MR, Shaligram S, Graham JL, Stanhope KL, Allen KN, Vázquez-Medina JP, Havel PJ, Rahimian R. Potentiation of Acetylcholine-Induced Relaxation of Aorta in Male UC Davis Type 2 Diabetes Mellitus (UCD-T2DM) Rats: Sex-Specific Responses. Front Physiol 2021; 12:616317. [PMID: 34366875 PMCID: PMC8339592 DOI: 10.3389/fphys.2021.616317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Previous reports suggest that diabetes may differentially affect the vascular beds of females and males. The objectives of this study were to examine whether there were (1) sex differences in aortic function and (2) alterations in the relative contribution of endothelium-derived relaxing factors in modulating aortic reactivity in UC Davis Type 2 Diabetes Mellitus (UCD-T2DM) rats. Endothelium-dependent vasorelaxation (EDV) in response to acetylcholine (ACh) was measured in aortic rings before and after exposure to pharmacological inhibitors. Relaxation responses to sodium nitroprusside were assessed in endothelium-denuded rings. Moreover, contractile responses to phenylephrine (PE) were measured before and after incubation of aortic rings with a nitric oxide synthase (NOS) inhibitor in the presence of indomethacin. Metabolic parameters and expression of molecules associated with vascular and insulin signaling as well as reactive oxygen species generation were determined. Diabetes slightly but significantly impaired EDV in response to ACh in aortas from females but potentiated the relaxation response in males. The potentiation of EDV in diabetic male aortas was accompanied by a traces of nitric oxide (NO)- and prostanoid-independent relaxation and elevated aortic expression of small- and intermediate conductance Ca2+-activated K+ channels in this group. The smooth muscle sensitivity to NO was not altered, whereas the responsiveness to PE was significantly enhanced in aortas of diabetic groups in both sexes. Endothelium-derived NO during smooth muscle contraction, as assessed by the potentiation of the response to PE after NOS inhibition, was reduced in aortas of diabetic rats regardless of sex. Accordingly, decreases in pAkt and peNOS were observed in aortas from diabetic rats in both sexes compared with controls. Our data suggest that a decrease in insulin sensitivity via pAkt-peNOS-dependent signaling and an increase in oxidative stress may contribute to the elevated contractile responses observed in diabetic aortas in both sexes. This study demonstrates that aortic function in UCD-T2DM rats is altered in both sexes. Here, we provide the first evidence of sexual dimorphism in aortic relaxation in UCD-T2DM rats.
Collapse
Affiliation(s)
- Farjana Akther
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Md Rahatullah Razan
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Sonali Shaligram
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - James L. Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kaitlin N. Allen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | | | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Roshanak Rahimian
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
11
|
Berenyiova A, Golas S, Drobna M, Cebova M, Cacanyiova S. Fructose Intake Impairs the Synergistic Vasomotor Manifestation of Nitric Oxide and Hydrogen Sulfide in Rat Aorta. Int J Mol Sci 2021; 22:4749. [PMID: 33946264 PMCID: PMC8124179 DOI: 10.3390/ijms22094749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/19/2023] Open
Abstract
In this study, we evaluated the effect of eight weeks of administration of 10% fructose solution to adult Wistar Kyoto (WKY) rats on systolic blood pressure (SBP), plasma and biometric parameters, vasoactive properties of the thoracic aorta (TA), NO synthase (NOS) activity, and the expression of enzymes producing NO and H2S. Eight weeks of fructose administration did not affect SBP, glycaemia, or the plasma levels of total cholesterol or low-density and high-density lipoprotein; however, it significantly increased the plasma levels of γ-glutamyl transferase and alanine transaminase. Chronic fructose intake deteriorated endothelium-dependent vasorelaxation (EDVR) and increased the sensitivity of adrenergic receptors to noradrenaline. Acute NOS inhibition evoked a reduction in EDVR that was similar between groups; however, it increased adrenergic contraction more in fructose-fed rats. CSE inhibition decreased EDVR in WKY but not in fructose-fed rats. The application of a H2S scavenger evoked a reduction in the EDVR in WKY rats and normalized the sensitivity of adrenergic receptors in rats treated with fructose. Fructose intake did not change NOS activity but reduced the expression of eNOS and CBS in the TA and CSE and CBS in the left ventricle. Based on our results, we could assume that the impaired vascular function induced by increased fructose intake was probably not directly associated with a decreased production of NO, but rather with impairment of the NO-H2S interaction and its manifestation in vasoactive responses.
