1
|
Fernández-García F, Fernández-Rodríguez A, Fustero-Torre C, Piñeiro-Yáñez E, Wang H, Lechuga CG, Callejas S, Álvarez R, López-García A, Esteban-Burgos L, Salmón M, San Román M, Guerra C, Ambrogio C, Drosten M, Santamaría D, Al-Shahrour F, Dopazo A, Barbacid M, Musteanu M. Type I interferon signaling pathway enhances immune-checkpoint inhibition in KRAS mutant lung tumors. Proc Natl Acad Sci U S A 2024; 121:e2402913121. [PMID: 39186651 PMCID: PMC11388366 DOI: 10.1073/pnas.2402913121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. KRAS oncogenes are responsible for at least a quarter of lung adenocarcinomas, the main subtype of lung cancer. After four decades of intense research, selective inhibitors of KRAS oncoproteins are finally reaching the clinic. Yet, their effect on overall survival is limited due to the rapid appearance of drug resistance, a likely consequence of the high intratumoral heterogeneity characteristic of these tumors. In this study, we have attempted to identify those functional alterations that result from KRAS oncoprotein expression during the earliest stages of tumor development. Such functional changes are likely to be maintained during the entire process of tumor progression regardless of additional co-occurring mutations. Single-cell RNA sequencing analysis of murine alveolar type 2 cells expressing a resident Kras oncogene revealed impairment of the type I interferon pathway, a feature maintained throughout tumor progression. This alteration was also present in advanced murine and human tumors harboring additional mutations in the p53 or LKB1 tumor suppressors. Restoration of type I interferon (IFN) signaling by IFN-β or constitutive active stimulator of interferon genes (STING) expression had a profound influence on the tumor microenvironment, switching them from immunologically "cold" to immunologically "hot" tumors. Therefore, enhancement of the type I IFN pathway predisposes KRAS mutant lung tumors to immunotherapy treatments, regardless of co-occurring mutations in p53 or LKB1.
Collapse
Affiliation(s)
- Fernando Fernández-García
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Ana Fernández-Rodríguez
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Coral Fustero-Torre
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Carmen G Lechuga
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Sergio Callejas
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Rebeca Álvarez
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Alejandra López-García
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Laura Esteban-Burgos
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Marina Salmón
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Marta San Román
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Carmen Guerra
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy
| | - Matthias Drosten
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid 28029, Spain
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca 37007, Spain
| | - David Santamaría
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca 37007, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Ana Dopazo
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Monica Musteanu
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid 28029, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain
- Cancer and Obesity Group, Health Research Institute of San Carlos, Madrid 28040, Spain
| |
Collapse
|
2
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
3
|
Ori C, Ansari M, Angelidis I, Olmer R, Martin U, Theis FJ, Schiller HB, Drukker M. Human pluripotent stem cell fate trajectories toward lung and hepatocyte progenitors. iScience 2023; 26:108205. [PMID: 38026193 PMCID: PMC10663741 DOI: 10.1016/j.isci.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/13/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we interrogate molecular mechanisms underlying the specification of lung progenitors from human pluripotent stem cells (hPSCs). We employ single-cell RNA-sequencing with high temporal precision, alongside an optimized differentiation protocol, to elucidate the transcriptional hierarchy of lung specification to chart the associated single-cell trajectories. Our findings indicate that Sonic hedgehog, TGF-β, and Notch activation are essential within an ISL1/NKX2-1 trajectory, leading to the emergence of lung progenitors during the foregut endoderm phase. Additionally, the induction of HHEX delineates an alternate trajectory at the early definitive endoderm stage, preceding the lung pathway and giving rise to a significant hepatoblast population. Intriguingly, neither KDR+ nor mesendoderm progenitors manifest as intermediate stages in the lung and hepatic lineage development. Our multistep model offers insights into lung organogenesis and provides a foundation for in-depth study of early human lung development and modeling using hPSCs.
Collapse
Affiliation(s)
- Chaido Ori
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Fabian J. Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Herbert B. Schiller
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| |
Collapse
|
4
|
Vazquez-Armendariz AI, Tata PR. Recent advances in lung organoid development and applications in disease modeling. J Clin Invest 2023; 133:e170500. [PMID: 37966116 PMCID: PMC10645385 DOI: 10.1172/jci170500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Over the last decade, several organoid models have evolved to acquire increasing cellular, structural, and functional complexity. Advanced lung organoid platforms derived from various sources, including adult, fetal, and induced pluripotent stem cells, have now been generated, which more closely mimic the cellular architecture found within the airways and alveoli. In this regard, the establishment of novel protocols with optimized stem cell isolation and culture conditions has given rise to an array of models able to study key cellular and molecular players involved in lung injury and repair. In addition, introduction of other nonepithelial cellular components, such as immune, mesenchymal, and endothelial cells, and employment of novel precision gene editing tools have further broadened the range of applications for these systems by providing a microenvironment and/or phenotype closer to the desired in vivo scenario. Thus, these developments in organoid technology have enhanced our ability to model various aspects of lung biology, including pathogenesis of diseases such as chronic obstructive pulmonary disease, pulmonary fibrosis, cystic fibrosis, and infectious disease and host-microbe interactions, in ways that are often difficult to undertake using only in vivo models. In this Review, we summarize the latest developments in lung organoid technology and their applicability for disease modeling and outline their strengths, drawbacks, and potential avenues for future development.
Collapse
Affiliation(s)
- Ana I. Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
- Department of Medicine V, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research and Institute for Lung Health, Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Lim K, Rutherford EN, Sun D, Van den Boomen DJH, Edgar JR, Bang JH, Matesic LE, Lee JH, Lehner PJ, Marciniak SJ, Rawlins EL, Dickens JA. A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555522. [PMID: 37693487 PMCID: PMC10491189 DOI: 10.1101/2023.08.30.555522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant1-3. AT2 dysfunction underlies many lung diseases including interstitial lung disease (ILD), in which some inherited forms result from mislocalisation of surfactant protein C (SFTPC) variants4,5. Disease modelling and dissection of mechanisms remains challenging due to complexities in deriving and maintaining AT2 cells ex vivo. Here, we describe the development of expandable adult AT2-like organoids derived from human fetal lung which are phenotypically stable, can differentiate into AT1-like cells and are genetically manipulable. We use these organoids to test key effectors of SFTPC maturation identified in a forward genetic screen including the E3 ligase ITCH, demonstrating that their depletion phenocopies the pathological SFTPC redistribution seen for the SFTPC-I73T variant. In summary, we demonstrate the development of a novel alveolar organoid model and use it to identify effectors of SFTPC maturation necessary for AT2 health.
Collapse
Affiliation(s)
- Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
- Current address: Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Dick J H Van den Boomen
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Harvard Medical School, Department of Cell Biology, Harvard University, LHRRB building, 45 Shattuck Street, Boston MA 02115, USA
| | - James R Edgar
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Jae Hak Bang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Lydia E Matesic
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Joo-Hyeon Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY
| |
Collapse
|
6
|
Frum T, Hsu PP, Hein RFC, Conchola AS, Zhang CJ, Utter OR, Anand A, Zhang Y, Clark SG, Glass I, Sexton JZ, Spence JR. Opposing roles for TGFβ- and BMP-signaling during nascent alveolar differentiation in the developing human lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539573. [PMID: 37205521 PMCID: PMC10187311 DOI: 10.1101/2023.05.05.539573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alveolar type 2 (AT2) cells function as stem cells in the adult lung and aid in repair after injury. The current study aimed to understand the signaling events that control differentiation of this therapeutically relevant cell type during human development. Using lung explant and organoid models, we identified opposing effects of TGFβ- and BMP-signaling, where inhibition of TGFβ- and activation of BMP-signaling in the context of high WNT- and FGF-signaling efficiently differentiated early lung progenitors into AT2-like cells in vitro . AT2-like cells differentiated in this manner exhibit surfactant processing and secretion capabilities, and long-term commitment to a mature AT2 phenotype when expanded in media optimized for primary AT2 culture. Comparing AT2-like cells differentiated with TGFβ-inhibition and BMP-activation to alternative differentiation approaches revealed improved specificity to the AT2 lineage and reduced off-target cell types. These findings reveal opposing roles for TGFβ- and BMP-signaling in AT2 differentiation and provide a new strategy to generate a therapeutically relevant cell type in vitro .
Collapse
|
7
|
Leiby KL, Yuan Y, Ng R, Raredon MSB, Adams TS, Baevova P, Greaney AM, Hirschi KK, Campbell SG, Kaminski N, Herzog EL, Niklason LE. Rational engineering of lung alveolar epithelium. NPJ Regen Med 2023; 8:22. [PMID: 37117221 PMCID: PMC10147714 DOI: 10.1038/s41536-023-00295-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
Engineered whole lungs may one day expand therapeutic options for patients with end-stage lung disease. However, the feasibility of ex vivo lung regeneration remains limited by the inability to recapitulate mature, functional alveolar epithelium. Here, we modulate multimodal components of the alveolar epithelial type 2 cell (AEC2) niche in decellularized lung scaffolds in order to guide AEC2 behavior for epithelial regeneration. First, endothelial cells coordinate with fibroblasts, in the presence of soluble growth and maturation factors, to promote alveolar scaffold population with surfactant-secreting AEC2s. Subsequent withdrawal of Wnt and FGF agonism synergizes with tidal-magnitude mechanical strain to induce the differentiation of AEC2s to squamous type 1 AECs (AEC1s) in cultured alveoli, in situ. These results outline a rational strategy to engineer an epithelium of AEC2s and AEC1s contained within epithelial-mesenchymal-endothelial alveolar-like units, and highlight the critical interplay amongst cellular, biochemical, and mechanical niche cues within the reconstituting alveolus.
