1
|
Pian Q, Li B, Şencan-Eğilmez I, Cheng X, Dubb J, Huang X, Fu B, Rao Allu S, Yaseen MA, Devor A, Vinogradov SA, Sakadžić S. Out-of-focus signal rejection for in vivo pO 2 measurements using two-photon phosphorescence lifetime microscopy. BIOMEDICAL OPTICS EXPRESS 2025; 16:159-176. [PMID: 39816157 PMCID: PMC11729295 DOI: 10.1364/boe.532084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 01/18/2025]
Abstract
Two-photon phosphorescence lifetime microscopy has been a key tool for studying cerebral oxygenation in mice. However, the accuracy of the partial pressure of oxygen (pO2) measurements is affected by out-of-focus signal. In this work, we applied reconfigurable differential aberration imaging to characterize and correct for out-of-focus signal contamination in intravascular pO2 imaging. Our results show that signal contamination is higher in more oxygenated vessels and that it could be effectively removed using the proposed method.
Collapse
Affiliation(s)
- Qi Pian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Biophotonics Research Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Xiaojun Cheng
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jay Dubb
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Xinyue Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammad Abbas Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
2
|
Burma JS, Bailey DM, Johnson NE, Griffiths JK, Burkart JJ, Soligon CA, Fletcher EKS, Javra RM, Debert CT, Schneider KJ, Dunn JF, Smirl JD. Physiological influences on neurovascular coupling: A systematic review of multimodal imaging approaches and recommendations for future study designs. Exp Physiol 2025; 110:23-41. [PMID: 39392865 DOI: 10.1113/ep092060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
In this review, we have amalgamated the literature, taking a multimodal neuroimaging approach to quantify the relationship between neuronal firing and haemodynamics during a task paradigm (i.e., neurovascular coupling response), while considering confounding physiological influences. Original research articles that used concurrent neuronal and haemodynamic quantification in humans (n ≥ 10) during a task paradigm were included from PubMed, Scopus, Web of Science, EMBASE and PsychINFO. Articles published before 31 July 2023 were considered for eligibility. Rapid screening was completed by the first author. Two authors completed the title/abstract and full-text screening. Article quality was assessed using a modified version of the National Institutes of Health Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. A total of 364 articles were included following title/abstract and full-text screening. The most common combination was EEG/functional MRI (68.7%), with cognitive (48.1%) and visual (27.5%) tasks being the most common. The majority of studies displayed an absence/minimal control of blood pressure, arterial gas concentrations and/or heart rate (92.9%), and only 1.3% monitored these factors. A minority of studies restricted or collected data pertaining to caffeine (7.4%), exercise (0.8%), food (0.5%), nicotine (2.7%), the menstrual cycle (0.3%) or cardiorespiratory fitness levels (0.5%). The cerebrovasculature is sensitive to numerous factors; thus, to understand the neurovascular coupling response fully, better control for confounding physiological influences of blood pressure and respiratory metrics is imperative during study-design formulation. Moreover, further work should continue to examine sex-based differences, the influence of sex steroid hormone concentrations and cardiorespiratory fitness.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Nathan E Johnson
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - James K Griffiths
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Department of Biomedical Engineering, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Josh J Burkart
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Clara A Soligon
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth K S Fletcher
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Raelyn M Javra
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chantel T Debert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Ramírez-delaCruz M, Ortiz-Sánchez D, Bravo-Sánchez A, Portillo J, Esteban-García P, Abián-Vicén J. Effects of different exposures to normobaric hypoxia on cognitive performance in healthy young adults.: Normobaric hypoxia and cognitive performance. Physiol Behav 2025; 288:114747. [PMID: 39547435 DOI: 10.1016/j.physbeh.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Normobaric hypoxia has become an innovative non-pharmacological therapy to treat cognitive dysfunction. Nevertheless, the acute effects of exposure to hypoxia on cognitive performance remain unclear. We aimed to determine the effects of different normobaric hypoxic exposures on cognitive function in healthy young adults. Nineteen participants (13 men and 6 women; 23.7 ± 3.9 years; 172.0 ± 8.4 cm; 69.1 ± 12.2 kg) completed a cross-over randomized control trial with the following doses of fraction of inspired oxygen (FiO2): a) 21 %, b) 15 %, c) 13 % or d) 11 %. During experimental trials, the physiological response (blood oxygen saturation and heart rate) and the following cognitive abilities were evaluated: memory, sustained attention, anticipation, and reaction time. Sustained attention improved under hypoxia at 15 % FiO2 (mean difference (MD) 0.024, 95 % confidence intervals (CI) 0.005 to 0.044 s; p = 0.018) compared to 11 % and 21 % FiO2. During 11 % and 15 % FiO2, participants showed improved anticipation ability compared to normoxia (MD -0.023, 95 % CI -0.042 to -0.003 s, p = 0.020, and MD -0.009, 95 % CI -0.016 to -0.001 s, p = 0.022, respectively). However, reaction time was impaired under 11 % compared to 21 % FiO2 (MD 0.033, 95 % CI 0.008 to 0.059 s, p = 0.013). Finally, we did not find significant effects of hypoxia on memory (p > 0.05). Severe normobaric hypoxic exposure (11 % FiO2) produces detrimental effects on reaction time, although anticipation seems to be improved, compared to normoxia. In addition, cognitive processes of attention and anticipation appear to improve with moderate hypoxic exposure (15 % FiO2).
Collapse
Affiliation(s)
- María Ramírez-delaCruz
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - David Ortiz-Sánchez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - Alfredo Bravo-Sánchez
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1,800, 28223, Pozuelo de Alarcón, Spain.
| | - Javier Portillo
- Motor Competence and Excellence in Sport, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071. Toledo, Spain.
| | - Paula Esteban-García
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| |
Collapse
|
4
|
Meng L, Rasmussen M, Meng DM, White FA, Wu LJ. Integrated Feedforward and Feedback Mechanisms in Neurovascular Coupling. Anesth Analg 2024; 139:1283-1293. [PMID: 38345932 DOI: 10.1213/ane.0000000000006891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Neurovascular coupling (NVC) is the mechanism that drives the neurovascular response to neural activation, and NVC dysfunction has been implicated in various neurologic diseases. NVC is driven by (1) nonmetabolic feedforward mechanisms that are mediated by various signaling pathways and (2) metabolic feedback mechanisms that involve metabolic factors. However, the interplay between these feedback and feedforward mechanisms remains unresolved. We propose that feedforward mechanisms normally drive a swift, neural activation-induced regional cerebral blood flow (rCBF) overshoot, which floods the tissue beds, leading to local hypocapnia and hyperoxia. The feedback mechanisms are triggered by the resultant hypocapnia (not hyperoxia), which causes cerebral vasoconstriction in the neurovascular unit that counterbalances the rCBF overshoot and returns rCBF to a level that matches the metabolic activity. If feedforward mechanisms function improperly (eg, in a disease state), the rCBF overshoot, tissue-bed flooding, and local hypocapnia fail to occur or occur on a smaller scale. Consequently, the neural activation-related increase in metabolic activity results in local hypercapnia and hypoxia, both of which drive cerebral vasodilation and increase rCBF. Thus, feedback mechanisms ensure the brain milieu's stability when feedforward mechanisms are impaired. Our proposal integrates the feedforward and feedback mechanisms underlying NVC and suggests that these 2 mechanisms work like a fail-safe system, to a certain degree. We also discussed the difference between NVC and cerebral metabolic rate-CBF coupling and the clinical implications of our proposed framework.
Collapse
Affiliation(s)
- Lingzhong Meng
- From the Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mads Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| | - Deyi M Meng
- Choate Rosemary Hall School, Wallingford, Connecticut
| | - Fletcher A White
- From the Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Long-Jun Wu
- Departments of Neurology and Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Bønnelycke EMS, Giacon TA, Bosco G, Kainerstorfer JM, Paganini M, Ruesch A, Wu J, McKnight JC. Cerebral hemodynamic and systemic physiological changes in trained freedivers completing sled-assisted dives to two different depths. Am J Physiol Regul Integr Comp Physiol 2024; 327:R553-R567. [PMID: 39241005 DOI: 10.1152/ajpregu.00085.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/08/2024]
Abstract
Although existing literature covers significant detail on the physiology of human freediving, the lack of standardized protocols has hindered comparisons due to confounding variables such as exercise and depth. By accounting for these variables, direct depth-dependent impacts on cardiovascular and blood oxygen regulation can be investigated. In this study, depth-dependent effects on 1) cerebral hemodynamic and oxygenation changes, 2) arterial oxygen saturation ([Formula: see text]), and 3) heart rate during breath-hold diving without confounding effects of exercise were investigated. Six freedivers (51.0 ± 12.6 yr; means ± SD), instrumented with continuous-wave near-infrared spectroscopy for monitoring cerebral hemodynamic and oxygenation measurements, heart rate, and [Formula: see text], performed sled-assisted breath-hold dives to 15 m and 42 m. Arterial blood gas tensions were validated through cross-sectional periodic blood sampling. Cerebral hemodynamic changes were characteristic of breath-hold diving, with changes during ascent from both depths likely driven by decreasing [Formula: see text] due to lung expansion. Although [Formula: see text] was significantly lower following 42-m dives [t(5) = -4.183, P < 0.05], mean cerebral arterial-venous blood oxygen saturation remained at 74% following dives to both depths. Cerebral oxygenation during ascent from 42 m may have been maintained through increased arterial delivery. Heart rate was variable with no significant difference in minimum heart rate between both depths [t(5) = -1.017, P > 0.05]. This study presents a standardized methodology, which could provide a basis for future research on human freediving physiology and uncover ways in which freedivers can reduce potential risks of the sport.NEW & NOTEWORTHY We present a standardized methodology in which trained breath-hold divers instrumented with wearable near-infrared spectroscopy (NIRS) technology and a cannula for arterial blood sampling completed sled-assisted dives to two different dive depths to account for the confounding factors of exercise and depth during breath-hold diving. In our investigation, we highlight the utility of wearable NIRS systems for continuous hemodynamic and oxygenation monitoring to investigate the impacts of hydrostatic pressure on cardiovascular and blood oxygen regulation.