Collapse
Affiliation(s)
- Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (M.D.); (M.C.); (S.C.)
| | | | | | | | | |
Collapse
|
12
|
Santos CD, da Silva JS, Brunetta HS, Chagas TR, Zoccal DB, Nunes EA, Rafacho A. Impact of combined long-term fructose and prednisolone intake on glucose and lipid homeostasis in rats: benefits of intake interruption or fish oil administration. J Nutr Biochem 2020; 90:108572. [PMID: 33388348 DOI: 10.1016/j.jnutbio.2020.108572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/19/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
We investigated whether combined long-term fructose and prednisolone intake would be more detrimental to the glucose homeostasis than if ingested separately. We also evaluated whether fish oil administration or interruption of treatments has any positive impact. For this, male adult Wistar rats ingested fructose (20%) (F) or prednisolone (12.5 µg/mL) (P) or both (FP) through drinking water for 12 weeks. A separate group of fructose and prednisolone-treated rats received fish oil treatment (1 g/kg) in the last 6 weeks. In another group, the treatment with fructose and prednisolone was interrupted after 12 weeks, and the animals were followed for more 12 weeks. Control groups ran in parallel (C). The F group had higher plasma TG (+42%) and visceral adiposity (+63%), whereas the P group had lower insulin sensitivity (-33%) and higher insulinemia (+200%). Only the the FP group developed these alterations combined with higher circulating uric acid (+126%), hepatic triacylglycerol content (+16.2-fold), lipid peroxidation (+173%) and lower catalase activity (-32%) that were associated with lower protein kinase B content and AMP-activated protein kinase (AMPK) phosphorylation in the liver, lower AMPK phosphorylation in the adipose tissue and higher beta-cell mass. Fish oil ingestion attenuated the elevation in circulating triacylglycerol and uric acid values, while the interruption of sugar and glucocorticoid intake reverted almost all modified parameters. In conclusion, long-term intake of fructose and prednisolone by male rats are more detrimental to glucose and lipid homeostasis than if ingested separately and the benefits of treatment interruption are broader than fish oil treatment.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil; Multicentre Graduate Program in Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil
| | - Julia Spanhol da Silva
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil; Multicentre Graduate Program in Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil
| | - Henver Simionato Brunetta
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil; Multicentre Graduate Program in Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil
| | - Thays Rodrigues Chagas
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil; Graduate Program in Nutrition, Centre of Health Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil
| | - Daniel Breseghello Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Everson Araújo Nunes
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil; Multicentre Graduate Program in Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil; Graduate Program in Nutrition, Centre of Health Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil
| | - Alex Rafacho
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil; Multicentre Graduate Program in Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
13
|
Mesenteric arterial dysfunction in the UC Davis Type 2 Diabetes Mellitus rat model is dependent on pre-diabetic versus diabetic status and is sexually dimorphic. Eur J Pharmacol 2020; 879:173089. [PMID: 32320701 DOI: 10.1016/j.ejphar.2020.173089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 01/27/2023]
Abstract
Previous reports suggest that diabetes may differentially affect the vascular beds of females and males. However, there is insufficient evidence to establish the timeline of the vascular dysfunction in diabetes, specifically in relation to sex. Here, we determined whether mesenteric arterial function is altered in UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) rats and if this occurs as early as the pre-diabetic stage of the disease. Specifically, we investigated whether vascular dysfunction differs between pre-diabetic or diabetic status and if this varies by sex. We measured the responses to endothelium-dependent and -independent vasorelaxant as well as vasoconstrictor agents and explored the potential mechanisms involved in sex-specific development of arterial dysfunction in UCD-T2DM rats. In addition, indices of insulin sensitivity were assessed. We report the reduced insulin sensitivity in pre-diabetic males and diabetic females. Vascular relaxation to acetylcholine was impaired to a greater extent in mesenteric artery from males in the pre-diabetic stage than in their female counterparts. In contrast, the arteries from females with diabetes exhibited a greater impairment to acetylcholine compared with diabetic males. Additionally, the sensitivity of mesenteric artery to contractile agents in females, but not in males, after the onset of diabetes was increased. Our data suggest that the reduced insulin sensitivity through AKT may predispose vessels to injury in the pre-diabetic stage in males. On the other hand, reduced insulin sensitivity as well as enhanced responsiveness to contractile agents may predispose arteries to injury in the diabetic stage in females.
