1
|
Earl CC, Javier AJ, Richards AM, Markham LW, Goergen CJ, Welc SS. Functional cardiac consequences of β-adrenergic stress-induced injury in the mdx mouse model of Duchenne muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589650. [PMID: 38659739 PMCID: PMC11042272 DOI: 10.1101/2024.04.15.589650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD), however, in the mdx mouse model of DMD, the cardiac phenotype differs from that seen in DMD-associated cardiomyopathy. Although some have used pharmacologic stress to enhance the cardiac phenotype in the mdx model, many methods lead to high mortality, variable cardiac outcomes, and do not recapitulate the structural and functional cardiac changes seen in human disease. Here, we describe a simple and effective method to enhance the cardiac phenotype model in mdx mice using advanced 2D and 4D high-frequency ultrasound to monitor cardiac dysfunction progression in vivo. For our study, mdx and wild-type (WT) mice received daily low-dose (2 mg/kg/day) isoproterenol injections for 10 days. Histopathologic assessment showed that isoproterenol treatment increased myocyte injury, elevated serum cardiac troponin I levels, and enhanced fibrosis in mdx mice. Ultrasound revealed reduced ventricular function, decreased wall thickness, increased volumes, and diminished cardiac reserve in mdx mice compared to wild-type. Our findings highlight the utility of low-dose isoproterenol in mdx mice as a valuable model for exploring therapies targeting DMD-associated cardiac complications.
Collapse
Affiliation(s)
- Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Indiana University School of Medicine, IN, USA
| | - Areli J. Javier
- Musculoskeletal Health Sciences Program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Alyssa M. Richards
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
| | - Larry W. Markham
- Division of Pediatric Cardiology, Riley Children’s Hospital at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Indiana University School of Medicine, IN, USA
| | - Steven S. Welc
- Division of Pediatric Cardiology, Riley Children’s Hospital at Indiana University Health, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis IN, USA
| |
Collapse
|
2
|
Tatman PD, Kao DP, Chatfield KC, Carroll IA, Wagner JA, Jonas ER, Sucharov CC, Port JD, Lowes BD, Minobe WA, Huebler SP, Karimpour-Fard A, Rodriguez EM, Liggett SB, Bristow MR. An extensive β1-adrenergic receptor gene signaling network regulates molecular remodeling in dilated cardiomyopathies. JCI Insight 2023; 8:e169720. [PMID: 37606047 PMCID: PMC10543724 DOI: 10.1172/jci.insight.169720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
We investigated the extent, biologic characterization, phenotypic specificity, and possible regulation of a β1-adrenergic receptor-linked (β1-AR-linked) gene signaling network (β1-GSN) involved in left ventricular (LV) eccentric pathologic remodeling. A 430-member β1-GSN was identified by mRNA expression in transgenic mice overexpressing human β1-ARs or from literature curation, which exhibited opposite directional behavior in interventricular septum endomyocardial biopsies taken from patients with beta-blocker-treated, reverse remodeled dilated cardiomyopathies. With reverse remodeling, the major biologic categories and percentage of the dominant directional change were as follows: metabolic (19.3%, 81% upregulated); gene regulation (14.9%, 78% upregulated); extracellular matrix/fibrosis (9.1%, 92% downregulated); and cell homeostasis (13.3%, 60% upregulated). Regarding the comparison of β1-GSN categories with expression from 19,243 nonnetwork genes, phenotypic selection for major β1-GSN categories was exhibited for LV end systolic volume (contractility measure), ejection fraction (remodeling index), and pulmonary wedge pressure (wall tension surrogate), beginning at 3 months and persisting to study completion at 12 months. In addition, 121 lncRNAs were identified as possibly involved in cis-acting regulation of β1-GSN members. We conclude that an extensive 430-member gene network downstream from the β1-AR is involved in pathologic ventricular remodeling, with metabolic genes as the most prevalent category.
Collapse
Affiliation(s)
| | - David P. Kao
- Division of Cardiology, Department of Medicine, and
- Colorado Center for Personalized Medicine University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kathryn C. Chatfield
- Division of Cardiology, Department of Medicine, and
- Department of Pediatric Cardiology, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Ian A. Carroll
- Division of Cardiology, Department of Medicine, and
- ARCA biopharma, Westminster, Colorado, USA
| | | | | | | | | | - Brian D. Lowes
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | - Anis Karimpour-Fard
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Stephen B. Liggett
- Departments of Medicine and Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael R. Bristow
- Division of Cardiology, Department of Medicine, and
- ARCA biopharma, Westminster, Colorado, USA
| |
Collapse
|
3
|
Bai L, Han X, Kee HJ, He X, Kim SH, Jeon MJ, Zhou H, Jeong SM, Kee SJ, Jeong MH. Protocatechuic acid prevents isoproterenol-induced heart failure in mice by downregulating kynurenine-3-monooxygenase. J Cell Mol Med 2023; 27:2290-2307. [PMID: 37482908 PMCID: PMC10424289 DOI: 10.1111/jcmm.17869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Protocatechuic acid (3,4-dihydroxybenzoic acid) prevents oxidative stress, inflammation and cardiac hypertrophy. This study aimed to investigate the therapeutic effects of protocatechuic acid in an isoproterenol-induced heart failure mouse model and to identify the underlying mechanisms. To establish the heart failure model, C57BL/6NTac mice were given high-dose isoproterenol (80 mg/kg body weight) for 14 days. Echocardiography revealed that protocatechuic acid reversed the isoproterenol-induced downregulation of fractional shortening and ejection fraction. Protocatechuic acid attenuated cardiac hypertrophy as evidenced by the decreased heart-weight-to-body-weight ratio and the expression of Nppb. RNA sequencing analysis identified kynurenine-3-monooxygenase (Kmo) as a potential target of protocatechuic acid. Protocatechuic acid treatment or transfection with short-interfering RNA against Kmo ameliorated transforming growth factor β1-induced upregulation of Kmo, Col1a1, Col1a2 and Fn1 in vivo or in neonatal rat cardiac fibroblasts. Kmo knockdown attenuated the isoproterenol-induced increase in cardiomyocyte size, as well as Nppb and Col1a1 expression in H9c2 cells or primary neonatal rat cardiomyocytes. Moreover, protocatechuic acid attenuated Kmo overexpression-induced increases in Nppb mRNA levels. Protocatechuic acid or Kmo knockdown decreased isoproterenol-induced ROS generation in vivo and in vitro. Thus, protocatechuic acid prevents heart failure by downregulating Kmo. Therefore, protocatechuic acid and Kmo constitute a potential novel therapeutic agent and target, respectively, against heart failure.
Collapse
Affiliation(s)
- Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Emergency Critical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiongyi Han
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Xiaonan He
- Emergency Critical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Seong Hoon Kim
- Department of Parasitology and Tropical Medicine, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Mi Jin Jeon
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hongyan Zhou
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Min Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Ran Q, Zhang C, Wan W, Ye T, Zou Y, Liu Z, Yu Y, Zhang J, Shen B, Yang B. Pinocembrin ameliorates atrial fibrillation susceptibility in rats with anxiety disorder induced by empty bottle stimulation. Front Pharmacol 2022; 13:1004888. [PMID: 36339600 PMCID: PMC9631028 DOI: 10.3389/fphar.2022.1004888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Anxiety disorder (AD) is the most common mental disorder, which is closely related to atrial fibrillation (AF) and is considered to be a trigger of AF. Pinocembrin has been demonstrated to perform a variety of neurological and cardiac protective effects through its anti-inflammatory and antioxidant activities. The current research aims to explore the antiarrhythmic effect of pinocembrin in anxiety disorder rats and its underlying mechanisms. Methods: 60 male Sprague-Dawley rats were distributed into four groups: CTL group: control rats + saline; CTP group: control rats + pinocembrin; Anxiety disorder group: anxiety disorder rats + saline; ADP group: anxiety disorder rats + pinocembrin. Empty bottle stimulation was conducted to induce anxiety disorder in rats for 3 weeks, and pinocembrin was injected through the tail vein for the last 2 weeks. Behavioral measurements, in vitro electrophysiological studies, biochemical assays, ELISA, Western blot and histological studies were performed to assess the efficacy of pinocembrin. In addition, HL-1 atrial cells were cultured in vitro to further verify the potential mechanism of pinocembrin. Results: After 3 weeks of empty bottle stimulation, pinocembrin significantly improved the exploration behaviors in anxiety disorder rats. Pinocembrin alleviated electrophysiological remodeling in anxiety disorder rats, including shortening the action potential duration (APD), prolonging the effective refractory period (ERP), increasing the expression of Kv1.5, Kv4.2 and Kv4.3, decreasing the expression of Cav1.2, and ultimately reducing the AF susceptibility. These effects may be attributed to the amelioration of autonomic remodeling and structural remodeling by pinocembrin, as well as the inhibition of oxidative stress with upregulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathway. Conclusion: Pinocembrin can reduce AF susceptibility in anxiety disorder rats induced by empty bottle stimulation, with the inhibition of autonomic remodeling, structural remodeling, and oxidative stress. Therefore, pinocembrin is a promising treatment for AF in patients with anxiety disorder.
Collapse
Affiliation(s)
- Qian Ran
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ying Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhangchi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | | | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Bo Shen, ; Bo Yang,
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Bo Shen, ; Bo Yang,
| |
Collapse
|
5
|
Baccam GC, Xie J, Jin X, Park H, Wang B, Husson H, Ibraghimov-Beskrovnaya O, Huang CL. Glucosylceramide synthase inhibition protects against cardiac hypertrophy in chronic kidney disease. Sci Rep 2022; 12:9340. [PMID: 35660779 PMCID: PMC9167280 DOI: 10.1038/s41598-022-13390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
A significant population of patients with chronic kidney disease (CKD) develops cardiac hypertrophy, which can lead to heart failure and sudden cardiac death. Soluble klotho (sKL), the shed ectodomain of the transmembrane protein klotho, protects the heart against hypertrophic growth. We have shown that sKL protects the heart by regulating the formation and function of lipid rafts by targeting the sialic acid moiety of gangliosides, GM1/GM3. Reduction in circulating sKL contributes to an increased risk of cardiac hypertrophy in mice. sKL replacement therapy has been considered but its use is limited by the inability to mass produce the protein. Therefore, alternative methods to protect the heart are proposed. Glucosylation of ceramide catalyzed by glucosylceramide synthase is the entry step for the formation of gangliosides. Here we show that oral administration of a glucosylceramide synthase inhibitor (GCSi) reduces plasma and heart tissue glycosphingolipids, including gangliosides. Administration of GCSi is protective in two mouse models of cardiac stress-induction, one with isoproterenol overstimulation and the other with 5/6 nephrectomy-induced CKD. Treatment with GCSi does not alter the severity of renal dysfunction and hypertension in CKD. These results provide proof of principle for targeting glucosylceramide synthase to decrease gangliosides as a treatment for cardiac hypertrophy. They also support the hypothesis that sKL protects the heart by targeting gangliosides.