Collapse
Affiliation(s)
- Eva-Maria S Bønnelycke
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Tommaso A Giacon
- Laboratory of Environmental and Respiratory Physiology, Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Anesthesia and Intensive Care, Padova University Hospital, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Gerardo Bosco
- Laboratory of Environmental and Respiratory Physiology, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Matteo Paganini
- Laboratory of Environmental and Respiratory Physiology, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alexander Ruesch
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Jingyi Wu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - J Chris McKnight
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| |
Collapse
|
6
|
Lee JS, Yoon BS, Kim Y, Park CB. LDHB-deficient brain exhibits resistance to ischemic neuronal cell death due to increased vasodilation. Biochem Biophys Res Commun 2024; 734:150766. [PMID: 39368368 DOI: 10.1016/j.bbrc.2024.150766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Ischemic stroke triggers a cascade of metabolic and inflammatory events leading to neuronal death, particularly in the hippocampus. Here, we investigate the role of lactate metabolism in ischemic resistance using LDHB-deficient mice, which exhibit impaired lactate utilization. Contrary to expectations of severe neuronal damage due to metabolic defects, LDHB-deficient mice displayed significantly increased neuronal survival following ischemic insult. Magnetic resonance spectroscopy revealed elevated lactate levels in LDHB-deficient brains, which correlated with enhanced vasodilation of the posterior communicating artery (PComA) and increased extracellular PGE2 levels. These findings suggest that elevated lactate inhibits PGE2 reabsorption, promoting vasodilation and neuronal protection. Our results highlight lactate's potential role in neuroprotection and its therapeutic promise for ischemic stroke.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, 16499, Republic of Korea
| | - Bok Seon Yoon
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, 16499, Republic of Korea
| | - Yihyang Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
7
|
Wan HY, Bunsawat K, Jarrett CL, Shields KL, Bisconti AV, Weavil JC, Amann M. Regional cerebral perfusion and sympathetic activation during exercise in hypoxia and hypercapnia: preliminary insight into 'Cushing's mechanism'. J Physiol 2024. [PMID: 39520689 DOI: 10.1113/jp287181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
We examined the interactive influence of hypoxia and exercise, and hypercapnia and exercise, on regional cerebral perfusion and sympathetic activation. Twenty healthy young adults (seven women) completed study trials including (1) rest in normoxia (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ : ∼96%,P ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ : ∼36 mmHg), normocapnic hypoxia (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ : ∼84%,P ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ : ∼36 mmHg), and normoxic hypercapnia (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ : ∼98%,P ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ : ∼46 mmHg) and (2) unilateral rhythmic handgrip exercise (45% of maximal voluntary contraction at 1 Hz for 3 min) under the same gas conditions. Based on the exercising arm, blood flow in the contralateral internal carotid (ICABF) and ipsilateral vertebral (VABF) arteries, anterior and posterior cerebral O2 delivery (C D O 2 ${\mathrm{C}}{{{\mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ), and muscle sympathetic nerve activity (MSNA) were measured in each trial. During exercise in hypoxia, ICABF, VABF, anterior and posteriorC D O 2 ${\mathrm{C}}{{{\mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ were significantly lower, whereas total MSNA was significantly greater, than the sum of the responses evoked by either hypoxia or exercise alone. During exercise in hypercapnia, ICABF and anteriorC D O 2 ${\mathrm{C}}{{{\mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ were significantly greater, whereas MSNA was lower, than the sum of the responses evoked by either hypercapnia or exercise alone. The VABF and posteriorC D O 2 ${\mathrm{C}}{{{\mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ responses to hypercapnic exercise were not different from the summated responses. These findings suggest that the brain is hypoperfused and sympathetic outflow potentiated during hypoxic exercise, and that the brain is hyperperfused and sympathetic discharge constrained during hypercapnic exercise. The contrasting consequences for cerebral perfusion and sympathetic activation indicate a potential involvement of Cushing's mechanism in the autonomic control during exercise in healthy humans. KEY POINTS: Brain O2-demand and -supply are mismatched, and muscle sympathetic nerve activity (MSNA) is enhanced in humans exercising at high altitude; the link between the two phenomena remains elusive. We evaluated the isolated and interactive effects of exercise, hypoxia, and hypercapnia on blood flow in the internal carotid (ICABF) and vertebral (VABF) arteries, and MSNA. The interaction of hypoxia and exercise was hypo-additive for ICABF and VABF and anterior and posterior cerebral O2 delivery (C D O 2 ${\mathrm{C}}{{{\mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ), but hyper-additive for MSNA. The interaction of hypercapnia and exercise was hyper-additive for ICABF and anteriorC D O 2 ${\mathrm{C}}{{{\mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , additive for VABF and posteriorC D O 2 ${\mathrm{C}}{{{\mathrm{D}}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , and hypo-additive for MSNA. These observations indicate that a suboptimal brain perfusion during hypoxic exercise coincides with a potentiated sympathetic outflow, while a (supra-)optimal brain perfusion during hypercapnic exercise coincides with a suppressed sympathetic outflow. Our findings suggest that Cushing's mechanism may play a role in the autonomic control in exercising humans.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
- Trauma Services, Primary Children's Hospital, Intermountain Health, Salt Lake City, UT, USA
| | - Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Centre, Veterans Affairs Medical Centre, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Catherine L Jarrett
- Geriatric Research, Education, and Clinical Centre, Veterans Affairs Medical Centre, Salt Lake City, UT, USA
| | - Katherine L Shields
- Geriatric Research, Education, and Clinical Centre, Veterans Affairs Medical Centre, Salt Lake City, UT, USA
| | - Angela V Bisconti
- Geriatric Research, Education, and Clinical Centre, Veterans Affairs Medical Centre, Salt Lake City, UT, USA
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Centre, Veterans Affairs Medical Centre, Salt Lake City, UT, USA
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
- Geriatric Research, Education, and Clinical Centre, Veterans Affairs Medical Centre, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Doneddu A, Roberto S, Guicciardi M, Pazzona R, Manca A, Monni A, Fanni M, Leban B, Ghiani G, Spranger MD, Mulliri G, Crisafulli A. Hemodynamics and cerebral oxygenation during acute exercise in moderate normobaric hypoxia and with concurrent cognitive task in young healthy males. Appl Physiol Nutr Metab 2024; 49:1573-1584. [PMID: 39088843 DOI: 10.1139/apnm-2023-0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The present investigation aimed to study the cardiovascular responses and the cerebral oxygenation (Cox) during exercise in acute hypoxia and with contemporary mental stress. Fifteen physically active, healthy males (age 29.0 ± 5.9 years) completed a cardiopulmonary test on a cycle ergometer to determine the workload at their gas exchange threshold (GET). On a separate day, participants performed two randomly assigned exercise tests pedaling for 6 min at a workload corresponding to 80% of the GET: (1) during normoxia (NORMO), and (2) during acute, normobaric hypoxia at 13.5% inspired oxygen (HYPO). During the last 3 min of the exercise, they also performed a mental task (MT). Hemodynamics were assessed with impedance cardiography, and peripheral arterial oxygen saturation and Cox were continuously measured by near-infrared spectroscopy. The main results were that both in NORMO and HYPO conditions, the MT caused a significant increase in the heart rate and ventricular filling rate. Moreover, MT significantly reduced (74.8 ± 5.5 vs. 62.0 ± 5.2 A.U.) Cox, while the reaction time (RT) increased (813.3 ± 110.2 vs. 868.2 ± 118.1 ms) during the HYPO test without affecting the correctness of the answers. We conclude that in young, healthy males, adding an MT during mild intensity exercise in both normoxia and acute moderate (normobaric) hypoxia induces a similar hemodynamic response. However, MT and exercise in HYPO cause a decrease in Cox and an impairment in RT.
Collapse
Affiliation(s)
- Azzurra Doneddu
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
- International PhD in Innovation Sciences and Technologies, University of Cagliari, Italy
| | - Silvana Roberto
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Marco Guicciardi
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Riccardo Pazzona
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Andrea Manca
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Alessandra Monni
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Massimo Fanni
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
- International PhD in Innovation Sciences and Technologies, University of Cagliari, Italy
| | - Bruno Leban
- Department of Mechanical, Chemical and Material Engineering, Faculty of Engineering and Architecture, University of Cagliari, Italy
| | - Giovanna Ghiani
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Gabriele Mulliri
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
- International PhD in Innovation Sciences and Technologies, University of Cagliari, Italy
| |
Collapse
|
9
|
Champigneulle B, Brugniaux JV, Stauffer E, Doutreleau S, Furian M, Perger E, Pina A, Baillieul S, Deschamps B, Hancco I, Connes P, Robach P, Pichon A, Verges S. Expedition 5300: limits of human adaptations in the highest city in the world. J Physiol 2024; 602:5449-5462. [PMID: 38146929 DOI: 10.1113/jp284550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023] Open
Abstract
Exposure to chronic hypobaric hypoxia imposes a significant physiological burden to more than 80 million humans living above 2500 m throughout the world. Among them, 50 000 live in the world's highest city, La Rinconada, located at 5000-5300 m in southern Peru. Expedition 5300 is the first scientific and medical programme led in La Rinconada to investigate the physiological adaptations and altitude-related health issues in this unique population. Dwellers from La Rinconada have very high haemoglobin concentration (20.3 ± 2.4 g/dL; n = 57) and those with chronic mountain sickness (CMS) exhibit even higher concentrations (23.1 ± 1.7 g/dL; n = 150). These values are associated with large total haemoglobin mass and blood volume, without an associated iron deficit. These changes in intravascular volumes lead to a substantial increase in blood viscosity, which is even larger in CMS patients. Despite these large haematological changes, 24 h blood pressure monitoring is essentially normal in La Rinconada, but some results suggest impaired vascular reactivity. Echocardiography revealed large right heart dilatation and high pulmonary arterial pressure as well as left ventricle concentric remodelling and grade I diastolic dysfunction. These changes in heart dimension and function tend to be more severe in highlanders with CMS. Polygraphy evaluations revealed a large reduction in nocturnal pulse oxygen saturation (median SpO2 = 79%), which is even more severe in CMS patients who also tended to show a higher oxygen desaturation index. The population of La Rinconada offers a unique opportunity to investigate the human responses to chronic severe hypoxia, at an altitude that is probably close to the maximum altitude human beings can permanently tolerate without presenting major health issues.
Collapse
Affiliation(s)
- Benoit Champigneulle
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Julien V Brugniaux
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Emeric Stauffer
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), "Red Blood cell and Vascular Biology" Team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Stéphane Doutreleau
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Michael Furian
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Alessandra Pina
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Sébastien Baillieul
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Blandine Deschamps
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Ivan Hancco
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Philippe Connes
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), "Red Blood cell and Vascular Biology" Team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Paul Robach
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Aurélien Pichon
- Laboratory Mobility, Aging & Exercise (MOVE, EA6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Samuel Verges
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| |
Collapse
|
10
|
Turner R, Rasmussen P, Gatterer H, Tremblay JC, Roche J, Strapazzon G, Roveri G, Lawley J, Siebenmann C. Cerebral blood flow regulation in hypobaric hypoxia: role of haemoconcentration. J Physiol 2024; 602:5643-5657. [PMID: 38687185 DOI: 10.1113/jp285169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
During acute hypoxic exposure, cerebral blood flow (CBF) increases to compensate for the reduced arterial oxygen content (CaO2). Nevertheless, as exposure extends, both CaO2 and CBF progressively normalize. Haemoconcentration is the primary mechanism underlying the CaO2 restoration and may therefore explain, at least in part, the CBF normalization. Accordingly, we tested the hypothesis that reversing the haemoconcentration associated with extended hypoxic exposure returns CBF towards the values observed in acute hypoxia. Twenty-three healthy lowlanders (12 females) completed two identical 4-day sojourns in a hypobaric chamber, one in normoxia (NX) and one in hypobaric hypoxia (HH, 3500 m). CBF was measured by ultrasound after 1, 6, 12, 48 and 96 h and compared between sojourns to assess the time course of changes in CBF. In addition, CBF was measured at the end of the HH sojourn after hypervolaemic haemodilution. Compared with NX, CBF was increased in HH after 1 h (P = 0.001) but similar at all later time points (all P > 0.199). Haemoglobin concentration was higher in HH than NX from 12 h to 96 h (all P < 0.001). While haemodilution reduced haemoglobin concentration from 14.8 ± 1.0 to 13.9 ± 1.2 g·dl-1 (P < 0.001), it did not increase CBF (974 ± 282 to 872 ± 200 ml·min-1; P = 0.135). We thus conclude that, at least at this moderate altitude, haemoconcentration is not the primary mechanism underlying CBF normalization with acclimatization. These data ostensibly reflect the fact that CBF regulation at high altitude is a complex process that integrates physiological variables beyond CaO2. KEY POINTS: Acute hypoxia causes an increase in cerebral blood flow (CBF). However, as exposure extends, CBF progressively normalizes. We investigated whether hypoxia-induced haemoconcentration contributes to the normalization of CBF during extended hypoxia. Following 4 days of hypobaric hypoxic exposure (corresponding to 3500 m altitude), we measured CBF before and after abolishing hypoxia-induced haemoconcentration by hypervolaemic haemodilution. Contrary to our hypothesis, the haemodilution did not increase CBF in hypoxia. Our findings do not support haemoconcentration as a stimulus for the CBF normalization during extended hypoxia.
Collapse
Affiliation(s)
- Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institut für Sportwissenschaft, Universität Innsbruck, Tyrol, Austria
| | | | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Joshua C Tremblay
- School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Johanna Roche
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giulia Roveri
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Justin Lawley
- Institut für Sportwissenschaft, Universität Innsbruck, Tyrol, Austria
| | | |
Collapse
|
11
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
12
|
Ramírez-delaCruz M, Bravo-Sánchez A, Sánchez-Infante J, Abián P, Abián-Vicén J. Effects of Acute Hypoxic Exposure in Simulated Altitude in Healthy Adults on Cognitive Performance: A Systematic Review and Meta-Analysis. BIOLOGY 2024; 13:835. [PMID: 39452143 PMCID: PMC11504018 DOI: 10.3390/biology13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The neurocognitive response following hypoxia has received special interest. However, it is necessary to understand the impact of acute hypoxic exposure induced by simulated altitude on cognitive performance. This study aimed to determine the effects of acute hypoxic exposure in simulated altitude in healthy adults on reaction time, response accuracy, memory, and attention. Five electronic databases were searched. The inclusion criteria were: (1) Experimental studies involving a hypoxia intervention induced by a hypoxic air generator to determine the effects on cognitive performance; and (2) Conducted in adults (males and/or females; aged 18-50 years) without pathologies or health/mental problems. Four meta-analyses were performed: (1) reaction time, (2) response accuracy, (3) memory, and (4) attention. Finally, 37 studies were included in the meta-analysis. Hypoxia exposure induced detrimental effects on reaction time (standard mean difference (SMD) -0.23; 95% confidence interval (CI) -0.38--0.07; p = 0.004), response accuracy (SMD -0.20; 95% CI -0.38--0.03; p = 0.02), and memory (SMD -0.93; 95% CI: -1.68--0.17; p = 0.02). Nevertheless, attention was not affected during hypoxia exposure (SMD -0.06; 95% CI: -0.23-0.11; p = 0.47). Acute exposure to hypoxia in controlled lab conditions appears to be detrimental to cognitive performance, specifically in reaction time, response accuracy, and memory.