Collapse
|
14
|
The effect of carbohydrate sources: Sucrose, invert sugar and components of mānuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS One 2019; 14:e0225845. [PMID: 31800608 PMCID: PMC6892475 DOI: 10.1371/journal.pone.0225845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Bacteria within the digestive tract of adult honey bees are likely to play a key role in the digestion of sugar-rich foods. However, the influence of diet on honey bee gut bacteria is not well understood. During periods of low floral abundance, beekeepers often supplement the natural sources of carbohydrate that honey bees collect, such as nectar, with various forms of carbohydrates such as sucrose (a disaccharide) and invert sugar (a mixture of the monosaccharides glucose and fructose). We compared the effect of these sugar supplements on the relative abundance of bacteria in the gut of bees by feeding bees from a single colony, two natural diets: mānuka honey, a monofloral honey with known antibacterial properties, and a hive diet; and artificial diets of invert sugar, sucrose solution, and sucrose solutions containing synthesised compounds associated with the antibacterial properties of mānuka honey. 16S ribosomal RNA (rRNA)-based sequencing showed that dietary regimes containing mānuka honey, sucrose and invert sugar did not alter the relative abundance of dominant core bacteria after 6 days of being fed these diets. However, sucrose-rich diets increased the relative abundances of three sub-dominant core bacteria, Rhizobiaceae, Acetobacteraceae, and Lactobacillus kunkeei, and decreased the relative abundance of Frischella perrara, all which significantly altered the bacterial composition. Acetogenic bacteria from the Rhizobiaceae and Acetobacteraceae families increased two- to five-fold when bees were fed sucrose. These results suggest that sucrose fuels the proliferation of specific low abundance primary sucrose-feeders, which metabolise sugars into monosaccharides, and then to acetate.
Collapse
|
15
|
Taskinen MR, Packard CJ, Borén J. Dietary Fructose and the Metabolic Syndrome. Nutrients 2019; 11:nu11091987. [PMID: 31443567 PMCID: PMC6770027 DOI: 10.3390/nu11091987] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Consumption of fructose, the sweetest of all naturally occurring carbohydrates, has increased dramatically in the last 40 years and is today commonly used commercially in soft drinks, juice, and baked goods. These products comprise a large proportion of the modern diet, in particular in children, adolescents, and young adults. A large body of evidence associate consumption of fructose and other sugar-sweetened beverages with insulin resistance, intrahepatic lipid accumulation, and hypertriglyceridemia. In the long term, these risk factors may contribute to the development of type 2 diabetes and cardiovascular diseases. Fructose is absorbed in the small intestine and metabolized in the liver where it stimulates fructolysis, glycolysis, lipogenesis, and glucose production. This may result in hypertriglyceridemia and fatty liver. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important. Here we review recent evidence linking excessive fructose consumption to health risk markers and development of components of the Metabolic Syndrome.
Collapse
Affiliation(s)
- Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Medicine Unit, Diabetes and Obesity, University of Helsinki, 00029 Helsinki, Finland
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden.
