1
|
Heller HC. Astrocytes are more dynamic players in brain functions than previously recognized. Sleep Med Rev 2021; 59:101520. [PMID: 34425376 DOI: 10.1016/j.smrv.2021.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Affiliation(s)
- H Craig Heller
- Biology Department, Stanford University, Stanford, CA, 94305-5020, USA.
| |
Collapse
|
2
|
Petit JM, Eren-Koçak E, Karatas H, Magistretti P, Dalkara T. Brain glycogen metabolism: A possible link between sleep disturbances, headache and depression. Sleep Med Rev 2021; 59:101449. [PMID: 33618186 DOI: 10.1016/j.smrv.2021.101449] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
The functions of sleep and its links with neuropsychiatric diseases have long been questioned. Among the numerous hypotheses on sleep function, early studies proposed that sleep helps to replenish glycogen stores consumed during waking. Later studies found increased brain glycogen after sleep deprivation, leading to "glycogenetic" hypothesis, which states that there is a parallel increase in synthesis and utilization of glycogen during wakefulness, whereas decrease in the excitatory transmission creates an imbalance causing accumulation of glycogen during sleep. Glycogen is a vital energy reservoir to match the synaptic demand particularly for re-uptake of potassium and glutamate during intense glutamatergic transmission. Therefore, sleep deprivation-induced transcriptional changes may trigger migraine by reducing glycogen availability, which slows clearance of extracellular potassium and glutamate, hence, creates susceptibility to cortical spreading depolarization, the electrophysiological correlate of migraine aura. Interestingly, chronic stress accompanied by increased glucocorticoid levels and locus coeruleus activity and leading to mood disorders in which sleep disturbances are prevalent, also affects brain glycogen turnover via glucocorticoids, noradrenaline, serotonin and adenosine. These observations altogether suggest that inadequate astrocytic glycogen turnover may be one of the mechanisms linking migraine, mood disorders and sleep.
Collapse
Affiliation(s)
- J-M Petit
- Lausanne University Hospital, Center for Psychiatric Neuroscience, Prilly, Switzerland.
| | - E Eren-Koçak
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Department of Psychiatry, Ankara, Turkey.
| | - H Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| | - P Magistretti
- King Abdullah University of Science and Technology, Saudi Arabia.
| | - T Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey.
| |
Collapse
|
3
|
Garofalo S, Picard K, Limatola C, Nadjar A, Pascual O, Tremblay MÈ. Role of Glia in the Regulation of Sleep in Health and Disease. Compr Physiol 2020; 10:687-712. [PMID: 32163207 DOI: 10.1002/cphy.c190022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits. A few pioneering studies revealed that astrocytes and microglia may influence sleep pressure, duration as well as intensity, but the precise involvement of these two glial cells in the regulation of sleep remains to be fully addressed, across contexts of health and disease. In this overview article, we will first summarize the literature pertaining to the role of astrocytes and microglia in the regulation of sleep under normal physiological conditions. Afterward, we will discuss the beneficial and deleterious consequences of glia-mediated neuroinflammation, whether it is acute, or chronic and associated with brain diseases, on the regulation of sleep. Sleep disturbances are a main comorbidity in neurodegenerative diseases, and in several brain diseases that include pain, epilepsy, and cancer. Identifying the relationships between glia-mediated neuroinflammation, sleep-wake rhythm disruption and brain diseases may have important implications for the treatment of several disorders. © 2020 American Physiological Society. Compr Physiol 10:687-712, 2020.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Katherine Picard
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France
| | - Olivier Pascual
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Université Claude Bernard Lyon, Lyon, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Départment de médecine moleculaire, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
4
|
Hill VM, O’Connor RM, Shirasu-Hiza M. Tired and stressed: Examining the need for sleep. Eur J Neurosci 2020; 51:494-508. [PMID: 30295966 PMCID: PMC6453762 DOI: 10.1111/ejn.14197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
A key feature of circadian rhythms is the sleep/wake cycle. Sleep causes reduced responsiveness to the environment, which puts animals in a particularly vulnerable state; yet sleep has been conserved throughout evolution, indicating that it fulfils a vital purpose. A core function of sleep across species has not been identified, but substantial advances in sleep research have been made in recent years using the genetically tractable model organism, Drosophila melanogaster. This review describes the universality of sleep, the regulation of sleep, and current theories on the function of sleep, highlighting a historical and often overlooked theory called the Free Radical Flux Theory of Sleep. Additionally, we summarize our recent work with short-sleeping Drosophila mutants and other genetic and pharmacological tools for manipulating sleep which supports an antioxidant theory of sleep and demonstrates a bi-directional relationship between sleep and oxidative stress.