Collapse
Affiliation(s)
- María Ramírez-delaCruz
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain;
| | - Alfredo Bravo-Sánchez
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1800, 28223 Pozuelo de Alarcón, Spain; (A.B.-S.); (J.S.-I.)
| | - Jorge Sánchez-Infante
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1800, 28223 Pozuelo de Alarcón, Spain; (A.B.-S.); (J.S.-I.)
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Pablo Abián
- Faculty of Humanities and Social Sciences, Comillas Pontifical University, 28049 Madrid, Spain;
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain;
| |
Collapse
|
13
|
Vassilieva A, Olsen MH, Skjøth‐Rasmussen J, Møller K, Sørensen MK. Arterial to jugular-bulb lactate difference in patients undergoing elective brain tumor craniotomy. Physiol Rep 2024; 12:e70084. [PMID: 39414383 PMCID: PMC11483513 DOI: 10.14814/phy2.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Hyperlactatemia is common during tumor craniotomy, but the underlying pathophysiology is unclear. This study measured simultaneous arterial and jugular-bulb lactate concentrations in patients undergoing brain tumor craniotomy to investigate the hypothesis that hyperlactatemia was associated with a net cerebrovascular lactate input. In 20 patients, arterial and jugular-bulb blood was collected hourly from the start of surgery to 6 h postoperatively for measurement of lactate, glucose, and oxygen concentration. For each marker, data were analyzed using a linear mixed-effects model with jugular-bulb concentration as dependent variable, arterial concentration as fixed effect, and patient as random effect. Furthermore, we generated regression lines between arterial and jugular-bulb concentrations. The slope of the regression line between arterial and jugular-bulb lactate was 0.95 (95% CI 0.93-0.97, R2 = 0.98), indicating that increasing arterial lactate levels were associated with an increasingly positive net cerebrovascular balance (net input). The line crossed the identity line at 2.86 (95% CI 0.57-5.16) mmol/L, indicating that lower levels of lactate were associated with a negative net cerebrovascular balance (net output). This suggests a switch from net lactate output during normolactatemia towards net input during hyperlactatemia. Hyperlactatemia in tumor-craniotomy patients probably does not originate from the brain.
Collapse
Affiliation(s)
- Alexandra Vassilieva
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| | - Markus Harboe Olsen
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| | - Jane Skjøth‐Rasmussen
- Department of Neurosurgery, The Neuroscience CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| | - Kirsten Møller
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Martin Kryspin Sørensen
- Copenhagen Neuroanaesthesiology and Neurointensive Care Research Group (CONICA), Department of Neuroanaesthesiology, The Neuroscience CentreCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| |
Collapse
|
14
|
Yu X, Xu D, Hu J, Yu Y, Wang L, Jiang B, Zhang M. Exploring the Impact of Hemoglobin on Cerebral Blood Flow in Arterial Territories and Surgical Outcomes: Potential Implications for Moyamoya Disease Treatment. J Am Heart Assoc 2024; 13:e035387. [PMID: 39344645 DOI: 10.1161/jaha.124.035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Changes in levels of hemoglobin would result in alterations of cerebral blood flow (CBF). However, the impact of hemoglobin on CBF in moyamoya disease (MMD) remains largely unknown. This study sought to determine whether CBF would be influenced by hemoglobin before surgical revascularization and to analyze the relationships between hemoglobin and CBF with clinical outcome after surgery in patients with MMD. METHODS AND RESULTS We prospectively enrolled adult patients with MMD undergoing surgical revascularization between June 2020 and December 2022. Preoperative CBF was measured in the territories of anterior, middle, and posterior cerebral arteries (ACA, MCA, and PCA, respectively) using 3-dimensional pseudo-continuous arterial spin labeling magnetic resonance imaging. Clinical outcome at 1 year after surgery was evaluated using the modified Rankin Scale. A total of 60 patients with MMD were included, with 25% (n=15) experiencing unfavorable outcomes. Patients with MMD exhibited lower CBF (ACA: P=0.007; MCA: P<0.001; PCA: P=0.014), compared with healthy controls (n=40). Hemoglobin was negatively and significantly associated with CBF (ACA: β=-0.45, P<0.001; MCA: β=-0.38, P<0.001; PCA: β=-0.54, P<0.001). CBF rather than hemoglobin was significantly related with clinical outcome (ACA: P<0.001; MCA: P<0.001; PCA: P=0.001), and CBF showed high discrimination in predicting clinical outcome (ACA: area under the curve, 0.84; MCA: area under the curve, 0.84; PCA: area under the curve, 0.80). CONCLUSIONS Our findings demonstrate that hemoglobin significantly influences CBF, and CBF has a high predictive value for clinical outcome in MMD. The optimal hemoglobin level before surgical revascularization should be further investigated.
Collapse
Affiliation(s)
- Xinfeng Yu
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Duo Xu
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Junwen Hu
- Department of Neurosurgery The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yannan Yu
- Department of Radiology University of California San Francisco San Francisco CA
| | - Lin Wang
- Department of Neurosurgery The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Biao Jiang
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Minming Zhang
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
15
|
Li X, Li Y, Wang K, Qi S, Zhang Z, Cai S. Isoquercitrin alleviates OGD/R-induced oxidative stress and impaired mitochondrial biogenesis in SH-SY5Y cells via the NRF1/TFAM pathway. Cell Biochem Biophys 2024; 82:2455-2464. [PMID: 38888870 DOI: 10.1007/s12013-024-01355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Isoquercitrin (ISO) is a traditional Chinese medicine extract, that has been found to possess potent neuroprotective properties. However, its precise role in the context of ischemic stroke (IS) remains to be fully elucidated. We constructed an in vitro model of IS induced by OGD/R in SH-SY5Y cells. Cell viability, the levels of oxidative stress-related indicators (8-OHDG, MDA, SOD, GSH, and GSH-Px), ROS, and mitochondrial membrane potential were measured by using detection kits. The protein levels of GPX1, SOD, Cytc were measured. The mRNA levels of mitochondrial biogenesis-related indicators (Cytb, CO1, ND2, ND5, and ND6), and mtDNA copy number were measured by RT-qPCR. ATP levels were measured. Molecular docking between ISO and NRF1, and Co-IP assay for NRF1 and TFAM interaction were performed. Expression of NRF1 and TFAM was evaluated. ISO treatment reversed the detrimental effects of OGD/R on cell viability, attenuated the elevation of oxidative stress markers, restored antioxidant levels, and alleviated the impairment of mitochondrial biogenesis in SH-SY5Y cells. ISO interacted with NRF1 and increased its expression along with TFAM. Silencing NRF1 reversed the protective effects of ISO, suggesting its involvement in mediating the neuroprotective effects of ISO. ISO alleviates oxidative stress and mitochondrial biogenesis damage induced by OGD/R in SH-SY5Y cells by upregulating the NRF1/TFAM pathway.
Collapse
Affiliation(s)
- Xiuping Li
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Yujie Li
- School of Medicine, Hunan University of Medicine, Huaihua, China
| | - KeRui Wang
- School of Medicine, Hunan University of Medicine, Huaihua, China
| | - Sike Qi
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Zherui Zhang
- School of Medicine, Hunan University of Medicine, Huaihua, China
| | - Shichang Cai
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China.
| |
Collapse
|
16
|
Moreno-Domínguez A, Colinas O, Arias-Mayenco I, Cabeza JM, López-Ogayar JL, Chandel NS, Weissmann N, Sommer N, Pascual A, López-Barneo J. Hif1α-dependent mitochondrial acute O 2 sensing and signaling to myocyte Ca 2+ channels mediate arterial hypoxic vasodilation. Nat Commun 2024; 15:6649. [PMID: 39103356 PMCID: PMC11300585 DOI: 10.1038/s41467-024-51023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Vasodilation in response to low oxygen (O2) tension (hypoxic vasodilation) is an essential homeostatic response of systemic arteries that facilitates O2 supply to tissues according to demand. However, how blood vessels react to O2 deficiency is not well understood. A common belief is that arterial myocytes are O2-sensitive. Supporting this concept, it has been shown that the activity of myocyte L-type Ca2+channels, the main ion channels responsible for vascular contractility, is reversibly inhibited by hypoxia, although the underlying molecular mechanisms have remained elusive. Here, we show that genetic or pharmacological disruption of mitochondrial electron transport selectively abolishes O2 modulation of Ca2+ channels and hypoxic vasodilation. Mitochondria function as O2 sensors and effectors that signal myocyte Ca2+ channels due to constitutive Hif1α-mediated expression of specific electron transport subunit isoforms. These findings reveal the acute O2-sensing mechanisms of vascular cells and may guide new developments in vascular pharmacology.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ignacio Arias-Mayenco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José M Cabeza
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Juan L López-Ogayar
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
17
|
Liang Y, Gao ZZ, Chen HY, Gao HK, Qiang XP, Wang J. Assessment of Dynamic Cerebral Autoregulation During Long-Term Exposure to High Altitude in Normal Subjects by Ultrasonography. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1441-1448. [PMID: 38700100 DOI: 10.1002/jum.16467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/30/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE To evaluate changes in dynamic cerebral autoregulation (CA) during short-term and long-term exposure to high altitude with ultrasonography, and also study the sex differences in the response of CA to altitude. METHODS We assessed the differences in dynamic CA and measured with Doppler ultrasound of the bilateral internal carotid artery (ICA), vertebral artery (VA), and middle cerebral artery (MCA) and the values of basic information within 48 hours and at 2 years after arrival at Tibet in 65 healthy Han young Chinese volunteers, meanwhile, we compared the resistance index (RI) and pulsatility index (PI) of the right MCA at inhale oxygen 8 minutes when a newcomer with 2 years after arrival at Tibet. RESULTS With 2 years of altitude exposure, the SaO2 of all subjects was above 90%, the mean PEF, DAP, and HR values decreased, HGB increased compared within 48 hours in same-gender groups. Comparisons of cerebral hemodynamics between before 2 years and after 2 years within male and female groups, the mean RI and PI values of bilateral MCA after 2 years were significantly higher than before 2 years, at the same time, the mean RI and PI values of bilateral ICA were significant differences (P < .05) between male groups, with regard to female groups, showed that the mean RI and PI values of bilateral VA were significant differences (P < .05). Comparisons of Right MCA hemodynamics between after oxygen uptake 8 minutes and 2 years, the mean RI and PI values were no significant difference within male and female groups (P > .05). CONCLUSIONS Acute mountain sickness could result from an alteration of dynamic autoregulation of cerebral blood flow, but the impaired autoregulation may be corrected with the extension of time, furthermore, the response of CA to altitude in males and females are different.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Ultrasonic Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Zi Zhao Gao
- Department of Pathology, School of Basic Medicine and Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Hong Yu Chen
- Department of Ultrasonic Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hong Kui Gao
- Department of Ultrasonic Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xiao Peng Qiang
- Department of Ultrasonic Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jia Wang
- Department of Ultrasonic Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
18
|
Rosenberg AJ, Anderson GK, McKeefer HJ, Bird J, Pentz B, Byman BRM, Jendzjowsky N, Wilson RJ, Day TA, Rickards CA. Hemorrhage at high altitude: impact of sustained hypobaric hypoxia on cerebral blood flow, tissue oxygenation, and tolerance to simulated hemorrhage in humans. Eur J Appl Physiol 2024; 124:2365-2378. [PMID: 38489034 PMCID: PMC11321930 DOI: 10.1007/s00421-024-05450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
With ascent to high altitude (HA), compensatory increases in cerebral blood flow and oxygen delivery must occur to preserve cerebral metabolism and consciousness. We hypothesized that this compensation in cerebral blood flow and oxygen delivery preserves tolerance to simulated hemorrhage (via lower body negative pressure, LBNP), such that tolerance is similar during sustained exposure to HA vs. low altitude (LA). Healthy humans (4F/4 M) participated in LBNP protocols to presyncope at LA (1130 m) and 5-7 days following ascent to HA (3800 m). Internal carotid artery (ICA) blood flow, cerebral delivery of oxygen (CDO2) through the ICA, and cerebral tissue oxygen saturation (ScO2) were determined. LBNP tolerance was similar between conditions (LA: 1276 ± 304 s vs. HA: 1208 ± 306 s; P = 0.58). Overall, ICA blood flow and CDO2 were elevated at HA vs. LA (P ≤ 0.01) and decreased with LBNP under both conditions (P < 0.0001), but there was no effect of altitude on ScO2 responses (P = 0.59). Thus, sustained exposure to hypobaric hypoxia did not negatively impact tolerance to simulated hemorrhage. These data demonstrate the robustness of compensatory physiological mechanisms that preserve human cerebral blood flow and oxygen delivery during sustained hypoxia, ensuring cerebral tissue metabolism and neuronal function is maintained.