| |
Collapse
|
16
|
Li C, He J, Li S, Chen W, Bazzano L, Sun X, Shen L, Liang L, Shen Y, Gu X, Kelly TN. Novel Metabolites Are Associated With Augmentation Index and Pulse Wave Velocity: Findings From the Bogalusa Heart Study. Am J Hypertens 2019; 32:547-556. [PMID: 30953049 DOI: 10.1093/ajh/hpz046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Metabolomics study may help identify novel mechanisms underlying arterial stiffening. METHODS We performed untargeted metabolomics profiling among 1,239 participants of the Bogalusa Heart Study. After quality control, 1,202 metabolites were evaluated for associations with augmentation index (AI) and pulse wave velocity (PWV), using multivariate linear regression adjusting for age, sex, race, education, smoking, drinking, body weight, body height, physical activity, and estimated glomerular filtration rate. Heart rate, blood pressure and antihypertensive medication usage, lipids, and fasting glucose were sequentially adjusted in the sensitivity analyses for significant metabolites. Weighted correlation network analysis was applied to build metabolite networks. RESULTS Six novel metabolites were negatively associated with AI, of which, 3-methyl-2-oxobutyrate had the lowest P value and the largest effect size (β = -6.67, P = 5.99 × 10-6). Heart rate contributed to a large proportion (25%-58%) of the association for each metabolite. Twenty-one novel metabolites were identified for PWV, of which, fructose (β = 0.61, P = 6.18 × 10-10) was most significant, and histidine had the largest effect size (β = -1.09, P = 2.51 × 10-7). Blood pressure played a major contribution (9%-54%) to the association for each metabolite. Furthermore, 16 metabolites were associated with arterial stiffness independent of traditional risk factors. Network analysis identified 2 modules associated with both AI and PWV (P < 8.00 × 10-4). One was composed of metabolites from the glycerolipids synthesis and recycling pathway, and the other was involved in valine, leucine, and isoleucine metabolism. One module related to sphingomyelin metabolism was associated with PWV only (P = 0.002). CONCLUSIONS This study has identified novel and important metabolites and metabolic networks associated with arterial stiffness.
Collapse
Affiliation(s)
- Changwei Li
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Shengxu Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Luqi Shen
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
| | - Lirong Liang
- Clinical Epidemiology and Tobacco Dependence Treatment Research Department, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ye Shen
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
| | - Xiaoying Gu
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
17
|
van Opstal A, Kaal I, van den Berg-Huysmans A, Hoeksma M, Blonk C, Pijl H, Rombouts S, van der Grond J. Dietary sugars and non-caloric sweeteners elicit different homeostatic and hedonic responses in the brain. Nutrition 2019; 60:80-86. [DOI: 10.1016/j.nut.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023]
|
18
|
Yildirim OG, Sumlu E, Aslan E, Koca HB, Pektas MB, Sadi G, Akar F. High-fructose in drinking water initiates activation of inflammatory cytokines and testicular degeneration in rat. Toxicol Mech Methods 2019; 29:224-232. [DOI: 10.1080/15376516.2018.1543745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Onur Gökhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Esra Sumlu
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Esra Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Halit Buğra Koca
- Department of Medical Biochemistry, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mehmet Bilgehan Pektas
- Department of Medical Pharmacology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Gökhan Sadi
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
19
|
Lindsey ML, Gray GA, Wood SK, Curran-Everett D. Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 2018; 315:H303-H313. [PMID: 30028200 PMCID: PMC6139626 DOI: 10.1152/ajpheart.00309.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The problem of inadequate statistical reporting is long standing and widespread in the biomedical literature, including in cardiovascular physiology. Although guidelines for reporting statistics have been available in clinical medicine for some time, there are currently no guidelines specific to cardiovascular physiology. To assess the need for guidelines, we determined the type and frequency of statistical tests and procedures currently used in the American Journal of Physiology-Heart and Circulatory Physiology. A PubMed search for articles published in the American Journal of Physiology-Heart and Circulatory Physiology between January 1, 2017, and October 6, 2017, provided a final sample of 146 articles evaluated for methods used and 38 articles for indepth analysis. The t-test and ANOVA accounted for 71% (212 of 300 articles) of the statistical tests performed. Of six categories of post hoc tests, Bonferroni and Tukey tests were used in 63% (62 of 98 articles). There was an overall lack in details provided by authors publishing in the American Journal of Physiology-Heart and Circulatory Physiology, and we compiled a list of recommended minimum reporting guidelines to aid authors in preparing manuscripts. Following these guidelines could substantially improve the quality of statistical reports and enhance data rigor and reproducibility.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Gillian A Gray