Collapse
Affiliation(s)
- Gabriel C Baccam
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA
| | - Jian Xie
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA
| | - Xin Jin
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA
| | - Hyejung Park
- US Early Development, Synthetics Platform, Global CMC Development, Sanofi, Waltham, MA, 02451, USA
| | - Bing Wang
- US Early Development, Synthetics Platform, Global CMC Development, Sanofi, Waltham, MA, 02451, USA
| | - Hervé Husson
- Genomic Medicine Unit, Sanofi, Framingham, MA, 01701, USA
| | - Oxana Ibraghimov-Beskrovnaya
- Rare and Neurologic Diseases, Sanofi, Framingham, MA, 01701, USA
- Dyne Therapeutics, 1560 Trapelo Road, Waltham, MA, 20451, USA
| | - Chou-Long Huang
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA.
| |
Collapse
|
6
|
Robinson EL, Drawnel FM, Mehdi S, Archer CR, Liu W, Okkenhaug H, Alkass K, Aronsen JM, Nagaraju CK, Sjaastad I, Sipido KR, Bergmann O, Arthur JSC, Wang X, Roderick HL. MSK-Mediated Phosphorylation of Histone H3 Ser28 Couples MAPK Signalling with Early Gene Induction and Cardiac Hypertrophy. Cells 2022; 11:cells11040604. [PMID: 35203255 PMCID: PMC8870627 DOI: 10.3390/cells11040604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Heart failure is a leading cause of death that develops subsequent to deleterious hypertrophic cardiac remodelling. MAPK pathways play a key role in coordinating the induction of gene expression during hypertrophy. Induction of the immediate early gene (IEG) response including activator protein 1 (AP-1) complex factors is a necessary and early event in this process. How MAPK and IEG expression are coupled during cardiac hypertrophy is not resolved. Here, in vitro, in rodent models and in human samples, we demonstrate that MAPK-stimulated IEG induction depends on the mitogen and stress-activated protein kinase (MSK) and its phosphorylation of histone H3 at serine 28 (pH3S28). pH3S28 in IEG promoters in turn recruits Brg1, a BAF60 ATP-dependent chromatin remodelling complex component, initiating gene expression. Without MSK activity and IEG induction, the hypertrophic response is suppressed. These studies provide new mechanistic insights into the role of MAPK pathways in signalling to the epigenome and regulation of gene expression during cardiac hypertrophy.
Collapse
Affiliation(s)
- Emma L. Robinson
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: (E.L.R.); (H.L.R.)
| | - Faye M. Drawnel
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Saher Mehdi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Caroline R. Archer
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
| | - Wei Liu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (W.L.); (X.W.)
| | - Hanneke Okkenhaug
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
| | - Kanar Alkass
- Department of Oncology and Pathology, Karolinska Institute, SE-17177 Stockholm, Sweden;
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, 0450 Oslo, Norway; (J.M.A.); (I.S.)
- Bjørknes College, Oslo University, 0456 Oslo, Norway
| | - Chandan K. Nagaraju
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, 0450 Oslo, Norway; (J.M.A.); (I.S.)
- KG Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
| | - Karin R. Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Olaf Bergmann
- Cell and Molecular Biology, Biomedicum, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - J. Simon C. Arthur
- Division of Immunology and Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (W.L.); (X.W.)
| | - H. Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
- KG Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
- Correspondence: (E.L.R.); (H.L.R.)
| |
Collapse
|
7
|
Tanner MA, Maitz CA, Grisanti LA. Immune cell β 2-adrenergic receptors contribute to the development of heart failure. Am J Physiol Heart Circ Physiol 2021; 321:H633-H649. [PMID: 34415184 PMCID: PMC8816326 DOI: 10.1152/ajpheart.00243.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
β-Adrenergic receptors (βARs) regulate normal and pathophysiological heart function through their impact on contractility. βARs are also regulators of immune function where they play a unique role depending on the disease condition and immune cell type. Emerging evidence suggests an important role for the β2AR subtype in regulating remodeling in the pathological heart; however, the importance of these responses has never been examined. In heart failure, catecholamines are elevated, leading to chronic βAR activation and contributing to the detrimental effects in the heart. We hypothesized that immune cell β2AR plays a critical role in the development of heart failure in response to chronic catecholamine elevations through their regulation of immune cell infiltration. To test this, chimeric mice were generated by performing bone marrow transplant (BMT) experiments using wild-type (WT) or β2AR knockout (KO) donors. WT and β2ARKO BMT mice were chronically administered the βAR agonist isoproterenol. Immune cell recruitment to the heart was examined by histology and flow cytometry. Numerous changes in immune cell recruitment were observed with isoproterenol administration in WT BMT mice including proinflammatory myeloid populations and lymphocytes with macrophages made up the majority of immune cells in the heart and which were absent in β2ARKO BMT animal. β2ARKO BMT mice had decreased cardiomyocyte death, hypertrophy, and interstitial fibrosis following isoproterenol treatment, culminating in improved function. These findings demonstrate an important role for immune cell β2AR expression in the heart's response to chronically elevated catecholamines.NEW & NOTEWORTHY Immune cell β2-adrenergic receptors (β2ARs) are important for proinflammatory macrophage infiltration to the heart in a chronic isoproterenol administration model of heart failure. Mice lacking immune cell β2AR have decreased immune cell infiltration to their heart, primarily proinflammatory macrophage populations. This decrease culminated to decreased cardiac injury with lessened cardiomyocyte death, decreased interstitial fibrosis and hypertrophy, and improved function demonstrating that β2AR regulation of immune responses plays an important role in the heart's response to persistent βAR stimulation.
Collapse
Affiliation(s)
- Miles A Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Charles A Maitz
- Department of Veterinary Medicine and Surgery, University of Missouri, College of Veterinary Medicine, Columbia, Missouri
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Ma D, Zheng B, Du H, Han X, Zhang X, Zhang J, Gao Y, Sun S, Chu L. The Mechanism Underlying the Protective Effects of Tannic Acid Against Isoproterenol-Induced Myocardial Fibrosis in Mice. Front Pharmacol 2020; 11:716. [PMID: 32499705 PMCID: PMC7242737 DOI: 10.3389/fphar.2020.00716] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Tannic acid (TA) belongs to a class of complex water-soluble polyphenolic derivatives that show anticarcinogenic, antiinflammatory, antioxidant, and scavenging activities. Here, we investigate the protective effects of TA against isoproterenol (ISO)-induced myocardial fibrosis (MF) in mice. Mice received TA and ISO dosing and were sacrificed 48 h later. The activities of creatine kinase (CK), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and mitochondria enzymes were measured. Cardiac histopathology was done using H&E, Sirius red, and Masson’s Trichrome staining. Immunohistochemical staining was applied to indicate changes in B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and basic fibroblast growth factor (bFGF) protein expressions in cardiac tissue. RT-PCR was used to measure the expression of atrial and brain natriuretic peptides (ANP and BNP, respectively), c-fos, and c-jun. Western blotting was used to measure the expression of nuclear factor-κB (NF-κB) p65, phosphorylated NF-κB p65), toll-like receptor 4 (TLR4), p38, phosphorylated p38, Bax, Bcl-2, and caspase-3. Compared to the ISO group, the TA group had reduced levels of TLR4, p38, p-p38, NF-κB (p65), p-NF-κB (p-p65), caspase-3, Bax, and Bcl-2, as well as CK, CK-MB, and LDH. These results indicate that TA protects against ISO-induced MF, possibly through its ability to suppress the TLR4-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,Collaborative Innovation Center of Integrative Reproductive Disorders, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Huiru Du
- Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xuan Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yonggang Gao
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shijiang Sun
- Hebei Province Hospital of Chinese Medicine, Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
9
|
Mohammad HMF, Makary S, Atef H, El-Sherbiny M, Atteia HH, Ibrahim GA, Mohamed AS, Zaitone SA. Clopidogrel or prasugrel reduces mortality and lessens cardiovascular damage from acute myocardial infarction in hypercholesterolemic male rats. Life Sci 2020; 247:117429. [PMID: 32061670 DOI: 10.1016/j.lfs.2020.117429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
AIMS Hypercholesterolemia is a hazard for increasing susceptibility of the heart to myocardial infarction (MI) by inducing platelet hyperaggregability. Clopidogrel and prasugrel have documented cardioprotective effects in clinical studies. Herein, we investigated whether clopidogrel and prasugrel could protect against isoproterenol-induced acute MI (A-MI) under hypercholesterolemic conditions in rats. MAIN METHODS Dietary hypercholesterolemic rats were subjected to acute doses of isoproterenol. Serum lipids, inflammatory markers, aortic endothelin1 and endothelial nitric oxide synthase (eNOS) mRNAs expression and immunexpression of BCL2 were determined. KEY FINDINGS Hypercholesterolemic rats showed infiltration of inflammatory cells and reduction in aortic wall thickness, deposition of fibrous tissue between cardiac muscle fibers. Protective doses of prasugrel or clopidogrel for 28 days before A-MI increased survival, amended the ECG parameters -including ST segment elevation- and improved the histopathological picture in hypercholesterolemic rats. This was coupled with reductions in platelet aggregation, creatine kinase-MB activity, endothelin 1, systemic inflammation and cardiac lipid peroxidation and increment in aortic eNOS expression. Clopidogrel and prasugrel groups showed enhanced BCL2 expression in cardiac fibers and aortic wall. SIGNIFICANCE Prasugrel and clopidogrel protected against A-MI via anti-aggregatory and anti-inflammatory effects. These results add to the value of these drugs in correcting cardiovascular dysfunction in patients vulnerable to A-MI after confirmation by appropriate human studies.
Collapse
Affiliation(s)
- Hala M F Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Central Lab., Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Hoda Atef
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Anatomy department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Anatomy department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Hebatallah H Atteia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, El-Sharkia, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Gehan A Ibrahim
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdelaty Shawky Mohamed
- Pathology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pathology department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
10
|
Ren S, Chang S, Tran A, Mandelli A, Wang Y, Wang JJ. Implantation of an Isoproterenol Mini-Pump to Induce Heart Failure in Mice. J Vis Exp 2019. [PMID: 31633680 DOI: 10.3791/59646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Isoproterenol (ISO), is a non-selective beta-adrenergic agonist, that is used widely to induce cardiac injury in mice. While the acute model mimics stress-induced cardiomyopathy, the chronic model, administered through an osmotic pump, mimics advanced heart failure in humans. The purpose of the described protocol is to create the chronic ISO-induced heart failure model in mice using an implanted mini-pump. This protocol has been used to induce heart failure in 100+ strains of inbred mice. Techniques on surgical pump implantation are described in detail and may be relevant to anyone interested in creating a heart failure model in mice. In addition, the weekly cardiac remodeling changes based on echocardiographic parameters for each strain and expected time to model development are presented. In summary, the method is simple and reproducible. Continuous ISO administered via the implanted mini-pump over 3 to 4 weeks is sufficient to induce cardiac remodeling. Finally, the success for ISO model creation may be assessed in vivo by serial echocardiography demonstrating hypertrophy, ventricular dilation, and dysfunction.
Collapse
Affiliation(s)
- Shuxun Ren
- Department of Anesthesiology, University of California
| | - Sunny Chang
- Department of Medicine, University of California
| | - Alex Tran
- Department of Microbiology, Immunology & Molecular Genetics, University of California
| | - Arianna Mandelli
- Department of Molecular, Cell, and Developmental Biology, University of California
| | - Yibin Wang
- Department of Anesthesiology, University of California
| | | |
Collapse
|
11
|
Triggers for Atrial Fibrillation: The Role of Anxiety. Cardiol Res Pract 2019; 2019:1208505. [PMID: 30906592 PMCID: PMC6398072 DOI: 10.1155/2019/1208505] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/15/2019] [Indexed: 12/26/2022] Open
Abstract
Atrial fibrillation (AF) is the most widely recognized arrhythmia. Systemic arterial hypertension, diabetes, obesity, heart failure, and valvular heart diseases are major risk factors for the onset and progression of AF. Various studies have emphasized the augmented anxiety rate among AF patients due to the poor quality of life; however, little information is known about the possibility of triggering atrial fibrillation by anxiety. The present review sought to underline the possible pathophysiological association between AF and anxiety disorders and suggests that anxiety can be an independent risk factor for AF, acting as a trigger, creating an arrhythmogenic substrate, and modulating the autonomic nervous system. The awareness of the role of anxiety disorders as a risk factor for AF may lead to the development of new clinical strategies for the management of AF.