Collapse
Affiliation(s)
- Katherine L Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Ronald Ng
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Taylor S Adams
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pavlina Baevova
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Allison M Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Karen K Hirschi
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Erica L Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Alysandratos KD, Garcia-de-Alba C, Yao C, Pessina P, Huang J, Villacorta-Martin C, Hix OT, Minakin K, Burgess CL, Bawa P, Murthy A, Konda B, Beers MF, Stripp BR, Kim CF, Kotton DN. Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells. JCI Insight 2023; 8:e158937. [PMID: 36454643 PMCID: PMC9870086 DOI: 10.1172/jci.insight.158937] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We found each population occupied a distinct transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences from freshly purified 1° cells. Across each cell type, we found an inverse relationship between proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung health and disease.
Collapse
Affiliation(s)
- Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Changfu Yao
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Patrizia Pessina
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Olivia T. Hix
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Kasey Minakin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Claire L. Burgess
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Aditi Murthy
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
- PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bindu Konda
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael F. Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
- PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Barry R. Stripp
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carla F. Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Ikonomou L, Yampolskaya M, Mehta P. Multipotent Embryonic Lung Progenitors: Foundational Units of In Vitro and In Vivo Lung Organogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:49-70. [PMID: 37195526 PMCID: PMC10351616 DOI: 10.1007/978-3-031-26625-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transient, tissue-specific, embryonic progenitors are important cell populations in vertebrate development. In the course of respiratory system development, multipotent mesenchymal and epithelial progenitors drive the diversification of fates that results to the plethora of cell types that compose the airways and alveolar space of the adult lungs. Use of mouse genetic models, including lineage tracing and loss-of-function studies, has elucidated signaling pathways that guide proliferation and differentiation of embryonic lung progenitors as well as transcription factors that underlie lung progenitor identity. Furthermore, pluripotent stem cell-derived and ex vivo expanded respiratory progenitors offer novel, tractable, high-fidelity systems that allow for mechanistic studies of cell fate decisions and developmental processes. As our understanding of embryonic progenitor biology deepens, we move closer to the goal of in vitro lung organogenesis and resulting applications in developmental biology and medicine.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering Center, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | | | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
10
|
Abstract
Acute and chronic lung diseases are a leading cause of morbidity and mortality globally. Unfortunately, these diseases are increasing in frequency and we have limited treatment options for severe lung diseases. New therapies are needed that not only treat symptoms or slow disease progression, but also enable the regeneration of functional lung tissue. Both airways and alveoli contain populations of epithelial stem cells with the potential to self-renew and produce differentiated progeny. Understanding the mechanisms that determine the behaviour of these cells, and their interactions with their niches, will allow future generations of respiratory therapies that protect the lungs from disease onset, promote regeneration from endogenous stem cells or enable regeneration through the delivery of exogenous cells. This review summarises progress towards each of these goals, highlighting the challenges and opportunities of developing pro-regenerative (bio)pharmaceutical, gene and cell therapies for respiratory diseases.
Collapse
Affiliation(s)
- Robert E. Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1DZ, UK
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| |
Collapse
|
11
|
Amratia DA, Viola H, Ioachimescu OC. Glucocorticoid therapy in respiratory illness: bench to bedside. J Investig Med 2022; 70:1662-1680. [PMID: 35764344 DOI: 10.1136/jim-2021-002161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 11/07/2022]
Abstract
Each year, hundreds of millions of individuals are affected by respiratory disease leading to approximately 4 million deaths. Most respiratory pathologies involve substantially dysregulated immune processes that either fail to resolve the underlying process or actively exacerbate the disease. Therefore, clinicians have long considered immune-modulating corticosteroids (CSs), particularly glucocorticoids (GCs), as a critical tool for management of a wide spectrum of respiratory conditions. However, the complex interplay between effectiveness, risks and side effects can lead to different results, depending on the disease in consideration. In this comprehensive review, we present a summary of the bench and the bedside evidence regarding GC treatment in a spectrum of respiratory illnesses. We first describe here the experimental evidence of GC effects in the distal airways and/or parenchyma, both in vitro and in disease-specific animal studies, then we evaluate the recent clinical evidence regarding GC treatment in over 20 respiratory pathologies. Overall, CS remain a critical tool in the management of respiratory illness, but their benefits are dependent on the underlying pathology and should be weighed against patient-specific risks.
Collapse
|
12
|
Tran E, Shi T, Li X, Chowdhury AY, Jiang D, Liu Y, Wang H, Yan C, Wallace WD, Lu R, Ryan AL, Marconett CN, Zhou B, Borok Z, Offringa IA. Development of human alveolar epithelial cell models to study distal lung biology and disease. iScience 2022; 25:103780. [PMID: 35169685 PMCID: PMC8829779 DOI: 10.1016/j.isci.2022.103780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Many acute and chronic diseases affect the distal lung alveoli. Alveolar epithelial cell (AEC) lines are needed to better model these diseases. We used de-identified human remnant transplant lungs to develop a method to establish AEC lines. The lines grow well in 2-dimensional (2D) culture as epithelial monolayers expressing lung progenitor markers. In 3-dimensional (3D) culture with fibroblasts, Matrigel, and specific media conditions, the cells form alveolar-like organoids expressing mature AEC markers including aquaporin 5 (AQP5), G-protein-coupled receptor class C group 5 member A (GPRC5A), and surface marker HTII280. Single-cell RNA sequencing of an AEC line in 2D versus 3D culture revealed increased cellular heterogeneity and induction of cytokine and lipoprotein signaling in 3D organoids. Our approach yields lung progenitor lines that retain the ability to differentiate along the alveolar cell lineage despite long-term expansion and provides a valuable system to model and study the distal lung in vitro.
Collapse
Affiliation(s)
- Evelyn Tran
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Tuo Shi
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Xiuwen Li
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Translational Genomics, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Adnan Y. Chowdhury
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Yixin Liu
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Hongjun Wang
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Chunli Yan
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - William D. Wallace
- Department of Pathology, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Amy L. Ryan
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Crystal N. Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Beiyun Zhou
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Zea Borok
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ite A. Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Reconstituted basement membrane enables airway epithelium modeling and nanoparticle toxicity testing. Int J Biol Macromol 2022; 204:300-309. [PMID: 35149090 DOI: 10.1016/j.ijbiomac.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022]
Abstract
Basement membrane (BM) acts as a sheet-like extracellular matrix to support and promote the formation of epithelial and endothelial cell layers. The in vitro reconstruction of the BM is however not easy due to its ultrathin membrane features. This difficulty is overcome by self-assembling type IV collagen and laminin in the porous areas of a monolayer of crosslinked gelatin nanofibers deposited on a honeycomb microframe. Herein, a method is presented to generate airway epithelium by using such an artificial basement membrane (ABM) and human-induced pluripotent stem cells (hiPSCs). Bipolar primordial lung progenitors are firstly induced from hiPSCs and then replated on the ABM for differentiation toward matured airway epithelium under submerged and air-liquid interface culture conditions. As a result, a pseudostratified airway epithelium consisting of several cell types is achieved, showing remarkable apical secretion of MUC5AC proteins and clear advantages over other types of substrates. As a proof of concept, the derived epithelium is used for toxicity test of cadmium telluride (CdTe) nanoparticles (NPs), demonstrating the applicability of ABM-based assays involving hiPSC-derived epithelial cells-based assays.
Collapse
|
14
|
Masui A, Hirai T, Gotoh S. Perspectives of future lung toxicology studies using human pluripotent stem cells. Arch Toxicol 2022; 96:389-402. [PMID: 34973109 PMCID: PMC8720162 DOI: 10.1007/s00204-021-03188-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
The absence of in vitro platforms for human pulmonary toxicology studies is becoming an increasingly serious concern. The respiratory system has a dynamic mechanical structure that extends from the airways to the alveolar region. In addition, the epithelial, endothelial, stromal, and immune cells are highly organized in each region and interact with each other to function synergistically. These cells of varied lineage, particularly epithelial cells, have been difficult to use for long-term culture in vitro, thus limiting the development of useful experimental tools. This limitation has set a large distance between the bench and the bedside for analyzing the pathogenic mechanisms, the efficacy of candidate therapeutic agents, and the toxicity of compounds. Several researchers have proposed solutions to these problems by reporting on methods for generating human lung epithelial cells derived from pluripotent stem cells (PSCs). Moreover, the use of organoid culture, organ-on-a-chip, and material-based techniques have enabled the maintenance of functional PSC-derived lung epithelial cells as well as primary cells. The aforementioned technological advances have facilitated the in vitro recapitulation of genetic lung diseases and the detection of ameliorating or worsening effects of genetic and chemical interventions, thus indicating the future possibility of more sophisticated preclinical compound assessments in vitro. In this review, we will update the recent advances in lung cell culture methods, principally focusing on human PSC-derived lung epithelial organoid culture systems with the hope of their future application in toxicology studies.