- British Heart Foundation/University Centre for Cardiovascular Science, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine , Columbia, South Carolina
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health , Denver, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver , Denver, Colorado
| |
Collapse
|
20
|
Shaligram S, Sangüesa G, Akther F, Alegret M, Laguna JC, Rahimian R. Differential effects of high consumption of fructose or glucose on mesenteric arterial function in female rats. J Nutr Biochem 2018; 57:136-144. [PMID: 29727795 DOI: 10.1016/j.jnutbio.2018.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/16/2018] [Accepted: 03/20/2018] [Indexed: 12/25/2022]
Abstract
We have recently shown that type of supplemented simple sugar, not merely calorie intake, determines adverse effects on metabolism and aortic endothelial function in female rats. The aim of the current study was to investigate and compare the effects of high consumption of glucose or fructose on mesenteric arterial reactivity and systolic blood pressure (SBP). Sprague-Dawley female rats were supplemented with 20% w/v glucose or fructose in drinking water for 8 weeks. Here, we show that both sugars alter insulin signaling in mesenteric arteries (MA), assessed by a reduction in phosphorylated Akt, and increase in SBP. Furthermore, ingestion of glucose or fructose enhances inducible nitric oxide synthase (iNOS) expression and contractile responses to endothelin and phenylephrine in MA of rats. The endothelium-dependent vasodilation to acetylcholine and bradykinin as well as the relaxation responses to the nitric oxide donor sodium nitroprusside are impaired in MA of fructose- but not glucose-supplemented rats. In contrast, only glucose supplementation increases the expression of phosphorylated endothelial NOS (eNOS) in MA of rats. In conclusion, this study reveals that supplementation with fructose or glucose in liquid form enhances vasocontractile responses and increases iNOS expression in MA, effects which are accompanied by increased SBP in those groups. On the other hand, the preserved vasodilatory responses in MA from glucose-supplemented rats could be attributed to the enhanced level of phosphorylated eNOS expression in this group.
Collapse
Affiliation(s)
- Sonali Shaligram
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Gemma Sangüesa
- Department of Pharmacology Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona
| | - Farjana Akther
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Marta Alegret
- Department of Pharmacology Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona; IBUB (Institute of Biomedicine, University of Barcelona); CIBERobn (Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición)
| | - Juan C Laguna
- Department of Pharmacology Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona; IBUB (Institute of Biomedicine, University of Barcelona); CIBERobn (Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición)
| | - Roshanak Rahimian
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA.
| |
Collapse
|
21
|
Sangüesa G, Montañés JC, Baena M, Sánchez RM, Roglans N, Alegret M, Laguna JC. Chronic fructose intake does not induce liver steatosis and inflammation in female Sprague-Dawley rats, but causes hypertriglyceridemia related to decreased VLDL receptor expression. Eur J Nutr 2018. [PMID: 29516226 DOI: 10.1007/s00394-018-1654-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Sugar-sweetened beverage intake is a risk factor for insulin resistance, dyslipidemia, fatty liver, and steatohepatitis (NASH). Sub-chronic supplementation of liquid fructose, but not glucose, in female rats increases liver and plasma triglycerides without inflammation. We hypothesized that chronic supplementation of fructose would cause NASH and liver insulin resistance. METHODS We supplemented female Sprague-Dawley rats with water or either fructose or glucose 10% w/v solutions under isocaloric conditions for 7 months. At the end, plasma analytes, insulin, and adiponectin were determined, as well as liver triglyceride content and the expression of key genes controlling inflammation, fatty acid synthesis and oxidation, endoplasmic reticulum stress, and plasma VLDL clearance, by biochemical and histological methods. RESULTS Although sugar-supplemented rats increased their energy intake by 50-60%, we found no manifestation of liver steatosis, fibrosis or necrosis, unchanged plasma or tissue markers of inflammation or fibrosis, and reduced liver expression of gluconeogenic enzymes, despite both sugars increased fatty acid synthesis, mTORC1, and IRE1 activity, while decreasing fatty acid oxidation and PPARα activity. Only fructose-supplemented rats were hypertriglyceridemic, showing a reduced expression of VLDL receptor and lipoprotein lipase in skeletal muscle and vWAT. Glucose-supplemented rats showed increased adiponectinemia, which would explain the different metabolic outcomes of the two sugars. CONCLUSIONS Chronic liquid simple sugar supplementation, as the sole risk factor, is not enough for female rats to develop NASH and increased liver gluconeogenesis. Nevertheless, under isocaloric conditions, only fructose induced hypertriglyceridemia, thus confirming that also the type of nutrient matters in the development of metabolic diseases.