Collapse
|
12
|
Suman RK. Natural dipeptidyl peptidase-4 inhibitor Terminalia arjuna mitigates myocardial infarction co-existing with diabetes in experimental rats. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/jdmdc.2018.05.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Wang LX, Yang X, Yue Y, Fan T, Hou J, Chen GX, Liang MY, Wu ZK. Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model. PLoS One 2017; 12:e0178619. [PMID: 28570599 PMCID: PMC5453565 DOI: 10.1371/journal.pone.0178619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/16/2017] [Indexed: 11/19/2022] Open
Abstract
Cardiac fibrosis is a significant global health problem with limited treatment choices. Although previous studies have shown that imatinib (IMA) inhibited cardiac fibrosis, the anti-fibrotic mechanisms have not been clearly uncovered. The aim of this study is to evaluate whether IMA attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors (PDGFR) on isoproterenol (ISO)-induced mice. Adult male C57BL/6 mice were treated with vehicle or ISO ± IMA for one week. After echocardiography examination, the hearts of mice were used for histopathologic, RT-qPCR, and western blot analyses. We found that the ventricular wall thickness, cardiac hypertrophy, and apoptosis were enhanced following ISO treatment. IMA decreased the left ventricular wall thickness, prevented hypertrophy, and inhibited apoptosis induced by ISO. In addition, IMA attenuated the accumulation of collagens and α-smooth muscle actin (α-SMA) (the markers of fibrosis) caused by ISO treatment. Moreover, the expression of fibrosis related genes, and the phosphorylation of PDGFRs in ISO-treated mice hearts were inhibited by IMA as well. However, IMA did not change the expression of the matrix metalloproteinase-9 (MMP-9) in ISO-treated hearts. Furthermore, IMA reduced the expressions of collagens as well as α-SMA caused by activation of PDGFRα in cardiac fibroblasts. Taken together, our data demonstrate that IMA attenuated the cardiac fibrosis by blocking the phosphorylation of PDGFRs in the ISO-induced mice model. This study indicates that IMA could be a potentially therapeutic option for cardiac fibrosis in clinical application.
Collapse
Affiliation(s)
- Le-Xun Wang
- Second Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Assisted Circulatory Laboratory of Health Ministry, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Yang
- Second Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Assisted Circulatory Laboratory of Health Ministry, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Yue
- Second Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Assisted Circulatory Laboratory of Health Ministry, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian Fan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jian Hou
- Second Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Assisted Circulatory Laboratory of Health Ministry, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guang-Xian Chen
- Second Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Assisted Circulatory Laboratory of Health Ministry, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng-Ya Liang
- Second Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Assisted Circulatory Laboratory of Health Ministry, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Kai Wu
- Second Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Assisted Circulatory Laboratory of Health Ministry, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
14
|
Dalton GD, Xie J, An SW, Huang CL. New Insights into the Mechanism of Action of Soluble Klotho. Front Endocrinol (Lausanne) 2017; 8:323. [PMID: 29250031 PMCID: PMC5715364 DOI: 10.3389/fendo.2017.00323] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
Abstract
The klotho gene encodes a type I single-pass transmembrane protein that contains a large extracellular domain, a membrane spanning segment, and a short intracellular domain. Klotho protein exists in several forms including the full-length membrane form (mKl) and a soluble circulating form [soluble klotho (sKl)]. mKl complexes with fibroblast growth factor receptors to form coreceptors for FGF23, which allows it to participate in FGF23-mediated signal transduction and regulation of phosphate and calcium homeostasis. sKl is present in the blood, urine, and cerebrospinal fluid where it performs a multitude of functions including regulation of ion channels/transporters and growth factor signaling. How sKl exerts these pleiotropic functions is poorly understood. One hurdle in understanding sKl's mechanism of action as a "hormone" has been the inability to identify a receptor that mediates its effects. In the body, the kidneys are a major source of sKl and sKl levels decline during renal disease. sKl deficiency in chronic kidney disease makes the heart susceptible to stress-induced injury. Here, we summarize the current knowledge of mKl's mechanism of action, the mechanistic basis of sKl's protective, FGF23-independent effects on the heart, and provide new insights into the mechanism of action of sKl focusing on recent findings that sKl binds sialogangliosides in membrane lipid rafts to regulate growth factor signaling.
Collapse
Affiliation(s)
- George D. Dalton
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, United States
| | - Jian Xie
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Sung-Wan An
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- *Correspondence: Chou-Long Huang,
| |
Collapse
|
15
|
Wang LS, Lee CT, Su WL, Huang SC, Wang SC. Delonix regia Leaf Extract (DRLE): A Potential Therapeutic Agent for Cardioprotection. PLoS One 2016; 11:e0167768. [PMID: 27936072 PMCID: PMC5147973 DOI: 10.1371/journal.pone.0167768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/18/2016] [Indexed: 11/18/2022] Open
Abstract
Delonix regia (Boj. Ex. Hook) is a flowering plant in the pea family found in tropical areas and its leaves are used informally to treat diseases in folk medicine. However, the cardioprotective effects in this plant are still unclear. In this study, we found that the Delonix regia leaf extract (DRLE) (400 mg/kg/d) can reduce the mortality rate in an isoproterenol (ISO)-induced heart injury and hypertrophy mouse model. Decreased serum levels of creatine phosphokinase, LDH, GOT, TNF-alpha and increased nitric oxide levels were found in DRLE-treated ISO-injured mice. In the in vitro study, the porcine coronary artery exhibited vasodilation effect induced by DRLE in a dose-dependent manner. In the DRLE toxic test, overdose of DRLE showed the high safety in normal mice and may have the ability to remove the metabolic wastes in blood. In conclusion, we demonstrated for the first time that DRLE has the cardioprotective effects by activating the vasodilation through NO pathway and preventing the myocyte injury via inhibition of TNF-alpha pathway. We suggest that DRLE may act as a promising novel herbal medicine for cardioprotection.
Collapse
Affiliation(s)
- Lung-Shuo Wang
- Department of Chinese Medicine, Tainan Sin-Lau Hospital, Tainan, Taiwan
| | - Chun-Ting Lee
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Lieh Su
- Department of Occupational Therapy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Che Huang
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan
| | - Shu-Chi Wang
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Abstract
Great advances have been made in our understanding of Takotsubo syndrome in the past decade, but the aetiology of the condition remains incompletely understood. The most established theory, that catecholamine-mediated myocardial stunning is provoked by emotional or physiological stress, is supported by the presence of supraphysiological levels of plasma catecholamines in patients with Takotsubo syndrome. For this reason, the hyperexcitability of the autonomic nervous system under conditions of physical and emotional stress is often assessed in these patients. Observational studies have indicated that a predisposing influence of chronic or traumatic stress, anxiodepressive disorders, and maladaptive personality traits are linked to the pathogenesis of Takotsubo syndrome. Chronic stress can influence autonomic function through dysregulation of the hypothalamic-pituitary-adrenal axis and contribute to the development of cardiovascular disorders. In this Perspectives article, we discuss the current knowledge of the psychoneuroendocrinological and psychosocial mechanisms underlying the pathophysiology of Takotsubo syndrome.
Collapse
|
17
|
Clouet S, Di Pietrantonio L, Daskalopoulos EP, Esfahani H, Horckmans M, Vanorlé M, Lemaire A, Balligand JL, Beauloye C, Boeynaems JM, Communi D. Loss of Mouse P2Y6 Nucleotide Receptor Is Associated with Physiological Macrocardia and Amplified Pathological Cardiac Hypertrophy. J Biol Chem 2016; 291:15841-52. [PMID: 27231349 DOI: 10.1074/jbc.m115.684118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
The study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced postnatal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy.
Collapse
Affiliation(s)
- Sophie Clouet
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Larissa Di Pietrantonio
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | | | - Hrag Esfahani
- the Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, 1200 Brussels, and
| | - Michael Horckmans
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Marion Vanorlé
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Anne Lemaire
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels
| | - Jean-Luc Balligand
- the Unit of Pharmacology and Therapeutics, Université Catholique de Louvain, UCL-FATH 5349, 1200 Brussels, and
| | - Christophe Beauloye
- the Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 1200 Brussels
| | - Jean-Marie Boeynaems
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels, the Department of Laboratory Medicine, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Didier Communi
- From the Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, 1070 Brussels,
| |
Collapse
|
18
|
Kim TH, Rowat AC, Sloan EK. Neural regulation of cancer: from mechanobiology to inflammation. Clin Transl Immunology 2016; 5:e78. [PMID: 27350878 PMCID: PMC4910118 DOI: 10.1038/cti.2016.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
Despite recent progress in cancer research, the exact nature of malignant transformation and its progression is still not fully understood. Particularly metastasis, which accounts for most cancer death, is a very complex process, and new treatment strategies require a more comprehensive understanding of underlying regulatory mechanisms. Recently, the sympathetic nervous system (SNS) has been implicated in cancer progression and beta-blockers have been identified as a novel strategy to limit metastasis. This review discusses evidence that SNS signaling regulates metastasis by modulating the physical characteristics of tumor cells, tumor-associated immune cells and the extracellular matrix (ECM). Altered mechanotype is an emerging hallmark of cancer cells that is linked to invasive phenotype and treatment resistance. Mechanotype also influences crosstalk between tumor cells and their environment, and may thus have a critical role in cancer progression. First, we discuss how neural signaling regulates metastasis and how SNS signaling regulates both biochemical and mechanical properties of tumor cells, immune cells and the ECM. We then review our current knowledge of the mechanobiology of cancer with a focus on metastasis. Next, we discuss links between SNS activity and tumor-associated inflammation, the mechanical properties of immune cells, and how the physical properties of the ECM regulate cancer and metastasis. Finally, we discuss the potential for clinical translation of our knowledge of cancer mechanobiology to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erica K Sloan
- Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| |
Collapse
|
19
|
Adrenergic Inhibition with Dexmedetomidine to Treat Stress Cardiomyopathy during Alcohol Withdrawal: A Case Report and Literature Review. Case Rep Crit Care 2016; 2016:9693653. [PMID: 27006838 PMCID: PMC4783539 DOI: 10.1155/2016/9693653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 01/31/2023] Open
Abstract
Stress (Takotsubo) cardiomyopathy is a form of reversible left ventricular dysfunction with a heightened risk of ventricular arrhythmia thought to be caused by high circulating catecholamines. We report a case of stress cardiomyopathy that developed during severe alcohol withdrawal successfully treated with dexmedetomidine. The case involves a 53-year-old man with a significant history of alcohol abuse who presented to a teaching hospital with new-onset seizures. His symptoms of acute alcohol withdrawal were initially treated with benzodiazepines, but the patient later developed hypotension, and stress cardiomyopathy was suspected based on ECG and echocardiographic findings. Adjunctive treatment with the alpha-2-adrenergic agonist, dexmedetomidine, was initiated to curtail excessive sympathetic outflow of the withdrawal syndrome, thereby targeting the presumed pathophysiology of the cardiomyopathy. Significant clinical improvement was observed within one day of initiation of dexmedetomidine. These findings are consistent with other reports suggesting that sympathetic dysregulation during alcohol withdrawal produces ideal pathobiology for stress cardiomyopathy and leads to ventricular arrhythmogenicity. Stress cardiomyopathy should be recognized as a complication of alcohol withdrawal that significantly increases cardiac-related mortality. By helping to correct autonomic dysregulation of the withdrawal syndrome, dexmedetomidine may be useful in the treatment of stress-induced cardiomyopathy.
Collapse
|
20
|
Halabi CM, Broekelmann TJ, Knutsen RH, Ye L, Mecham RP, Kozel BA. Chronic antihypertensive treatment improves pulse pressure but not large artery mechanics in a mouse model of congenital vascular stiffness. Am J Physiol Heart Circ Physiol 2015; 309:H1008-16. [PMID: 26232234 DOI: 10.1152/ajpheart.00288.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/27/2015] [Indexed: 01/08/2023]
Abstract
Increased arterial stiffness is a common characteristic of humans with Williams-Beuren syndrome and mouse models of elastin insufficiency. Arterial stiffness is associated with multiple negative cardiovascular outcomes, including myocardial infarction, stroke, and sudden death. Therefore, identifying therapeutic interventions that improve arterial stiffness in response to changes in elastin levels is of vital importance. The goal of this study was to determine the effect of chronic pharmacologic therapy with different classes of antihypertensive medications on arterial stiffness in elastin insufficiency. Elastin-insufficient mice 4-6 wk of age and wild-type littermates were subcutaneously implanted with osmotic micropumps delivering a continuous dose of one of the following: vehicle, losartan, nicardipine, or propranolol for 8 wk. At the end of treatment period, arterial blood pressure and large artery compliance and remodeling were assessed. Our results show that losartan and nicardipine treatment lowered blood pressure and pulse pressure in elastin-insufficient mice. Elastin and collagen content of abdominal aortas as well as ascending aorta and carotid artery biomechanics were not affected by any of the drug treatments in either genotype. By reducing pulse pressure and shifting the working pressure range of an artery to a more compliant region of the pressure-diameter curve, antihypertensive medications may mitigate the consequences of arterial stiffness, an effect that is drug class independent. These data emphasize the importance of early recognition and long-term management of hypertension in Williams-Beuren syndrome and elastin insufficiency.
