1
|
Alzahrani JM, Smuder AJ, Gambino BJ, Delgado C, Rua MT, Montalvo RN, Fitton FP, Morse DA, Clanton TL. Mice develop obesity and lose myocardial metabolic flexibility months after exertional heat stroke. Commun Biol 2025; 8:65. [PMID: 39820023 PMCID: PMC11739569 DOI: 10.1038/s42003-025-07484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
As global temperatures rise, heat-related chronic health disorders are predicted to become more prevalent. We tested whether a single exposure to acute heat illness, using a preclinical mouse model of exertional heat stroke (EHS), can induce late-emerging health disorders that progress into chronic disease. Following EHS, mice were followed for 3 months; after two weeks of recovery, half were placed on a Western diet to determine if previous EHS exposure amplifies the negative consequences of an atherogenic diet. When compared to sham exercise controls, EHS-exposed mice exhibit accelerated diet-induced obesity, develop low level cardiac hypertrophy, develop accelerated diet-induced liver steatosis, severe hypoproteinemia and a loss of metabolic flexibility in the myocardium. The latter is characterized by a shift towards predominant glucose metabolism and glycolysis. These results demonstrate that a single exposure to severe exertional heat illness can induce long-lasting and unexpected health consequences in mammals and increased vulnerability to secondary metabolic stressors.
Collapse
Affiliation(s)
- Jamal M Alzahrani
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
- Exercise Physiology Department, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Bryce J Gambino
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Cristina Delgado
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Michael T Rua
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Ryan N Montalvo
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Finleigh P Fitton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Deborah A Morse
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Freemantle JB, Towler MC, Hudson ER, Macartney T, Zwirek M, Liu DJK, Pan DA, Ponnambalam S, Hardie DG. AMPK associates with and causes fragmentation of the Golgi by phosphorylating the guanine nucleotide exchange factor GBF1. J Cell Sci 2024; 137:jcs262182. [PMID: 39575556 DOI: 10.1242/jcs.262182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/01/2024] [Indexed: 12/24/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular functions in response to changes in energy availability. However, whether AMPK activity is spatially regulated, and the implications for cell function, have been unclear. We now report that AMPK associates with the Golgi, and that its activation by two specific pharmacological activators leads to Golgi fragmentation similar to that caused by the antibiotic Golgicide A, an inhibitor of Golgi-specific Brefeldin A resistance factor-1 (GBF1), a guanine nucleotide exchange factor that targets ADP-ribosylation factor 1 (ARF1). Golgi fragmentation in response to AMPK activators is lost in cells carrying gene knockouts of AMPK-α subunits. AMPK has been previously reported to phosphorylate GBF1 at residue Thr1337, and its activation causes phosphorylation at that residue. Importantly, Golgi disassembly upon AMPK activation is blocked in cells expressing a non-phosphorylatable GBF1-T1337A mutant generated by gene editing. Furthermore, the trafficking of a plasma membrane-targeted protein through the Golgi complex is delayed by AMPK activation. Our findings provide a mechanism to link AMPK activation during cellular energy stress to downregulation of protein trafficking involving the Golgi.
Collapse
Affiliation(s)
- Jordana B Freemantle
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Mhairi C Towler
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Emma R Hudson
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Monika Zwirek
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - David J K Liu
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - David A Pan
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
3
|
Prasad SK, Acharjee A, Singh VV, Trigun SK, Acharjee P. Modulation of brain energy metabolism in hepatic encephalopathy: impact of glucose metabolic dysfunction. Metab Brain Dis 2024; 39:1649-1665. [PMID: 39120853 DOI: 10.1007/s11011-024-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cerebral function is linked to a high level of metabolic activity and relies on glucose as its primary energy source. Glucose aids in the maintenance of physiological brain activities; as a result, a disruption in metabolism has a significant impact on brain function, launching a chain of events that leads to neuronal death. This metabolic insufficiency has been observed in a variety of brain diseases and neuroexcitotoxicity disorders, including hepatic encephalopathy. It is a significant neurological complication that develops in people with liver disease, ranging from asymptomatic abnormalities to coma. Hyperammonemia is the main neurotoxic villain in the development of hepatic encephalopathy and induces a wide range of complications in the brain. The neurotoxic effects of ammonia on brain function are thought to be mediated by impaired glucose metabolism. Accordingly, in this review, we provide an understanding of deranged brain energy metabolism, emphasizing the role of glucose metabolic dysfunction in the pathogenesis of hepatic encephalopathy. We also highlighted the differential metabolic profiles of brain cells and the status of metabolic cooperation between them. The major metabolic pathways that have been explored are glycolysis, glycogen metabolism, lactate metabolism, the pentose phosphate pathway, and the Krebs cycle. Furthermore, the lack of efficacy in current hepatic encephalopathy treatment methods highlights the need to investigate potential therapeutic targets for hepatic encephalopathy, with regulating deficient bioenergetics being a viable alternative in this case. This review also demonstrates the importance of the development of glucose metabolism-focused disease diagnostics and treatments, which are now being pursued for many ailments.
Collapse
Affiliation(s)
- Shambhu Kumar Prasad
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arup Acharjee
- Department of Zoology, University of Allahabad, Prayagraj, 211002, India.
| | - Vishal Vikram Singh
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Trigun
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Papia Acharjee
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 PMCID: PMC11752127 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
5
|
Freemantle JB, Shah D, Lynch DM, Ciulli A, Hundal HS, Hardie DG. The pro-drug C13 activates AMPK by two distinct mechanisms. Biochem J 2024; 481:1203-1219. [PMID: 39222030 PMCID: PMC11555695 DOI: 10.1042/bcj20240425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is expressed in almost all eukaryotic cells. In the canonical activation mechanism, it is activated by increases in AMP:ATP and ADP:ATP ratios that signify declining cellular energy status. Once activated, AMPK phosphorylates numerous targets that promote catabolic pathways generating ATP, while inhibiting anabolic and other processes that consume ATP, thus acting to restore energy homeostasis. Pharmacological agents that activate AMPK have been useful in identifying downstream targets and have potential as drugs for treatment of metabolic disorders such as Type 2 diabetes and non-alcoholic fatty liver disease. One such agent is C13, a pro-drug with a phosphonate bis(isobutyryloxymethyl) ester moiety, with the isobutyryloxymethyl groups increasing membrane permeability. Following cellular uptake, C13 is cleaved to release C2, an AMP analogue and potent AMPK activator that is specific for complexes containing the α1 (but not the α2) catalytic subunit isoform. This has previously been assumed to be the sole mechanism by which C13 activates AMPK, with potential roles for the isobutyryloxymethyl groups being ignored. We now report that, following cleavage from C13, these protective groups are metabolized to formaldehyde, an agent that inhibits mitochondrial function and increases cellular AMP:ATP ratios, thus providing additional AMPK activation by the canonical mechanism.
Collapse
Affiliation(s)
- Jordana B. Freemantle
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Dinesh Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Dylan M. Lynch
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Harinder S. Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
6
|
Gu S, Zhou Z, Zhang S, Cai Y. Advances in Anti-Diabetic Cognitive Dysfunction Effect of Erigeron Breviscapus (Vaniot) Hand-Mazz. Pharmaceuticals (Basel) 2022; 16:ph16010050. [PMID: 36678547 PMCID: PMC9867432 DOI: 10.3390/ph16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic cognitive dysfunction (DCD) is the decline in memory, learning, and executive function caused by diabetes. Although its pathogenesis is unclear, molecular biologists have proposed various hypotheses, including insulin resistance, amyloid β hypothesis, tau protein hyperphosphorylation hypothesis, oxidative stress and neuroinflammation. DCD patients have no particular treatment options and current pharmacological regimens are suboptimal. In recent years, Chinese medicine research has shown that herbs with multi-component, multi-pathway and multi-target synergistic activities can prevent and treat DCD. Yunnan is home to the medicinal herb Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM). Studies have shown that EBHM and its active components have a wide range of pharmacological effects and applications in cognitive disorders. EBHM's anti-DCD properties have been seldom reviewed. Through a literature study, we were able to evaluate the likely pathophysiology of DCD, prescribe anti-DCD medication and better grasp EBHM's therapeutic potential. EBHM's pharmacological mechanism and active components for DCD treatment were also summarized.
Collapse
Affiliation(s)
- Shanye Gu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziyi Zhou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shijie Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Yefeng Cai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
- Correspondence: ; Tel.: +86-136-3133-3842
| |
Collapse
|
7
|
Robles P, Turner A, Zuco G, Adams S, Paganopolou P, Winton M, Hill B, Kache V, Bateson C, Pires-daSilva A. Parental energy-sensing pathways control intergenerational offspring sex determination in the nematode Auanema freiburgensis. BMC Biol 2021; 19:102. [PMID: 34001117 PMCID: PMC8130380 DOI: 10.1186/s12915-021-01032-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Environmental stimuli experienced by the parental generation influence the phenotype of subsequent generations (Demoinet et al., Proc Natl Acad Sci U S A 114:E2689-E2698, 2017; Burton et al., Nat Cell Biol 19:252-257, 2017; Agrawal et al., Nature 401:60-63, 1999). The effects of these stimuli on the parental generation may be passed through the germline, but the mechanisms at the basis of this non-Mendelian type of inheritance, their level of conservation, how they lead to adaptive vs non-adaptive, and intergenerational vs transgenerational inheritance are poorly understood. Here we show that modulation of nutrient-sensing pathways in the parental generation of the nematode Auanema freiburgensis regulates phenotypic plasticity of its offspring. RESULTS In response to con-specific pheromones indicative of stress, AMP-activated protein kinase (AMPK), mechanistic target of rapamycin complex 1 (mTORC1), and insulin signaling regulate stress resistance and sex determination across one generation, and these effects can be mimicked by pathway modulators. The effectors of these pathways are closely associated with the chromatin, and their regulation affects the chromatin acetylation status in the germline. CONCLUSION These results suggest that highly conserved metabolic sensors regulate phenotypic plasticity through regulation of subcellular localization of their effectors, leading to changes in chromatin acetylation and epigenetic status of the germline.