Collapse
Affiliation(s)
- Atsushi Masui
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Nogi, Tochigi, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
16
|
de Carvalho ALRT, Liu HY, Chen YW, Porotto M, Moscona A, Snoeck HW. The in vitro multilineage differentiation and maturation of lung and airway cells from human pluripotent stem cell-derived lung progenitors in 3D. Nat Protoc 2021; 16:1802-1829. [PMID: 33649566 PMCID: PMC9460941 DOI: 10.1038/s41596-020-00476-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/26/2020] [Indexed: 01/31/2023]
Abstract
Lung and airway epithelial cells generated in vitro from human pluripotent stem cells (hPSCs) have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here, we describe a strategy for directed differentiation of hPSCs into mature lung and airway epithelial cells obtained through maturation of NKX2.1+ hPSC-derived lung progenitors in a 3D matrix of collagen I in the absence of glycogen synthase kinase 3 inhibition. This protocol is an extension of our previously published protocol on the directed differentiation of lung and airway epithelium from hPSCs that modifies the technique and offers additional applications. This protocol is conducted in defined media conditions, has a duration of 50-80 d, does not require reporter lines and results in cultures containing mature alveolar type II and I cells as well as airway basal, ciliated, club and neuroendocrine cells. We also present a flow cytometry strategy to assess maturation in the cultures. Several of these populations, including mature NGFR+ basal cells, can be prospectively isolated by cell sorting and expanded for further investigation.
Collapse
Affiliation(s)
- Ana Luisa Rodrigues Toste de Carvalho
- Columbia Center for Human Development, Columbia University
Medical Center, New York, NY 10032, USA,Department of Medicine, Columbia University Medical Center,
New York, NY 10032, USA,Life and Health Sciences Research Institute (ICVS), School
of Medicine, University of Minho, 4710-057 Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory,
4710-057 Braga/Guimarães, Portugal
| | - Hsiao-Yun Liu
- Columbia Center for Human Development, Columbia University
Medical Center, New York, NY 10032, USA,Department of Medicine, Columbia University Medical Center,
New York, NY 10032, USA
| | - Ya-Wen Chen
- Columbia Center for Human Development, Columbia University
Medical Center, New York, NY 10032, USA,Department of Medicine, Columbia University Medical Center,
New York, NY 10032, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical
Center, New York, New York, 10032, United States,Center for Host–Pathogen Interaction, Columbia
University Medical Center, New York, New York, 10032, United States,Department of Experimental Medicine, University of Campania
‘Luigi Vanvitelli’, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical
Center, New York, New York, 10032, United States,Center for Host–Pathogen Interaction, Columbia
University Medical Center, New York, New York, 10032, United States,Department of Microbiology & Immunology, Columbia
University Medical Center, New York, New York, 10032, United States,Department of Physiology & Cellular Biophysics,
Columbia University Medical Center, New York, New York, 10032, United States
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University
Medical Center, New York, NY 10032, USA,Department of Medicine, Columbia University Medical Center,
New York, NY 10032, USA,Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY 10032, USA,Department of Microbiology and Immunology, Columbia
University Medical Center, New York, NY 10032, USA, Correspondence should be addressed to H.W.S
()
| |
Collapse
|
17
|
Delestrain C, Aissat A, Simon S, Tarze A, Duprat E, Nattes E, Costes B, Delattre V, Finet S, Fanen P, Epaud R. Methylprednisolone pulse treatment improves ProSP-C trafficking in twins with SFTPC mutation: An isoform story? Br J Clin Pharmacol 2021; 87:2361-2373. [PMID: 33179299 DOI: 10.1111/bcp.14645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022] Open
Abstract
Mutations in the gene encoding surfactant protein C (SP-C) cause interstitial lung disease (ILD), and glucocorticosteroid (GC) treatment is the most recognized therapy in children. We aimed to decipher the mechanisms behind successful GC treatment in twins carrying a BRICHOS c.566G > A (p.Cys189Tyr) mutation in the SP-C gene (SFTPC). METHODS: The twins underwent bronchoscopy before and after GC treatment and immunoblotting analysis of SP-C proprotein (proSP-C) and SP-C mature in bronchoalveolar fluid (BALF). Total RNA was extracted and analysed using quantitative real-time PCR assays. In A549 cells, the processing of mutated protein C189Y was studied by immunofluorescence and immunoblotting after heterologous expression of eukaryotic vectors containing wild type or C189Y mutant cDNA. RESULTS: Before treatment, BALF analysis identified an alteration of the proSP-C maturation process. Functional study of C189Y mutation in alveolar A549 cells showed that pro-SP-CC189Y was retained within the endoplasmic reticulum together with ABCA3. After 5 months of GC treatment with clinical benefit, the BALF analysis showed an improvement of proSP-C processing. SFTPC mRNA analysis in twins revealed a decrease in the expression of total SFTPC mRNA and a change in its splicing, leading to the expression of a second shorter proSP-C isoform. In A549 cells, the processing and the stability of this shorter wild-type proSP-C isoform was similar to that of the longer isoform, but the half-life of the mutated shorter isoform was decreased. These results suggest a direct effect of GC on proSP-C metabolism through reducing the SFTPC mRNA level and favouring the expression of a less stable protein isoform.
Collapse
Affiliation(s)
- Céline Delestrain
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, 94000, France.,FHU SENEC, Créteil, France
| | - Abdel Aissat
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,FHU SENEC, Créteil, France.,AP-HP, Hôpital Henri Mondor, Pôle de Biologie-Pathologie, Département de Génétique, Créteil, 94000, France
| | - Stéphanie Simon
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Agathe Tarze
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Elodie Duprat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Elodie Nattes
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, 94000, France.,FHU SENEC, Créteil, France
| | - Bruno Costes
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,FHU SENEC, Créteil, France.,AP-HP, Hôpital Henri Mondor, Pôle de Biologie-Pathologie, Département de Génétique, Créteil, 94000, France
| | - Valérie Delattre
- AP-HP, Hôpital Henri Mondor, Pôle de Biologie-Pathologie, Département de Génétique, Créteil, 94000, France
| | - Stéphanie Finet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Pascale Fanen
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,FHU SENEC, Créteil, France.,AP-HP, Hôpital Henri Mondor, Pôle de Biologie-Pathologie, Département de Génétique, Créteil, 94000, France
| | - Ralph Epaud
- Université Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France.,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, 94000, France.,FHU SENEC, Créteil, France
| |
Collapse
|
18
|
Ballard PL, Oses-Prieto J, Chapin C, Segal MR, Ballard RA, Burlingame AL. Composition and origin of lung fluid proteome in premature infants and relationship to respiratory outcome. PLoS One 2020; 15:e0243168. [PMID: 33301538 PMCID: PMC7728257 DOI: 10.1371/journal.pone.0243168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background Infants born at extremely low gestational age are at high risk for bronchopulmonary dysplasia and continuing lung disease. There are no early clinical biomarkers for pulmonary outcome and limited therapeutic interventions. Objectives We performed global proteomics of premature infant tracheal aspirate (TA) and plasma to determine the composition and source of lung fluid proteins and to identify potential biomarkers of respiratory outcome. Methods TA samples were collected from intubated infants in the TOLSURF cohort before and after nitric oxide treatment, and plasma was collected from NO CLD infants. Protein abundance was assayed by HPLC/tandem mass spectrometry and Protein Prospector software. mRNA abundance in mid-gestation fetal lung was assessed by RNA sequencing. Pulmonary morbidity was defined as a need for ventilatory support at term and during the first year. Results Abundant TA proteins included albumin, hemoglobin, and actin-related proteins. 96 of 137 detected plasma proteins were present in TA (r = 0.69, p<0.00001). Based on lung RNAseq data, ~88% of detected TA proteins in injured infant lung are derived at least in part from lung epithelium with overrepresentation in categories of cell membrane/secretion and stress/inflammation. Comparing 37 infants at study enrollment (7–14 days) who did or did not develop persistent pulmonary morbidity, candidate biomarkers of both lung (eg., annexin A5) and plasma (eg., vitamin D-binding protein) origin were identified. Notably, levels of free hemoglobin were 2.9-fold (p = 0.03) higher in infants with pulmonary morbidity. In time course studies, hemoglobin decreased markedly in most infants after enrollment coincident with initiation of inhaled nitric oxide treatment. Conclusions We conclude that both lung epithelium and plasma contribute to the lung fluid proteome in premature infants with lung injury. Early postnatal elevation of free hemoglobin and heme, which are both pro-oxidants, may contribute to persistent lung disease by depleting nitric oxide and increasing oxidative/nitrative stress.