Collapse
Affiliation(s)
- Carmen M Halabi
- Departments of Pediatrics Washington University School of Medicine, St. Louis, Missouri; and
| | - Thomas J Broekelmann
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Russell H Knutsen
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Li Ye
- Departments of Pediatrics Washington University School of Medicine, St. Louis, Missouri; and
| | - Robert P Mecham
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Beth A Kozel
- Departments of Pediatrics Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
21
|
Grisanti LA, Repas AA, Talarico JA, Gold JI, Carter RL, Koch WJ, Tilley DG. Temporal and gefitinib-sensitive regulation of cardiac cytokine expression via chronic β-adrenergic receptor stimulation. Am J Physiol Heart Circ Physiol 2014; 308:H316-30. [PMID: 25485901 DOI: 10.1152/ajpheart.00635.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic stimulation of β-adrenergic receptors (βAR) can promote survival signaling via transactivation of epidermal growth factor receptor (EGFR) but ultimately alters cardiac structure and contractility over time, in part via enhanced cytokine signaling. We hypothesized that chronic catecholamine signaling will have a temporal impact on cardiac transcript expression in vivo, in particular cytokines, and that EGFR transactivation plays a role in this process. C57BL/6 mice underwent infusion with vehicle or isoproterenol (Iso)±gefitinib (Gef) for 1 or 2 wk. Cardiac contractility decreased following 2 wk of Iso treatment, while cardiac hypertrophy, fibrosis, and apoptosis were enhanced at both timepoints. Inclusion of Gef preserved contractility, blocked Iso-induced apoptosis, and prevented hypertrophy at the 2-wk timepoint, but caused fibrosis on its own. RNAseq analysis revealed hundreds of cardiac transcripts altered by Iso at each timepoint with subsequent RT-quantitative PCR validation confirming distinct temporal patterns of transcript regulation, including those involved in cardiac remodeling and survival signaling, as well as numerous cytokines. Although Gef infusion alone did not significantly alter cytokine expression, it abrogated the Iso-mediated changes in a majority of the βAR-sensitive cytokines, including CCL2 and TNF-α. Additionally, the impact of βAR-dependent EGFR transactivation on the acute regulation of cytokine transcript expression was assessed in isolated cardiomyocytes and in cardiac fibroblasts, where the majority of Iso-dependent, and EGFR-sensitive, changes in cytokines occurred. Overall, coincident with changes in cardiac structure and contractility, βAR stimulation dynamically alters cardiac transcript expression over time, including numerous cytokines that are regulated via EGFR-dependent signaling.
Collapse
Affiliation(s)
- Laurel A Grisanti
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Ashley A Repas
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Jennifer A Talarico
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jessica I Gold
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rhonda L Carter
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Walter J Koch
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Douglas G Tilley
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
22
|
The Huntington's disease-related cardiomyopathy prevents a hypertrophic response in the R6/2 mouse model. PLoS One 2014; 9:e108961. [PMID: 25268775 PMCID: PMC4182603 DOI: 10.1371/journal.pone.0108961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/05/2014] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is neurodegenerative disorder for which the mutation results in an extra-long tract of glutamines that causes the huntingtin protein to aggregate. It is characterized by neurological symptoms and brain pathology that is associated with nuclear and cytoplasmic aggregates and with transcriptional deregulation. Despite the fact that HD has been recognized principally as a neurological disease, there are multiple epidemiological studies showing that HD patients exhibit a high rate of cardiovascular events leading to heart failure. To unravel the mechanistic basis of cardiac dysfunction in HD, we employed a wide range of molecular techniques using the well-established genetic R6/2 mouse model that develop a considerable degree of the cardiac atrophy at end stage disease. We found that chronic treatment with isoproterenol, a potent beta-adrenoreceptor agonist, did not change the overall gross morphology of the HD murine hearts. However, there was a partial response to the beta-adrenergenic stimulation by the further re-expression of foetal genes. In addition we have profiled the expression level of Hdacs in the R6/2 murine hearts and found that the isoproterenol stimulation of Hdac expression was partially blocked. For the first time we established the Hdac transcriptional profile under hypertrophic conditions and found 10 out of 18 Hdacs to be markedly deregulated. Therefore, we conclude that R6/2 murine hearts are not able to respond to the chronic isoproterenol treatment to the same degree as wild type hearts and some of the hypertrophic signals are likely attenuated in the symptomatic HD animals.
Collapse
|
23
|
Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun 2013; 3:1238. [PMID: 23212367 PMCID: PMC3526952 DOI: 10.1038/ncomms2240] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/31/2012] [Indexed: 12/20/2022] Open
Abstract
Klotho is a membrane protein predominantly produced in the kidney that exerts some anti-ageing effects. Ageing is associated with an increased risk of heart failure; whether Klotho is cardioprotective is unknown. Here we show that Klotho-deficient mice have no baseline cardiac abnormalities but develop exaggerated pathological cardiac hypertrophy and remodeling in response to stress. Cardioprotection by Klotho in normal mice is mediated by downregulation of TRPC6 channels in the heart. We demonstrate that deletion of Trpc6 prevents stress-induced exaggerated cardiac remodeling in Klotho-deficient mice. Furthermore, mice with heart-specific overexpression of TRPC6 develop spontaneous cardiac hypertrophy and remodeling. Klotho overexpression ameliorates cardiac pathologies in these mice and improves their long-term survival. Soluble Klotho present in the systemic circulation inhibits TRPC6 currents in cardiomyocytes by blocking phosphoinositide-3-kinase-dependent exocytosis of TRPC6 channels. These results provide a new perspective on the pathogenesis of cardiomyopathies and open new avenues for treatment of the disease.
Collapse
|
24
|
Nebivolol reduces cardiac angiotensin II, associated oxidative stress and fibrosis but not arterial pressure in salt-loaded spontaneously hypertensive rats. J Hypertens 2012; 30:1766-74. [PMID: 22895019 DOI: 10.1097/hjh.0b013e328356766f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Increased sympathetic outflow, renin-angiotensin system (RAS) activity, and oxidative stress are critical mechanisms underlying the adverse cardiovascular effects of dietary salt excess. Nebivolol is a third-generation, highly selective β1-receptor blocker with RAS-reducing effects and additional antioxidant properties. This study evaluated the hypothesis that nebivolol reduces salt-induced cardiac remodeling and dysfunction in spontaneous hypertensive rats (SHRs) by suppressing cardiac RAS and oxidative stress. METHODS Male SHRs (8 weeks of age) were given an 8% high salt diet (HSD; n = 22), whereas their age-matched controls (n = 10) received standard chow. In a subgroup of HSD rats (n = 11), nebivolol was given at a dose of 10 mg/kg per day by gastric gavage. RESULTS After 5 weeks, HSD exacerbated hypertension as well as increased left-ventricular weight and collagen deposition while impairing left-ventricular relaxation. Salt-induced cardiac remodeling and dysfunction were associated with increased plasma renin concentration (PRC), cardiac angiotensin II immunostaining, and angiotensin-converting enzyme (ACE)/ACE2 mRNA and activity ratio. HSD also increased cardiac 3-nitrotyrosine staining indicating enhanced oxidative stress. Nebivolol treatment did not alter the salt-induced increase in arterial pressure, left-ventricular weight, and cardiac dysfunction but reduced PRC, cardiac angiotensin II immunostaining, ACE/ACE2 ratio, oxidative stress, and fibrosis. CONCLUSIONS Our data suggest that nebivolol, in a blood pressure-independent manner, ameliorated cardiac oxidative stress and associated fibrosis in salt-loaded SHRs. The beneficial effects of nebivolol may be attributed, at least in part, to the decreased ACE/ACE2 ratio and consequent reduction of cardiac angiotensin II levels.
Collapse
|
25
|
Cardiac mechanoenergetics for understanding isoproterenol-induced rat heart failure. ACTA ACUST UNITED AC 2012; 19:163-70. [PMID: 22687629 DOI: 10.1016/j.pathophys.2012.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/06/2011] [Accepted: 12/11/2011] [Indexed: 11/23/2022]
Abstract
Considering from clinical implication, it is often complained that short-term experimental diseased heart models do not mimic long-term diseased hearts that one often clinically encountered. The left ventricle (LV) function in rat cardiac hypertrophy models treated with isoproterenol (ISO) up to 16 weeks was followed up with a non-invasive echocardiography. Infusion of either ISO (1.2mgkg(-1)day(-1) for 3 days-16 weeks) or vehicle (saline 24μlday(-1) for 3 days-16 weeks; SA group) was performed by subcutaneously implanting osmotic minipump. LV and right ventricle (RV) weight ratios to body weight (mgg(-1)) in SA, ISO3d, ISO7d and ISO4w were: 1.94±0.10 and 0.54±0.04 (n=7), 2.56±0.10 and 0.66±0.05 (n=7), 2.50±0.25 and 0.64±0.07 (n=10) and 2.40±0.08 and 0.59±0.08 (n=9), respectively. From echocardiography, the LV function of the hypertrophy models at 3 days, 1 and 2 weeks was unchanged but the model at the longer-term than 4 weeks resulted in prolonged systolic failure. These results indicated that only 3-day ISO infusion induced the hypertrophy model similar in shape and function to that induced by 2-week ISO infusion; the 3-day model sufficiently represents the effects of 2-week ISO infusion. In this review, left ventricular (LV) function was compared between rat cardiac hypertrophy models treated with ISO for 3 days (ISO3d) and 7 days (ISO7d) by analyzing LV mechanical work and energetics. The LV mechanical work and energetics was unchanged in SA, ISO3d and ISO7d groups. The LV relaxation rate at 240bpm in ISO3d and ISO7d groups was significantly slower than that in SA group with unchanged contraction rate. The amounts of expression of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a), phospholamban (PLB), phosphorylated-Ser(16) PLB (p-PLB), phospholemman (PLM) and Na(+)-K(+)-ATPase (NKA) are significantly decreased in ISO3d and ISO7d groups. Furthermore, the marked collagen production (types I and III) was observed in ISO3d and ISO7d groups. These results suggested the possibility that physiological LV function is compensated, although molecular changes have been generated even in the short-term hypertrophy model. Although a novel histone deacetylase (HDAC) inhibitor, has some beneficial effects on hemodynamics, it has no effects of anti-hypertrophic modalities in ISO3d model. However, a selective sodium proton exchanger-1 (NHE-1) inhibitor normalized ISO-induced down-regulation of SERCA2a without changes in pPLB/PLB expression in the ISO7d model and ameliorates cardiac Ca(2+) handling impairment and prevents the development of cardiac dysfunction. This result indicated that SERCA2a is a key molecule in the ISO7d model. Slow LV relaxation rate in ISO7d model may be due to down-regulation of SERCA2a. In conclusion, lowering the heart rate make it possible to rescue the impairment of LV mechanical work and energetics in the ISO-induced compensatory hypertrophied rat hearts, providing basic evidence for clinical therapy for patients with some types of cardiac failure.