Collapse
Affiliation(s)
- Alexander J Rosenberg
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
- Physiology Department, Midwestern University, Downers Grove, IL, USA
| | - Garen K Anderson
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haley J McKeefer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | | | - Nicholas Jendzjowsky
- University of Calgary, Calgary, AB, Canada
- Institute of Respiratory Medicine & Exercise Physiology, The Lundquist Institute at UCLA Harbor Medical, Torrance, CA, USA
| | | | | | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
19
|
Furian M, Ulliel-Roche M, Howe CA, Zerizer F, Marillier M, Bernard AC, Hancco I, Champigneulle B, Baillieul S, Stauffer E, Pichon AP, Doutreleau S, Verges S, Brugniaux JV. Cerebral homeostasis and orthostatic responses in residents of the highest city in the world. Sci Rep 2024; 14:17732. [PMID: 39085313 PMCID: PMC11291767 DOI: 10.1038/s41598-024-68389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Permanent residence at high-altitude and chronic mountain sickness (CMS) may alter the cerebrovascular homeostasis and orthostatic responses. Healthy male participants living at sea-level (LL; n = 15), 3800 m (HL3800m; n = 13) and 5100 m (HL5100m; n = 17), respectively, and CMS highlanders living at 5100 m (n = 31) were recruited. Middle cerebral artery mean blood flow velocity (MCAv), cerebral oxygen delivery (CDO2), mean blood pressure (MAP), heart rate variability and spontaneuous cardiac baroreflex sensitivity (cBRS) were assessed while sitting, initial 30 s and after 3 min of standing. Cerebral autoregulation index (ARI) was estimated (ΔMCAv%baseline)/ΔMAP%baseline) in response to the orthostatic challenge. Altitude and CMS were associated with hypoxemia and elevated hemoglobin concentration. While sitting, MCAv and LFpower negatively correlated with altitude but were not affected by CMS. CDO2 remained preserved. BRS was comparable across all altitudes, but lower with CMS. Within initial 30 s of standing, altitude and CMS correlated with a lesser ΔMAP while ARI remained unaffected. After 3 min standing, MCAv, CDO2 and cBRS remained preserved across altitudes. The LF/HF ratio increased in HL5100m compared to LL and HL3800m from sitting to standing. In contrary, CMS showed blunted autonomic nervous activation in responses to standing. Despite altitude- and CMS-associated hypoxemia, erythrocytosis and impaired blood pressure regulation (CMS only), cerebral homeostasis remained overall preserved.
Collapse
Affiliation(s)
- M Furian
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France.
- Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland.
| | - M Ulliel-Roche
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - C A Howe
- Center for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - F Zerizer
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - M Marillier
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - A C Bernard
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - I Hancco
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - B Champigneulle
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - S Baillieul
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - E Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - A P Pichon
- Laboratory Mobility, aging & exercise (MOVE, EA6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - S Doutreleau
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - S Verges
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - J V Brugniaux
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
20
|
Vásquez-Velásquez C, Gonzales GF. Evaluation of the hemoglobin cutoff point for anemia in adult women residents of different altitudinal levels in Peru. PLoS One 2024; 19:e0307502. [PMID: 39078861 PMCID: PMC11288407 DOI: 10.1371/journal.pone.0307502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Anemia prevalence is high in countries where high proportion of the population lives at high altitude (HA) due perhaps to the unsuitability hemoglobin correction factor proposed by the WHO. The present study has been designed to evaluate a new approach to establish thresholds of hemoglobin (Hb) when defining anemia at HA. MATERIALS & METHODS Cross-sectional study evaluating 217 women aged 18 to 75 years-old, residents of 2 cities at low altitude (LA) (130 and 150 meters) and 2 at HA (3800 and 4300 meters). Hb, pulse oxygen saturation (SpO2), arterial oxygen content (CaO2), and inflammatory markers were measured. Three definitions of anemia diagnoses were used: uncorrected Hb, WHO-corrected Hb, and Silubonde's criteria based on ferritin as a gold standard. STATA v18.0 was use for data analysis, p<0.05 indicated significant difference. RESULTS HA residents present higher Hb values than at LA. Likewise, the highest area under the curve (AUC) ROC (Receiver Operating Characteristic) was observed for uncorrected Hb (AUC = 0.8595; CI95% 0.858-0.86) for the diagnosis of anemia using serum ferritin as the gold standard. Anemia prevalence was higher when using WHO-corrected Hb, 27%, and Silubonde's criteria, 41% (Hb cut-off of 11.10, 12.73, 15.80 and 16.60 g/dl for altitudes of 130, 150, 3800 and 4300 meters, respectively), than using uncorrected Hb to define anemia (7.7%). Serum Ferritin and CaO2 values are lower only in the group with anemia defined with uncorrected Hb than in the groups of anemia using the WHO-corrected Hb or the Silubonde´s criteria. CONCLUSIONS The correction factor of hemoglobin for altitude of residence overestimates the prevalence of anemia in adult women. Likewise, CaO2 could be a potential marker to determine the transport of oxygen in LA and HA populations. Further studies in adult men are required to confirm the present findings.
Collapse
Affiliation(s)
- Cinthya Vásquez-Velásquez
- Laboratorio de Endocrinología y Reproducción, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo F. Gonzales
- Laboratorio de Endocrinología y Reproducción, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
21
|
Ma K, Bebawy JF. Anemia and Optimal Transfusion Thresholds in Brain-Injured Patients: A Narrative Review of the Literature. Anesth Analg 2024; 138:992-1002. [PMID: 38109853 DOI: 10.1213/ane.0000000000006772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Anemia is a highly prevalent condition that may compromise oxygen delivery to vital organs, especially among the critically ill. Although current evidence supports the adoption of a restrictive transfusion strategy and threshold among the nonbleeding critically ill patient, it remains unclear whether this practice should apply to the brain-injured patient, given the predisposition to cerebral ischemia in this patient population, in which even nonprofound anemia may exert a detrimental effect on clinical outcomes. The purpose of this review is to provide an overview of the pathophysiological changes related to impaired cerebral oxygenation in the brain-injured patient and to present the available evidence on the effect of anemia and varying transfusion thresholds on the clinical outcomes of patients with acute brain injury.
Collapse
Affiliation(s)
- Kan Ma
- From the Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - John F Bebawy
- Department of Anesthesiology and Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
22
|
Wang T, Zhong W, Chen Z, Shen K, Ye H, Yu Z, Luo J, Ma J, Lou M. Association between baseline hemoglobin level and early neurological deterioration after intravenous thrombolysis in patients with acute ischemic stroke. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:168-174. [PMID: 38501300 PMCID: PMC11057983 DOI: 10.3724/zdxbyxb-2023-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVES To investigate the association between baseline hemoglobin level and early neurologic deterioration (END) after intravenous thrombolysis in patients with acute ischemic stroke (AIS). METHODS Data of AIS patients who received intravenous thrombolytic therapy at multiple hospitals across the country between January 2017 and July 2020 were collected from the online database Acute Stroke Patients for Stroke Management Quality Evaluation (CASE-Ⅱ, NCT04487340). Binary logistic regression analysis was used to study the factors affecting the occurrence of END after intravenous thrombolytic therapy, and the correlation between baseline hemoglobin level and END was investigated by limiting cubic spline curve analysis. RESULTS A total of 8162 patients were included. Patients with END had lower baseline hemoglobin levels (136 and 140 g/L, P<0.01) and higher rates of anemia (24.2% and 16.9%, P<0.01) compared with non-END patients. Binary logistic regression analysis showed that baseline hemoglobin level (OR=0.995, 95%CI: 0.991-0.999, P<0.05) and anemia (OR=1.238, 95%CI: 1.055-1.454, P<0.01) were independently correlated with the occurrence of END after intravenous thrombolysis in AIS patients. Restricted cubic spline regression showed that there was a U-shaped relationship between hemoglobin level and the risk of END after intravenous thrombolysis in AIS patients (P<0.01), although this relationship was only significant in male patients (P<0.05) and not in female patients (P>0.05). CONCLUSIONS There is a correlation between baseline hemoglobin level and the risk of END in AIS patients after intravenous thrombolysis, especially in male patients, in whom both lower and higher hemoglobin level may increase the risk of END.
Collapse
Affiliation(s)
- Tinghuan Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
- Department of Neurology, the First People's Hospital of Jiashan County, Jiaxing 314100, Zhejiang Province, China.
| | - Wansi Zhong
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhicai Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ke Shen
- Department of Neurology, Shaoxing Hospital Affiliated to China Medical University, Shaoxing 312099, Zhejiang Province, China
| | - Huiya Ye
- Department of Neurology, Shaoxing Hospital Affiliated to China Medical University, Shaoxing 312099, Zhejiang Province, China
| | - Zhihui Yu
- Department of Neurology, Shaoxing Hospital Affiliated to China Medical University, Shaoxing 312099, Zhejiang Province, China
| | - Jia Luo
- Department of Neurology, Shaoxing Hospital Affiliated to China Medical University, Shaoxing 312099, Zhejiang Province, China
| | - Jun Ma
- Department of Neurology, Shaoxing Hospital Affiliated to China Medical University, Shaoxing 312099, Zhejiang Province, China
| | - Min Lou
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
23
|
Drviš I, Vrdoljak D, Dujić G, Dujić Ž, Foretić N. Construction and Validation of Newly Adapted Sport-Specific Anaerobic Diving Tests. Sports (Basel) 2024; 12:110. [PMID: 38668578 PMCID: PMC11053401 DOI: 10.3390/sports12040110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Breath-hold diving is explained as an activity that requires enduring muscle asphyxia and acidosis, high anaerobic capacity, and the tactic of the dive. Therefore, this study aimed to construct and validate tests that will mimic anaerobic processes in the specific media of freedivers. The sample of participants included 34 Croatian freedivers (average age: 26.85 ± 4.0 years, competitive age: 3.82 ± 1.92 years, their body height: 180.14 ± 8.93 cm, and their body mass: 76.82 ± 12.41 kg). The sample of variables consists of anthropometric indices, competitive efficiency (maximal length of a dive (DYN)), and specific anaerobic capacities (100 m and 2 min tests). Newly developed tests included the swimming anaerobic sprint test (SAST) and diving anaerobic sprint test (DAST). DAST and SAST variables included the total time of the test (DAST/SAST) and the fastest interval (DASTmax/SASTmax). The results showed good reliability of the tests with high Cronbach alpha coefficients (DAST: 0.98, DASTmax: 0.97, SAST: 0.99, SASTmax: 0.91). Furthermore, pragmatic validity shows a high correlation among all variables and DAST (DYN: -0.70, 100 m: 0.66, 2 min: -0.68). High relation is also found between 100 m (0.96), 2 min (-0.94), and a moderate result for DYN (-0.43) and the SAST test. A factor analysis extracted one significant factor. The factor analysis involved DAST, SAST, DYN, 100 m, and 2 min tests regarding factor 1. After the examination of all variables, the total time of the DAST test showed the best predictive values for the performance of divers. However, both tests could be used for diagnostics and the evaluation of specific condition abilities in freediving.
Collapse
Affiliation(s)
- Ivan Drviš
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Dario Vrdoljak
- Faculty of Kinesiology, University of Split, 21000 Split, Croatia;
| | - Goran Dujić
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, 21000 Split, Croatia;
| | - Željko Dujić
- Department of Integrative Physiology, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Nikola Foretić
- Faculty of Kinesiology, University of Split, 21000 Split, Croatia;
- High Performance Sport Center, Croatian Olympic Committee, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Kilmartin KC, Al Balushi A, Altit G, Lapointe A, Rampakakis E, Barbosa Vargas S, Maluorni J, Wintermark P. Impact of persistent pulmonary hypertension and oxygenation on brain injury in neonates with neonatal encephalopathy treated with therapeutic hypothermia. J Perinatol 2024; 44:513-520. [PMID: 37872383 DOI: 10.1038/s41372-023-01805-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE To investigate the effects of persistent pulmonary hypertension (PPHN) and oxygenation on outcome of neonates with neonatal encephalopathy (NE) treated with therapeutic hypothermia (TH). STUDY DESIGN We compared the outcome of neonates with NE treated with TH with or without PPHN. RESULTS 384 neonates with NE were treated with TH; 24% had PPHN. The fraction of inspired oxygen was higher in the first 4 days of life (p < 0.001) in neonates with PPHN. They had a significantly lower arterial partial pressure of oxygen in the first 4 days of life (p = 0.005) and higher on days 3-4 of life (p < 0.001). They were more often intubated (p < 0.001) and more often had concomitant hypotension (p < 0.001). They had higher mortality (p = 0.009) and more often developed brain injury (p = 0.02). CONCLUSION PPHN occurred frequently in neonates with NE treated with TH and was associated with a higher incidence of adverse outcome.