Collapse
Affiliation(s)
- Pedro Robles
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Anisa Turner
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Giusy Zuco
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Michael Winton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Beth Hill
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Vikas Kache
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Christine Bateson
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Andre Pires-daSilva
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
8
|
Višnjić D, Lalić H, Dembitz V, Tomić B, Smoljo T. AICAr, a Widely Used AMPK Activator with Important AMPK-Independent Effects: A Systematic Review. Cells 2021. [PMID: 34064363 DOI: 10.3390/cellsl0051095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr) has been one of the most commonly used pharmacological modulators of AMPK activity. The majority of early studies on the role of AMPK, both in the physiological regulation of metabolism and in cancer pathogenesis, were based solely on the use of AICAr as an AMPK-activator. Even with more complex models of AMPK downregulation and knockout being introduced, AICAr remained a regular starting point for many studies focusing on AMPK biology. However, there is an increasing number of studies showing that numerous AICAr effects, previously attributed to AMPK activation, are in fact AMPK-independent. This review aims to give an overview of the present knowledge on AMPK-dependent and AMPK-independent effects of AICAr on metabolism, hypoxia, exercise, nucleotide synthesis, and cancer, calling for caution in the interpretation of AICAr-based studies in the context of understanding AMPK signaling pathway.
Collapse
Affiliation(s)
- Dora Višnjić
- Laboratory of Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Hrvoje Lalić
- Laboratory of Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Vilma Dembitz
- Laboratory of Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Barbara Tomić
- Laboratory of Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Tomislav Smoljo
- Laboratory of Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
AICAr, a Widely Used AMPK Activator with Important AMPK-Independent Effects: A Systematic Review. Cells 2021; 10:cells10051095. [PMID: 34064363 PMCID: PMC8147799 DOI: 10.3390/cells10051095] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 12/24/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr) has been one of the most commonly used pharmacological modulators of AMPK activity. The majority of early studies on the role of AMPK, both in the physiological regulation of metabolism and in cancer pathogenesis, were based solely on the use of AICAr as an AMPK-activator. Even with more complex models of AMPK downregulation and knockout being introduced, AICAr remained a regular starting point for many studies focusing on AMPK biology. However, there is an increasing number of studies showing that numerous AICAr effects, previously attributed to AMPK activation, are in fact AMPK-independent. This review aims to give an overview of the present knowledge on AMPK-dependent and AMPK-independent effects of AICAr on metabolism, hypoxia, exercise, nucleotide synthesis, and cancer, calling for caution in the interpretation of AICAr-based studies in the context of understanding AMPK signaling pathway.
Collapse
|
10
|
Russell FM, Hardie DG. AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? Int J Mol Sci 2020; 22:E186. [PMID: 33375416 PMCID: PMC7795930 DOI: 10.3390/ijms22010186] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy balance. In response to metabolic stress, it acts to redress energy imbalance through promotion of ATP-generating catabolic processes and inhibition of ATP-consuming processes, including cell growth and proliferation. While findings that AMPK was a downstream effector of the tumour suppressor LKB1 indicated that it might act to repress tumourigenesis, more recent evidence suggests that AMPK can either suppress or promote cancer, depending on the context. Prior to tumourigenesis AMPK may indeed restrain aberrant growth, but once a cancer has arisen, AMPK may instead support survival of the cancer cells by adjusting their rate of growth to match their energy supply, as well as promoting genome stability. The two isoforms of the AMPK catalytic subunit may have distinct functions in human cancers, with the AMPK-α1 gene often being amplified, while the AMPK-α2 gene is more often mutated. The prevalence of metabolic disorders, such as obesity and Type 2 diabetes, has led to the development of a wide range of AMPK-activating drugs. While these might be useful as preventative therapeutics in individuals predisposed to cancer, it seems more likely that AMPK inhibitors, whose development has lagged behind that of activators, would be efficacious for the treatment of pre-existing cancers.
Collapse
Affiliation(s)
| | - David Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland DD1 5EH, UK;
| |
Collapse
|
11
|
Alghamdi F, Alshuweishi Y, Salt IP. Regulation of nutrient uptake by AMP-activated protein kinase. Cell Signal 2020; 76:109807. [DOI: 10.1016/j.cellsig.2020.109807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
|
12
|
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci 2020; 7:76. [PMID: 32457917 PMCID: PMC7226927 DOI: 10.3389/fmolb.2020.00076] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis – it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
13
|
Zhang XQ, Zhao D, Ma YD, Wang YC, Zhang LX, Guo WJ, Zhang JH, Nie L, Yue LM. Impact of Disturbed Glucose Homeostasis Regulated by AMPK in Endometrium on Embryo Implantation in Diabetes Mice. Reprod Sci 2020; 27:1752-1757. [PMID: 32086756 DOI: 10.1007/s43032-020-00169-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
The incidence of diabetes in women of childbearing age has been increasing recently and implantation failure and early abortion are important reasons for infertility in diabetic women. Glycogen synthesis and decomposition are the cores of glucose homeostasis in endometrium and AMPK is activated when cellular energy consumption increases. Embryo implantation is a complex process required huge energy. Yet the changes of glucose metabolism in endometrium and its impact on embryo implantation in diabetic women are still unclear. In this research, we established diabetic pregnancy mice model by intraperitoneal injecting streptozotocin on pregnant day 1. We first tested the changes of endometrial glucose homeostasis and embryo implantation. Next, we demonstrated abnormal activation of AMPK in the endometrium of diabetic mice and its affecting endometrial glucose homeostasis. Finally, we compared the endometrial glucose homeostasis and embryo implantation outcome in diabetic pregnant mice treated with insulin or insulin combined with metformin. The results indicated that there was disturbed glucose homeostasis associated with excessive activation of AMPK in endometrium of diabetic pregnant mice. AMPK inhibitor improved the over-activation of AMPK pathway in the endometrium, meanwhile, partially corrected the abnormal glycogen metabolism and improved the implantation. Insulin improved the disorder of endometrial glucose homeostasis and implantation of diabetic mice. Our research explores the causes of high abortion and infertility rate in diabetic women which is to provide a therapeutic reference for patients with diabetes complicated with infertility and early abortion.
Collapse
Affiliation(s)
- Xue-Qin Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17 Section 3 Renmin South Road, Chengdu, 610041, China
| | - Dan Zhao
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17 Section 3 Renmin South Road, Chengdu, 610041, China
| | - Yong-Dan Ma
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17 Section 3 Renmin South Road, Chengdu, 610041, China
| | - Yi-Cheng Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17 Section 3 Renmin South Road, Chengdu, 610041, China
| | - Li-Xue Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17 Section 3 Renmin South Road, Chengdu, 610041, China
| | - Wen-Jing Guo
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17 Section 3 Renmin South Road, Chengdu, 610041, China
| | - Jin-Hu Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17 Section 3 Renmin South Road, Chengdu, 610041, China
| | - Li Nie
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17 Section 3 Renmin South Road, Chengdu, 610041, China
| | - Li-Min Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17 Section 3 Renmin South Road, Chengdu, 610041, China. .,Reproductive Endocrinology and Regulation Joint Laboratory, West China Second University Hospital, Sichuan University, 17 Section 3 Renmin South Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
14
|
Mechanical Postconditioning Promotes Glucose Metabolism and AMPK Activity in Parallel with Improved Post-Ischemic Recovery in an Isolated Rat Heart Model of Donation after Circulatory Death. Int J Mol Sci 2020; 21:ijms21030964. [PMID: 32024002 PMCID: PMC7039237 DOI: 10.3390/ijms21030964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
Donation after circulatory death (DCD) could improve donor heart availability; however, warm ischemia-reperfusion injury raises concerns about graft quality. Mechanical postconditioning (MPC) may limit injury, but mechanisms remain incompletely characterized. Therefore, we investigated the roles of glucose metabolism and key signaling molecules in MPC using an isolated rat heart model of DCD. Hearts underwent 20 min perfusion, 30 min global ischemia, and 60 minu reperfusion with or without MPC (two cycles: 30 s reperfusion—30 s ischemia). Despite identical perfusion conditions, MPC either significantly decreased (low recovery = LoR; 32 ± 5%; p < 0.05), or increased (high recovery = HiR; 59 ± 7%; p < 0.05) the recovery of left ventricular work compared with no MPC (47 ± 9%). Glucose uptake and glycolysis were increased in HiR vs. LoR hearts (p < 0.05), but glucose oxidation was unchanged. Furthermore, in HiR vs. LoR hearts, phosphorylation of raptor, a downstream target of AMPK, increased (p < 0.05), cytochrome c release (p < 0.05) decreased, and TNFα content tended to decrease. Increased glucose uptake and glycolysis, lower mitochondrial damage, and a trend towards decreased pro-inflammatory cytokines occurred specifically in HiR vs. LoR MPC hearts, which may result from greater AMPK activation. Thus, we identify endogenous cellular mechanisms that occur specifically with cardioprotective MPC, which could be elicited in the development of effective reperfusion strategies for DCD cardiac grafts.