Collapse
|
26
|
Carrillo ED, Escobar Y, González G, Hernández A, Galindo JM, García MC, Sánchez JA. Posttranscriptional regulation of the β2-subunit of cardiac L-type Ca2+ channels by MicroRNAs during long-term exposure to isoproterenol in rats. J Cardiovasc Pharmacol 2011; 58:470-8. [PMID: 21753737 DOI: 10.1097/fjc.0b013e31822a789b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION AND METHODS The effects of long-term β-adrenergic administration on the expression levels of the cardiac L-type Ca channel β2 subunit, which regulates channel trafficking and function, were characterized in adult rats. RESULTS Systemic administration of isoproterenol (150 mg·kg·h) for 2 d led to a 50% increase in the ventricular wet weight-to-body weight ratio (mg/g) and of more than two-fold in the expression of actin protein. In contrast, β2 subunit protein levels decreased (down to 49%), while mRNA levels remained unchanged. Furthermore, levels of microRNAs (miRs), including miR-21 and miR-132, were upregulated (7.2 and 7.9 fold, respectively). Transfection of these miRs into HEK293 cells attenuated expression of a luciferase reporter gene controlled by a conserved 3'-untranslated region (UTR) of the β2 subunit (down to 67% and 56%, respectively). Systemic administration of isoproterenol also led to briefer intracellular Ca transients during action potentials measured in isolated cardiomyocytes (down to 65%). CONCLUSION These results suggest that cardiac L-type Ca channel β2 subunit protein expression may be downregulated by miRs in response to long-term activation of β-adrenergic signaling, possibly as an adaptive response in cardiac hypertrophy and sustained β-adrenergic states.
Collapse
Affiliation(s)
- Elba D Carrillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, México, DF, México
| | | | | | | | | | | | | |
Collapse
|
27
|
Machackova J, Sanganalmath SK, Elimban V, Dhalla NS. β-adrenergic blockade attenuates cardiac dysfunction and myofibrillar remodelling in congestive heart failure. J Cell Mol Med 2011; 15:545-54. [PMID: 20082655 PMCID: PMC3922376 DOI: 10.1111/j.1582-4934.2010.01015.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Although β-adrenoceptor (β-AR) blockade is an important mode of therapy for congestive heart failure (CHF), subcellular mechanisms associated with its beneficial effects are not clear. Three weeks after inducing myocardial infarction (MI), rats were treated daily with or without 20 and 75 mg/kg atenolol, a selective β1-AR antagonist, or propranolol, a non-selective β-AR antagonist, for 5 weeks. Sham operated rats served as controls. All animals were assessed haemodynamically and echocardiographically and the left ventricle (LV) was processed for the determination of myofibrillar ATPase activity, α- and β-myosin heavy chain (MHC) isoforms and gene expression as well as cardiac troponin I (cTnI) phosphorylation. Both atenolol and propranolol at 20 and 75 mg/kg doses attenuated cardiac hypertrophy and lung congestion in addition to increasing LV ejection fraction and LV systolic pressure as well as decreasing heart rate, LV end-diastolic pressure and LV diameters in the infarcted animals. Treatment of infarcted animals with these agents also attenuated the MI-induced depression in myofibrillar Ca2+-stimulated ATPase activity and phosphorylated cTnI protein content. The MI-induced decrease in α-MHC and increase in β-MHC protein content were attenuated by both atenolol and propranolol at low and high doses; however, only high dose of propranolol was effective in mitigating changes in the gene expression for α-MHC and β-MHC. Our results suggest that improvement of cardiac function by β-AR blockade in CHF may be associated with attenuation of myofibrillar remodelling.
Collapse
Affiliation(s)
- Jarmila Machackova
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Center, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
28
|
Carll AP, Willis MS, Lust RM, Costa DL, Farraj AK. Merits of non-invasive rat models of left ventricular heart failure. Cardiovasc Toxicol 2011; 11:91-112. [PMID: 21279739 DOI: 10.1007/s12012-011-9103-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heart failure (HF) is characterized as a limitation to cardiac output that prevents the heart from supplying tissues with adequate oxygen and predisposes individuals to pulmonary edema. Impaired cardiac function is secondary to either decreased contractility reducing ejection (systolic failure), diminished ventricular compliance preventing filling (diastolic failure), or both. To study HF etiology, many different techniques have been developed to elicit this condition in experimental animals, with varying degrees of success. Among rats, surgically induced HF models are the most prevalent, but they bear several shortcomings, including high mortality rates and limited recapitulation of the pathophysiology, etiology, and progression of human HF. Alternatively, a number of non-invasive HF induction methods avoid many of these pitfalls, and their merits in technical simplicity, reliability, survivability, and comparability to the pathophysiologic and pathogenic characteristics of HF are reviewed herein. In particular, this review focuses on the primary pathogenic mechanisms common to genetic strains (spontaneously hypertensive and spontaneously hypertensive heart failure), pharmacological models of toxic cardiomyopathy (doxorubicin and isoproterenol), and dietary salt models, all of which have been shown to induce left ventricular HF in the rat. Additional non-invasive techniques that may potentially enable the development of new HF models are also discussed.
Collapse
Affiliation(s)
- Alex P Carll
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, 27599 USA.
| | | | | | | | | |
Collapse
|
29
|
Peña JR, Szkudlarek AC, Warren CM, Heinrich LS, Gaffin RD, Jagatheesan G, del Monte F, Hajjar RJ, Goldspink PH, Solaro RJ, Wieczorek DF, Wolska BM. Neonatal gene transfer of Serca2a delays onset of hypertrophic remodeling and improves function in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 2010; 49:993-1002. [PMID: 20854827 DOI: 10.1016/j.yjmcc.2010.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 08/25/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant genetic disorder linked to numerous mutations in the sarcomeric proteins. The clinical presentation of FHC is highly variable, but it is a major cause of sudden cardiac death in young adults with no specific treatments. We tested the hypothesis that early intervention in Ca(2+) regulation may prevent pathological hypertrophy and improve cardiac function in a FHC displaying increased myofilament sensitivity to Ca(2+) and diastolic dysfunction. A transgenic (TG) mouse model of FHC with a mutation in tropomyosin at position 180 was employed. Adenoviral-Serca2a (Ad.Ser) was injected into the left ventricle of 1-day-old non-transgenic (NTG) and TG mice. Ad.LacZ was injected as a control. Serca2a protein expression was significantly increased in NTG and TG hearts injected with Ad.Ser for up to 6 weeks. Compared to TG-Ad.LacZ hearts, the TG-Ad.Ser hearts showed improved whole heart morphology. Moreover, there was a significant decline in ANF and β-MHC expression. Developed force in isolated papillary muscle from 2- to 3-week-old TG-Ad.Ser hearts was higher and the response to isoproterenol (ISO) improved compared to TG-Ad.LacZ muscles. In situ hemodynamic measurements showed that by 3 months the TG-Ad.Ser hearts also had a significantly improved response to ISO compared to TG-Ad.LacZ hearts. The present study strongly suggests that Serca2a expression should be considered as a potential target for gene therapy in FHC. Moreover, our data imply that development of FHC can be successfully delayed if therapies are started shortly after birth.
Collapse
Affiliation(s)
- James R Peña
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Serra AJ, Santos MHH, Bocalini DS, Antônio EL, Levy RF, Santos AA, Higuchi ML, Silva JA, Magalhães FC, Baraúna VG, Krieger JE, Tucci PJF. Exercise training inhibits inflammatory cytokines and more than prevents myocardial dysfunction in rats with sustained beta-adrenergic hyperactivity. J Physiol 2010; 588:2431-42. [PMID: 20442263 DOI: 10.1113/jphysiol.2010.187310] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Myocardial hypertrophy and dysfunction occur in response to excessive catecholaminergic drive. Adverse cardiac remodelling is associated with activation of proinflammatory cytokines in the myocardium. To test the hypothesis that exercise training can prevent myocardial dysfunction and production of proinflammatory cytokines induced by beta-adrenergic hyperactivity, male Wistar rats were assigned to one of the following four groups: sedentary non-treated (Con); sedentary isoprenaline treated (Iso); exercised non-treated (Ex); and exercised plus isoprenaline (Iso+Ex). Echocardiography, haemodynamic measurements and isolated papillary muscle were used for functional evaluations. Real-time RT-PCR and Western blot were used to quantify tumour necrosis factor alpha, interleukin-6, interleukin-10 and transforming growth factor beta(1) (TGF-beta(1)) in the tissue. NF-B expression in the nucleus was evaluated by immunohistochemical staining. The Iso rats showed a concentric hypertrophy of the left ventricle (LV). These animals exhibited marked increases in LV end-diastolic pressure and impaired myocardial performance in vitro, with a reduction in the developed tension and maximal rate of tension increase and decrease, as well as worsened recruitment of the Frank-Starling mechanism. Both gene and protein levels of tumour necrosis factor alpha and interleukin-6, as well as TGF-beta(1) mRNA, were increased. In addition, the NF-B expression in the Iso group was significantly raised. In the Iso+Ex group, the exercise training had the following effects: (1) it prevented LV hypertrophy; (ii) it improved myocardial contractility; (3) it avoided the increase of proinflammatory cytokines and improved interleukin-10 levels; and (4) it attenuated the increase of TGF-beta(1) mRNA. Thus, exercise training in a model of beta-adrenergic hyperactivity can avoid the adverse remodelling of the LV and inhibit inflammatory cytokines. Moreover, the cardioprotection is related to beneficial effects on myocardial performance.
Collapse
Affiliation(s)
- Andrey J Serra
- Department of Medicine, Cardiology Division, Federal University of São Paulo, (UNIFESP), São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Stress cardiomyopathy, also referred to as Takotsubo cardiomyopathy, transient apical ballooning or broken heart syndrome, is a disorder associated with transient left ventricular dysfunction. Symptoms include acute chest pain and dyspnea accompanied by electrocardiographic changes, such as ST-segment elevation and T-wave inversions, minimal elevation of cardiac enzyme levels and transient wall-motion abnormalities in the absence of substantial coronary artery obstruction. Complete recovery of contractile function has been documented in nearly all cases, but the mechanisms of disease remain unclear and the cause has not been established. Coronary artery vasospasm, microcirculation dysfunction, and transient obstruction of the left ventricular outflow tract have been proposed as possible causes of this disorder. An excessive release of catecholamines also seems to have a pivotal role in the development of stress cardiomyopathy. This Review summarizes published data on stress cardiomyopathy, focusing primarily on the most likely causes of this cardiac entity.
Collapse
|
32
|
Béguin PC, El-Helou V, Assimakopoulos J, Clément R, Gosselin H, Brugada R, Villeneuve L, Rohlicek CV, Del Duca D, Lapointe N, Rouleau JL, Calderone A. The phenotype and potential origin of nestin+ cardiac myocyte-like cells following infarction. J Appl Physiol (1985) 2009; 107:1241-8. [DOI: 10.1152/japplphysiol.00564.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nestin+ cardiac myocyte-like cells were detected in the peri-infarct/infarct region of the ischemically damaged heart. The present study was undertaken to elucidate the phenotype and potential origin of nestin+ cardiac myocyte-like cells and identify stimuli implicated in their appearance. In the infarcted human and rat heart, nestin+ cardiac myocyte-like cells were morphologically and structurally immature, exhibited a desmin-immunoreactive striated phenotype, expressed the β1-adrenergic receptor, and associated with an aberrant pattern of connexin-43 expression and/or organization. Nestin+ cardiac myocyte-like cells were detected 24 h postischemic injury and persisted in the infarcted rat heart for 9 mo. In the normal rat heart, cardiac progenitor transcriptional factors Nkx2.5/GATA4 were detected in a subpopulation of nestin+ neural stem cells. Following an ischemic insult, nestin+/Nkx2.5+ neural stem cells migrated to the peri-infarct/infarct region and appeared to be in a primordial state of differentiation to a nestin+ cardiac myocyte-like cell. The exposure of adult male rats to normobaric hypoxia (12% O2) for 10 days failed to promote the appearance of nestin+ cardiac myocyte-like cells. Following osmotic pump delivery of isoproterenol to normal adult rats, nestin+ cardiac myocyte-like cells were detected, albeit the response was modest and secondary to tissue loss. Thus ischemia-induced appearance of nestin+ cardiac myocyte-like cells apparently represents an adaptive response to heal the infarcted heart. Nkx2.5/GATA4 expression in a subpopulation of resident neural stem cells provides the appropriate phenotype for their potential differentiation to a nestin+ cardiac myocyte-like cell.