Collapse
Affiliation(s)
- Keira C Kilmartin
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Asim Al Balushi
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
- Department of Pediatric Cardiology, National Heart Centre, Muscat, Oman
| | - Gabriel Altit
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Anie Lapointe
- Division of Newborn Medicine, Department of Pediatrics, CHU Ste-Justine, University of Montreal, Montreal, QC, Canada
| | | | - Stephanie Barbosa Vargas
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Julie Maluorni
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Pia Wintermark
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
25
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
26
|
Dominelli PB, Senefeld JW, Wiggins CC, Baker SE, Clayburn AJ, Joyner MJ. Quadriceps fatigue during hypoxic and ischemic knee-extension exercise is similar in males and females. J Appl Physiol (1985) 2024; 136:177-188. [PMID: 38059290 PMCID: PMC11219010 DOI: 10.1152/japplphysiol.00656.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023] Open
Abstract
Hypoxia is known to increase muscle fatigue via both central and peripheral mechanisms. Females are typically less fatigable than males during isometric fatiguing contractions due to greater peripheral blood flow. However, sex differences in fatigue are blunted during dynamic fatiguing tasks. Thus, this study determined the interactions of sex and hypoxia on knee extensor muscle contractile function during a dynamic, ischemic fatiguing contraction. Electrical stimulation was used to determine contractile properties of the knee extensor muscles in eight males and eight females before and after an ischemic, dynamic fatiguing task while inspiring room air or a hypoxic gas mixture (10% O2:90% N2). Fatigue (assessed as time-to-task failure) was ∼10% greater during the hypoxic condition (94.3 ± 33.4 s) compared with normoxic condition (107.0 ± 42.8 s, P = 0.041) and ∼40% greater for females than males (77.1 ± 18.8 vs. 124.2 ± 38.7, P < 0.001). Immediately after the dynamic fatiguing task, there were reductions in maximal voluntary contraction force (P = 0.034) and electrically evoked twitch force (P < 0.001), and these reductions did not differ based on sex or inspirate. Cerebral tissue oxygenation showed a significant interaction of time and inspirate (P = 0.003) whereby it increased during normoxia and remained unchanged in hypoxia. No sex-related differences in the changes of cerebral tissue oxygenation were observed (P = 0.528). These data suggest that acute hypoxia increases central fatigue during ischemic single-leg exercise resulting in earlier exercise termination, but the effect does not differ based on sex.NEW & NOTEWORTHY Hypoxia exacerbates fatigue via central mechanisms after ischemic single-leg exercise. The greater fatigue observed during ischemic dynamic fatiguing exercise with hypoxia inspirate did not differ between the sexes. Hypoxia-induced central limitations are present in acute ischemic exercise and do not appear different in males and females.
Collapse
Affiliation(s)
- Paolo B Dominelli
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, United States
| | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Andrew J Clayburn
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
27
|
Christie IN, Theparambil SM, Braga A, Doronin M, Hosford PS, Brazhe A, Mascarenhas A, Nizari S, Hadjihambi A, Wells JA, Hobbs A, Semyanov A, Abramov AY, Angelova PR, Gourine AV. Astrocytes produce nitric oxide via nitrite reduction in mitochondria to regulate cerebral blood flow during brain hypoxia. Cell Rep 2023; 42:113514. [PMID: 38041814 PMCID: PMC7615749 DOI: 10.1016/j.celrep.2023.113514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
During hypoxia, increases in cerebral blood flow maintain brain oxygen delivery. Here, we describe a mechanism of brain oxygen sensing that mediates the dilation of intraparenchymal cerebral blood vessels in response to reductions in oxygen supply. In vitro and in vivo experiments conducted in rodent models show that during hypoxia, cortical astrocytes produce the potent vasodilator nitric oxide (NO) via nitrite reduction in mitochondria. Inhibition of mitochondrial respiration mimics, but also occludes, the effect of hypoxia on NO production in astrocytes. Astrocytes display high expression of the molybdenum-cofactor-containing mitochondrial enzyme sulfite oxidase, which can catalyze nitrite reduction in hypoxia. Replacement of molybdenum with tungsten or knockdown of sulfite oxidase expression in astrocytes blocks hypoxia-induced NO production by these glial cells and reduces the cerebrovascular response to hypoxia. These data identify astrocyte mitochondria as brain oxygen sensors that regulate cerebral blood flow during hypoxia via release of nitric oxide.
Collapse
Affiliation(s)
- Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Maxim Doronin
- College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Alexey Brazhe
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation; Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russian Federation
| | - Alexander Mascarenhas
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK; Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, and Faculty of Life Sciences and Medicine, King's College London, London SE5 9NT, UK
| | - Jack A Wells
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Adrian Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, Jiaxing 314001, China; Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Liu Y, Cai X, Fang R, Peng S, Luo W, Du X. Future directions in ventilator-induced lung injury associated cognitive impairment: a new sight. Front Physiol 2023; 14:1308252. [PMID: 38164198 PMCID: PMC10757930 DOI: 10.3389/fphys.2023.1308252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanical ventilation is a widely used short-term life support technique, but an accompanying adverse consequence can be pulmonary damage which is called ventilator-induced lung injury (VILI). Mechanical ventilation can potentially affect the central nervous system and lead to long-term cognitive impairment. In recent years, many studies revealed that VILI, as a common lung injury, may be involved in the central pathogenesis of cognitive impairment by inducing hypoxia, inflammation, and changes in neural pathways. In addition, VILI has received attention in affecting the treatment of cognitive impairment and provides new insights into individualized therapy. The combination of lung protective ventilation and drug therapy can overcome the inevitable problems of poor prognosis from a new perspective. In this review, we summarized VILI and non-VILI factors as risk factors for cognitive impairment and concluded the latest mechanisms. Moreover, we retrospectively explored the role of improving VILI in cognitive impairment treatment. This work contributes to a better understanding of the pathogenesis of VILI-induced cognitive impairment and may provide future direction for the treatment and prognosis of cognitive impairment.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Ruiying Fang
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Shaw DM, Harrell JW. Integrating physiological monitoring systems in military aviation: a brief narrative review of its importance, opportunities, and risks. ERGONOMICS 2023; 66:2242-2254. [PMID: 36946542 DOI: 10.1080/00140139.2023.2194592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Military pilots risk their lives during training and operations. Advancements in aerospace engineering, flight profiles, and mission demands may require the pilot to test the safe limits of their physiology. Monitoring pilot physiology (e.g. heart rate, oximetry, and respiration) inflight is in consideration by several nations to inform pilots of reduced performance capacity and guide future developments in aircraft and life-support system design. Numerous challenges, however, prevent the immediate operationalisation of physiological monitoring sensors, particularly their unreliability in the aerospace environment and incompatibility with pilot clothing and protective equipment. Human performance and behaviour are also highly variable and measuring these in controlled laboratory settings do not mirror the real-world conditions pilots must endure. Misleading or erroneous predictive models are unacceptable as these could compromise mission success and lose operator trust. This narrative review provides an overview of considerations for integrating physiological monitoring systems within the military aviation environment.Practitioner summary: Advancements in military technology can conflictingly enhance and compromise pilot safety and performance. We summarise some of the opportunities, limitations, and risks of integrating physiological monitoring systems within military aviation. Our intent is to catalyse further research and technological development.Abbreviations: AGS: anti-gravity suit; AGSM: anti-gravity straining manoeuvre; A-LOC: almost loss of consciousness; CBF: cerebral blood flow; ECG: electrocardiogram; EEG: electroencephalogram; fNIRS: functional near-infrared spectroscopy; G-forces: gravitational forces; G-LOC: gravity-induced loss of consciousness; HR: heart rate; HRV: heart rate variability; LSS: life-support system; NATO: North Atlantic Treaty Organisation; PE: Physiological Episode; PCO2: partial pressure of carbon dioxide; PO2: partial pressure of oxygen; OBOGS: on board oxygen generating systems; SpO2: peripheral blood haemoglobin-oxygen saturation; STANAG: North Atlantic Treaty Organisation Standardisation Agreement; UPE: Unexplained Physiological Episode; WBV: whole body vibration.
Collapse
Affiliation(s)
- David M Shaw
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Auckland, New Zealand
- School of Sport, Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - John W Harrell
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| |
Collapse
|
30
|
Ando S, Tsukamoto H, Stacey BS, Washio T, Owens TS, Calverley TA, Fall L, Marley CJ, Iannetelli A, Hashimoto T, Ogoh S, Bailey DM. Acute hypoxia impairs posterior cerebral bioenergetics and memory in man. Exp Physiol 2023; 108:1516-1530. [PMID: 37898979 PMCID: PMC10988469 DOI: 10.1113/ep091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
Hypoxia has the potential to impair cognitive function; however, it is still uncertain which cognitive domains are adversely affected. We examined the effects of acute hypoxia (∼7 h) on central executive (Go/No-Go) and non-executive (memory) tasks and the extent to which impairment was potentially related to regional cerebral blood flow and oxygen delivery (CDO2 ). Twelve male participants performed cognitive tasks following 0, 2, 4 and 6 h of passive exposure to both normoxia and hypoxia (12% O2 ), in a randomized block cross-over single-blinded design. Middle cerebral artery (MCA) and posterior cerebral artery (PCA) blood velocities and corresponding CDO2 were determined using bilateral transcranial Doppler ultrasound. In hypoxia, MCA DO2 was reduced during the Go/No-Go task (P = 0.010 vs. normoxia, main effect), and PCA DO2 was attenuated during memorization (P = 0.005 vs. normoxia) and recall components (P = 0.002 vs. normoxia) in the memory task. The accuracy of the memory task was also impaired in hypoxia (P = 0.049 vs. normoxia). In contrast, hypoxia failed to alter reaction time (P = 0.19 vs. normoxia) or accuracy (P = 0.20 vs. normoxia) during the Go/No-Go task, indicating that selective attention and response inhibition were preserved. Hypoxia did not affect cerebral blood flow or corresponding CDO2 responses to cognitive activity (P > 0.05 vs. normoxia). Collectively, these findings highlight the differential sensitivity of cognitive domains, with memory being selectively vulnerable in hypoxia. NEW FINDINGS: What is the central question of this study? We sought to examine the effects of acute hypoxia on central executive (selective attention and response inhibition) and non-executive (memory) performance and the extent to which impairments are potentially related to reductions in regional cerebral blood flow and oxygen delivery. What is the main finding and its importance? Memory was impaired in acute hypoxia, and this was accompanied by a selective reduction in posterior cerebral artery oxygen delivery. In contrast, selective attention and response inhibition remained well preserved. These findings suggest that memory is selectively vulnerable to hypoxia.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and EngineeringThe University of Electro‐CommunicationsTokyoJapan
| | - Hayato Tsukamoto
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
- Faculty of Sports ScienceWaseda UniversitySaitamaJapan
| | - Benjamin S. Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Takuro Washio
- Department of Biomedical EngineeringToyo UniversityKawagoeSaitamaJapan
| | - Thomas S. Owens
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Thomas A. Calverley
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Lewis Fall
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Christopher J. Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | | | - Shigehiko Ogoh
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
- Department of Biomedical EngineeringToyo UniversityKawagoeSaitamaJapan
| | - Damian M. Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| |
Collapse
|
31
|
Pei C, Jia N, Wang Y, Zhao S, Shen Z, Shi S, Huang D, Wu Y, Wang X, Li S, He Y, Wang Z. Notoginsenoside R1 protects against hypobaric hypoxia-induced high-altitude pulmonary edema by inhibiting apoptosis via ERK1/2-P90rsk-BAD ignaling pathway. Eur J Pharmacol 2023; 959:176065. [PMID: 37775017 DOI: 10.1016/j.ejphar.2023.176065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
High-altitude pulmonary edema (HAPE) is a potentially fatal disease. Notoginsenoside R1 is a novel phytoestrogen with anti-inflammatory, antioxidant and anti-apoptosis properties. However, its effects and underlying mechanisms in the protection of hypobaric hypoxia-induced HAPE rats remains unclear. This study aimed to explore the protective effects and underlying mechanisms of Notoginsenoside R1 in hypobaric hypoxia-induced HAPE. We found that Notoginsenoside R1 alleviated the lung tissue injury, decreased lung wet/dry ratio, and reduced inflammation and oxidative stress. Additionally, Notoginsenoside R1 ameliorated the changes in arterial blood gas, decreased the total protein concentration in bronchoalveolar lavage fluid, and inhibited the occurrence of apoptosis caused by HAPE. In the process of further exploration of the mechanism, it was found that Notoginsenoside R1 could promote the activation of ERK1/2-P90rsk-BAD signaling pathway, and the effect of Notoginsenoside R1 was attenuated after the use of ERK1/2 inhibitor U0126. Our study indicated that the protective effects of Notoginsenoside R1 against HAPE were mainly related to the inhibition of inflammation, oxidative stress, and apoptosis. Notoginsenoside R1 may be a potential candidate for preventing HAPE.