Collapse
Affiliation(s)
- Philip L. Ballard
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Juan Oses-Prieto
- Department of Chemistry and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Cheryl Chapin
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
| | - Mark R. Segal
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Roberta A. Ballard
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
| | - Alma L. Burlingame
- Department of Chemistry and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
19
|
Sucre JMS, Vickers KC, Benjamin JT, Plosa EJ, Jetter CS, Cutrone A, Ransom M, Anderson Z, Sheng Q, Fensterheim BA, Ambalavanan N, Millis B, Lee E, Zijlstra A, Königshoff M, Blackwell TS, Guttentag SH. Hyperoxia Injury in the Developing Lung Is Mediated by Mesenchymal Expression of Wnt5A. Am J Respir Crit Care Med 2020; 201:1249-1262. [PMID: 32023086 DOI: 10.1164/rccm.201908-1513oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Bronchopulmonary dysplasia (BPD) is a leading complication of preterm birth that affects infants born in the saccular stage of lung development at <32 weeks of gestation. Although the mechanisms driving BPD remain uncertain, exposure to hyperoxia is thought to contribute to disease pathogenesis.Objectives: To determine the effects of hyperoxia on epithelial-mesenchymal interactions and to define the mediators of activated Wnt/β-catenin signaling after hyperoxia injury.Methods: Three hyperoxia models were used: A three-dimensional organotypic coculture using primary human lung cells, precision-cut lung slices (PCLS), and a murine in vivo hyperoxia model. Comparisons of normoxia- and hyperoxia-exposed samples were made by real-time quantitative PCR, RNA in situ hybridization, quantitative confocal microscopy, and lung morphometry.Measurements and Main Results: Examination of an array of Wnt ligands in the three-dimensional organotypic coculture revealed increased mesenchymal expression of WNT5A. Inhibition of Wnt5A abrogated the BPD transcriptomic phenotype induced by hyperoxia. In the PCLS model, Wnt5A inhibition improved alveolarization following hyperoxia exposure, and treatment with recombinant Wnt5a reproduced features of the BPD phenotype in PCLS cultured in normoxic conditions. Chemical inhibition of NF-κB with BAY11-7082 reduced Wnt5a expression in the PCLS hyperoxia model and in vivo mouse hyperoxia model, with improved alveolarization in the PCLS model.Conclusions: Increased mesenchymal Wnt5A during saccular-stage hyperoxia injury contributes to the impaired alveolarization and septal thickening observed in BPD. Precise targeting of Wnt5A may represent a potential therapeutic strategy for the treatment of BPD.
Collapse
Affiliation(s)
- Jennifer M S Sucre
- Mildred Stahlman Division of Neonatology, Department of Pediatrics.,Department of Cell and Developmental Biology, and
| | | | - John T Benjamin
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - Erin J Plosa
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | | | - Alissa Cutrone
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | - Benjamin A Fensterheim
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan Millis
- Department of Cell and Developmental Biology, and.,Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee
| | - Ethan Lee
- Department of Cell and Developmental Biology, and
| | | | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Colorado; and
| | - Timothy S Blackwell
- Department of Cell and Developmental Biology, and.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | | |
Collapse
|
20
|
Bartman CM, Matveyenko A, Prakash YS. It's about time: clocks in the developing lung. J Clin Invest 2020; 130:39-50. [PMID: 31895049 DOI: 10.1172/jci130143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The discovery of peripheral intracellular clocks revealed circadian oscillations of clock genes and their targets in all cell types, including those in the lung, sparking exploration of clocks in lung disease pathophysiology. While the focus has been on the role of these clocks in adult airway diseases, clock biology is also likely to be important in perinatal lung development, where it has received far less attention. Historically, fetal circadian rhythms have been considered irrelevant owing to lack of external light exposure, but more recent insights into peripheral clock biology raise questions of clock emergence, its concordance with tissue-specific structure/function, the interdependence of clock synchrony and functionality in perinatal lung development, and the possibility of lung clocks in priming the fetus for postnatal life. Understanding the perinatal molecular clock may unravel mechanistic targets for chronic airway disease across the lifespan. With current research providing more questions than answers, it is about time to investigate clocks in the developing lung.
Collapse
Affiliation(s)
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine and.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Castaldi A, Horie M, Rieger ME, Dubourd M, Sunohara M, Pandit K, Zhou B, Offringa IA, Marconett CN, Borok Z. Genome-wide integration of microRNA and transcriptomic profiles of differentiating human alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 319:L173-L184. [PMID: 32432919 DOI: 10.1152/ajplung.00519.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The alveolar epithelium is comprised of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells, the latter being capable of self-renewal and transdifferentiation into AT1 cells for normal maintenance and restoration of epithelial integrity following injury. MicroRNAs (miRNAs) are critical regulators of several biological processes, including cell differentiation; however, their role in establishment/maintenance of cellular identity in adult alveolar epithelium is not well understood. To investigate this question, we performed genome-wide analysis of sequential changes in miRNA and gene expression profiles using a well-established model in which human AT2 (hAT2) cells transdifferentiate into AT1-like cells over time in culture that recapitulates many aspects of transdifferentiation in vivo. We defined three phases of miRNA expression during the transdifferentiation process as "early," "late," and "consistently" changed, which were further subclassified as up- or downregulated. miRNAs with altered expression at all time points during transdifferentiation were the largest subgroup, suggesting the need for consistent regulation of signaling pathways to mediate this process. Target prediction analysis and integration with previously published gene expression data identified glucocorticoid signaling as the top pathway regulated by miRNAs. Serum/glucocorticoid-regulated kinase 1 (SGK1) emerged as a central regulatory factor, whose downregulation correlated temporally with gain of hsa-miR-424 and hsa-miR-503 expression. Functional validation demonstrated specific targeting of these miRNAs to the 3'-untranslated region of SGK1. These data demonstrate the time-related contribution of miRNAs to the alveolar transdifferentiation process and suggest that inhibition of glucocorticoid signaling is necessary to achieve the AT1-like cell phenotype.
Collapse
Affiliation(s)
- Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Masafumi Horie
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Megan E Rieger
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mickael Dubourd
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitsuhiro Sunohara
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kusum Pandit
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beiyun Zhou
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ite A Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Crystal N Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zea Borok
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
22
|
Meduri GU, Chrousos GP. General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections. Front Endocrinol (Lausanne) 2020; 11:161. [PMID: 32390938 PMCID: PMC7189617 DOI: 10.3389/fendo.2020.00161] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In critical illness, homeostatic corrections representing the culmination of hundreds of millions of years of evolution, are modulated by the activated glucocorticoid receptor alpha (GRα) and are associated with an enormous bioenergetic and metabolic cost. Appreciation of how homeostatic corrections work and how they evolved provides a conceptual framework to understand the complex pathobiology of critical illness. Emerging literature place the activated GRα at the center of all phases of disease development and resolution, including activation and re-enforcement of innate immunity, downregulation of pro-inflammatory transcription factors, and restoration of anatomy and function. By the time critically ill patients necessitate vital organ support for survival, they have reached near exhaustion or exhaustion of neuroendocrine homeostatic compensation, cell bio-energetic and adaptation functions, and reserves of vital micronutrients. We review how critical illness-related corticosteroid insufficiency, mitochondrial dysfunction/damage, and hypovitaminosis collectively interact to accelerate an anti-homeostatic active process of natural selection. Importantly, the allostatic overload imposed by these homeostatic corrections impacts negatively on both acute and long-term morbidity and mortality. Since the bioenergetic and metabolic reserves to support homeostatic corrections are time-limited, early interventions should be directed at increasing GRα and mitochondria number and function. Present understanding of the activated GC-GRα's role in immunomodulation and disease resolution should be taken into account when re-evaluating how to administer glucocorticoid treatment and co-interventions to improve cellular responsiveness. The activated GRα interdependence with functional mitochondria and three vitamin reserves (B1, C, and D) provides a rationale for co-interventions that include prolonged glucocorticoid treatment in association with rapid correction of hypovitaminosis.
Collapse
Affiliation(s)
- Gianfranco Umberto Meduri
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
23
|
Hurley K, Ding J, Villacorta-Martin C, Herriges MJ, Jacob A, Vedaie M, Alysandratos KD, Sun YL, Lin C, Werder RB, Huang J, Wilson AA, Mithal A, Mostoslavsky G, Oglesby I, Caballero IS, Guttentag SH, Ahangari F, Kaminski N, Rodriguez-Fraticelli A, Camargo F, Bar-Joseph Z, Kotton DN. Reconstructed Single-Cell Fate Trajectories Define Lineage Plasticity Windows during Differentiation of Human PSC-Derived Distal Lung Progenitors. Cell Stem Cell 2020; 26:593-608.e8. [PMID: 32004478 PMCID: PMC7469703 DOI: 10.1016/j.stem.2019.12.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Alveolar epithelial type 2 cells (AEC2s) are the facultative progenitors responsible for maintaining lung alveoli throughout life but are difficult to isolate from patients. Here, we engineer AEC2s from human pluripotent stem cells (PSCs) in vitro and use time-series single-cell RNA sequencing with lentiviral barcoding to profile the kinetics of their differentiation in comparison to primary fetal and adult AEC2 benchmarks. We observe bifurcating cell-fate trajectories as primordial lung progenitors differentiate in vitro, with some progeny reaching their AEC2 fate target, while others diverge to alternative non-lung endodermal fates. We develop a Continuous State Hidden Markov model to identify the timing and type of signals, such as overexuberant Wnt responses, that induce some early multipotent NKX2-1+ progenitors to lose lung fate. Finally, we find that this initial developmental plasticity is regulatable and subsides over time, ultimately resulting in PSC-derived AEC2s that exhibit a stable phenotype and nearly limitless self-renewal capacity.