Collapse
|
15
|
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 2020; 18:527-551. [PMID: 30867601 DOI: 10.1038/s41573-019-0019-2] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - David Carling
- Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
16
|
Vara-Ciruelos D, Russell FM, Hardie DG. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? †. Open Biol 2019; 9:190099. [PMID: 31288625 PMCID: PMC6685927 DOI: 10.1098/rsob.190099] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) acts as a cellular energy sensor. Once switched on by increases in cellular AMP : ATP ratios, it acts to restore energy homeostasis by switching on catabolic pathways while switching off cell growth and proliferation. The canonical AMP-dependent mechanism of activation requires the upstream kinase LKB1, which was identified genetically to be a tumour suppressor. AMPK can also be switched on by increases in intracellular Ca2+, by glucose starvation and by DNA damage via non-canonical, AMP-independent pathways. Genetic studies of the role of AMPK in mouse cancer suggest that, before disease arises, AMPK acts as a tumour suppressor that protects against cancer, with this protection being further enhanced by AMPK activators such as the biguanide phenformin. However, once cancer has occurred, AMPK switches to being a tumour promoter instead, enhancing cancer cell survival by protecting against metabolic, oxidative and genotoxic stresses. Studies of genetic changes in human cancer also suggest diverging roles for genes encoding subunit isoforms, with some being frequently amplified, while others are mutated.
Collapse
Affiliation(s)
| | | | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
17
|
Habieb A, Matboli M, El-Tayeb H, El-Asmar F. Potential role of lncRNA-TSIX, miR-548-a-3p, and SOGA1 mRNA in the diagnosis of hepatocellular carcinoma. Mol Biol Rep 2019; 46:4581-4590. [PMID: 31004302 DOI: 10.1007/s11033-019-04810-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Recent trends are moving towards the use of the circulating transcriptome as a potential diagnostic and therapeutic tool for hepatocellular carcinoma (HCC). The aim of this study is to identify circulatory RNA based biomarker panel, in addition to their relationship to the outcome in HCC. First, utilizing bioinformatics tools, we selected an HCC-specific RNA-based biomarker panel that depended on the integration of suppressor of glucose autophagy-associated (SOGA1) gene expression with the chosen panel of epigenetic regulators of this gene [long non-coding RNA antisense for X-inactive-specific transcript (lncRNA-TSIX) and microRNA-548-a-3p (miR-548-a-3p)]. Second, we attempted to validate these biomarkers using the sera of 65 patients with HCC, 34 patients with chronic hepatitis C virus (CHC) infection and 32 healthy volunteers. Finally, the expression levels of the chosen RNA-based biomarker panel were assessed in the serum samples using qRT-PCR assays. The panel of 3 RNA-based biomarkers (lncRNA-TSIX, miR-548-a-3p, and SOGA1) exhibited high sensitivity and specificity in differentiating HCC patients from CHC patients and healthy controls. Among these 3 RNAs, serum lncRNA-TSIX and SOGA1 were independent prognostic factor. The chosen circulatory RNA-based biomarker panel may serve as a diagnostic and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Alaa Habieb
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt.
| | - Hanaa El-Tayeb
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Farid El-Asmar
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| |
Collapse
|
18
|
Miyamoto L. Molecular Pathogenesis of Familial Wolff-Parkinson-White Syndrome. THE JOURNAL OF MEDICAL INVESTIGATION 2018; 65:1-8. [PMID: 29593177 DOI: 10.2152/jmi.65.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Familial Wolff-Parkinson-White (WPW) syndrome is an autosomal dominant inherited disease and consists of a small percentage of WPW syndrome which exhibits ventricular pre-excitation by development of accessory atrioventricular pathway. A series of mutations in PRKAG2 gene encoding gamma2 subunit of 5'AMP-activated protein kinase (AMPK) has been identified as the cause of familial WPW syndrome. AMPK is one of the most important metabolic regulators of carbohydrates and lipids in many types of tissues including cardiac and skeletal muscles. Patients and animals with the mutation in PRKAG2 gene exhibit aberrant atrioventricular conduction associated with cardiac glycogen overload. Recent studies have revealed "novel" significance of canonical pathways leading to glycogen synthesis and provided us profound insights into molecular mechanism of the regulation of glycogen metabolism by AMPK. This review focuses on the molecular basis of the pathogenesis of cardiac abnormality due to PRKAG2 mutation and will provide current overviews of the mechanism of glycogen regulation by AMPK. J. Med. Invest. 65:1-8, February, 2018.
Collapse
|
19
|
Mendler M, Kopf S, Groener JB, Riedinger C, Fleming TH, Nawroth PP, Okun JG. Urine levels of 5-aminoimidazole-4-carboxamide riboside (AICAR) in patients with type 2 diabetes. Acta Diabetol 2018; 55:585-592. [PMID: 29546577 DOI: 10.1007/s00592-018-1130-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/08/2018] [Indexed: 12/28/2022]
Abstract
AIMS 5-Aminoimidazole-4-carboxamide riboside (AICAR) is an endogenous activator of AMPK, a central regulator of energy homeostasis. Loss and/or reduction of AMPK signaling plays an important role in the development of insulin resistance in type 2 diabetes. The loss of AMPK in diabetes could be due to a loss of AICAR. The aim of this study was to characterize urine levels of AICAR in diabetes and determine whether an association exists with respect to late complications, e.g., retinopathy, nephropathy and neuropathy. METHODS Urine AICAR was measured by liquid chromatography tandem mass spectrometry in 223 patients consisting of 5 healthy controls, 63 patients with pre-diabetes, 29 patients with newly diagnosed type 2 diabetes and 126 patients with long-standing type 2 diabetes. For statistical analyses, nonparametric Kruskal-Wallis test, one-way ANOVA and multivariate regression analysis were performed to investigate the associations of urinary AICAR excretion within different groups and different clinical parameters. RESULTS The mean urine AICAR for all 223 patients was 694.7 ± 641.1 ng/ml. There was no significant difference in urine AICAR between the control and patients with diabetes (592.3 ± 345.1 vs. 697.1 ± 646.5 ng/ml). No association between any of the biochemical and/or clinical parameters measured and urine AICAR was found, with the exception of age of patient (R = - 0.34; p < 0.01) and estimated glomerular filtration rate (R = 0.19; p = 0.039). These results were confirmed additionally by linear regression analysis. CONCLUSIONS Clinical diabetes is not associated with a change in endogenous AICAR levels. Loss of AICAR may therefore not be a mechanism by which AMPK signaling is reduced in diabetes.
Collapse
Affiliation(s)
- Michael Mendler
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany.
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Jan B Groener
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Christin Riedinger
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Thomas H Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute for Diabetes and Cancer, IDC Helmholtz Center Munich, Germany & Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany
| | - Jürgen G Okun
- Dietmar-Hopp Metabolic Center, Center for Child and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Dimer NW, Ferreira BK, Agostini JF, Gomes ML, Kist LW, Malgarin F, Carvalho-Silva M, Gomes LM, Rebelo J, Frederico MJS, Silva FRMB, Rico EP, Bogo MR, Streck EL, Ferreira GC, Schuck PF. Brain bioenergetics in rats with acute hyperphenylalaninemia. Neurochem Int 2018; 117:188-203. [PMID: 29454001 DOI: 10.1016/j.neuint.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022]
Abstract
Phenylketonuria (PKU) is a disorder of phenylalanine (Phe) metabolism caused by deficient phenylalanine hydroxylase (PAH) activity. The deficiency results in increased levels of Phe and its metabolites in fluids and tissues of patients. PKU patients present neurological signs and symptoms including hypomyelination and intellectual deficit. This study assessed brain bioenergetics at 1 h after acute Phe administration to induce hyperphenylalaninemia (HPA) in rats. Wistar rats were randomized in two groups: HPA animals received a single subcutaneous administration of Phe (5.2 μmol/g) plus p-Cl-Phe (PAH inhibitor) (0.9 μmol/g); control animals received a single injection of 0.9% NaCl. In cerebral cortex, HPA group showed lower mitochondrial mass, lower glycogen levels, as well as lower activities of complexes I-III and IV, ATP synthase and citrate synthase. Higher levels of free Pi and phospho-AMPK, and higher activities of LDH, α-ketoglutarate dehydrogenase and isocitrate dehydrogenase were also reported in cerebral cortex of HPA animals. In striatum, HPA animals had higher LDH (pyruvate to lactate) and isocitrate dehydrogenase activities, and lower activities of α-ketoglutarate dehydrogenase and complex IV, as well as lower phospho-AMPK immunocontent. In hippocampus, HPA rats had higher mRNA expression for MFN1 and higher activities of α-ketoglutarate dehydrogenase and isocitrate dehydrogenase, but decreased activities of pyruvate dehydrogenase and complexes I and IV. In conclusion, our data demonstrated impaired bioenergetics in cerebral cortex, striatum and hippocampus of HPA rats.