Collapse
Affiliation(s)
- Gemma Sangüesa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - José Carlos Montañés
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Miguel Baena
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Rosa María Sánchez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Barcelona, Spain
| | - Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Barcelona, Spain
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain. .,Institute of Biomedicine, University of Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Barcelona, Spain.
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain. .,Institute of Biomedicine, University of Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Barcelona, Spain.
| |
Collapse
|
22
|
Sangüesa G, Cascales M, Griñán C, Sánchez RM, Roglans N, Pallàs M, Laguna JC, Alegret M. Impairment of Novel Object Recognition Memory and Brain Insulin Signaling in Fructose- but Not Glucose-Drinking Female Rats. Mol Neurobiol 2018; 55:6984-6999. [DOI: 10.1007/s12035-017-0863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
|
23
|
Brooks HL, Lindsey ML. Guidelines for authors and reviewers on antibody use in physiology studies. Am J Physiol Heart Circ Physiol 2018; 314:H724-H732. [PMID: 29351459 PMCID: PMC6048465 DOI: 10.1152/ajpheart.00512.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Antibody use is a critical component of cardiovascular physiology research, and antibodies are used to monitor protein abundance (immunoblot analysis) and protein expression and localization (in tissue by immunohistochemistry and in cells by immunocytochemistry). With ongoing discussions on how to improve reproducibility and rigor, the goal of this review is to provide best practice guidelines regarding how to optimize antibody use for increased rigor and reproducibility in both immunoblot analysis and immunohistochemistry approaches. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-on-antibody-use-in-physiology-studies/.
Collapse
Affiliation(s)
- Heddwen L Brooks
- Department of Physiology, Pharmacology and Medicine, Sarver Heart Center, College of Medicine, University of Arizona , Tucson, Arizona
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| |
Collapse
|
24
|
Impact of Fish Oil Supplementation and Interruption of Fructose Ingestion on Glucose and Lipid Homeostasis of Rats Drinking Different Concentrations of Fructose. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4378328. [PMID: 28929113 PMCID: PMC5591931 DOI: 10.1155/2017/4378328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022]
Abstract
Background. Continuous fructose consumption may cause elevation of circulating triacylglycerol. However, how much of this alteration is reverted after the removal of fructose intake is not known. We explored this question and compared the efficacy of this approach with fish oil supplementation. Methods. Male Wistar rats were divided into the following groups: control (C), fructose (F) (water intake with 10% or 30% fructose for 9 weeks), fish oil (FO), and fructose/fish oil (FFO). Fish oil was supplemented only for the last 33 days of fructose ingestion. Half of the F group remained for additional 8 weeks without fructose ingestion (FR). Results. Fructose ingestion reduced food intake to compensate for the increased energy obtained through water ingestion, independent of fructose concentration. Fish oil supplementation exerted no impact on these parameters, but the removal of fructose from water recovered both ingestion behaviors. Plasma triacylglycerol augmented significantly during the second and third weeks (both fructose groups). Fish oil supplementation did not attenuate the elevation in triacylglycerol caused by fructose intake, but the interruption of sugar consumption normalized this parameter. Conclusion. Elevation in triacylglyceridemia may be recovered by removing fructose from diet, suggesting that it is never too late to repair improper dietary habits.
Collapse
|
25
|
Gopal K, Ussher JR. Sugar-sweetened beverages and vascular function: food for thought. Am J Physiol Heart Circ Physiol 2017; 312:H285-H288. [DOI: 10.1152/ajpheart.00783.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; and
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; and
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|