Collapse
Affiliation(s)
- Killian Hurley
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jun Ding
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Michael J Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anjali Jacob
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Konstantinos D Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yuliang L Sun
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chieh Lin
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15217, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aditya Mithal
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Irene Oglesby
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ignacio S Caballero
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Susan H Guttentag
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, TN 37232, USA
| | - Farida Ahangari
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 16520, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 16520, USA
| | | | - Fernando Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15217, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
24
|
Jacob A, Vedaie M, Roberts DA, Thomas DC, Villacorta-Martin C, Alysandratos KD, Hawkins F, Kotton DN. Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent stem cells. Nat Protoc 2019; 14:3303-3332. [PMID: 31732721 PMCID: PMC7275645 DOI: 10.1038/s41596-019-0220-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/27/2019] [Indexed: 01/10/2023]
Abstract
Alveolar epithelial type II cells (AEC2s) are the facultative progenitors of lung alveoli and serve as the surfactant-producing cells of air-breathing organisms. Although primary human AEC2s are difficult to maintain stably in cell cultures, recent advances have facilitated the derivation of AEC2-like cells from human pluripotent stem cells (hPSCs) in vitro. Here, we provide a detailed protocol for the directed differentiation of hPSCs into self-renewing AEC2-like cells that can be maintained for up to 1 year in culture as epithelial-only spheres without the need for supporting mesenchymal feeder cells. The month-long protocol requires recapitulation of the sequence of milestones associated with in vivo development of the distal lung, beginning with differentiation of cells into anterior foregut endoderm, which is followed by their lineage specification into NKX2-1+ lung progenitors and then distal/alveolar differentiation to produce progeny that express transcripts and possess functional properties associated with AEC2s.
Collapse
Affiliation(s)
- Anjali Jacob
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - David A Roberts
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Dylan C Thomas
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Finn Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
25
|
Reversal of Surfactant Protein B Deficiency in Patient Specific Human Induced Pluripotent Stem Cell Derived Lung Organoids by Gene Therapy. Sci Rep 2019; 9:13450. [PMID: 31530844 PMCID: PMC6748939 DOI: 10.1038/s41598-019-49696-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Surfactant protein B (SFTPB) deficiency is a fatal disease affecting newborn infants. Surfactant is produced by alveolar type II cells which can be differentiated in vitro from patient specific induced pluripotent stem cell (iPSC)-derived lung organoids. Here we show the differentiation of patient specific iPSCs derived from a patient with SFTPB deficiency into lung organoids with mesenchymal and epithelial cell populations from both the proximal and distal portions of the human lung. We alter the deficiency by infecting the SFTPB deficient iPSCs with a lentivirus carrying the wild type SFTPB gene. After differentiating the mutant and corrected cells into lung organoids, we show expression of SFTPB mRNA during endodermal and organoid differentiation but the protein product only after organoid differentiation. We also show the presence of normal lamellar bodies and the secretion of surfactant into the cell culture medium in the organoids of lentiviral infected cells. These findings suggest that a lethal lung disease can be targeted and corrected in a human lung organoid model in vitro.
Collapse
|
26
|
Nawroth JC, Barrile R, Conegliano D, van Riet S, Hiemstra PS, Villenave R. Stem cell-based Lung-on-Chips: The best of both worlds? Adv Drug Deliv Rev 2019; 140:12-32. [PMID: 30009883 PMCID: PMC7172977 DOI: 10.1016/j.addr.2018.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Pathologies of the respiratory system such as lung infections, chronic inflammatory lung diseases, and lung cancer are among the leading causes of morbidity and mortality, killing one in six people worldwide. Development of more effective treatments is hindered by the lack of preclinical models of the human lung that can capture the disease complexity, highly heterogeneous disease phenotypes, and pharmacokinetics and pharmacodynamics observed in patients. The merger of two novel technologies, Organs-on-Chips and human stem cell engineering, has the potential to deliver such urgently needed models. Organs-on-Chips, which are microengineered bioinspired tissue systems, recapitulate the mechanochemical environment and physiological functions of human organs while concurrent advances in generating and differentiating human stem cells promise a renewable supply of patient-specific cells for personalized and precision medicine. Here, we discuss the challenges of modeling human lung pathophysiology in vitro, evaluate past and current models including Organs-on-Chips, review the current status of lung tissue modeling using human pluripotent stem cells, explore in depth how stem-cell based Lung-on-Chips may advance disease modeling and drug testing, and summarize practical consideration for the design of Lung-on-Chips for academic and industry applications.
Collapse
Affiliation(s)
| | | | | | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | | |
Collapse
|
27
|
de Carvalho ALRT, Strikoudis A, Liu HY, Chen YW, Dantas TJ, Vallee RB, Correia-Pinto J, Snoeck HW. Glycogen synthase kinase 3 induces multilineage maturation of human pluripotent stem cell-derived lung progenitors in 3D culture. Development 2019; 146:dev.171652. [PMID: 30578291 DOI: 10.1242/dev.171652] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 01/02/2023]
Abstract
Although strategies for directed differentiation of human pluripotent stem cells (hPSCs) into lung and airway have been established, terminal maturation of the cells remains a vexing problem. We show here that in collagen I 3D cultures in the absence of glycogen synthase kinase 3 (GSK3) inhibition, hPSC-derived lung progenitors (LPs) undergo multilineage maturation into proximal cells, type I alveolar epithelial cells and morphologically mature type II cells. Enhanced cell cycling, one of the signaling outputs of GSK3 inhibition, plays a role in the maturation-inhibiting effect of GSK3 inhibition. Using this model, we show NOTCH signaling induced a distal cell fate at the expense of a proximal and ciliated cell fate, whereas WNT signaling promoted a proximal club cell fate, thus implicating both signaling pathways in proximodistal specification in human lung development. These findings establish an approach to achieve multilineage maturation of lung and airway cells from hPSCs, demonstrate a pivotal role of GSK3 in the maturation of lung progenitors and provide novel insight into proximodistal specification during human lung development.
Collapse
Affiliation(s)
- Ana Luisa Rodrigues Toste de Carvalho
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Alexandros Strikoudis
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hsiao-Yun Liu
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Ya-Wen Chen
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA .,Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
28
|
Hamvas A, Feng R, Bi Y, Wang F, Bhattacharya S, Mereness J, Kaushal M, Cotten CM, Ballard PL, Mariani TJ. Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth. BMC Genet 2018; 19:94. [PMID: 30342483 PMCID: PMC6195962 DOI: 10.1186/s12863-018-0679-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/01/2018] [Indexed: 12/28/2022] Open
Abstract
Background Previous studies have identified genetic variants associated with bronchopulmonary dysplasia (BPD) in extremely preterm infants. However, findings with genome-wide significance have been rare, and not replicated. We hypothesized that whole exome sequencing (WES) of premature subjects with extremely divergent phenotypic outcomes could facilitate the identification of genetic variants or gene networks contributing disease risk. Results The Prematurity and Respiratory Outcomes Program (PROP) recruited a cohort of > 765 extremely preterm infants for the identification of markers of respiratory morbidity. We completed WES on 146 PROP subjects (85 affected, 61 unaffected) representing extreme phenotypes of early respiratory morbidity. We tested for association between disease status and individual common variants, screened for rare variants exclusive to either affected or unaffected subjects, and tested the combined association of variants across gene loci. Pathway analysis was performed and disease-related expression patterns were assessed. Marginal association with BPD was observed for numerous common and rare variants. We identified 345 genes with variants unique to BPD-affected preterm subjects, and 292 genes with variants unique to our unaffected preterm subjects. Of these unique variants, 28 (19 in the affected cohort and 9 in unaffected cohort) replicate a prior WES study of BPD-associated variants. Pathway analysis of sets of variants, informed by disease-related gene expression, implicated protein kinase A, MAPK and Neuregulin/epidermal growth factor receptor signaling. Conclusions We identified novel genes and associated pathways that may play an important role in susceptibility/resilience for the development of lung disease in preterm infants. Electronic supplementary material The online version of this article (10.1186/s12863-018-0679-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron Hamvas
- Department of Pediatrics, Northwestern University, Chicago, IL, USA. .,Ann and Robert H. Lurie Children's Hospital of Chicago and Northwestern University, Chicago, IL, USA.
| | - Rui Feng
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingtao Bi
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Fan Wang
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jared Mereness
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Madhurima Kaushal
- Center for Biomedical Informatics, Washington University, St. Louis, MO, USA
| | | | - Philip L Ballard
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester, Rochester, NY, USA. .,Division of Neonatology and Pediatric Molecular and Personalized Medicine Program University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY, 14642, USA.
| | | |
Collapse
|
29
|
Shelton EL, Waleh N, Plosa EJ, Benjamin JT, Milne GL, Hooper CW, Ehinger NJ, Poole S, Brown N, Seidner S, McCurnin D, Reese J, Clyman RI. Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data. Pediatr Res 2018; 84:458-465. [PMID: 29976969 PMCID: PMC6258329 DOI: 10.1038/s41390-018-0006-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/21/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results. METHODS We used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo. RESULTS In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors. CONCLUSIONS We speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth.