Collapse
Affiliation(s)
- Pauline C. Béguin
- Department of 4Research Center, Montreal Heart Institute and Université de Montréal; and
| | - Viviane El-Helou
- Department of 1Physiology, Montreal Heart Institute and Université de Montréal
| | - John Assimakopoulos
- Department of 1Physiology, Montreal Heart Institute and Université de Montréal
| | - Robert Clément
- Department of 4Research Center, Montreal Heart Institute and Université de Montréal; and
| | - Hugues Gosselin
- Department of 4Research Center, Montreal Heart Institute and Université de Montréal; and
| | - Ramon Brugada
- Department of 3Medicine, Montreal Heart Institute and Université de Montréal
- Department of 4Research Center, Montreal Heart Institute and Université de Montréal; and
| | - Louis Villeneuve
- Department of 4Research Center, Montreal Heart Institute and Université de Montréal; and
| | - Charles V. Rohlicek
- Department of Paediatrics, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Danny Del Duca
- Department of Paediatrics, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Nathalie Lapointe
- Department of 4Research Center, Montreal Heart Institute and Université de Montréal; and
| | - Jean L. Rouleau
- Department of 4Research Center, Montreal Heart Institute and Université de Montréal; and
| | - Angelino Calderone
- Department of 1Physiology, Montreal Heart Institute and Université de Montréal
- Department of 2Pharmacology, Montreal Heart Institute and Université de Montréal; and
- Department of 4Research Center, Montreal Heart Institute and Université de Montréal; and
| |
Collapse
|
33
|
Nakajima-Takenaka C, Zhang GX, Obata K, Tohne K, Matsuyoshi H, Nagai Y, Nishiyama A, Takaki M. Left ventricular function of isoproterenol-induced hypertrophied rat hearts perfused with blood: mechanical work and energetics. Am J Physiol Heart Circ Physiol 2009; 297:H1736-43. [PMID: 19734357 DOI: 10.1152/ajpheart.00672.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated left ventricular (LV) mechanical work and energetics in the cross-circulated (blood-perfused) isoproterenol [Iso 1.2 mg x kg(-1).day(-1) for 3 days (Iso3) or 7 days (Iso7)]-induced hypertrophied rat heart preparation under isovolumic contraction-relaxation. We evaluated pressure-time curves per beat, end-systolic pressure-volume and end-diastolic pressure-volume relations, and myocardial O(2) consumption per beat (Vo(2))-systolic pressure-volume area (PVA; a total mechanical energy per beat) linear relations at 240 beats/min, because Iso-induced hypertrophied hearts failed to completely relax at 300 beats/min. The LV relaxation rate at 240 beats/min in Iso-induced hypertrophied hearts was significantly slower than that in control hearts [saline 24 microl/day for 3 and 7 days (Sa)] with unchanged contraction rate. The Vo(2)-intercepts (composed of basal metabolism and Ca(2+) cycling energy consumption in excitation-contraction coupling) of Vo(2)-PVA linear relations were unchanged associated with their unchanged slopes in Sa, Iso3, and Iso7 groups. The oxygen costs of LV contractility were also unchanged in all three groups. The amounts of expression of sarcoplasmic reticulum Ca(2+)-ATPase, phospholamban (PLB), phosphorylated-Ser(16) PLB, phospholemman, and Na(+)-K(+)-ATPase are significantly decreased in Iso3 and Iso7 groups, although the amount of expression of NCX1 is unchanged in all three groups. Furthermore, the marked collagen production (types I and III) was observed in Iso3 and Iso7 groups. These results suggested the possibility that lowering the heart rate was beneficial to improve mechanical work and energetics in isoproterenol-induced hypertrophied rat hearts, although LV relaxation rate was slower than in normal hearts.
Collapse
|
34
|
Naghshin J, McGaffin KR, Witham WG, Mathier MA, Romano LC, Smith SH, Janczewski AM, Kirk JA, Shroff SG, O'Donnell CP. Chronic intermittent hypoxia increases left ventricular contractility in C57BL/6J mice. J Appl Physiol (1985) 2009; 107:787-93. [PMID: 19589954 DOI: 10.1152/japplphysiol.91256.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intermittent hypoxia (IH) commonly occurs in patients with obstructive sleep apnea and can cause a wide range of pathology, including reduced left ventricular (LV) ejection fraction in rats as determined by echocardiography, in rodent models. We utilized echocardiography and pressure-volume (PV) loop analyses to determine whether LV contractility was decreased in inbred C57BL/6J mice exposed to IH and whether blockade of beta-adrenergic receptors modified the response to hypoxia. Adult male 9- to 10-wk-old mice were exposed to 4 wk of IH (nadir inspired O(2) 5-6% at 60 cycles/h for 12 h during the light period) or intermittent air (IA) as control. A second group of animals were exposed to the same regimen of IH or IA, but in the presence of nonspecific beta-blockade with propranolol. Cardiac function was assessed by echocardiography and PV loop analyses, and mRNA and protein expression in ventricular homogenates was determined. Contrary to our expectations, we found with PV loop analyses that LV ejection fraction (63.4 +/- 3.5 vs. 50.5 +/- 2.6%, P = 0.015) and other measures of LV contractility were increased in IH-exposed animals compared with IA controls. There were no changes in contractile proteins, atrial natriuretic peptide levels, LV posterior wall thickness, or heart weight with IH exposure. However, cAMP levels were elevated after IH, and propranolol administration attenuated the increase in LV contractility induced by IH exposure. We conclude that, contrary to our hypothesis, 4 wk of IH exposure in C57BL/6J mice causes an increase in LV contractility that occurs independent of ventricular hypertrophy and is, in part, mediated by activation of cardiac beta-adrenergic pathways.
Collapse
Affiliation(s)
- Jahan Naghshin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Takeshita D, Nakajima-Takenaka C, Shimizu J, Hattori H, Nakashima T, Kikuta A, Matsuyoshi H, Takaki M. Effects of formaldehyde on cardiovascular system in in situ rat hearts. Basic Clin Pharmacol Toxicol 2009; 105:271-80. [PMID: 19558560 DOI: 10.1111/j.1742-7843.2009.00442.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to examine the effects of formaldehyde solution on rat left ventricular function and compare it with those in hypertrophic hearts treated with isoproterenol by pressure-volume measurements with the catheter method. After 20-30 min. of intravenous infusion of 3.7% formaldehyde solution (FA) at 10 μl (3.7 mg)/kg/min, normal and hypertrophic hearts showed significant decreases in left ventricle end-systolic pressure (ESP), heart rate and cardiac output per minute, indicating an acute pumping failure. Hypertrophic hearts showed significantly smaller ESP, stroke volumes and cardiac output than those in normal hearts. Systolic pressure-volume area at midrange left ventricular volume (PVA(mLVV) : a mechanical work capability index) was significantly smaller than that in normal hearts and per cent of mean PVA(mLVV) versus pre-infusion mean value in hypertrophic hearts was significantly decreased compared to normal hearts 30 min. after FA infusion. The marked decrease in pH, base excess and no changes in PaO₂ and PaCO₂ suggest metabolic acidosis. The correction of metabolic acidosis with 9% NaHCO₃ did not influence on the acute pumping failure, indicating that metabolic acidosis did not cause it. Ultrastructural observations revealed marked dilation of the sarcoplasmic reticulum with intact sarcolemmal membranes and no disintegration of muscle myofibrils. Ryanodine receptors and calcium (Ca²⁺) pumps (SERCA2A) located in the sarcoplasmic reticulum have major roles in the cytosolic Ca²⁺ handling. Taken together, acute pumping failure by FA may derive from the impairment of Ca²⁺ handling in the cardiac excitation-contraction coupling.
Collapse
Affiliation(s)
- Daisuke Takeshita
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Takeshita D, Shimizu J, Kitagawa Y, Yamashita D, Tohne K, Nakajima-Takenaka C, Ito H, Takaki M. Isoproterenol-induced hypertrophied rat hearts: does short-term treatment correspond to long-term treatment? J Physiol Sci 2008; 58:179-88. [PMID: 18462563 DOI: 10.2170/physiolsci.rp004508] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 05/07/2008] [Indexed: 11/05/2022]
Abstract
In consideration of clinical implications, it is often complained that short-term experimental diseased heart models do not mimic long-term diseased hearts that are often clinically encountered. The aim of the present study was (i) to compare the left ventricular function between rat cardiac hypertrophy models treated with isoproterenol for 3 days (Iso 3d) and 7 days (Iso 7d) by pressure-volume measurements with a catheter method, and (ii) to follow up the left ventricular function in the same model treated with Iso up to 16 weeks with a less-invasive echocardiography. An infusion of either Iso (1.2 mg x kg(-1) x day(-1) for 3 days-16 weeks) or vehicle (saline 24 microl x day(-1) for 3 days-16 weeks; Sa group) was performed by subcutaneously implanting an osmotic minipump. There were no significant differences in the systolic pressure-volume area at midrange left ventricular volume (PVA(mLVV): a mechanical work capability index) between Iso 3d and 7d groups, though PVA(mLVV) in both groups was significantly reduced from that in the Sa group. From echocardiography, the left ventricular function of the hypertrophy models at 3 days, 1 week, and 2 weeks was unchanged, but the model at a term longer than 4 weeks resulted in prolonged systolic failure. The results indicated that (i) no marked differences in the left ventricular mechanical work capability were found between the Iso 3d and 7d groups, and that (ii) only a 3-day Iso infusion induced the hypertrophy model similar in shape and function to that induced by a 2-week Iso infusion. We concluded that the 3-day model was sufficient.
Collapse
Affiliation(s)
- Daisuke Takeshita
- Department of Physiology II, Nara Medical University School of Medicine, Nara, 634-8521 Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ryall JG, Schertzer JD, Murphy KT, Allen AM, Lynch GS. Chronic beta2-adrenoceptor stimulation impairs cardiac relaxation via reduced SR Ca2+-ATPase protein and activity. Am J Physiol Heart Circ Physiol 2008; 294:H2587-95. [PMID: 18408128 DOI: 10.1152/ajpheart.00985.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined the cardiovascular effects of chronic beta2-adrenoceptor (beta2-AR) stimulation in vivo and examined the mechanism for the previously observed prolonged diastolic relaxation. Rats (3 mo old; n = 6), instrumented with implantable radiotelemeters, received the selective beta2-AR agonist formoterol (25 microg.kg(-1).day(-1) ip) for 4 wk, with selected cardiovascular parameters measured daily throughout this period, and for a further 7 days after cessation of treatment. Chronic beta2-AR stimulation was associated with an increase in heart rate (HR) of 17% (days 1-14) and 5% (days 15-28); a 11% (days 1-14) and 6% (days 15-28) decrease in mean arterial blood pressure; and a 24% (days 1-14) increase in the rate of cardiac relaxation (-dP/dt) compared with initial values (P < 0.05). Cessation of beta2-AR stimulation resulted in an 8% decrease in HR and a 7% decrease in -dP/dt, compared with initial values (P < 0.05). The prolonged cardiac relaxation with chronic beta2-AR stimulation was associated with a 30% decrease in the maximal rate (Vmax) of sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) activity, likely attributed to a 50% decrease in SERCA2a protein (P < 0.05). glycogen synthase kinase-3beta (GSK-3beta) has been implicated as a negative regulator of SERCA2 gene transcription, and we observed a approximately 60% decrease (P < 0.05) in phosphorylated GSK-3beta protein after chronic beta2-AR stimulation. Finally, we found a 40% decrease (P < 0.05) in the mRNA expression of the novel A kinase anchoring protein AKAP18, also implicated in beta2-AR-mediated cardiac relaxation. These findings highlight some detrimental cardiovascular effects of chronic beta2-AR agonist administration and identify concerns for their current and future use for treating asthma or for conditions where muscle wasting and weakness are indicated.