Collapse
Affiliation(s)
- Nádia Weber Dimer
- Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bruna Klippel Ferreira
- Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jotele Fontana Agostini
- Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Maria Luiza Gomes
- Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Luiza Wilges Kist
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Malgarin
- Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lara Mezari Gomes
- Laboratório de Bioenergética, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Joyce Rebelo
- Laboratório de Bioenergética, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Marisa Jádna Silva Frederico
- Laboratório de Hormônios e Transdução de Sinais, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fátima Regina Mena Barreto Silva
- Laboratório de Hormônios e Transdução de Sinais, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Pacheco Rico
- Laboratório de Sinalização Neural e Psicofarmacologia, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Mauricio Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Emilio Luiz Streck
- Laboratório de Bioenergética, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| |
Collapse
|
21
|
Tague ED, Bourdon AK, MacDonald A, Lookadoo MS, Kim ED, White WM, Terry PD, Campagna SR, Voy BH, Whelan J. Metabolomics Approach in the Study of the Well-Defined Polyherbal Preparation Zyflamend. J Med Food 2017; 21:306-316. [PMID: 29227176 DOI: 10.1089/jmf.2017.0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Zyflamend is a highly controlled blend of 10 herbal extracts that synergistically impact multiple cell signaling pathways with anticancer and anti-inflammatory properties. More recently, its effects were shown to also modify cellular energetics, for example, activation of fatty acid oxidation and inhibition of lipogenesis. However, its general metabolic effects in vivo have yet to be explored. The objective of this study was to characterize the tissue specific metabolomes in response to supplementation of Zyflamend in mice, with a comparison of equivalent metabolomics data generated in plasma from humans supplemented with Zyflamend. Because Zyflamend has been shown to activate AMPK, the "energy sensor" of the cell, in vitro, the effects of Zyflamend on adiposity were also tested in the murine model. C57BL/6 mice were fed diets that mimicked the macro- and micronutrient composition of the U.S. diet with and without Zyflamend supplementation at human equivalent doses. Untargeted metabolomics was performed in liver, skeletal muscle, adipose, and plasma from mice consuming Zyflamend and in plasma from humans supplemented with Zyflamend at an equivalent dose. Adiposity in mice was significantly reduced in the Zyflamend-treated animals (compared with controls) without affecting body weight or weight gain. Based on KEGG pathway enrichment, purine and pyrimidine metabolism (potential regulators of AMPK) were particularly responsive to Zyflamend across all tissues, but only in mice. Consistent with the metabolomics data, Zyflamend activated AMPK and inhibited acetyl CoA-carboxylase in adipose tissue, key regulators of lipogenesis. Zyflamend reduces adipose tissue in mice through a mechanism that likely involves the activation of AMPK.
Collapse
Affiliation(s)
- Eric D Tague
- 1 Department of Chemistry, University of Tennessee Knoxville , Knoxville, Tennessee, USA
| | - Allen K Bourdon
- 1 Department of Chemistry, University of Tennessee Knoxville , Knoxville, Tennessee, USA
| | - Amber MacDonald
- 2 Department of Nutrition, University of Tennessee Knoxville , Knoxville, Tennessee, USA
| | - Maggie S Lookadoo
- 1 Department of Chemistry, University of Tennessee Knoxville , Knoxville, Tennessee, USA
| | - Edward D Kim
- 3 Department of Surgery, University of Tennessee Medical Center , Knoxville, Tennessee, USA
| | - Wesley M White
- 3 Department of Surgery, University of Tennessee Medical Center , Knoxville, Tennessee, USA
| | - Paul D Terry
- 4 Department of Medicine, University of Tennessee Medical Center , Knoxville, Tennessee, USA
| | - Shawn R Campagna
- 1 Department of Chemistry, University of Tennessee Knoxville , Knoxville, Tennessee, USA .,5 Biological Small Molecule Mass Spectrometry Core, University of Tennessee , Knoxville, Tennessee, USA
| | - Brynn H Voy
- 6 Department of Animal Science, University of Tennessee Knoxville , Knoxville, Tennessee, USA
| | - Jay Whelan
- 2 Department of Nutrition, University of Tennessee Knoxville , Knoxville, Tennessee, USA
| |
Collapse
|
22
|
Niederberger P, Farine E, Arnold M, Wyss RK, Sanz MN, Méndez-Carmona N, Gahl B, Fiedler GM, Carrel TP, Tevaearai Stahel HT, Longnus SL. High pre-ischemic fatty acid levels decrease cardiac recovery in an isolated rat heart model of donation after circulatory death. Metabolism 2017; 71:107-117. [PMID: 28521863 DOI: 10.1016/j.metabol.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023]
Abstract
RATIONALE Donation after circulatory death (DCD) could improve cardiac graft availability. However, strategies to optimize cardiac graft recovery remain to be established in DCD; these hearts would be expected to be exposed to high levels of circulatory fat immediately prior to the inevitable period of ischemia prior to procurement. OBJECTIVE We investigated whether acute exposure to high fat prior to warm, global ischemia affects subsequent hemodynamic and metabolic recovery in an isolated rat heart model of DCD. METHODS AND RESULTS Hearts of male Wistar rats underwent 20min baseline perfusion with glucose (11mM) and either high fat (1.2mM palmitate; HF) or no fat (NF), 27min global ischemia (37°C), and 60min reperfusion with glucose only (n=7-8 per group). Hemodynamic recovery was 50% lower in HF vs. NF hearts (34±30% vs. 78±8% (60min reperfusion value of peak systolic pressure*heart rate as percentage of mean baseline); p<0.01). During early reperfusion, glycolysis (0.3±0.3 vs. 0.7±0.3μmol*min-1*g dry-1, p<0.05), glucose oxidation (0.1±0.03 vs. 0.4±0.2μmol*min-1*g dry-1, p<0.01) and pyruvate dehydrogenase activity (1.8±0.6 vs. 3.6±0.5U*g protein-1, p<0.01) were significantly reduced in HF vs. NF groups, respectively, while lactate release was significantly greater (1.8±0.9 vs. 0.6±0.2μmol*g wet-1*min-1; p<0.05). CONCLUSIONS Acute, pre-ischemic exposure to high fat significantly lowers post-ischemic cardiac recovery vs. no fat despite identical reperfusion conditions. These findings support the concept that oxidation of residual fatty acids is rapidly restored upon reperfusion and exacerbates ischemia-reperfusion (IR) injury. Strategies to optimize post-ischemic cardiac recovery should take pre-ischemic fat levels into consideration.
Collapse
Affiliation(s)
- Petra Niederberger
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Emilie Farine
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Maria N Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Brigitta Gahl
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Georg M Fiedler
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University Hospital, Inselspital, Bern, Switzerland.
| | - Thierry P Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Hendrik T Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Sarah L Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
23
|
Abstract
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Ian P Salt
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.).
| | - D Grahame Hardie
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.)
| |
Collapse
|
24
|
Sun X, Yang Q, Rogers CJ, Du M, Zhu MJ. AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death Differ 2017; 24:819-831. [PMID: 28234358 PMCID: PMC5423107 DOI: 10.1038/cdd.2017.14] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 12/16/2022] Open
Abstract
Impairment in gut epithelial integrity and barrier function is associated with many diseases. The homeostasis of intestinal barrier is based on a delicate regulation of epithelial proliferation and differentiation. AMP-activated protein kinase (AMPK) is a master regulator of energy metabolism, and cellular metabolites are intrinsically involved in epigenetic modifications governing cell differentiation. We aimed to evaluate the regulatory role of AMPK on intestinal epithelial development and barrier function. In this study, AMPK activator (AICAR) improved the barrier function of Caco-2 cells as indicated by increased transepithelial electrical resistance and reduced paracellular FITC-dextran permeability; consistently, AICAR enhanced epithelial differentiation and tight junction formation. Transfection of Caco-2 cells with AMPK WT plasmid, which enhances AMPK activity, improved epithelial barrier function and epithelial differentiation, while K45R (AMPK dominant negative mutant) impaired; these changes were correlated with the expression of caudal type homeobox 2 (CDX2), the key transcription factor committing cells to intestinal epithelial lineage. CDX2 deficiency abolished intestinal differentiation promoted by AMPK activation. Mechanistically, AMPK inactivation was associated with polycomb repressive complex 2 regulated enrichment of H3K27me3, the inhibitory histone modification, and lysine-specific histone demethylase-1-mediated reduction of H3K4me3, a permissive histone modification. Those histone modifications provide a mechanistic link between AMPK and CDX2 expression. Consistently, epithelial AMPK knockout in vivo reduced CDX2 expression, impaired intestinal barrier function, integrity and ultrastructure of tight junction, and epithelial cell migration, promoted intestinal proliferation and exaggerated dextran sulfate sodium-induced colitis. In summary, AMPK enhances intestinal barrier function and epithelial differentiation via promoting CDX2 expression, which is partially mediated by altered histone modifications in the Cdx2 promoter.