Collapse
Affiliation(s)
- Elaine L Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nahid Waleh
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Erin J Plosa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John T Benjamin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ginger L Milne
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher W Hooper
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Noah J Ehinger
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stanley Poole
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naoko Brown
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Steven Seidner
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Donald McCurnin
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jeff Reese
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ronald I Clyman
- Departments of Pediatrics and Cardiovascular Research Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
30
|
Sucre JMS, Jetter CS, Loomans H, Williams J, Plosa EJ, Benjamin JT, Young LR, Kropski JA, Calvi CL, Kook S, Wang P, Gleaves L, Eskaros A, Goetzl L, Blackwell TS, Guttentag SH, Zijlstra A. Successful Establishment of Primary Type II Alveolar Epithelium with 3D Organotypic Coculture. Am J Respir Cell Mol Biol 2018; 59:158-166. [PMID: 29625013 PMCID: PMC6096337 DOI: 10.1165/rcmb.2017-0442ma] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Alveolar type II (AT2) epithelial cells are uniquely specialized to produce surfactant in the lung and act as progenitor cells in the process of repair after lung injury. AT2 cell injury has been implicated in several lung diseases, including idiopathic pulmonary fibrosis and bronchopulmonary dysplasia. The inability to maintain primary AT2 cells in culture has been a significant barrier in the investigation of pulmonary biology. We have addressed this knowledge gap by developing a three-dimensional (3D) organotypic coculture using primary human fetal AT2 cells and pulmonary fibroblasts. Grown on top of matrix-embedded fibroblasts, the primary human AT2 cells establish a monolayer and have direct contact with the underlying pulmonary fibroblasts. Unlike conventional two-dimensional (2D) culture, the structural and functional phenotype of the AT2 cells in our 3D organotypic culture was preserved over 7 days of culture, as evidenced by the presence of lamellar bodies and by production of surfactant proteins B and C. Importantly, the AT2 cells in 3D cocultures maintained the ability to replicate, with approximately 60% of AT2 cells staining positive for the proliferation marker Ki67, whereas no such proliferation is evident in 2D cultures of the same primary AT2 cells. This organotypic culture system enables interrogation of AT2 epithelial biology by providing a reductionist in vitro model in which to investigate the response of AT2 epithelial cells and AT2 cell-fibroblast interactions during lung injury and repair.
Collapse
Affiliation(s)
| | | | | | | | - Erin J. Plosa
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - John T. Benjamin
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - Lisa R. Young
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
- Division of Pulmonary Medicine, Department of Pediatrics, and
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | - Carla L. Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | - Seunghyi Kook
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - Ping Wang
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - Linda Gleaves
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | - Adel Eskaros
- Program in Cancer Biology
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Laura Goetzl
- Department of Obstetrics and Gynecology, Temple University, Philadelphia, Pennsylvania; and
| | - Timothy S. Blackwell
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | | | - Andries Zijlstra
- Program in Cancer Biology
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
31
|
Effects of lung and airway epithelial maturation cocktail on the structure of lung bud organoids. Stem Cell Res Ther 2018; 9:186. [PMID: 29996941 PMCID: PMC6042463 DOI: 10.1186/s13287-018-0943-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022] Open
Abstract
Organoids from human pluripotent stem cells are becoming suitable models for studies of organ development, drug screening, regenerative medicine, and disease modeling. Three-dimensional minilungs in Matrigel culture have recently been generated from human embryonic stem cells. These particular organoids, named lung bud organoids, showed branching airway and early alveolar structures resembling those present in lungs from the second trimester of human gestation. We show here that the treatment of such organoids with a lung and airway epithelial maturation cocktail containing dexamethasone drives lung bud organoids to the formation of paddle-racquet like structures. This strategy may help to increase the versatility of lung organoids and to generate structures more advanced than the original branching texture.
Collapse
|
32
|
Shi F, Liao Y, Dong Y, Wang Y, Xie Y, Wan H. Claudin18 associated with corticosteroid-induced expression of surfactant proteins in pulmonary epithelial cells. J Matern Fetal Neonatal Med 2017; 32:809-814. [PMID: 29082763 DOI: 10.1080/14767058.2017.1392505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fang Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yong Liao
- Chengdu Newgenegle Biotech Co. Ltd., Chengdu, China
| | - Youzhi Dong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuxiang Wang
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Yuqin Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huajing Wan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Chengdu Newgenegle Biotech Co. Ltd., Chengdu, China
| |
Collapse
|
33
|
Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, Na CL, Weaver TE, Vedaie M, Hurley K, Hinds A, Russo SJ, Kook S, Zacharias W, Ochs M, Traber K, Quinton LJ, Crane A, Davis BR, White FV, Wambach J, Whitsett JA, Cole FS, Morrisey EE, Guttentag SH, Beers MF, Kotton DN. Differentiation of Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. Cell Stem Cell 2017; 21:472-488.e10. [PMID: 28965766 PMCID: PMC5755620 DOI: 10.1016/j.stem.2017.08.014] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/21/2017] [Accepted: 08/18/2017] [Indexed: 02/01/2023]
Abstract
Lung alveoli, which are unique to air-breathing organisms, have been challenging to generate from pluripotent stem cells (PSCs) in part because there are limited model systems available to provide the necessary developmental roadmaps for in vitro differentiation. Here we report the generation of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, from human PSCs. Using multicolored fluorescent reporter lines, we track and purify human SFTPC+ alveolar progenitors as they emerge from endodermal precursors in response to stimulation of Wnt and FGF signaling. Purified PSC-derived SFTPC+ cells form monolayered epithelial "alveolospheres" in 3D cultures without the need for mesenchymal support, exhibit self-renewal capacity, and display additional AEC2 functional capacities. Footprint-free CRISPR-based gene correction of PSCs derived from patients carrying a homozygous surfactant mutation (SFTPB121ins2) restores surfactant processing in AEC2s. Thus, PSC-derived AEC2s provide a platform for disease modeling and future functional regeneration of the distal lung.
Collapse
Affiliation(s)
- Anjali Jacob
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael Morley
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Finn Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Katherine B McCauley
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - J C Jean
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hillary Heins
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cheng-Lun Na
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Timothy E Weaver
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Killian Hurley
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott J Russo
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seunghyi Kook
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, TN 37232, USA
| | - William Zacharias
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), REBIRTH Cluster of Excellence, 30625 Hannover, Germany
| | - Katrina Traber
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lee J Quinton
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ana Crane
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Frances V White
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Edward E Morrisey
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan H Guttentag
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael F Beers
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
34
|
Yamamoto Y, Gotoh S, Korogi Y, Seki M, Konishi S, Ikeo S, Sone N, Nagasaki T, Matsumoto H, Muro S, Ito I, Hirai T, Kohno T, Suzuki Y, Mishima M. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods 2017; 14:1097-1106. [DOI: 10.1038/nmeth.4448] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/13/2017] [Indexed: 12/19/2022]
|
35
|
Natriuretic peptide C receptor in the developing sheep lung: role in perinatal transition. Pediatr Res 2017; 82:349-355. [PMID: 28288148 DOI: 10.1038/pr.2017.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/03/2017] [Indexed: 11/08/2022]
Abstract
Background: At birth, the release of surfactant from alveolar type II cells (ATIIs) is stimulated by increased activity of the beta-adrenergic/adenylyl cyclase/cyclic 3'-5' adenosine monophosphate-signaling cascade. Atrial natriuretic peptide (ANP) stimulates surfactant secretion through natriuretic peptide receptor A (NPR-A). ANP inhibits adenylyl cyclase activity through its binding to NPR-C. We wished to further understand the role of the NPR-C in perinatal transition. Methods: We studied ATII expression of NPR-C in fetal and newborn sheep using immunohistochemistry, and surfactant secretion in isolated ATIIs by measuring 3[H] choline release into the media. Results: ANP induced surfactant secretion, and, at higher doses, it inhibits the stimulatory effect of the secretagogue terbutaline. ATII NPR-C expression decreased significantly after birth. Premature delivery also markedly decreased ANP and NPR-C in ATIIs. Co-incubation of terbutaline (10-4 M) with ANP (10-6 M) significantly decreased 3[H] choline release from isolated newborn ATII cells when compared with terbutaline alone; this inhibitory effect was mimicked by the specific NPR-C agonist, C-ANP (10-10 M). Conclusion: ANP may act as an important epithelial-derived inhibitor of surfactant release in the fetal lung, and downregulation of ANP and NPR-C following birth may sensitize ATII cells to the effects of circulating catecholamines, thus facilitating surfactant secretion.
Collapse
|
36
|
Beers MF, Moodley Y. When Is an Alveolar Type 2 Cell an Alveolar Type 2 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine. Am J Respir Cell Mol Biol 2017; 57:18-27. [PMID: 28326803 DOI: 10.1165/rcmb.2016-0426ps] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Generating mature, differentiated, adult lung cells from pluripotent cells, such as induced pluripotent stem cells and embryonic stem cells, offers the hope of both generating disease-specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung-regenerative medicine, several groups have developed and reported on protocols using defined media, coculture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared with their primary counterparts, coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable, but yet-to-emerge second and higher generation techniques to create such assets, we were prompted to pose the question, what makes a lung epithelial cell a lung epithelial cell? More specifically for this Perspective, we also posed the question, what are the minimum features that constitute an alveolar type (AT) 2 epithelial cell? In addressing this, we summarize a body of work spanning nearly five decades, amassed by a series of "lung epithelial cell biology pioneers," which carefully describes well characterized molecular, functional, and morphological features critical for discriminately assessing an AT2 phenotype. Armed with this, we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiation protocol are indeed mature and functional AT2 epithelial cells.