Collapse
Affiliation(s)
- Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yongcan Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| |
Collapse
|
32
|
Macionis V. Neurovascular Compression-Induced Intracranial Allodynia May Be the True Nature of Migraine Headache: an Interpretative Review. Curr Pain Headache Rep 2023; 27:775-791. [PMID: 37837483 DOI: 10.1007/s11916-023-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE OF REVIEW Surgical deactivation of migraine trigger sites by extracranial neurovascular decompression has produced encouraging results and challenged previous understanding of primary headaches. However, there is a lack of in-depth discussions on the pathophysiological basis of migraine surgery. This narrative review provides interpretation of relevant literature from the perspective of compressive neuropathic etiology, pathogenesis, and pathophysiology of migraine. RECENT FINDINGS Vasodilation, which can be asymptomatic in healthy subjects, may produce compression of cranial nerves in migraineurs at both extracranial and intracranial entrapment-prone sites. This may be predetermined by inherited and acquired anatomical factors and may include double crush-type lesions. Neurovascular compression can lead to sensitization of the trigeminal pathways and resultant cephalic hypersensitivity. While descending (central) trigeminal activation is possible, symptomatic intracranial sensitization can probably only occur in subjects who develop neurovascular entrapment of cranial nerves, which can explain why migraine does not invariably afflict everyone. Nerve compression-induced focal neuroinflammation and sensitization of any cranial nerve may neurogenically spread to other cranial nerves, which can explain the clinical complexity of migraine. Trigger dose-dependent alternating intensity of sensitization and its synchrony with cyclic central neural activities, including asymmetric nasal vasomotor oscillations, may explain the laterality and phasic nature of migraine pain. Intracranial allodynia, i.e., pain sensation upon non-painful stimulation, may better explain migraine pain than merely nociceptive mechanisms, because migraine cannot be associated with considerable intracranial structural changes and consequent painful stimuli. Understanding migraine as an intracranial allodynia could stimulate research aimed at elucidating the possible neuropathic compressive etiology of migraine and other primary headaches.
Collapse
|
33
|
Hanyu F, Zheng H, Jiaqi W, Tairan D, Yiyuanzi Z, Qiwen Y, Ying L, Hongchun Z, Lu L. Protective effects and mechanism of curcumin in animal models of pulmonary fibrosis: a preclinical systematic review and meta-analysis. Front Pharmacol 2023; 14:1258885. [PMID: 37900163 PMCID: PMC10613035 DOI: 10.3389/fphar.2023.1258885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: At present, there is a lack of effective treatment for pulmonary fibrosis (PF), and a number of studies have confirmed that curcumin (CUR) has a good effect on PF. Research Qusetion: Is CUR effective in preclinical trials for PF and what is its mechanism of action? Methods: Animal reports of PF treated with CUR were searched from Pubmed, Embase, Web of Science and Cochrane Library from 1 January 2000 to 19 April 2023 to compare CUR treatment of PF with a no-intervention model group. A previous registration (nsply registration number: INPLASY202360084) of this review protocol was undertaken. Results: The meta-analysis included 27 publications and 29 studies involving 396 animals. CUR significantly improved the degree of fibrosis, levels of inflammation, and oxidative imbalances in lung tissue in animal models of PF. In terms fibrosis, such as HYP content (SMD = -4.96; 95% CI = -6.05 to -3.87; p = 0.000).In terms of inflammatory indicators, such as MPO activity (SMD = -2.12; 95% CI = -4.93 to 0.69; p = 0.000). In terms of oxidation index, such as MDA (SMD = -5.63; 95% CI = -9.66 to -1.6; p = 0.000). Conclusion: CUR significantly improved the degree of fibrosis, levels of inflammation, and oxidative imbalances in lung tissue in animal models of PF. Due to the quantitative and qualitative limitations of current research, more high-quality studies are needed to verify the above conclusion.
Collapse
Affiliation(s)
- Fang Hanyu
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Hong Zheng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Wang Jiaqi
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dong Tairan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Zhao Yiyuanzi
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yang Qiwen
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Liu Ying
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, China
| | - Zhang Hongchun
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liu Lu
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Jining Hospital of Xiyuan Hospital of China Academy of Chinese Medical Science, Jining, Shandong, China
| |
Collapse
|
34
|
Abstract
With ascent to high altitude, barometric pressure declines, leading to a reduction in the partial pressure of oxygen at every point along the oxygen transport chain from the ambient air to tissue mitochondria. This leads, in turn, to a series of changes over varying time frames across multiple organ systems that serve to maintain tissue oxygen delivery at levels sufficient to prevent acute altitude illness and preserve cognitive and locomotor function. This review focuses primarily on the physiological adjustments and acclimatization processes that occur in the lungs of healthy individuals, including alterations in control of breathing, ventilation, gas exchange, lung mechanics and dynamics, and pulmonary vascular physiology. Because other organ systems, including the cardiovascular, hematologic and renal systems, contribute to acclimatization, the responses seen in these systems, as well as changes in common activities such as sleep and exercise, are also addressed. While the pattern of the responses highlighted in this review are similar across individuals, the magnitude of such responses often demonstrates significant interindividual variability which accounts for subsequent differences in tolerance of the low oxygen conditions in this environment.
Collapse
Affiliation(s)
- Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andrew M Luks
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
35
|
Theodorakopoulou MP, Dipla K, Zafeiridis A, Faitatzidou D, Koutlas A, Doumas M, Papagianni A, Sarafidis P. Cerebral oxygenation during exercise deteriorates with advancing chronic kidney disease. Nephrol Dial Transplant 2023; 38:2379-2388. [PMID: 37096390 DOI: 10.1093/ndt/gfad076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Cognitive impairment and exercise intolerance are common in chronic kidney disease (CKD). Cerebral perfusion and oxygenation play a major role in both cognitive function and exercise execution. This study aimed to examine cerebral oxygenation during a mild physical stress in patients at different CKD stages and controls without CKD. METHODS Ninety participants (18 per CKD stage 2, 3a, 3b and 4 and 18 controls) underwent a 3-min intermittent handgrip exercise at 35% of their maximal voluntary contraction. During exercise, cerebral oxygenation [oxyhaemoglobin (O2Hb), deoxyhaemoglobin (HHb) and total haemoglobin (tHb)] was assessed by near-infrared spectroscopy. Indices of microvascular (muscle hyperaemic response) and macrovascular function (carotid intima-media thickness and pulse wave velocity (PWV)) and cognitive and physical activity status were also evaluated. RESULTS No differences in age, sex and body mass index were detected among groups. The mini-mental state examination score was significantly reduced with advancing CKD stages (controls: 29.2 ± 1.2, stage 2: 28.7 ± 1.0, stage 3a: 27.8 ± 1.9, stage 3b: 28.0 ± 1.8, stage 4: 27.6 ± 1.5; P = .019). Similar trends were observed for physical activity levels and handgrip strength. The average response in cerebral oxygenation (O2Hb) during exercise was lower with advancing CKD stages (controls: 2.50 ± 1.54, stage 2: 1.30 ± 1.05, stage 3a: 1.24 ± 0.93, stage 3b: 1.11 ± 0.89, stage 4: 0.97 ± 0.80 μmol/l; P < .001). The average tHb response (index of regional blood volume) showed a similar decreasing trend (P = .003); no differences in HHb among groups were detected. In univariate linear analysis, older age, lower estimated glomerular filtration rate (eGFR), Hb, microvascular hyperaemic response and increased PWV were associated with poor O2Hb response during exercise. In the multiple model, eGFR was the only parameter independently associated with the O2Hb response. CONCLUSIONS Brain activation during a mild physical task appears to decrease with advancing CKD as suggested by the smaller increase in cerebral oxygenation. This may contribute to impaired cognitive function and reduced exercise tolerance with advancing CKD.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Andreas Zafeiridis
- Exercise Physiology and Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Danai Faitatzidou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aggelos Koutlas
- Exercise Physiology and Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
36
|
Schoenthal T, Hoiland R, Griesdale DE, Sekhon MS. Cerebral hemodynamics after cardiac arrest: implications for clinical management. Minerva Anestesiol 2023; 89:824-833. [PMID: 37676177 DOI: 10.23736/s0375-9393.23.17268-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Following resuscitation from cardiac arrest, hypoxic ischemic brain injury (HIBI) ensues, which is the primary determinant of adverse outcome. The pathophysiology of HIBI can be compartmentalized into primary and secondary injury, resulting from cerebral ischemia during cardiac arrest and reperfusion following successful resuscitation, respectively. During the secondary injury phase, increased attention has been directed towards the optimization of cerebral oxygen delivery to prevent additive injury to the brain. During this phase, cerebral hemodynamics are characterized by early hyperemia following resuscitation and then a protracted phase of cerebral hypoperfusion termed "no-reflow" during which additional hypoxic-ischemic injury can occur. As such, identification of therapeutic strategies to optimize cerebral delivery of oxygen is at the forefront of HIBI research. Unfortunately, randomized control trials investigating the manipulation of arterial carbon dioxide tension and mean arterial pressure augmentation as methods to potentially improve cerebral oxygen delivery have shown no impact on clinical outcomes. Emerging literature suggests differential patient-specific phenotypes may exist in patients with HIBI. The potential to personalize therapeutic strategies in the critical care setting based upon patient-specific pathophysiology presents an attractive strategy to improve HIBI outcomes. Herein, we review the cerebral hemodynamic pathophysiology of HIBI, discuss patient phenotypes as it pertains to personalizing care, as well as suggest future directions.
Collapse
Affiliation(s)
- Tison Schoenthal
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Center for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
- International Collaboration on Repair Discoveries, Vancouver, BC, Canada
| | - Donald E Griesdale
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Center for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada -
- International Collaboration on Repair Discoveries, Vancouver, BC, Canada
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Hoiland RL, Robba C, Menon DK, Citerio G, Sandroni C, Sekhon MS. Clinical targeting of the cerebral oxygen cascade to improve brain oxygenation in patients with hypoxic-ischaemic brain injury after cardiac arrest. Intensive Care Med 2023; 49:1062-1078. [PMID: 37507572 PMCID: PMC10499700 DOI: 10.1007/s00134-023-07165-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The cerebral oxygen cascade includes three key stages: (a) convective oxygen delivery representing the bulk flow of oxygen to the cerebral vascular bed; (b) diffusion of oxygen from the blood into brain tissue; and (c) cellular utilisation of oxygen for aerobic metabolism. All three stages may become dysfunctional after resuscitation from cardiac arrest and contribute to hypoxic-ischaemic brain injury (HIBI). Improving convective cerebral oxygen delivery by optimising cerebral blood flow has been widely investigated as a strategy to mitigate HIBI. However, clinical trials aimed at optimising convective oxygen delivery have yielded neutral results. Advances in the understanding of HIBI pathophysiology suggest that impairments in the stages of the oxygen cascade pertaining to oxygen diffusion and cellular utilisation of oxygen should also be considered in identifying therapeutic strategies for the clinical management of HIBI patients. Culprit mechanisms for these impairments may include a widening of the diffusion barrier due to peri-vascular oedema and mitochondrial dysfunction. An integrated approach encompassing both intra-parenchymal and non-invasive neuromonitoring techniques may aid in detecting pathophysiologic changes in the oxygen cascade and enable patient-specific management aimed at reducing the severity of HIBI.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada.
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada.
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada.