Collapse
Affiliation(s)
- Xiaofei Sun
- School of Food Science, Washington State University, Pullman 99164, WA, USA.,School of Food Science, University of Idaho, Moscow 83844, ID, USA
| | - Qiyuan Yang
- Department of Animal Science, Washington State University, Pullman 99164, WA, USA
| | - Carl J Rogers
- Department of Animal Science, Washington State University, Pullman 99164, WA, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman 99164, WA, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman 99164, WA, USA.,School of Food Science, University of Idaho, Moscow 83844, ID, USA
| |
Collapse
|
25
|
Scott K, Benkhalti M, Calvert ND, Paquette M, Zhen L, Harper ME, Al-Dirbashi OY, Renaud JM. KATP channel deficiency in mouse FDB causes an impairment of energy metabolism during fatigue. Am J Physiol Cell Physiol 2016; 311:C559-C571. [PMID: 27488667 DOI: 10.1152/ajpcell.00137.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/27/2016] [Indexed: 12/25/2022]
Abstract
The skeletal muscle ATP-sensitive K+ (KATP) channel is crucial in preventing fiber damage and contractile dysfunction, possibly by preventing damaging ATP depletion. The objective of this study was to investigate changes in energy metabolism during fatigue in wild-type and inwardly rectifying K+ channel (Kir6.2)-deficient (Kir6.2-/-) flexor digitorum brevis (FDB), a muscle that lacks functional KATP channels. Fatigue was elicited with one tetanic contraction every second. Decreases in ATP and total adenylate levels were significantly greater in wild-type than Kir6.2-/- FDB during the last 2 min of the fatigue period. Glycogen depletion was greater in Kir6.2-/- FDB for the first 60 s, but not by the end of the fatigue period, while there was no difference in glucose uptake. The total amount of glucosyl units entering glycolysis was the same in wild-type and Kir6.2-/- FDB. During the first 60 s, Kir6.2-/- FDB generated less lactate and more CO2; in the last 120 s, Kir6.2-/- FDB stopped generating CO2 and produced more lactate. The ATP generated during fatigue from phosphocreatine, glycolysis (lactate), and oxidative phosphorylation (CO2) was 3.3-fold greater in Kir6.2-/- than wild-type FDB. Because ATP and total adenylate were significantly less in Kir6.2-/- FDB, it is suggested that Kir6.2-/- FDB has a greater energy deficit, despite a greater ATP production, which is further supported by greater glucose uptake and lactate and CO2 production in Kir6.2-/- FDB during the recovery period. It is thus concluded that a lack of functional KATP channels results in an impairment of energy metabolism.
Collapse
Affiliation(s)
- Kyle Scott
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Benkhalti
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas D Calvert
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mathieu Paquette
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Li Zhen
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Osama Y Al-Dirbashi
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; and Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada;
| |
Collapse
|
26
|
Abstract
Activation of the adenosine monophosphate (AMP)-activated kinase (AMPK) contributes to beneficial effects such as improvement of the hyperglycemic state in diabetes as well as reduction of obesity and inflammatory processes. Furthermore, stimulation of AMPK activity has been associated with increased exercise capacity. A study published in 2008, directly before the Olympic Games in Beijing, showed that the AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide) increased the running capacity of mice without any training and thus, prompted the World Anti-Doping Agency (WADA) to include certain AMPK activators in the list of forbidden drugs. This raises the question as to whether all AMPK activators should be considered for registration or whether the increase in exercise performance is only associated with specific AMPK-activating substances. In this review, we intend to shed light on currently published AMPK-activating drugs, their working mechanisms, and their impact on body fitness.
Collapse
|
27
|
Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int J Mol Sci 2015; 16:25959-81. [PMID: 26528968 PMCID: PMC4661798 DOI: 10.3390/ijms161125939] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/27/2015] [Accepted: 10/16/2015] [Indexed: 01/15/2023] Open
Abstract
Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.
Collapse
Affiliation(s)
- Anna Falkowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Przemysław Nowacki
- Department of Neurology, Pomeranian Medical University, Unii Lubelskiej 1, 71-225 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
28
|
Bradley EA, Zhang L, Genders AJ, Richards SM, Rattigan S, Keske MA. Enhancement of insulin-mediated rat muscle glucose uptake and microvascular perfusion by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside. Cardiovasc Diabetol 2015; 14:91. [PMID: 26194188 PMCID: PMC4509722 DOI: 10.1186/s12933-015-0251-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Insulin-induced microvascular recruitment is important for optimal muscle glucose uptake. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, an activator of AMP-activated protein kinase), can also induce microvascular recruitment, at doses that do not acutely activate glucose transport in rat muscle. Whether low doses of AICAR can augment physiologic insulin action is unknown. In the present study we used the euglycemic hyperinsulinemic clamp to assess whether insulin action is augmented by low dose AICAR. METHODS Anesthetized rats were studied during saline infusion or euglycemic insulin (3 mU/kg/min) clamp for 2 h in the absence or presence of AICAR for the last hour (5 mg bolus followed by 3.75 mg/kg/min). Muscle glucose uptake (R'g) was determined radioisotopically with (14)C-2-deoxyglucose and muscle microvascular perfusion by contrast-enhanced ultrasound with microbubbles. RESULTS AICAR did not affect blood glucose, or lower leg R'g, although it significantly (p < 0.05) increased blood lactate levels and augmented muscle microvascular blood volume via a nitric oxide synthase dependent pathway. Insulin increased femoral blood flow, whole body glucose infusion rate (GIR), R'g, hindleg glucose uptake, and microvascular blood volume. Addition of AICAR during insulin infusion increased lactate production, further increased R'g in Type IIA (fast twitch oxidative) and IIB (fast twitch glycolytic) fiber containing muscles, and hindleg glucose uptake, but decreased R'g in the Type I (slow twitch oxidative) fiber muscle. AICAR also decreased GIR due to inhibition of insulin-mediated suppression of hepatic glucose output. AICAR augmented insulin-mediated microvascular perfusion. CONCLUSIONS AICAR, at levels that have no direct effect on muscle glucose uptake, augments insulin-mediated microvascular blood flow and glucose uptake in white fiber type muscles. Agents targeted to endothelial AMPK activation are promising insulin sensitizers, however, the decrease in GIR and the propensity to increase blood lactate cautions against AICAR as an acute insulin sensitizer.
Collapse
Affiliation(s)
- Eloise A Bradley
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, 7001, TAS, Australia.
| | - Lei Zhang
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | - Amanda J Genders
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, 7001, TAS, Australia.
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, 7001, TAS, Australia.
| |
Collapse
|
29
|
Chandramouli C, Varma U, Stevens EM, Xiao RP, Stapleton DI, Mellor KM, Delbridge LMD. Myocardial glycogen dynamics: New perspectives on disease mechanisms. Clin Exp Pharmacol Physiol 2015; 42:415-25. [DOI: 10.1111/1440-1681.12370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | - Upasna Varma
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| | - Ellie M Stevens
- Department of Physiology; University of Auckland; Auckland New Zealand
| | - Rui-Ping Xiao
- Institute of Molecular Medicine; Peking University; Beijing China
| | - David I Stapleton
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
- The Florey Institute of Neuroscience; Melbourne Vic. Australia
| | - Kimberley M Mellor
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
- Department of Physiology; University of Auckland; Auckland New Zealand
| | - Lea MD Delbridge
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
30
|
Suwa M, Nakano H, Radak Z, Kumagai S. A comparison of chronic AICAR treatment-induced metabolic adaptations in red and white muscles of rats. J Physiol Sci 2015; 65:121-30. [PMID: 25388945 PMCID: PMC10717678 DOI: 10.1007/s12576-014-0349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/30/2014] [Indexed: 01/18/2023]
Abstract
The signaling molecule 5'-AMP-activated protein kinase plays a pivotal role in metabolic adaptations. Treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofranoside (AICAR) promotes the expression of metabolic regulators and components involved in glucose uptake, mitochondrial biogenesis, and fatty acid oxidation in skeletal muscle cells. Our aim was to determine whether AICAR-induced changes in metabolic regulators and components were more prominent in white or red muscle. Rats were treated with AICAR (1 mg/g body weight/day) for 14 days, resulting in increased expression levels of nicotinamide phosphoribosyltransferase (NAMPT), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), glucose transporter 4 proteins, and enhanced mitochondrial biogenesis. These changes were more prominent in white rather than red gastrocnemius muscle or were only observed in the white gastrocnemius. Our results suggest that AICAR induces the expression of metabolic regulators and components, especially in type II (B) fibers.
Collapse
Affiliation(s)
- Masataka Suwa
- Faculty of Life Design, Tohoku Institute of Technology, 6 Futatsusawa, Taihaku-ku, Sendai, Miyagi, 982-8588, Japan,
| | | | | | | |
Collapse
|
31
|
Krishan S, Richardson DR, Sahni S. Adenosine Monophosphate–Activated Kinase and Its Key Role in Catabolism: Structure, Regulation, Biological Activity, and Pharmacological Activation. Mol Pharmacol 2014; 87:363-77. [DOI: 10.1124/mol.114.095810] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
32
|
Rana S, Blowers EC, Natarajan A. Small molecule adenosine 5'-monophosphate activated protein kinase (AMPK) modulators and human diseases. J Med Chem 2014; 58:2-29. [PMID: 25122135 DOI: 10.1021/jm401994c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adenosine 5'-monophosphate activated protein kinase (AMPK) is a master sensor of cellular energy status that plays a key role in the regulation of whole-body energy homeostasis. AMPK is a serine/threonine kinase that is activated by upstream kinases LKB1, CaMKKβ, and Tak1, among others. AMPK exists as αβγ trimeric complexes that are allosterically regulated by AMP, ADP, and ATP. Dysregulation of AMPK has been implicated in a number of metabolic diseases including type 2 diabetes mellitus and obesity. Recent studies have associated roles of AMPK with the development of cancer and neurological disorders, making it a potential therapeutic target to treat human diseases. This review focuses on the structure and function of AMPK, its role in human diseases, and its direct substrates and provides a brief synopsis of key AMPK modulators and their relevance in human diseases.