Collapse
Affiliation(s)
- Michael F Beers
- 1 Lung Epithelial Biology Laboratories, Penn Center for Pulmonary Biology, Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Yuben Moodley
- 2 University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
37
|
|
38
|
Barrette AM, Roberts JK, Chapin C, Egan EA, Segal MR, Oses-Prieto JA, Chand S, Burlingame AL, Ballard PL. Antiinflammatory Effects of Budesonide in Human Fetal Lung. Am J Respir Cell Mol Biol 2017; 55:623-632. [PMID: 27281349 DOI: 10.1165/rcmb.2016-0068oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lung inflammation in premature infants contributes to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease with long-term sequelae. Pilot studies administering budesonide suspended in surfactant have found reduced BPD without the apparent adverse effects that occur with systemic dexamethasone therapy. Our objective was to determine budesonide potency, stability, and antiinflammatory effects in human fetal lung. We cultured explants of second-trimester fetal lung with budesonide or dexamethasone and used microscopy, immunoassays, RNA sequencing, liquid chromatography/tandem mass spectrometry, and pulsating bubble surfactometry. Budesonide suppressed secreted chemokines IL-8 and CCL2 (MCP-1) within 4 hours, reaching a 90% decrease at 12 hours, which was fully reversed 72 hours after removal of the steroid. Half-maximal effects occurred at 0.04-0.05 nM, representing a fivefold greater potency than for dexamethasone. Budesonide significantly induced 3.6% and repressed 2.8% of 14,500 sequenced mRNAs by 1.6- to 95-fold, including 119 genes that contribute to the glucocorticoid inflammatory transcriptome; some are known targets of nuclear factor-κB. By global proteomics, 22 secreted inflammatory proteins were hormonally regulated. Two glucocorticoid-regulated genes of interest because of their association with lung disease are CHI3L1 and IL1RL1. Budesonide retained activity in the presence of surfactant and did not alter its surface properties. There was some formation of palmitate-budesonide in lung tissue but no detectable metabolism to inactive 16α-hydroxy prednisolone. We concluded that budesonide is a potent and stable antiinflammatory glucocorticoid in human fetal lung in vitro, supporting a beneficial antiinflammatory response to lung-targeted budesonide:surfactant treatment of infants for the prevention of BPD.
Collapse
Affiliation(s)
| | - Jessica K Roberts
- 2 Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, Utah; and
| | | | - Edmund A Egan
- 3 Department of Pediatrics, University of Buffalo, Buffalo, New York
| | | | - Juan A Oses-Prieto
- 5 Chemistry & Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Shreya Chand
- 5 Chemistry & Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Alma L Burlingame
- 5 Chemistry & Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
39
|
Hawkins F, Kramer P, Jacob A, Driver I, Thomas DC, McCauley KB, Skvir N, Crane AM, Kurmann AA, Hollenberg AN, Nguyen S, Wong BG, Khalil AS, Huang SX, Guttentag S, Rock JR, Shannon JM, Davis BR, Kotton DN. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J Clin Invest 2017; 127:2277-2294. [PMID: 28463226 DOI: 10.1172/jci89950] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1-expressing (NKX2-1+) precursor cells. However, this hypothesis has not been formally tested owing to an inability to purify or track these progenitors for detailed characterization. Here we have engineered and developmentally differentiated NKX2-1GFP reporter pluripotent stem cells (PSCs) in vitro to generate and isolate human primordial lung progenitors that express NKX2-1 but are initially devoid of differentiated lung lineage markers. After sorting to purity, these primordial lung progenitors exhibited lung epithelial maturation. In the absence of mesenchymal coculture support, this NKX2-1+ population was able to generate epithelial-only spheroids in defined 3D cultures. Alternatively, when recombined with fetal mouse lung mesenchyme, the cells recapitulated epithelial-mesenchymal developing lung interactions. We imaged these progenitors in real time and performed time-series global transcriptomic profiling and single-cell RNA sequencing as they moved through the earliest moments of lung lineage specification. The profiles indicated that evolutionarily conserved, stage-dependent gene signatures of early lung development are expressed in primordial human lung progenitors and revealed a CD47hiCD26lo cell surface phenotype that allows their prospective isolation from untargeted, patient-specific PSCs for further in vitro differentiation and future applications in regenerative medicine.
Collapse
Affiliation(s)
- Finn Hawkins
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Philipp Kramer
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Anjali Jacob
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ian Driver
- Department of Anatomy, UCSF, San Francisco, California, USA
| | | | - Katherine B McCauley
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Ana M Crane
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Anita A Kurmann
- Center for Regenerative Medicine, and.,Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Brandon G Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Sarah Xl Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA.,Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA
| | - Susan Guttentag
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, Tennessee, USA
| | - Jason R Rock
- Department of Anatomy, UCSF, San Francisco, California, USA
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
40
|
|
41
|
Newton R, Giembycz MA. Understanding how long-acting β 2 -adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids in asthma - an update. Br J Pharmacol 2016; 173:3405-3430. [PMID: 27646470 DOI: 10.1111/bph.13628] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022] Open
Abstract
In moderate-to-severe asthma, adding an inhaled long-acting β2 -adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1), ICSs promote anti-inflammatory/anti-asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of many glucocorticoid-induced genes. Other genes, including dual-specificity phosphatase 1(DUSP1) in human airways smooth muscle (ASM) and epithelial cells, are up-regulated additively by both drug classes. Synergy may also occur for LABA-induced genes, as illustrated by the bronchoprotective gene, regulator of G-protein signalling 2 (RGS2) in ASM. Such effects cannot be produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular basis of synergy remains unclear, mechanistic interpretations must accommodate gene-specific regulation. We explore the concept that each glucocorticoid-induced gene is an independent signal transducer optimally activated by a specific, ligand-directed, GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be suboptimal due to low β2 -adrenoceptor density or biased β2 -adrenoceptor signalling. Strategies to overcome these limitations include adding-on a phosphodiesterase inhibitor and using agonists of other Gs-coupled receptors. In all cases, the rational design of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for therapeutic benefit to be maximized.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Pew BK, Harris RA, Sbrana E, Guaman MC, Shope C, Chen R, Meloche S, Aagaard K. Structural and transcriptomic response to antenatal corticosteroids in an Erk3-null mouse model of respiratory distress. Am J Obstet Gynecol 2016; 215:384.e1-384.e89. [PMID: 27143398 PMCID: PMC5003661 DOI: 10.1016/j.ajog.2016.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/22/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neonatal respiratory distress syndrome in preterm infants is a leading cause of neonatal death. Pulmonary insufficiency-related infant mortality rates have improved with antenatal glucocorticoid treatment and neonatal surfactant replacement. However, the mechanism of glucocorticoid-promoted fetal lung maturation is not understood fully, despite decades of clinical use. We previously have shown that genetic deletion of Erk3 in mice results in growth restriction, cyanosis, and early neonatal lethality because of pulmonary immaturity and respiratory distress. Recently, we demonstrated that the addition of postnatal surfactant administration to antenatal dexamethasone treatment resulted in enhanced survival of neonatal Erk3-null mice. OBJECTIVE To better understand the molecular underpinnings of corticosteroid-mediated lung maturation, we used high-throughput transcriptomic and high-resolution morphologic analysis of the murine fetal lung. We sought to examine the alterations in fetal lung structure and function that are associated with neonatal respiratory distress and antenatal glucocorticoid treatment. STUDY DESIGN Dexamethasone (0.4 mg/kg) or saline solution was administered to pregnant dams on embryonic days 16.5 and 17.5. Fetal lungs were collected and analyzed by microCT and RNA-seq for differential gene expression and pathway interactions with genotype and treatment. Results from transcriptomic analysis guided further investigation of candidate genes with the use of immunostaining in murine and human fetal lung tissue. RESULTS Erk3(-/-) mice exhibited atelectasis with decreased overall porosity and saccular space relative to wild type, which was ameliorated by glucocorticoid treatment. Of 596 differentially expressed genes (q < 0.05) that were detected by RNA-seq, pathway analysis revealed 36 genes (q < 0.05) interacting with dexamethasone, several with roles in lung development, which included corticotropin-releasing hormone and surfactant protein B. Corticotropin-releasing hormone protein was detected in wild-type and Erk3(-/-) lungs at E14.5, with significantly temporally altered expression through embryonic day 18.5. Antenatal dexamethasone attenuated corticotropin-releasing hormone at embryonic day 18.5 in both wild-type and Erk3(-/-) lungs (0.56-fold and 0.67-fold; P < .001). Wild type mice responded to glucocorticoid administration with increased pulmonary surfactant protein B (P = .003). In contrast, dexamethasone treatment in Erk3(-/-) mice resulted in decreased surfactant protein B (P = .012). In human validation studies, we confirmed that corticotropin-releasing hormone protein is present in the fetal lung at 18 weeks of gestation and increases in expression with progression towards viability (22 weeks of gestation; P < .01). CONCLUSION Characterization of whole transcriptome gene expression revealed glucocorticoid-mediated regulation of corticotropin-releasing hormone and surfactant protein B via Erk3-independent and -dependent mechanisms, respectively. We demonstrated for the first time the expression and temporal regulation of corticotropin-releasing hormone protein in midtrimester human fetal lung. This unique model allows the effects of corticosteroids on fetal pulmonary morphologic condition to be distinguished from functional gene pathway regulation. These findings implicate Erk3 as a potentially important molecular mediator of antenatal glucocorticoid action in promoting surfactant protein production in the preterm neonatal lung and expanding our understanding of key mechanisms of clinical therapy to improve neonatal survival.