Collapse
Affiliation(s)
- James G Ryall
- Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
38
|
Patrizio M, Musumeci M, Stati T, Fasanaro P, Palazzesi S, Catalano L, Marano G. Propranolol causes a paradoxical enhancement of cardiomyocyte foetal gene response to hypertrophic stimuli. Br J Pharmacol 2007; 152:216-22. [PMID: 17592507 PMCID: PMC1978260 DOI: 10.1038/sj.bjp.0707350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Pathological cardiac hypertrophy is associated with the expression of a gene profile reminiscent of foetal development. The non selective beta-adrenoceptor antagonist propranolol is able to blunt cardiomyocyte hypertrophic response in pressure-overloaded hearts. It remains to be determined whether propranolol also attenuates the expression of hypertrophy-associated foetal genes. EXPERIMENTAL APPROACH To address this question, the foetal gene programme, of which atrial natriuretic peptide (ANP), the beta-isoform of myosin heavy chain (beta-MHC), and the alpha-skeletal muscle isoform of actin (skACT) are classical members, was induced by thoracic aortic coarctation (TAC) in C57BL/6 mice, or by phenylephrine, a selective alpha(1)-adrenoceptor agonist, in cultured rat neonatal cardiomyocytes. KEY RESULTS In TAC mice, the left ventricular weight-to-body weight (LVW/BW) ratio increased by 35% after 2 weeks. Levels of ANP, beta-MHC and skACT mRNA in the left ventricles increased 2.2-fold, 2.0-fold and 12.1-fold, respectively, whereas alpha-MHC and SERCA mRNA levels decreased by approximately 50%. Although propranolol blunted cardiomyocyte growth, with approximately an 11% increase in the LVW/BW ratio, it enhanced the expression of ANP, beta-MHC and skACT genes (10.5-fold, 27.7-fold and 22.7-fold, respectively). Propranolol also enhanced phenylephrine-stimulated ANP and beta-MHC gene expression in cultured cardiomyocytes. Similar results were obtained with metoprolol, a selective beta(1)-adrenoceptor antagonist, but not with ICI 118551, a beta(2)-adrenoceptor antagonist. CONCLUSIONS AND IMPLICATIONS Propranolol enhances expression of the hypertrophy-associated foetal genes mainly via the beta(1)-adrenoceptor blockade. Our results also suggest that, in pressure-overloaded hearts, cardiomyocyte growth and foetal gene expression occur as independent processes.
Collapse
Affiliation(s)
- M Patrizio
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità Rome, Italy
| | - M Musumeci
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità Rome, Italy
| | - T Stati
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità Rome, Italy
| | - P Fasanaro
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata Rome, Italy
| | - S Palazzesi
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità Rome, Italy
| | - L Catalano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità Rome, Italy
| | - G Marano
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità Rome, Italy
- Author for correspondence:
| |
Collapse
|
39
|
Kitagawa Y, Tamura Y, Shimizu J, Nakajima-Takenaka C, Taniguchi S, Uesato S, Takaki M. Effects of a novel histone deacetylase inhibitor, N-(2-aminophenyl) benzamide, on a reversible hypertrophy induced by isoproterenol in in situ rat hearts. J Pharmacol Sci 2007; 104:167-75. [PMID: 17558183 DOI: 10.1254/jphs.fp0070091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The aim of the present study was performed to determine whether a novel histone deacetylase (HDAC) inhibitor, N-(2-aminophenyl)-4-{[benzyl(2-hydroxyethyl)amino]methyl} benzamide (K-183), prevents a reversible cardiac hypertrophy induced by isoproterenol and improves left ventricular (LV) dysfunction in rats. Either isoproterenol or vehicle was infused for 3 days by osmotic minipump. One hour prior to the implantation of isoproterenol, K-183 or trichostatin A (TSA) was injected twice a day for 3 days. We recorded continuous LV pressure-volume (P-V) loops of in situ hearts one hour after removal of the osmotic minipump. LV work capability (systolic P-V area at midrange LV volume: PVA(mLVV)) and hemodynamics were evaluated. K-183 per se induced neither cardiac hypertrophy nor collagen production. Although K-183 did not prevent the hypertrophy, where PVA(mLVV) remained decreased, K-183, differently from TSA, significantly attenuated the decrease of cardiac output and the increase of effective arterial elastance in the hypertrophied heart. These results indicate that the novel HDAC inhibitor K-183 has some beneficial effects on hemodynamics, although K-183 has no effects of anti-hypertrophic modalities.
Collapse
Affiliation(s)
- Yutaka Kitagawa
- Department of Physiology II, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Edwards JG. In Vivo beta-adrenergic activation of atrial natriuretic factor (ANF) reporter expression. Mol Cell Biochem 2006; 292:119-29. [PMID: 16909307 DOI: 10.1007/s11010-006-9225-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 05/01/2006] [Indexed: 11/29/2022]
Abstract
Isoproterenol (ISO) infusion increases ANF-mRNA levels and control of ANF expression lies at the level of transcription. In neonatal cardiomyocytes, previous investigations determined that the -125 to -100 region of the rat ANF 5' flanking region contained cis-elements critical for control of ISO induced ANF transcription. However, it is unclear if these same cis-elements regulate ANF transcription in vivo. To examine this question, reporter plasmids containing the ANF 5' flanking/promoter region were injected directly into the left ventricle. Following a recovery period, osmotic pumps were implanted to infuse vehicle or ISO (0.2 or 2.0 mg/kg/d). ISO significantly (p < .05) increased the LV/BW ratio in a dose dependent, but not a time dependent manner. ISO significantly (p < .05) increased ANF reporter expression in both a dose-dependent and time dependent manner. Injections into the midwall of the LV or into the apex did not lead to significant differences in ISO-induced ANF reporter expression. Using site-specific mutations of ANF reporter constructs, comparisons were made of ISO induced ANF transcription in vitro in neonatal cardiomyocytes and in vivo in the adult heart. Cis-elements critical for ISO activation in cultured cardiomyocytes were not essential for the increased expression of the ANF reporters in vivo. The results indicate that distinct differences in ANF transcriptional regulation exist in vivo in the adult heart as compared with neonatal cardiomyocytes, and suggest the recruitment of other signaling pathways beyond adrenergic-receptor mediated pathways.
Collapse
Affiliation(s)
- J G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York, USA.
| |
Collapse
|
41
|
Ishizawa M, Mizushige K, Noma T, Namba T, Guo P, Murakami K, Tsuji T, Miyatake A, Ohmori K, Kohno M. An antioxidant treatment potentially protects myocardial energy metabolism by regulating uncoupling protein 2 expression in a chronic β-adrenergic stimulation rat model. Life Sci 2006; 78:2974-82. [PMID: 16580698 DOI: 10.1016/j.lfs.2006.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 11/16/2005] [Accepted: 02/27/2006] [Indexed: 11/15/2022]
Abstract
Excessive beta-adrenergic stimulation causes cardiac toxicity, which also contributes to cardiac oxidative stress. Although uncoupling protein 2 (UCP2), a member of the mitochondrial inner membrane carrier family, can regulate energy efficiency and oxidative stress in mitochondria, little data exist regarding interactions between UCP2 expression and beta-adrenergic stimulation induced cardiac oxidative damage. We investigated whether chronic beta-adrenergic stimulation induces myocardial energy metabolism abnormality via oxidative stress, including any role of UCP2. We also examined whether 3-methyl-1-phenyl-2-pyrazolin-5-one (MIC-186; edaravone), a potent free radical scavenger, has cardioprotective effects against beta-adrenergic stimulation. Male Sprague-Dawley rats received isoproterenol (1.2 mg/kg/day) subcutaneously or/and edaravone (30 mg/kg/day) orally. Isoproterenol increased the heart/body weight ratio, accompanied by an increase in the level of myocardial thiobarbituric acid reactive substances (TBARS) and a decreased phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio. Isoproterenol also markedly increased expressions of UCP2 mRNA (1.74 fold vs. non-isoproterenol) and protein (1.93 fold vs. non-isoproterenol). Edaravone had no apparent effect in hypertrophic responses, but significantly prevented both increases in TBARS and decreases in the PCr/ATP ratio. Edaravone also prevented increases in UCP2 mRNA (0.76 fold vs. isoproterenol) and protein (0.62 fold vs. isoproterenol) expressions against isoproterenol administration. Our results suggest that chronic beta-adrenergic stimulation induces myocardial energy inefficiency via excessive oxidative stress. The antioxidant effect of edaravone has potential to improve energy metabolism abnormalities against beta-adrenergic stimulation. Adequate regulation of UCP2 expression through artificial reduction of oxidative stress may play an important role in protection of the myocardial energy metabolism.
Collapse
Affiliation(s)
- Makoto Ishizawa
- Second Department of Internal Medicine, Kagawa University School of Medicine, Miki, Kita, Kagawa, 761-0793, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sucharov CC, Mariner PD, Nunley KR, Long C, Leinwand L, Bristow MR. A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. Am J Physiol Heart Circ Physiol 2006; 291:H1299-308. [PMID: 16501029 DOI: 10.1152/ajpheart.00017.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Beta-adrenergic signaling plays an important role in the natural history of dilated cardiomyopathies. Chronic activation of beta-adrenergic receptors (beta1-AR and beta2-AR) during periods of cardiac stress ultimately harms the failing heart by mechanisms that include alterations in gene expression. Here, we show that stimulation of beta-ARs with isoproterenol in neonate rat ventricular myocytes causes a "fetal" response in the relative activities of the human cardiac fetal and/or adult gene promoters that includes repression of the human and rat alpha-myosin heavy chain (alpha-MyHC) promoters with simultaneous activation of the human atrial natriuretic peptide (ANP) and rat beta-MyHC promoters. We also show that the promoter changes correlate with changes in endogenous gene expression as measured by mRNA expression. Furthermore, we show that these changes are specifically mediated by the beta1-AR, but not the beta2-AR, and are independent of alpha1-AR stimulation. We also demonstrate that the fetal gene response is independent of cAMP and protein kinase A, whereas inhibition of Ca2+/calmodulin-dependent protein kinase (CaMK) pathway blocks isoproterenol-mediated fetal gene program induction. Finally, we show that induction of the fetal program is dependent on activation of the L-type Ca2+ channel. We conclude that in neonatal rat cardiac myocytes, agonist-occupied beta1-AR mobilizes Ca2+ stores to activate fetal gene induction through cAMP independent pathways that involve CaMK.
Collapse
Affiliation(s)
- Carmen C Sucharov
- University of Colorado Cardiovascular Institute, Campus Box B130, UCHSC, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
43
|
Guerrero EI, Ardanaz N, Sevilla MA, Arévalo MA, Montero MJ. Cardiovascular effects of nebivolol in spontaneously hypertensive rats persist after treatment withdrawal. J Hypertens 2006; 24:151-8. [PMID: 16331113 DOI: 10.1097/01.hjh.0000198035.16634.c1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We observed previously that nebivolol treatment for 2 months reduced cardiovascular lesions in spontaneously hypertensive rats (SHR). Therefore, we investigated whether this beneficial effect is increased with a longer treatment, and its persistence after withdrawal. METHODS Male SHR were treated with 8 mg/kg per day of nebivolol (N-SHR) for 6 months. A separate group was also given identical treatment but they were then monitored for a further 3 months after drug withdrawal. SHR and Wistar-Kyoto rats (WKY) receiving vehicle were used as controls. Systolic blood pressure and heart rate were measured using the tail-cuff method. Left ventricular weight/body weight ratio was calculated as the hypertrophy index. Cardiac and vascular fibrosis was evaluated on sections stained with sirious red. Vascular reactivity was evaluated on aortic rings through acetylcholine and sodium nitroprusside responses. The effect of treatment on vascular structure was assessed by lumen diameter, wall thickness and medial cross-sectional area determination. RESULTS Blood pressure was reduced in N-SHR. After withdrawal it increased progressively, without reaching the values of the hypertensive controls. Cardiac hypertrophy and collagen content both in heart and aorta were significantly reduced, and these changes persisted after nebivolol suppression. Acetylcholine-induced relaxant response was improved by nebivolol and maintained after withdrawal. Medial thickness and cross-sectional area were significantly reduced in both conductance and resistance arteries, and these effects persisted after withdrawal. CONCLUSION The nebivolol antihypertensive effect was accompanied by an important reduction of hypertrophy and collagen deposition in both vascular and left ventricle tissue, which was maintained after a long period of therapy withdrawal.