Collapse
Affiliation(s)
- Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | | | | |
Collapse
|
33
|
Sid B, Glorieux C, Valenzuela M, Rommelaere G, Najimi M, Dejeans N, Renard P, Verrax J, Calderon PB. AICAR induces Nrf2 activation by an AMPK-independent mechanism in hepatocarcinoma cells. Biochem Pharmacol 2014; 91:168-80. [PMID: 25058527 DOI: 10.1016/j.bcp.2014.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is one of the most frequent tumor types worldwide and oxidative stress represents a major risk factor in pathogenesis of liver diseases leading to HCC. Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor activated by oxidative stress that governs the expression of many genes which constitute the antioxidant defenses of the cell. In addition, oxidative stress activates AMP-activated protein kinase (AMPK), which has emerged in recent years as a kinase that controls the redox-state of the cell. Since both AMPK and Nrf2 are involved in redox homeostasis, we investigated whether there was a crosstalk between the both signaling systems in hepatocarcinoma cells. Here, we demonstrated that AMPK activator AICAR, in contrary to the A769662 allosteric activator, induces Nrf2 activation and concomitantly modulates the basal redox state of the hepatocarcinoma cells. When the expression of Nrf2 is knocked down, AICAR failed to induce its effect on redox state. These data highlight a major role of Nrf2 signaling pathway in mediating the AICAR effect on basal oxidative state. Furthermore, we demonstrated that AICAR metabolization by the cell is required to induce Nrf2 activation while, the silencing of AMPK does not have any effect on Nrf2 activation. This suggests that AICAR-induced Nrf2 activation is independent of AMPK activity. In conclusion, we identified AICAR as a potent modulator of the redox state of human hepatocarcinoma cells, via the Nrf2 signaling pathway and in an AMPK-independent mechanism.
Collapse
Affiliation(s)
- Brice Sid
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Glorieux
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Manuel Valenzuela
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Guillaume Rommelaere
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (NAmur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Dejeans
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (NAmur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Julien Verrax
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pedro Buc Calderon
- Toxicology and Cancer Biology Research Group GTOX, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.
| |
Collapse
|
34
|
Hunter RW, Foretz M, Bultot L, Fullerton MD, Deak M, Ross FA, Hawley SA, Shpiro N, Viollet B, Barron D, Kemp BE, Steinberg GR, Hardie DG, Sakamoto K. Mechanism of action of compound-13: an α1-selective small molecule activator of AMPK. CHEMISTRY & BIOLOGY 2014; 21:866-79. [PMID: 25036776 PMCID: PMC4104029 DOI: 10.1016/j.chembiol.2014.05.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/09/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022]
Abstract
AMPK is a sensor of cellular energy status and a promising target for drugs aimed at metabolic disorders. We have studied the selectivity and mechanism of a recently described activator, C2, and its cell-permeable prodrug, C13. C2 was a potent allosteric activator of α1-complexes that, like AMP, also protected against Thr172 dephosphorylation. Compared with AMP, C2 caused only partial allosteric activation of α2-complexes and failed to protect them against dephosphorylation. We show that both effects could be fully restored by exchanging part of the linker between the autoinhibitory and C-terminal domains in α2, containing the equivalent region from α1 thought to interact with AMP bound in site 3 of the γ subunit. Consistent with our results in cell-free assays, C13 potently inhibited lipid synthesis in hepatocytes from wild-type and was largely ineffective in AMPK-knockout hepatocytes; its effects were more severely affected by knockout of α1 than of α2, β1, or β2.
Collapse
Affiliation(s)
- Roger W Hunter
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland, UK; Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris cité, 75006 Paris, France
| | - Laurent Bultot
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - Morgan D Fullerton
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main West Street, Hamilton ON L8N 3Z5, Canada
| | - Maria Deak
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - Fiona A Ross
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Simon A Hawley
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Natalia Shpiro
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland, UK
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris cité, 75006 Paris, France
| | - Denis Barron
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy VIC 3065, Australia
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main West Street, Hamilton ON L8N 3Z5, Canada
| | - D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kei Sakamoto
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland, UK; Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment G, 1015 Lausanne, Switzerland.
| |
Collapse
|
35
|
Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 2014; 7:241-53. [PMID: 25018645 PMCID: PMC4075959 DOI: 10.2147/dmso.s43731] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by insulin resistance, β-cell dysfunction, and elevated hepatic glucose output. Over 350 million people worldwide have T2D, and the International Diabetes Federation projects that this number will increase to nearly 600 million by 2035. There is a great need for more effective treatments for maintaining glucose homeostasis and improving insulin sensitivity. AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase whose activation elicits insulin-sensitizing effects, making it an ideal therapeutic target for T2D. AMPK is an energy-sensing enzyme that is activated when cellular energy levels are low, and it signals to stimulate glucose uptake in skeletal muscles, fatty acid oxidation in adipose (and other) tissues, and reduces hepatic glucose production. There is substantial evidence suggesting that AMPK is dysregulated in animals and humans with metabolic syndrome or T2D, and that AMPK activation (physiological or pharmacological) can improve insulin sensitivity and metabolic health. Numerous pharmacological agents, natural compounds, and hormones are known to activate AMPK, either directly or indirectly - some of which (for example, metformin and thiazolidinediones) are currently used to treat T2D. This paper will review the regulation of the AMPK pathway and its role in T2D, some of the known AMPK activators and their mechanisms of action, and the potential for future improvements in targeting AMPK for the treatment of T2D.
Collapse
Affiliation(s)
- Kimberly A Coughlan
- Endocrinology and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Rudy J Valentine
- Endocrinology and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Neil B Ruderman
- Endocrinology and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Asish K Saha
- Endocrinology and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| |
Collapse
|
36
|
Abstract
High glucose production contributes to fed and fasted hyperglycemia in Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). The breakdown of the adiponectin signaling pathway in T1D and the reduction of circulating adiponectin in T2D contribute to this abnormal increase in glucose production. Sufficient amounts of insulin could compensate for the loss of adiponectin signaling in T1D and T2D and reduce hyperglycemia. However, the combination of low adiponectin signaling and high insulin resembles an insulin resistance state associated with cardiovascular disease, fatty liver disease and decreased life expectancy. The future development of "adiponectin sensitizers", medications that correct the deficiency in adiponectin signaling, could restore the metabolic balance in T1D and T2D and reduce the need for insulin. This article reviews the adiponectin signaling pathway in the liver through T-cadherin, AdipoR1, AdipoR2, AMPK, ceramidase activity, APPL1 and the recently discovered Suppressor Of Glucose from Autophagy (SOGA).
Collapse
Affiliation(s)
- Terry P Combs
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA,
| | | |
Collapse
|
37
|
The mitochondria as a target for cardioprotection in acute myocardial ischemia. Pharmacol Ther 2014; 142:33-40. [DOI: 10.1016/j.pharmthera.2013.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 12/28/2022]
|
38
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes. Neurochem Int 2013; 63:458-64. [PMID: 23968961 DOI: 10.1016/j.neuint.2013.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/29/2022]
Abstract
Recent advances in brain energy metabolism support the notion that glycogen in astrocytes is necessary for the clearance of neuronally-released K(+) from the extracellular space. However, how the multiple metabolic pathways involved in K(+)-induced increase in glycogen turnover are regulated is only partly understood. Here we summarize the current knowledge about the mechanisms that control glycogen metabolism during enhanced K(+) uptake. We also describe the action of the ubiquitous Na(+)/K(+) ATPase for both ion transport and intracellular signaling cascades, and emphasize its importance in understanding the complex relation between glycogenolysis and K(+) uptake.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy.
| | | | | | | |
Collapse
|
39
|
Activation of the AMP-activated protein kinase reduces inflammatory nociception. THE JOURNAL OF PAIN 2013; 14:1330-40. [PMID: 23916727 DOI: 10.1016/j.jpain.2013.05.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/07/2023]
Abstract
UNLABELLED The activation of the adenosine monophosphate (AMP)-activated kinase (AMPK) has been associated with beneficial effects such as improvement of hyperglycemic states in diabetes as well as reduction of obesity and inflammatory processes. Recent studies provide evidence for a further role of AMPK in models of acute and neuropathic pain. In this study, we investigated the impact of AMPK on inflammatory nociception. Using 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR) and metformin as AMPK activators, we observed anti-inflammatory and antinociceptive effects in 2 models of inflammatory nociception. The effects were similar to those observed with the standard analgesic ibuprofen. The mechanism appears to be based on regulation of the AMPKα2 subunit of the kinase because AMPKα2 knockout mice showed increased nociceptive responses that could not be reversed by the AMPK activators. On the molecular level, antinociceptive effects are at least partially mediated by reduced activation of different MAP-kinases in the spinal cord and a subsequent decrease in pain-relevant induction of c-fos, which constitutes a reliable marker of elevated activity in spinal cord neurons following peripheral noxious stimulation. In summary, our results indicate that activation of AMPKα2 might represent a novel therapeutic option for the treatment of inflammation-associated pain, providing analgesia with fewer unwanted side effects. PERSPECTIVE AMPK activation is associated with beneficial effects on diabetes and obesity. In addition, we have shown analgesic properties of pharmacologic AMPK activation in inflammatory nociception, indicating that AMPK might serve as a novel therapeutic target in pain with fewer unwanted side effects.