Collapse
Affiliation(s)
- Braden K Pew
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX
| | - R Alan Harris
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Elena Sbrana
- Department of Pathology, University of Texas Medical Branch-Galveston, Galveston, TX
| | - Milenka Cuevas Guaman
- Department of Pediatrics, Division of Neonatology, Baylor College of Medicine, Houston, TX
| | - Cynthia Shope
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Sylvain Meloche
- Institute de Recherche en Immunologie et Cancérologie, Universite de Montreal, Quebec, Canada
| | - Kjersti Aagaard
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
43
|
Dye BR, Miller AJ, Spence JR. How to Grow a Lung: Applying Principles of Developmental Biology to Generate Lung Lineages from Human Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2016; 4:47-57. [PMID: 27340610 PMCID: PMC4882378 DOI: 10.1007/s40139-016-0102-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number and severity of diseases affecting human lung development and adult respiratory function has stimulated great interest in new in vitro models to study the human lung. This review summarizes the most recent breakthroughs deriving lung lineages in a dish by directing the differentiation of human pluripotent stem cells. A variety of culturing platforms have been developed, including two-dimensional and three-dimensional (organoid) culture platforms, to derive specific cell types and structures of the lung. These stem cell-derived lung models will further our understanding of human lung development, disease, and regeneration.
Collapse
Affiliation(s)
- Briana R. Dye
- />Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| | - Alyssa J. Miller
- />Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
- />Department of Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| | - Jason R. Spence
- />Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
- />Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
- />Department of Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
- />Center for Organogenesis, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| |
Collapse
|
44
|
Marcinkiewicz MM, Baker ST, Wu J, Hubert TL, Wolfson MR. A Novel Approach for Ovine Primary Alveolar Epithelial Type II Cell Isolation and Culture from Fresh and Cryopreserved Tissue Obtained from Premature and Juvenile Animals. PLoS One 2016; 11:e0152027. [PMID: 26999050 PMCID: PMC4801353 DOI: 10.1371/journal.pone.0152027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/08/2016] [Indexed: 11/19/2022] Open
Abstract
The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.
Collapse
Affiliation(s)
- Mariola M. Marcinkiewicz
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Sandy T. Baker
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Jichuan Wu
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Terrence L. Hubert
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Marla R. Wolfson
- Department of Thoracic Medicine and Surgery, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Department of Physiology, Pediatrics and Medicine, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
45
|
Orgeig S, Morrison JL, Daniels CB. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr Physiol 2015; 6:363-422. [PMID: 26756637 DOI: 10.1002/cphy.c150003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.
Collapse
Affiliation(s)
- Sandra Orgeig
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christopher B Daniels
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
46
|
Gerber AN. Glucocorticoids and the Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215999 DOI: 10.1007/978-1-4939-2895-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lung is a major clinical target of glucocorticoid-based therapeutics, and GR signaling has broad effects on respiratory physiology and inflammation. During lung development, expression of GR in the mesenchyme is required for normal terminal alveolar epithelial differentiation. Prenatal administration of exogenous glucocorticoids (GCs) to prevent neonatal respiratory distress syndrome, however, promotes alveolar maturation and accelerates surfactant expression in a manner consistent with direct effects on the developing alveolar epithelium. Likewise, cell autonomous effects of GCs in regulating gene expression and phenotype of the airway epithelium and airway smooth muscle have been demonstrated to control important therapeutic effects of GCs in treating asthma and chronic obstructive pulmonary disease. Here, mechanisms and consequences of GR signaling in the developing lung and in treating obstructive lung disease are reviewed, with a focus on direct effects of GR signaling on alveolar differentiation, surfactant expression, and airway epithelial and smooth muscle pathophysiology.
Collapse
Affiliation(s)
- Anthony N Gerber
- Department of Medicine, National Jewish Health, University of Colorado, Denver, 1400 Jackson Street, Room K621b, Denver, CO, 80206, USA,
| |
Collapse
|
47
|
Gonzales LW, Gonzalez R, Barrette AM, Wang P, Dobbs L, Ballard PL. Expression of Carcinoembryonic Cell Adhesion Molecule 6 and Alveolar Epithelial Cell Markers in Lungs of Human Infants with Chronic Lung Disease. J Histochem Cytochem 2015; 63:908-21. [PMID: 26374831 DOI: 10.1369/0022155415603768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/09/2015] [Indexed: 11/22/2022] Open
Abstract
The membrane protein carcinoembryonic antigen cell adhesion molecule (CEACAM6) is expressed in the epithelium of various tissues, participating in innate immune defense, cell proliferation and differentiation, with overexpression in gastrointestinal tract, pancreatic and lung tumors. It is developmentally and hormonally regulated in fetal human lung, with an apparent increased production in preterm infants with respiratory failure. To further examine the expression and cell localization of CEACAM6, we performed immunohistochemical and biochemical studies in lung specimens from infants with and without chronic lung disease. CEACAM6 protein and mRNA were increased ~4-fold in lungs from infants with chronic lung disease as compared with controls. By immunostaining, CEACAM6 expression was markedly increased in the lung parenchyma of infants and children with a variety of chronic lung disorders, localizing to hyperplastic epithelial cells with a ~7-fold elevated proliferative rate by PCNA staining. Some of these cells also co-expressed membrane markers of both type I and type II cells, which is not observed in normal postnatal lung, suggesting they are transitional epithelial cells. We suggest that CEACAM6 is both a marker of lung epithelial progenitor cells and a contributor to the proliferative response after injury due to its anti-apoptotic and cell adhesive properties.
Collapse
Affiliation(s)
- Linda W Gonzales
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (LWG, PW)
| | - Robert Gonzalez
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California (RG, LD)
| | - Anne Marie Barrette
- Department of Pediatrics, University of California, San Francisco, San Francisco, California (AMB, PLB)
| | - Ping Wang
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (LWG, PW)
| | - Leland Dobbs
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California (RG, LD)
| | - Philip L Ballard
- Department of Pediatrics, University of California, San Francisco, San Francisco, California (AMB, PLB)
| |
Collapse
|
48
|
Sharma S, Kho AT, Chhabra D, Qiu W, Gaedigk R, Vyhlidal CA, Leeder JS, Barraza-Villarreal A, London SJ, Gilliland F, Raby BA, Weiss ST, Tantisira KG. Glucocorticoid genes and the developmental origins of asthma susceptibility and treatment response. Am J Respir Cell Mol Biol 2015; 52:543-53. [PMID: 25192440 DOI: 10.1165/rcmb.2014-0109oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antenatal corticosteroids enhance lung maturation. However, the importance of glucocorticoid genes on early lung development, asthma susceptibility, and treatment response remains unknown. We investigated whether glucocorticoid genes are important during lung development and their role in asthma susceptibility and treatment response. We identified genes that were differentially expressed by corticosteroids in two of three genomic datasets: lymphoblastoid cell lines of participants in the Childhood Asthma Management Program, a glucocorticoid chromatin immunoprecipitation/RNA sequencing experiment, or a murine model; these genes made up the glucocorticoid gene set (GCGS). Using gene expression profiles from 38 human fetal lungs and C57BL/6J murine fetal lungs, we identified developmental genes that were in the top 5% of genes contributing to the top three principal components (PCs) most highly associated with post-conceptional age. Glucocorticoid genes that were enriched in this set of developmental genes were then included in the developmental glucocorticoid gene set (DGGS). We then investigated whether glucocorticoid genes are important during lung development, and their role in asthma susceptibility and treatment response. A total of 232 genes were included in the GCGS. Analysis of gene expression demonstrated that glucocorticoid genes were enriched in lung development (P = 7.02 × 10(-26)). The developmental GCGS was enriched for genes that were differentially expressed between subjects with asthma and control subjects (P = 4.26 × 10(-3)) and were enriched after treatment of subjects with asthma with inhaled corticosteroids (P < 2.72 × 10(-4)). Our results show that glucocorticoid genes are overrepresented among genes implicated in fetal lung development. These genes influence asthma susceptibility and treatment response, suggesting their involvement in the early ontogeny of asthma.
Collapse
|
49
|
Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones. Stem Cells Int 2015; 2015:165867. [PMID: 26167183 PMCID: PMC4488158 DOI: 10.1155/2015/165867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 01/11/2023] Open
Abstract
Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII) cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12) were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC), an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5), an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1) expression levels were enhanced. After treatment with dexamethasone (DEX), 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine (IBMX), and keratinocyte growth factor (KGF), surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.
Collapse
|
50
|
Huang SXL, Green MD, de Carvalho AT, Mumau M, Chen YW, D'Souza SL, Snoeck HW. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat Protoc 2015; 10:413-25. [PMID: 25654758 DOI: 10.1038/nprot.2015.023] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lung and airway epithelial cells generated in vitro from human pluripotent stem cells (hPSCs) have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of hPSCs into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development, and it takes ∼50 d. First, definitive endoderm (DE) is induced in the presence of high concentrations of activin A. Subsequently, lung-biased anterior foregut endoderm (AFE) is specified by sequential inhibition of bone morphogenetic protein (BMP), transforming growth factor-β (TGF-β) and Wnt signaling. AFE is then ventralized by applying Wnt, BMP, fibroblast growth factor (FGF) and retinoic acid (RA) signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, cAMP and glucocorticoid agonism. This protocol is conducted in defined conditions, it does not involve genetic manipulation of the cells and it results in cultures in which the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells.
Collapse
Affiliation(s)
- Sarah X L Huang
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Michael D Green
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Ana Toste de Carvalho
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Melanie Mumau
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Ya-Wen Chen
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Sunita L D'Souza
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Experimental Therapeutic Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hans-Willem Snoeck
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA. [3] Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|