Collapse
Affiliation(s)
- Estela I Guerrero
- Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | | | | | | | |
Collapse
|
44
|
Oyama N, Urasawa K, Kaneta S, Sakai H, Saito T, Takagi C, Yoshida I, Kitabatake A, Tsutsui H. Chronic beta-adrenergic receptor stimulation enhances the expression of G-Protein coupled receptor kinases, GRK2 and GRK5, in both the heart and peripheral lymphocytes. Circ J 2005; 69:987-90. [PMID: 16041172 DOI: 10.1253/circj.69.987] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Enhanced expression of G protein-coupled receptor kinase (GRK) has been reported in failing hearts and in the present study the stability of enhanced GRK mRNA expression, and the correlation between the expression level of GRK mRNA in peripheral lymphocytes and in the heart were both evaluated. METHODS AND RESULTS Isoproterenol was injected into rats for 2 weeks, and then GRK5 mRNA was assessed by quantitative reverse transcriptase-palymerase chain reaction. An enhanced expression of cardiac GRK5 mRNA was observed even after 4 weeks of recovery. The isoproterenol-induced increased expression of GRK2 and GRK5 mRNA was equally observed in the heart and lymphocytes, and there was a close correlation between the heart and lymphocytes in the level of expression of each GRK mRNA. CONCLUSIONS The GRK mRNA level is maintained at a high level for a long period without continuous beta-adrenergic receptor stimulation. The level in circulating lymphocytes could be used as a surrogate marker to estimate the level of cardiac GRK expression and, presumably, the beta-adrenergic receptor function of cardiomyocytes.
Collapse
Affiliation(s)
- Naotsugu Oyama
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen H, Huang XN, Stewart AFR, Sepulveda JL. Gene expression changes associated with fibronectin-induced cardiac myocyte hypertrophy. Physiol Genomics 2004; 18:273-83. [PMID: 15306692 DOI: 10.1152/physiolgenomics.00104.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibronectin (FN) is an extracellular matrix protein that binds to integrin receptors and couples cardiac myocytes to the basal lamina. Cardiac FN expression is elevated in models of pressure overload, and FN causes cultured cardiac myocytes to hypertrophy by a mechanism that has not been characterized in detail. In this study, we analyzed the gene expression changes induced by FN in purified rat neonatal ventricular myocytes using the Affymetrix RAE230A microarray, to understand how FN affects gene expression in cardiac myocytes and to separate the effects contributed by cardiac nonmyocytes in vivo. Pathway analysis using z-score statistics and comparison with a mouse model of cardiac hypertrophy revealed several pathways stimulated by FN in cardiac myocytes. In addition to the known cardiac myocyte hypertrophy markers, FN significantly induced metabolic pathways including virtually all of the enzymes of cholesterol biosynthesis, fatty acid biosynthesis, and the mitochondrial electron transport chain. FN also increased the expression of genes coding for ribosomal proteins, translation factors, and the ubiquitin-proteasome pathway. Interestingly, cardiac myocytes plated on FN showed elevated expression of the fibrosis-promoting peptides connective tissue growth factor (CTGF), WNT1 inducible signaling pathway protein 2 (WISP2), and secreted acidic cysteine-rich glycoprotein (SPARC). Our data complement in vivo studies and reveal several novel genes and pathways stimulated by FN, pointing to cardiac myocyte-specific mechanisms that lead to development of the hypertrophic phenotype.
Collapse
Affiliation(s)
- Hua Chen
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
46
|
Kitagawa Y, Yamashita D, Ito H, Takaki M. Reversible effects of isoproterenol-induced hypertrophy on in situ left ventricular function in rat hearts. Am J Physiol Heart Circ Physiol 2004; 287:H277-85. [PMID: 15016627 DOI: 10.1152/ajpheart.00073.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to evaluate specifically left ventricular (LV) function in rat hearts as they transition from the normal to hypertrophic state and back to normal. Either isoproterenol (1.2 and 2.4 mg·kg−1·day−1 for 3 days; Iso group) or vehicle (saline 24 μl·day−1 for 3 days; Sa group) was infused by subcutaneous implantation of an osmotic minipump. After verifying the development of cardiac hypertrophy, we recorded continuous LV pressure-volume (P-V) loops of in situ ejecting hypertrophied rat hearts. The curved LV end-systolic P-V relation (ESPVR) and systolic P-V area (PVA) were obtained from a series of LV P-V loops in the Sa and Iso groups 1 h or 2 days after the removal of the osmotic minipump. PVA at midrange LV volume (PVAmLVV) was taken as a good index for LV work capability ( 13 , 15 , 20 , 21 ). However, in rat hearts during remodeling, whether PVAmLVV is a good index for LV work capability has not been determined yet. In the present study, in contrast to unchanged end-systolic pressure at midrange LV volume, PVAmLVV was significantly decreased by isoproterenol treatment relative to saline; however, these measurements were the same 2 days after pump removal. Simultaneous treatment with a β1-blocker, metoprolol (24 mg·kg−1·day−1), blocked the formation of cardiac hypertrophy and thus PVAmLVV did not decrease. The reversible changes in PVAmLVV reflect precisely the changes in LV work capability in isoproterenol-induced hypertrophied rat hearts mediated by β1-receptors. These results indicate that the present approach may be an appropriate strategy for evaluating the effects of antihypertrophic and antifibrotic modalities.
Collapse
Affiliation(s)
- Yutaka Kitagawa
- Department of Physiology II, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | |
Collapse
|
47
|
Dudnakova TV, Lakomkin VL, Tsyplenkova VG, Shekhonin BV, Shirinsky VP, Kapelko VI. Alterations in myocardial ultrastructure and protein expression after a single injection of isoproterenol. Mol Cell Biochem 2004; 252:173-81. [PMID: 14577591 DOI: 10.1023/a:1025579624695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Immunochemical and electron microscopic characterization of rat myocardium was conducted 2 h and 3 weeks after a single injection of isoproterenol in rats. The relative content of several myospecific proteins (KRP--kinase-related protein, desmin), cytoskeletal proteins (tubulin, vinculin, myosin light chain kinase--MLCK) and extracellular matrix protein fibronectin was determined by immunoblotting. Two hours after injection of 50 mg/kg isoproterenol a destruction of some cardiomyocytes, contracture of myofibrils and mild edema of intercellular space was observed. The content of all the studied proteins except KRP decreased below control levels. This situation sustained 3 weeks after injection and paralleled alterations in cardiomyocyte ultrastructure. Areas of myofibrillar contracture and lysis were noted, glycogen granules were sparse; mitochondria contained arrow-like inclusions that are characteristic for calcium overload, also huge mitochondria contacting each other by specialized intermitochondrial contacts were detected. Clumps of unripe elastic fibers in enlarged intercellular space were combined with increased deposition of collagens type I and III forming areas of fibrosis. The smaller dosage of isoproterenol (10 mg/kg) rendered no significant damage in the acute postinjection period but 3 weeks later it induced the thickening of extracellular matrix around cardiac cells and the increase in KRP and tubulin content by 26 and 32%, correspondingly. MLCK levels remained depressed throughout the experiment. The rise in KRP expression was also observed after the addition of isoproterenol to cultured chicken embryo cardiomyocytes. Obtained results indicate that even a single injection of isoproterenol creates long lasting structural alterations in cardiac muscle accompanied by the increased expression of extracellular matrix proteins and several sarcoplasmic proteins apparently involved in hypertrophic response of cardiomyocytes.
Collapse
Affiliation(s)
- Tatyana V Dudnakova
- Institute of Experimental, Russian Cardiological Scientific and Productive Complex, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
48
|
Borges JC, Silva JA, Gomes MA, Lomez ESL, Leite KM, Araujo RC, Bader M, Pesquero JB, Pesquero JL. Tonin in rat heart with experimental hypertrophy. Am J Physiol Heart Circ Physiol 2003; 284:H2263-8. [PMID: 12543632 DOI: 10.1152/ajpheart.00416.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to determine tonin expression and activity in rat heart presenting isoproterenol-induced hypertrophy. Renin, angiotensin-converting enzyme (ACE), and angiotensinogen (AG) expression were also determined. Wistar rats were treated with isoproterenol for 7 days (5 mg x kg(-1) x day(-1) sc). For untreated animals, the levels of tonin-specific activity in the atrium were 2.6- and 5.5-fold higher than those of the left and right ventricle, respectively. After treatment, the levels of tonin-specific activity increased twofold in the atrium but did not change in the ventricles. Renin expression was not detectable in these structures, and ACE expression levels did not change with treatment. AG expression was detected in the left ventricle at very low levels compared with the atrium and increased significantly only in the hypertrophied atrium (1.8-fold). Tonin mRNA was not detected in the ventricle but was found at low levels in the atrium, which increased after isoproterenol treatment. Our results permit us to conclude that tonin may play a role in the process of heart hypertrophy in the rat.
Collapse
Affiliation(s)
- Julio Cesar Borges
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Braun M, Simonis G, Birkner K, Pauke B, Strasser RH. Regulation of protein kinase C isozyme and calcineurin expression in isoproterenol induced cardiac hypertrophy. J Cardiovasc Pharmacol 2003; 41:946-54. [PMID: 12775975 DOI: 10.1097/00005344-200306000-00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein kinase C (PKC) and calcineurin are known to play a pivotal role in the development of cardiomyocyte growth. However, its role in Isoproterenol-induced (Iso) cardiac hypertrophy has not been characterized so far and were focus of the current study. After chronic beta-adrenergic stimulation of male Wistar rats with Iso (2mg/kg x day) for 2 and 7 days using osmotic minipumps, we determined a) cardiac PKC-activity, b) the expression of cardiac PKC isozymes (PKC-alpha, PKC-delta and PKC-epsilon) both at the protein and the mRNA-level and c) the expression of calcineurin using Western blot analysis. Iso-treatment for 2 and 7 days results in cardiac hypertrophy with an increase of the heart weight-to-body weight ratio by 36% and 27%. Iso-induced myocardial growth was associated with an enhanced total PKC-activity and a significant increased protein expression of cytosolic PKC-alpha (day 2: +38%; day 7: +43%), PKC-delta (day 2: 85%; day 7: +78%) and PKC-epsilon (day 7: +58%). The protein amount of calcineurin was not significantly altered by Iso compared with sham-operated controls. The increased expression of PKC-alpha, PKC-delta and PKC-epsilon in the cytosol was paralleled by a transcriptional upregulation of the absolute mRNA-levels of these PKC-isozymes as determined by quantitative RT-PCR.
Collapse
Affiliation(s)
- Martin Braun
- Department of Cardiology, Medical Clinic II, University of Technology Dresden, Germany.
| | | | | | | | | |
Collapse
|
50
|
Golden KL, Ren J, O'Connor J, Dean A, DiCarlo SE, Marsh JD. In vivo regulation of Na/Ca exchanger expression by adrenergic effectors. Am J Physiol Heart Circ Physiol 2001; 280:H1376-82. [PMID: 11179087 DOI: 10.1152/ajpheart.2001.280.3.h1376] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na/Ca exchanger encoded by the NCX1 gene plays an important role in calcium homeostasis in cardiac muscle. We previously identified three in vitro signaling pathways that are of major importance in the regulation of Na/Ca exchanger gene expression in neonatal cardiac myocytes, the protein kinase A (PKA) and protein kinase C (PKC) pathways, and intracellular Ca(2+). To determine whether these pathways are important in vivo, we stimulated the PKA and PKC pathways and examined functional expression of the Na/Ca exchanger in adult rat heart. After a 3- and 7-day treatment, norepinephrine (200 microg x kg(-1) x h(-1)), isoproterenol (150 microg x kg(-1) x h(-1)), and phenylephrine (200 microg x kg(-1) x h(-1)) each stimulated a significant increase in NCX1 mRNA levels (35-85%, P < 0.05). Norepinephrine also stimulated a 35% increase in protein abundance (P < 0.05), a 20% decrease in relaxation duration (P < 0.05), and a 25% reduction in the fluorescence decay constant (P < 0.05) after a 7-day treatment. We conclude that a 7-day treatment of alpha- and beta-adrenergic agonists increases the expression of functional Na/Ca exchangers in adult rat heart.
Collapse
Affiliation(s)
- K L Golden
- Program in Molecular and Cellular Cardiology and Department of Physiology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | |
Collapse
|