Collapse
|
40
|
Nagendran J, Waller TJ, Dyck JRB. AMPK signalling and the control of substrate use in the heart. Mol Cell Endocrinol 2013; 366:180-93. [PMID: 22750050 DOI: 10.1016/j.mce.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/29/2012] [Accepted: 06/21/2012] [Indexed: 12/21/2022]
Abstract
All mammalian cells rely on adenosine triphosphate (ATP) to maintain function and for survival. The heart has the highest basal ATP demand of any organ due to the necessity for continuous contraction. As such, the ability of the cardiomyocyte to monitor cellular energy status and adapt the supply of substrates to match the energy demand is crucial. One important serine/threonine protein kinase that monitors cellular energy status in the heart is adenosine monophosphate activated protein kinase (AMPK). AMPK is also a key enzyme that controls multiple catabolic and anabolic biochemical pathways in the heart and indirectly plays a crucial role in regulating cardiac function in both physiological and pathophysiological conditions. Herein, we review the involvement of AMPK in myocardial fatty acid and glucose transport and utilization, as it relates to basal cardiac function. We also assess the literature amassed on cardiac AMPK and discuss the controversies surrounding the role of AMPK in physiological and pathophysiological processes in the heart. The work reviewed herein also emphasizes areas that require further investigation for the purpose of eventually translating this information into improved patient care.
Collapse
Affiliation(s)
- Jeevan Nagendran
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
41
|
O'Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 2013; 366:135-51. [PMID: 22750049 DOI: 10.1016/j.mce.2012.06.019] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/13/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
Abstract
Skeletal muscle plays an important role in regulating whole-body energy expenditure given it is a major site for glucose and lipid oxidation. Obesity and type 2 diabetes are causally linked through their association with skeletal muscle insulin resistance, while conversely exercise is known to improve whole body glucose homeostasis simultaneously with muscle insulin sensitivity. Exercise activates skeletal muscle AMP-activated protein kinase (AMPK). AMPK plays a role in regulating exercise capacity, skeletal muscle mitochondrial content and contraction-stimulated glucose uptake. Skeletal muscle AMPK is also thought to be important for regulating fatty acid metabolism; however, direct genetic evidence in this area is currently lacking. This review will discuss the current paradigms regarding the influence of AMPK in regulating skeletal muscle fatty acid metabolism and mitochondrial biogenesis at rest and during exercise, and highlight the potential implications in the development of insulin resistance.
Collapse
Affiliation(s)
- Hayley M O'Neill
- University of Melbourne, Department of Medicine, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
42
|
Harada M, Nattel SN, Nattel S. AMP-activated protein kinase: potential role in cardiac electrophysiology and arrhythmias. Circ Arrhythm Electrophysiol 2012; 5:860-7. [PMID: 22895602 DOI: 10.1161/circep.112.972265] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Masahide Harada
- Department of Medicine and Research Centre, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
43
|
Jlali M, Gigaud V, Métayer-Coustard S, Sellier N, Tesseraud S, Le Bihan-Duval E, Berri C. Modulation of glycogen and breast meat processing ability by nutrition in chickens: effect of crude protein level in 2 chicken genotypes. J Anim Sci 2011; 90:447-55. [PMID: 21984711 DOI: 10.2527/jas.2011-4405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to evaluate the impact of 2 isoenergetic growing diets with different CP (17 vs. 23%) on the performance and breast meat quality of 2 lines of chicken divergently selected for abdominal fatness [i.e., fat and lean (LL) lines]. Growth performance, breast and abdominal fat yields, breast meat quality parameters (pH, color, drip loss), and muscle glycogen storage at death were measured. Increased dietary CP resulted in increased BW, increased breast meat yield, and reduced abdominal fatness at slaughter regardless of genotype (P < 0.001). By contrast, dietary CP affected glycogen storage and the related meat quality parameters only in the LL chickens. Giving LL chickens the low-CP diet led to reduced concentration of muscle glycogen (P < 0.01), and as a result, breast meat with a higher (P < 0.001) ultimate pH, decreased (P < 0.001) lightness, and reduced (P < 0.001) drip loss during storage. The decreased muscle glycogen content observed in LL receiving the low-CP diet compared with the high-CP diet occurred concomitantly with greater phosphorylation amount for the α-catalytic subunit of adenosine monophosphate-activated protein kinase and glycogen synthase. This was consistent with the reduced muscle glycogen content observed in LL fed the low-CP diet because adenosine monophosphate-activated protein kinase inhibits glycogen synthesis through its action on glycogen synthase. Our results demonstrated that nutrition is an effective means of modulating breast meat properties in the chicken. The results also highlighted the need to take into account interaction with the genetic background of the animal to select nutritional strategies to improve meat quality traits in poultry.
Collapse
Affiliation(s)
- M Jlali
- INRA, UR83, Recherches Avicoles, F-37380 Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Terkeltaub R, Yang B, Lotz M, Liu-Bryan R. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α. ACTA ACUST UNITED AC 2011; 63:1928-37. [PMID: 21400477 DOI: 10.1002/art.30333] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) stimulate chondrocyte matrix catabolic responses, thereby compromising cartilage homeostasis in osteoarthritis (OA). AMP-activated protein kinase (AMPK), which regulates energy homeostasis and cellular metabolism, also exerts antiinflammatory effects in multiple tissues. This study was undertaken to test the hypothesis that AMPK activity limits chondrocyte matrix catabolic responses to IL-1β and TNFα. METHODS Expression of AMPK subunits was examined, and AMPKα activity was ascertained by the phosphorylation status of AMPKα Thr(172) in human knee articular chondrocytes and cartilage by Western blotting and immunohistochemistry, respectively. Procatabolic responses to IL-1β and TNFα, such as release of glycosaminoglycan, nitric oxide, and matrix metalloproteinases 3 and 13 were determined by dimethylmethylene blue assay, Griess reaction, and Western blotting, respectively, in cartilage explants and chondrocytes with and without knockdown of AMPKα by small interfering RNA. RESULTS Normal human knee articular chondrocytes expressed AMPKα1, α2, β1, β2, and γ1 subunits. AMPK activity was constitutively present in normal articular chondrocytes and cartilage, but decreased in OA articular chondrocytes and cartilage and in normal chondrocytes treated with IL-1β and TNFα. Knockdown of AMPKα resulted in enhanced catabolic responses to IL-1β and TNFα in chondrocytes. Moreover, AMPK activators suppressed cartilage/chondrocyte procatabolic responses to IL-1β and TNFα and the capacity of TNFα and CXCL8 (IL-8) to induce type X collagen expression. CONCLUSION Our findings indicate that AMPK activity is reduced in OA cartilage and in chondrocytes following treatment with IL-1β or TNFα. AMPK activators attenuate dephosphorylation of AMPKα and procatabolic responses in chondrocytes induced by these cytokines. These observations suggest that maintenance of AMPK activity supports cartilage homeostasis by protecting cartilage matrix from inflammation-induced degradation.
Collapse
Affiliation(s)
- Robert Terkeltaub
- VA San Diego Medical Center and University of California, San Diego, CA, USA
| | | | | | | |
Collapse
|
45
|
Yun H, Ha J. AMP-activated protein kinase modulators: a patent review (2006 - 2010). Expert Opin Ther Pat 2011; 21:983-1005. [PMID: 21548715 DOI: 10.1517/13543776.2011.577069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION AMPK is a key player in the regulation of energy balance at both the cellular and whole-body levels, placing it at the center stage in studies of metabolic disorders. Recently, AMPK has also been identified as a potential target for either therapy or prevention of some types of cancer. Thus, identification of AMPK modulators for possible use as novel therapeutic drugs, both for treatment of metabolic disorders and cancer, will have a high commercial potential. AREAS COVERED This review covers the structures and activities of AMPK modulators described in the patent literature since 2006. The patents reviewed include those for direct and/or indirect activators of AMPK, and novel pharmaceutical compounds with potential for use in the prevention and/or treatment of metabolic disorders, and cancer targeting AMPK. EXPERT OPINION Targeting of AMPK appears to be an attractive strategy in the treatment of metabolic disorders. However, some detrimental effects of AMPK have also been reported, including a possible tumor-promoting effect in some settings and a heart disease-causing effect. Moreover, activation of AMPK in the hypothalamus may cause undesired consequences, such as an increase in feeding and body weight gain. These effects, therefore, must be carefully assessed for the development of therapeutic drugs targeting AMPK.