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - David K Menon
- Department of Medicine, University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
38
|
Hoiland RL, MacLeod DB, Stacey BS, Caldwell HG, Howe CA, Nowak-Flück D, Carr JMJR, Tymko MM, Coombs GB, Patrician A, Tremblay JC, Van Mierlo M, Gasho C, Stembridge M, Sekhon MS, Bailey DM, Ainslie PN. Hemoglobin and cerebral hypoxic vasodilation in humans: Evidence for nitric oxide-dependent and S-nitrosothiol mediated signal transduction. J Cereb Blood Flow Metab 2023; 43:1519-1531. [PMID: 37042194 PMCID: PMC10414015 DOI: 10.1177/0271678x231169579] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/13/2023]
Abstract
Cerebral hypoxic vasodilation is poorly understood in humans, which undermines the development of therapeutics to optimize cerebral oxygen delivery. Across four investigations (total n = 195) we investigated the role of nitric oxide (NO) and hemoglobin-based S-nitrosothiol (RSNO) and nitrite (NO 2 - ) signaling in the regulation of cerebral hypoxic vasodilation. We conducted hemodilution (n = 10) and NO synthase inhibition experiments (n = 11) as well as hemoglobin oxygen desaturation protocols, wherein we measured cerebral blood flow (CBF), intra-arterial blood pressure, and in subsets of participants trans-cerebral release/uptake of RSNO and NO 2 - . Higher CBF during hypoxia was associated with greater trans-cerebral RSNO release but not NO 2 - , while NO synthase inhibition reduced cerebral hypoxic vasodilation. Hemodilution increased the magnitude of cerebral hypoxic vasodilation following acute hemodilution, while in 134 participants tested under normal conditions, hypoxic cerebral vasodilation was inversely correlated to arterial hemoglobin concentration. These studies were replicated in a sample of polycythemic high-altitude native Andeans suffering from excessive erythrocytosis (n = 40), where cerebral hypoxic vasodilation was inversely correlated to hemoglobin concentration, and improved with hemodilution (n = 6). Collectively, our data indicate that cerebral hypoxic vasodilation is partially NO-dependent, associated with trans-cerebral RSNO release, and place hemoglobin-based NO signaling as a central mechanism of cerebral hypoxic vasodilation in humans.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
- International Collaboration on Repair Discoveries, Vancouver, BC, Canada
| | - David B MacLeod
- Human Pharmacology & Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Hannah G Caldwell
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Daniela Nowak-Flück
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jay MJR Carr
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Michael M Tymko
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Geoff B Coombs
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Alexander Patrician
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Michelle Van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Chris Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Mypinder S Sekhon
- International Collaboration on Repair Discoveries, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
39
|
Leo JA, Sabapathy S, Kuck L, Simmonds MJ. Modulation of red blood cell nitric oxide synthase phosphorylation in the quiescent and exercising human forearm. Am J Physiol Regul Integr Comp Physiol 2023; 325:R260-R268. [PMID: 37424398 DOI: 10.1152/ajpregu.00017.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
In vitro investigations demonstrate that human erythrocytes synthesize nitric oxide via a functional isoform of endothelial nitric oxide synthase (NOS) (RBC-NOS). We tested the hypothesis that phosphorylation of RBC-NOS at serine residue 1177 (RBC-NOS1177) would be amplified in blood draining-active skeletal muscle. Furthermore, given hypoxemia modulates local blood flow and thus shear stress, and nitric oxide availability, we performed duplicate experiments under normoxia and hypoxia. Nine healthy volunteers performed rhythmic handgrip exercise at 60% of individualized maximal workload for 3.5 min while breathing room air (normoxia) and after being titrated to an arterial oxygen saturation ≈80% (hypoxemia). We measured brachial artery blood flow by high-resolution duplex ultrasound, while continuously monitoring vascular conductance and mean arterial pressure using finger photoplethysmography. Blood was sampled during the final 30 s of each stage from an indwelling cannula. Blood viscosity was measured to facilitate calculation of accurate shear stresses. Erythrocytes were assessed for levels of phosphorylated RBC-NOS1177 and cellular deformability from blood collected at rest and during exercise. Forearm exercise increased blood flow, vascular conductance, and vascular shear stress, which coincided with a 2.7 ± 0.6-fold increase in RBC-NOS1177 phosphorylation (P < 0.0001) and increased cellular deformability (P < 0.0001) under normoxia. When compared with normoxia, hypoxemia elevated vascular conductance and shear stress (P < 0.05) at rest, while cellular deformability (P < 0.01) and RBC-NOS1177 phosphorylation (P < 0.01) increased. Hypoxemic exercise elicited further increases in vascular conductance, shear stress, and cell deformability (P < 0.0001), although a subject-specific response in RBC-NOS1177 phosphorylation was observed. Our data yield novel insights into the manner that hemodynamic force and oxygen tension modulate RBC-NOS in vivo.
Collapse
Affiliation(s)
- Jeffrey A Leo
- Exercise and Sport, School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
| | - Surendran Sabapathy
- Exercise and Sport, School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
| | - Lennart Kuck
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
40
|
Terrett LA, McIntyre L, Turgeon AF, English SW. Anemia and Red Blood Cell Transfusion in Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2023; 39:91-103. [PMID: 37634181 DOI: 10.1007/s12028-023-01815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Anemia is very common in aneurysmal subarachnoid hemorrhage (aSAH), with approximately half of the aSAH patient population developing moderate anemia during their hospital stay. The available evidence (both physiologic and clinical) generally supports an association of anemia with unfavorable outcomes. Although aSAH shares a number of common mechanisms of secondary insult with other forms of acute brain injury, aSAH also has specific features that make it unique: an early phase (in which early brain injury predominates) and a delayed phase (in which delayed cerebral ischemia and vasospasm predominate). The effects of both anemia and transfusion are potentially variable between these phases, which may have unique considerations and possibly different risk-benefit profiles. Data on transfusion in this population are almost exclusively limited to observational studies, which suffer from significant heterogeneity and risk of bias. Overall, the results are conflicting, with the balance of the studies suggesting that transfusion is associated with unfavorable outcomes. The transfusion targets that are well established in other critically ill populations should not be automatically applied to patients with aSAH because of the unique disease characteristics of this population and the limited representation of aSAH in the clinical trials that established these targets. There are two upcoming clinical trials evaluating transfusion in aSAH that should help clarify specific transfusion targets. Until then, it is reasonable to base transfusion decisions on the current guidelines and use an individualized approach incorporating physiologic and clinical data when available.
Collapse
Affiliation(s)
- Luke A Terrett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Adult Critical Care, Saskatchewan Health Authority, Saskatoon, SK, Canada
| | - Lauralyn McIntyre
- Department of Medicine (Critical Care), University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program (CEP), Ottawa Hospital Research Institute (OHRI), Civic Campus Room F202, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada
- The Ottawa Hospital, Ottawa, ON, Canada
| | - Alexis F Turgeon
- Department of Anesthesiology and Critical Care Medicine, Université Laval, Quebec City, QC, Canada
- Population Health and Optimal Health Practices Unit, Centre hospitalier universitaire de Québec-Université Laval Research Center, Quebec City, QC, Canada
| | - Shane W English
- Department of Medicine (Critical Care), University of Ottawa, Ottawa, ON, Canada.
- Clinical Epidemiology Program (CEP), Ottawa Hospital Research Institute (OHRI), Civic Campus Room F202, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada.
- The Ottawa Hospital, Ottawa, ON, Canada.
| |
Collapse
|
41
|
Patrician A, Willie C, Hoiland RL, Gasho C, Subedi P, Anholm JD, Tymko MM, Ainslie PN. Manipulation of iron status on cerebral blood flow at high altitude in lowlanders and adapted highlanders. J Cereb Blood Flow Metab 2023; 43:1166-1179. [PMID: 36883428 PMCID: PMC10291452 DOI: 10.1177/0271678x231152734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 12/05/2022] [Indexed: 03/09/2023]
Abstract
Cerebral blood flow (CBF) increases during hypoxia to counteract the reduction in arterial oxygen content. The onset of tissue hypoxemia coincides with the stabilization of hypoxia-inducible factor (HIF) and transcription of downstream HIF-mediated processes. It has yet to be determined, whether HIF down- or upregulation can modulate hypoxic vasodilation of the cerebral vasculature. Therefore, we examined whether: 1) CBF would increase with iron depletion (via chelation) and decrease with repletion (via iron infusion) at high-altitude, and 2) explore whether genotypic advantages of highlanders extend to HIF-mediated regulation of CBF. In a double-blinded and block-randomized design, CBF was assessed in 82 healthy participants (38 lowlanders, 20 Sherpas and 24 Andeans), before and after the infusion of either: iron(III)-hydroxide sucrose, desferrioxamine or saline. Across both lowlanders and highlanders, baseline iron levels contributed to the variability in cerebral hypoxic reactivity at high altitude (R2 = 0.174, P < 0.001). At 5,050 m, CBF in lowlanders and Sherpa were unaltered by desferrioxamine or iron. At 4,300 m, iron infusion led to 4 ± 10% reduction in CBF (main effect of time p = 0.043) in lowlanders and Andeans. Iron status may provide a novel, albeit subtle, influence on CBF that is potentially dependent on the severity and length-of-stay at high altitude.
Collapse
Affiliation(s)
- Alexander Patrician
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| | - Christopher Willie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Gasho
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Prajan Subedi
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - James D Anholm
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Michael M Tymko
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia – Okanagan, Kelowna, BC, Canada
| |
Collapse
|
42
|
Coelho-Santos V, Cruz AJN, Shih AY. Does Perinatal Intermittent Hypoxia Affect Cerebrovascular Network Development? Dev Neurosci 2023; 46:44-54. [PMID: 37231864 DOI: 10.1159/000530957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Perinatal hypoxia is an inadequate delivery of oxygen to the fetus in the period immediately before, during, or after the birth process. The most frequent form of hypoxia occurring in human development is chronic intermittent hypoxia (CIH) due to sleep-disordered breathing (apnea) or bradycardia events. CIH incidence is particularly high with premature infants. During CIH, repetitive cycles of hypoxia and reoxygenation initiate oxidative stress and inflammatory cascades in the brain. A dense microvascular network of arterioles, capillaries, and venules is required to support the constant metabolic demands of the adult brain. The development and refinement of this microvasculature is orchestrated throughout gestation and in the initial weeks after birth, at a critical juncture when CIH can occur. There is little knowledge on how CIH affects the development of the cerebrovasculature. However, since CIH (and its treatments) can cause profound abnormalities in tissue oxygen content and neural activity, there is reason to believe that it can induce lasting abnormalities in vascular structure and function at the microvascular level contributing to neurodevelopmental disorders. This mini-review discusses the hypothesis that CIH induces a positive feedback loop to perpetuate metabolic insufficiency through derailment of normal cerebrovascular development, leading to long-term deficiencies in cerebrovascular function.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Anne-Jolene N Cruz
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Svedung Wettervik T, Lewén A, Enblad P. Fine tuning of neurointensive care in aneurysmal subarachnoid hemorrhage: From one-size-fits-all towards individualized care. World Neurosurg X 2023; 18:100160. [PMID: 36818739 PMCID: PMC9932216 DOI: 10.1016/j.wnsx.2023.100160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe type of acute brain injury with high mortality and burden of neurological sequelae. General management aims at early aneurysm occlusion to prevent re-bleeding, cerebrospinal fluid drainage in case of increased intracranial pressure and/or acute hydrocephalus, and cerebral blood flow augmentation in case of delayed ischemic neurological deficits. In addition, the brain is vulnerable to physiological insults in the acute phase and neurointensive care (NIC) is important to optimize the cerebral physiology to avoid secondary brain injury. NIC has led to significantly better neurological recovery following aSAH, but there is still great room for further improvements. First, current aSAH NIC management protocols are to some extent extrapolated from those in traumatic brain injury, notwithstanding important disease-specific differences. Second, the same NIC management protocols are applied to all aSAH patients, despite great patient heterogeneity. Third, the main variables of interest, intracranial pressure and cerebral perfusion pressure, may be too superficial to fully detect and treat several important pathomechanisms. Fourth, there is a lack of understanding not only regarding physiological, but also cellular and molecular pathomechanisms and there is a need to better monitor and treat these processes. This narrative review aims to discuss current state-of-the-art NIC of aSAH, knowledge gaps in the field, and future directions towards a more individualized care in the future.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
44
|
Denchev K, Gomez J, Chen P, Rosenblatt K. Traumatic Brain Injury: Intraoperative Management and Intensive Care Unit Multimodality Monitoring. Anesthesiol Clin 2023; 41:39-78. [PMID: 36872007 DOI: 10.1016/j.anclin.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Traumatic brain injury is a devastating event associated with substantial morbidity. Pathophysiology involves the initial trauma, subsequent inflammatory response, and secondary insults, which worsen brain injury severity. Management entails cardiopulmonary stabilization and diagnostic imaging with targeted interventions, such as decompressive hemicraniectomy, intracranial monitors or drains, and pharmacological agents to reduce intracranial pressure. Anesthesia and intensive care requires control of multiple physiologic variables and evidence-based practices to reduce secondary brain injury. Advances in biomedical engineering have enhanced assessments of cerebral oxygenation, pressure, metabolism, blood flow, and autoregulation. Many centers employ multimodality neuromonitoring for targeted therapies with the hope to improve recovery.