Collapse
Affiliation(s)
- Hee Yun
- Kyung Hee University, Medical Research Center and Biomedical Science Institute, School of Medicine, Department of Biochemistry and Molecular Biology, Seoul, Republic of Korea
| | | |
Collapse
|
46
|
Hutchinson DS, Catus SL, Merlin J, Summers RJ, Gibbs ME. α₂-Adrenoceptors activate noradrenaline-mediated glycogen turnover in chick astrocytes. J Neurochem 2011; 117:915-26. [PMID: 21447002 DOI: 10.1111/j.1471-4159.2011.07261.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the brain, glycogen is primarily stored in astrocytes where it is regulated by several hormones/neurotransmitters, including noradrenaline that controls glycogen breakdown (in the short term) and synthesis. Here, we have examined the adrenoceptor (AR) subtype that mediates the glycogenic effect of noradrenaline in chick primary astrocytes by the measurement of glycogen turnover (total (14) C incorporation of glucose into glycogen) following noradrenergic activation. Noradrenaline and insulin increased glycogen turnover in a concentration-dependent manner. The effect of noradrenaline was mimicked by stimulation of α(2) -ARs (and to a lesser degree by β(3) -ARs), but not by stimulation of α(1) -, β(1) -, or β(2) -ARs, and occurred only in astrocytes and not neurons. In chick astrocytes, studies using RT-PCR and radioligand binding showed that α(2A) - and α(2C) -AR mRNA and protein were present. α(2) -AR- or insulin-mediated glycogen turnover was inhibited by phosphatidylinositol-3 kinase inhibitors, and both insulin and clonidine caused phosphorylation of Akt and glycogen synthase kinase-3 in chick astrocytes. α(2) -AR but not insulin-mediated glycogen turnover was inhibited by pertussis toxin pre-treatment indicating involvement of Gi/o proteins. These results show that the increase in glycogen turnover caused by noradrenaline is because of activation of α(2) -ARs that increase glycogen turnover in astrocytes utilizing a Gi/o-PI3K pathway.
Collapse
Affiliation(s)
- Dana S Hutchinson
- Department of Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | |
Collapse
|
47
|
Winnick JJ, An Z, Ramnanan CJ, Smith M, Irimia JM, Neal DW, Moore MC, Roach PJ, Cherrington AD. Hepatic glycogen supercompensation activates AMP-activated protein kinase, impairs insulin signaling, and reduces glycogen deposition in the liver. Diabetes 2011; 60:398-407. [PMID: 21270252 PMCID: PMC3028338 DOI: 10.2337/db10-0592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The objective of this study was to determine how increasing the hepatic glycogen content would affect the liver's ability to take up and metabolize glucose. RESEARCH DESIGN AND METHODS During the first 4 h of the study, liver glycogen deposition was stimulated by intraportal fructose infusion in the presence of hyperglycemic-normoinsulinemia. This was followed by a 2-h hyperglycemic-normoinsulinemic control period, during which the fructose infusion was stopped, and a 2-h experimental period in which net hepatic glucose uptake (NHGU) and disposition (glycogen, lactate, and CO(2)) were measured in the absence of fructose but in the presence of a hyperglycemic-hyperinsulinemic challenge including portal vein glucose infusion. RESULTS Fructose infusion increased net hepatic glycogen synthesis (0.7 ± 0.5 vs. 6.4 ± 0.4 mg/kg/min; P < 0.001), causing a large difference in hepatic glycogen content (62 ± 9 vs. 100 ± 3 mg/g; P < 0.001). Hepatic glycogen supercompensation (fructose infusion group) did not alter NHGU, but it reduced the percent of NHGU directed to glycogen (79 ± 4 vs. 55 ± 6; P < 0.01) and increased the percent directed to lactate (12 ± 3 vs. 29 ± 5; P = 0.01) and oxidation (9 ± 3 vs. 16 ± 3; P = NS). This change was associated with increased AMP-activated protein kinase phosphorylation, diminished insulin signaling, and a shift in glycogenic enzyme activity toward a state discouraging glycogen accumulation. CONCLUSIONS These data indicate that increases in hepatic glycogen can generate a state of hepatic insulin resistance, which is characterized by impaired glycogen synthesis despite preserved NHGU.
Collapse
Affiliation(s)
- Jason J Winnick
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hauton D. Does long-term metformin treatment increase cardiac lipoprotein lipase? Metabolism 2011; 60:32-42. [PMID: 20153488 PMCID: PMC3004047 DOI: 10.1016/j.metabol.2009.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 12/18/2022]
Abstract
Acute activation of adenosine monophosphate-activated protein kinase (AMPK) or jumps in cardiac work increased cardiac endothelial lipoprotein lipase (LPL), yet it is unclear whether chronic AMPK activation maintains this elevated LPL. To activate AMPK chronically, metformin at low (300 mg/kg/d) and high dose (600 mg/kg/d) was administered in drinking water for 14 days. Control, metformin-treated, and 5-amino-imidazole-4-carboxamide riboside (AICAR)-treated (0.5 mmol/L) ex vivo hearts were perfused to investigate uptake of triacylglycerol and cardiac LPL activity. For perfused rat hearts, increased uptake of labeled Intralipid and β-oxidation of Intralipid-fatty acid were noted for both AICAR (P < .05) and high-dose metformin (P < .01). Intralipid incorporation into tissue lipids was decreased by AICAR (P < .05) and increased after high-dose metformin (P < .05), the increase manifest as enhanced triacylglycerol deposition (P < .05). Low-dose metformin did not alter lipid uptake or tissue deposition. Both high-dose metformin and AICAR decreased cardiac acetyl-coenzyme A carboxylase activity (P < .01). Heparin-releasable LPL was increased after treatment with AICAR (P < .05) and high-dose metformin (P < .01). Low-dose metformin did not alter cardiac LPL. High-dose metformin doubled immunoreactive AMPK and phospho-AMPK protein (P < .001) and increased phosphorylation of p38-mitogen-activated protein kinase (P < .05). After heparin pretreatment, the rate of recruitment of LPL to the cardiac endothelium was increased by AICAR (P < .05) but not by high-dose metformin. These data suggest that AMPK activation increased cardiac endothelial LPL, yet acute and chronic activation of AMPK may yield increased LPL through differing mechanisms.
Collapse
Affiliation(s)
- David Hauton
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B152TT Birmingham, United Kingdom.
| |
Collapse
|
49
|
Kim M, Tian R. Targeting AMPK for cardiac protection: opportunities and challenges. J Mol Cell Cardiol 2010; 51:548-53. [PMID: 21147121 DOI: 10.1016/j.yjmcc.2010.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 01/01/2023]
Abstract
AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis and multiple biological processes in cell growth and survival, hence an attractive drug target. AMPK is a heterotrimeric protein consisting of α catalytic, β and γ regulatory subunits; two isoforms of each subunit are present in the heart. Studies using both genetic and pharmacological approaches have demonstrated important roles of AMPK in protecting the heart during ischemia/reperfusion injury as well as in pathological hypertrophy and failure. There is also emerging evidence suggesting isoform-specific function of AMPK, e.g. mutations of the γ2 subunit cause human cardiomyopathy. Thus, strategies avoiding the undesirable effects of altering γ2-AMPK activity, such as isoform selective activation of AMPK may lead to cardioprotective therapies with greater efficacy and safety. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Maengjo Kim
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
50
|
Bosselaar M, Smits P, van Loon LJC, Tack CJ. Intravenous AICAR during hyperinsulinemia induces systemic hemodynamic changes but has no local metabolic effect. J Clin Pharmacol 2010; 51:1449-58. [PMID: 21148051 DOI: 10.1177/0091270010382912] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AMPK activation may stimulate glucose uptake in skeletal muscle, but the results in humans have so far been inconclusive. The authors investigated whether infusion of the AMPK activator, 5-aminoimidazole-4-carboxamide-riboside (AICAR), increased whole-body glucose infusion rate (GIR) and forearm skeletal muscle glucose uptake (FGU) during hyperin-sulinemia in vivo in healthy humans. Ten participants (paired data: n = 8) underwent 2 euglycemic hyperinsulinemic clamps (60 mU·m(-2)·min(-1), 120 minutes) with concomitant AICAR (67 mg·kg(-1)) or placebo (saline) administration over the last 60 minutes. The authors also measured forearm blood flow (FBF; plethysmography), heart rate, blood pressure, and AICAR and AICA-ribotide (ZMP) concentrations in plasma and erythrocytes. FGU and GIR (T = 95-120 min) did not differ between insulin + AICAR and insulin + placebo. Compared with insulin + placebo, insulin + AICAR raised heart rate more profoundly (T = 60-120 minutes: from 58 ± 3 to 70 ± 3 vs 60 ± 4 to 63 ± 4 bpm for placebo; P < .05 between treatments) and lowered blood pressure significantly. AICAR plasma concentrations increased significantly during AICAR infusion; AICAR was rapidly taken up by erythrocytes and phosphorylated to ZMP. In conclusion, AICAR does not seem to have a direct effect on systemic or local glucose uptake in humans. AICAR increases heart rate and decreases blood pressure, most likely by systemic vasodilation.
Collapse
Affiliation(s)
- Marlies Bosselaar
- Department of General Internal Medicine, 463, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|