Collapse
Affiliation(s)
- Krassimir Denchev
- Department of Anesthesiology, Wayne State University, 44555 Woodward Avenue, SJMO Medical Office Building, Suite 308, Pontiac, MI 48341, USA
| | - Jonathan Gomez
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA
| | - Pinxia Chen
- Department of Anesthesiology and Critical Care Medicine, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA 18015, USA
| | - Kathryn Rosenblatt
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA.
| |
Collapse
|
45
|
Hazra R, Novelli EM, Hu X. Astrocytic mitochondrial frataxin-A promising target for ischemic brain injury. CNS Neurosci Ther 2023; 29:783-788. [PMID: 36550598 PMCID: PMC9928550 DOI: 10.1111/cns.14068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
In the ischemic brain, hypoxia leads to mitochondrial dysfunction, insufficient energy production, and astrocyte activation. Yet, most studies investigating mitochondrial dysfunction in cerebral ischemia have focused exclusively on neurons. This review will highlight the importance of the morphological, molecular, and functional heterogeneity of astrocytes in their role in brain injuries and explore how activated astrocytes exhibit calcium imbalance, reactive oxygen species overproduction, and apoptosis. In addition, special focus will be given to the role of the mitochondrial protein frataxin in activated astrocytes during ischemia and its putative role in the pharmacological management of cerebral ischemia.
Collapse
Affiliation(s)
- Rimi Hazra
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Enrico M Novelli
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Center of Cerebrovascular Disease Research, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
46
|
Ahrens E, Tartler TM, Suleiman A, Wachtendorf LJ, Ma H, Chen G, Kendale SM, Kienbaum P, Subramaniam B, Wagner S, Schaefer MS. Dose-dependent relationship between intra-procedural hypoxaemia or hypocapnia and postoperative delirium in older patients. Br J Anaesth 2023; 130:e298-e306. [PMID: 36192221 DOI: 10.1016/j.bja.2022.08.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Previous studies indicated an association between impaired cerebral perfusion and post-procedural neurological disorders. We investigated whether intra-procedural hypoxaemia or hypocapnia are associated with delirium after surgery. METHODS Inpatients ≥60 yr of age undergoing anaesthesia for surgical or interventional procedures between 2009 and 2020 at an academic healthcare network in the USA (Massachusetts) were included in this hospital registry study. The primary exposure was intra-procedural hypoxaemia, defined as peripheral oxygen saturation <90% for >2 cohering min. The co-primary exposure was hypocapnia during general anaesthesia, defined as end-tidal carbon dioxide pressure ≤25 mm Hg for >5 cohering min. The primary outcome was delirium within 7 days after surgery. RESULTS Of 71 717 included patients, 1702 (2.4%) developed postoperative delirium, and hypoxaemia was detected in 2532 (3.5%). Of 42 894 patients undergoing general anaesthesia, 532 (1.2%) experienced hypocapnia. The occurrence of either hypoxaemia (adjusted odds ratio [ORadj]=1.71; 95% confidence interval [CI], 1.40-2.07; P<0.001) or hypocapnia (ORadj=1.77; 95% CI, 1.30-2.41; P<0.001) was associated with a higher risk of delirium within 7 days. Both associations were dependent on the magnitude, and increased with event duration (ORadj=1.03; 95% CI, 1.02-1.04; P<0.001 and ORadj=1.01; 95% CI, 1.00-1.01; P=0.005, for each minute increase in the longest continuous episode, respectively). There was no association between occurrence of hypercapnia and postoperative delirium (ORadj=1.24; 95% CI, 0.90-1.71; P=0.181). CONCLUSIONS Intra-procedural hypoxaemia and hypocapnia were dose-dependently associated with a higher risk of postoperative delirium. These findings support maintaining normal gas exchange to avoid postoperative neurological disorders.
Collapse
Affiliation(s)
- Elena Ahrens
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tim M Tartler
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aiman Suleiman
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Luca J Wachtendorf
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Haobo Ma
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guanqing Chen
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Samir M Kendale
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Kienbaum
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Balachundhar Subramaniam
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Sadhguru Center for a Conscious Planet, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Soeren Wagner
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology and Intensive Care, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany; Department of Anesthesiology, Katharinenhospital Klinikum Stuttgart, Stuttgart, Germany
| | - Maximilian S Schaefer
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany.
| |
Collapse
|
47
|
Peng J, Yu Z, Xiao R, Hu X, Xia Y. Exosomal ZEB1 Derived from Neural Stem Cells Reduces Inflammation Injury in OGD/R-Treated Microglia via the GPR30-TLR4-NF-κB Axis. Neurochem Res 2023; 48:1811-1821. [PMID: 36717511 DOI: 10.1007/s11064-023-03866-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
Ischemic stroke (IS) is the most common type of stroke and the second leading cause of death overall. Neural stem cells play protective roles in IS, but the underlying mechanism remains to be determined. Neural stem cells (NSC) were obtained from the fetal brain tissue of C57BL/6J mice. NSC-derived exosomes (NSC-Exos) were identified in the conditioned medium. Internalization of NSC-Exos was analyzed by fluorescence microscopy. In vitro microglia ischemic stroke injury model was induced using oxygen glucose deprivation/re-oxygenation (OGD/R) method. Cell viability and inflammation were analyzed by MTT, qPCR, ELISA and Western blotting assay. Interaction between ZEB1 and the promoter of GPR30 was verified by luciferase assay and chromatin immunoprecipitation. NSC-Exos prevented OGD/R-mediated inhibition of cell survival and the production of inflammatory cytokines in microglia cells. NSC-Exos increased ZEB1 expression in OGD/R-treated microglia. Down-regulation of ZEB1 expression in NSC-Exos abolished NSC-Exos' protective effects on OGD/R-treated microglia. ZEB1 bound to the promoter region of GPR30 and promoted its expression. Inhibiting GPR30 reversed NSC-Exos effects on cell viability and inflammation injury in OGD/R-treated microglia. Our study demonstrated that NSC exerted cytoprotective roles through release of exosomal ZEB1,which transcriptionally upregulated GPR30 expression, resulting in a reduction in TLR4/NF-κB pathway-induced inflammation. These findings shed light on NSC-Exos' cytoprotective mechanism and highlighted its potential application in the treatment of IS.
Collapse
Affiliation(s)
- Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Renmin Avenue, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Zhengtao Yu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Renmin Avenue, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Rongjun Xiao
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Renmin Avenue, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Renmin Avenue, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Renmin Avenue, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China.
| |
Collapse
|
48
|
Wang M, Lan D, Dandu C, Ding Y, Ji X, Meng R. Normobaric oxygen may attenuate the headache in patients with patent foramen povale and migraine. BMC Neurol 2023; 23:44. [PMID: 36707824 PMCID: PMC9881355 DOI: 10.1186/s12883-023-03059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSES There has been both great interest in and skepticism about the strategies for headache inhibition in patients with patent foramen ovale and migraines (PFO-migraine). Furthermore, many questions remain about the fundamental pathophysiology of PFO-migraines. Herein, the inhibiting effect of normobaric oxygenation (NBO) on PFO-migraine was analyzed. METHODS This real-world self-control study consecutively enrolled patients during the ictal phase of migraines who had patent foramen ovale (PFO) confirmed by Trans esophageal Ultrasound(TEE). After comparing the baseline arterial oxygen partial pressure (PaO2) in their blood gas with that of healthy volunteers, all the patients with PFO-migraine underwent treatment with NBO (8 L/min. for 1 h/q8h) inhalation through a mask. Their clinical symptoms, blood gas, and electroencephalograph (EEG) prior to and post-NBO were compared. RESULTS A total of 39 cases with PFO-migraine (in which 36% of participants only had a small-aperture of PFO) and 20 non-PFO volunteers entered the final analysis. Baseline blood gas analysis results showed that the PaO2 in patients with PFO-migraine were noticeably lower than PaO2 levels in non-PFO volunteers. After all patients with PFO-migraines underwent NBO treatment, 29(74.4%) of them demonstrated dramatic headache attenuation and a remarkable increase in their arterial PaO2 levels after one time treatment of NBO inhalation (p < 0.01). The arterial PaO2 levels in these patients gradually went down during the following 4 h after treatment. 5 patients finished their EEG scans prior to and post-NBO, and 4(80%) were found to have more abnormal slow waves in their baseline EEG maps. In the follow up EEG maps post-NBO treatment for these same 4 patients, the abnormal slow waves disappeared remarkably. CONCLUSIONS Patients with PFO-migraine may derive benefit from NBO treatment. PFOs result in arterial hypoxemia due to mixing of venous blood, which ultimately results in brain hypoxia and migraines. This series of events may be the key pathologic link explaining how PFOs lead to migraines. NBO use may attenuate the headaches from migraines by correcting the hypoxemia.
Collapse
Affiliation(s)
- Mengqi Wang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XAdvanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053 China ,grid.413259.80000 0004 0632 3337National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Duo Lan
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XAdvanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053 China ,grid.413259.80000 0004 0632 3337National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Chaitu Dandu
- grid.254444.70000 0001 1456 7807Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Yuchuan Ding
- grid.254444.70000 0001 1456 7807Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Xunming Ji
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XAdvanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053 China ,grid.413259.80000 0004 0632 3337National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Ran Meng
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XAdvanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053 China ,grid.413259.80000 0004 0632 3337National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| |
Collapse
|
49
|
Carr JM, Ainslie PN, MacLeod DB, Tremblay JC, Nowak-Flück D, Howe CA, Stembridge M, Patrician A, Coombs GB, Stacey BS, Bailey DM, Green DJ, Hoiland RL. Cerebral O 2 and CO 2 transport in isovolumic haemodilution: Compensation of cerebral delivery of O 2 and maintenance of cerebrovascular reactivity to CO 2. J Cereb Blood Flow Metab 2023; 43:99-114. [PMID: 36131560 PMCID: PMC9875354 DOI: 10.1177/0271678x221119442] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study investigated the influence of acute reductions in arterial O2 content (CaO2) via isovolumic haemodilution on global cerebral blood flow (gCBF) and cerebrovascular CO2 reactivity (CVR) in 11 healthy males (age; 28 ± 7 years: body mass index; 23 ± 2 kg/m2). Radial artery and internal jugular vein catheters provided measurement of blood pressure and gases, quantification of cerebral metabolism, cerebral CO2 washout, and trans-cerebral nitrite exchange (ozone based chemiluminescence). Prior to and following haemodilution, the partial pressure of arterial CO2 (PaCO2) was elevated with dynamic end-tidal forcing while gCBF was measured with duplex ultrasound. CVR was determined as the slope of the gCBF response and PaCO2. Replacement of ∼20% of blood volume with an equal volume of 5% human serum albumin (Alburex® 5%) reduced haemoglobin (13.8 ± 0.8 vs. 11.3 ± 0.6 g/dL; P < 0.001) and CaO2 (18.9 ± 1.0 vs 15.0 ± 0.8 mL/dL P < 0.001), elevated gCBF (+18 ± 11%; P = 0.002), preserved cerebral oxygen delivery (P = 0.49), and elevated CO2 washout (+11%; P = 0.01). The net cerebral uptake of nitrite (11.6 ± 14.0 nmol/min; P = 0.027) at baseline was abolished following haemodilution (-3.6 ± 17.9 nmol/min; P = 0.54), perhaps underpinning the conservation of CVR (61.7 ± 19.0 vs. 69.0 ± 19.2 mL/min/mmHg; P = 0.23). These findings demonstrate that the cerebrovascular responses to acute anaemia in healthy humans are sufficient to support the maintenance of CVR.
Collapse
Affiliation(s)
- Jay Mjr Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - David B MacLeod
- Human Pharmacology & Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - Daniela Nowak-Flück
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7.,School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Nedlands, Western Australia
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7.,Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Ziaka M, Exadaktylos A. The Heart Is at Risk: Understanding Stroke-Heart-Brain Interactions with Focus on Neurogenic Stress Cardiomyopathy-A Review. J Stroke 2023; 25:39-54. [PMID: 36592971 PMCID: PMC9911836 DOI: 10.5853/jos.2022.02173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years, it has been convincingly demonstrated that acute brain injury may cause severe cardiac complications-such as neurogenic stress cardiomyopathy (NSC), a specific form of takotsubo cardiomyopathy. The pathophysiology of these brain-heart interactions is complex and involves sympathetic hyperactivity, activation of the hypothalamic-pituitary-adrenal axis, as well as immune and inflammatory pathways. There have been great strides in our understanding of the axis from the brain to the heart in patients with isolated acute brain injury and more specifically in patients with stroke. On the other hand, in patients with NSC, research has mainly focused on hemodynamic dysfunction due to arrhythmias, regional wall motion abnormality, or left ventricular hypokinesia that leads to impaired cerebral perfusion pressure. Comparatively little is known about the underlying secondary and delayed cerebral complications. The aim of the present review is to describe the stroke-heart-brain axis and highlight the main pathophysiological mechanisms leading to secondary and delayed cerebral injury in patients with concurrent hemorrhagic or ischemic stroke and NSC as well as to identify further areas of research that could potentially improve outcomes in this specific patient population.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|