Collapse
Affiliation(s)
- Vanessa M. Hill
- Department of Genetics and Development; Columbia University Medical Center; NY, NY, 10032; USA
| | - Reed M. O’Connor
- Department of Genetics and Development; Columbia University Medical Center; NY, NY, 10032; USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development; Columbia University Medical Center; NY, NY, 10032; USA
| |
Collapse
|
5
|
DiNuzzo M, Walls AB, Öz G, Seaquist ER, Waagepetersen HS, Bak LK, Nedergaard M, Schousboe A. State-Dependent Changes in Brain Glycogen Metabolism. ADVANCES IN NEUROBIOLOGY 2019; 23:269-309. [PMID: 31667812 DOI: 10.1007/978-3-030-27480-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fundamental understanding of glycogen structure, concentration, polydispersity and turnover is critical to qualify the role of glycogen in the brain. These molecular and metabolic features are under the control of neuronal activity through the interdependent action of neuromodulatory tone, ionic homeostasis and availability of metabolic substrates, all variables that concur to define the state of the system. In this chapter, we briefly describe how glycogen responds to selected behavioral, nutritional, environmental, hormonal, developmental and pathological conditions. We argue that interpreting glycogen metabolism through the lens of brain state is an effective approach to establish the relevance of energetics in connecting molecular and cellular neurophysiology to behavior.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Abstract
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA.
| |
Collapse
|
7
|
Abstract
Sleep is a highly conserved phenomenon in endotherms, and therefore it must serve at least one basic function across this wide range of species. What that function is remains one of the biggest mysteries in neurobiology. By using the word neurobiology, we do not mean to exclude possible non-neural functions of sleep, but it is difficult to imagine why the brain must be taken offline if the basic function of sleep did not involve the nervous system. In this chapter we discuss several current hypotheses about sleep function. We divide these hypotheses into two categories: ones that propose higher-order cognitive functions and ones that focus on housekeeping or restorative processes. We also pose four aspects of sleep that any successful functional hypothesis has to account for: why do the properties of sleep change across the life span? Why and how is sleep homeostatically regulated? Why must the brain be taken offline to accomplish the proposed function? And, why are there two radically different stages of sleep?The higher-order cognitive function hypotheses we discuss are essential mechanisms of learning and memory and synaptic plasticity. These are not mutually exclusive hypotheses. Each focuses on specific mechanistic aspects of sleep, and higher-order cognitive processes are likely to involve components of all of these mechanisms. The restorative hypotheses are maintenance of brain energy metabolism, macromolecular biosynthesis, and removal of metabolic waste. Although these three hypotheses seem more different than those related to higher cognitive function, they may each contribute important components to a basic sleep function. Any sleep function will involve specific gene expression and macromolecular biosynthesis, and as we explain there may be important connections between brain energy metabolism and the need to remove metabolic wastes.A deeper understanding of sleep functions in endotherms will enable us to answer whether or not rest behaviors in species other than endotherms are homologous with mammalian and avian sleep. Currently comparisons across the animal kingdom depend on superficial and phenomenological features of rest states and sleep, but investigations of sleep functions would provide more insight into the evolutionary relationships between EEG-defined sleep in endotherms and rest states in ectotherms.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA
| | - H Craig Heller
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Bellesi M, de Vivo L, Koebe S, Tononi G, Cirelli C. Sleep and Wake Affect Glycogen Content and Turnover at Perisynaptic Astrocytic Processes. Front Cell Neurosci 2018; 12:308. [PMID: 30254569 PMCID: PMC6141665 DOI: 10.3389/fncel.2018.00308] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Abstract
Astrocytic glycogen represents the only form of glucose storage in the brain, and one of the outcomes of its breakdown is the production of lactate that can be used by neurons as an alternative energetic substrate. Since brain metabolism is higher in wake than in sleep, it was hypothesized that glycogen stores are depleted during wake and replenished during sleep. Furthermore, it was proposed that glycogen depletion leads to the progressive increase in adenosine levels during wake, providing a homeostatic signal that reflects the buildup of sleep pressure. However, previous studies that measured glycogen dynamics across the sleep/wake cycle obtained inconsistent results, and only measured glycogen in whole tissue. Since most energy in the brain is used to sustain synaptic activity, here we employed tridimensional electron microscopy to quantify glycogen content in the astrocytic processes surrounding the synapse. We studied axon-spine synapses in the frontal cortex of young mice after ~7 h of sleep, 7–8 h of spontaneous or forced wake, or 4.5 days of sleep restriction. Relative to sleep, all wake conditions increased the number of glycogen granules around the synapses to a similar extent. However, progressively longer periods of wake were associated with progressively smaller glycogen granules, suggesting increased turnover. Despite the increased number of granules, in all wake conditions the estimated amount of glucose within the granules was lower than in sleep, indicating that sleep may favor glucose storage. Finally, chronic sleep restriction moved glycogen granules closer to the synaptic cleft. Thus, both short and long wake lead to increased glycogen turnover around cortical synapses, whereas sleep promotes glycogen accumulation.
Collapse
Affiliation(s)
- Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Samuel Koebe
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Bak LK, Walls AB, Schousboe A, Waagepetersen HS. Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 2018; 293:7108-7116. [PMID: 29572349 DOI: 10.1074/jbc.r117.803239] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The brain contains a fairly low amount of glycogen, mostly located in astrocytes, a fact that has prompted the suggestion that glycogen does not have a significant physiological role in the brain. However, glycogen metabolism in astrocytes is essential for several key physiological processes and is adversely affected in disease. For instance, diminished ability to break down glycogen impinges on learning, and epilepsy, Alzheimer's disease, and type 2 diabetes are all associated with abnormal astrocyte glycogen metabolism. Glycogen metabolism supports astrocytic K+ and neurotransmitter glutamate uptake and subsequent glutamine synthesis-three fundamental steps in excitatory signaling at most brain synapses. Thus, there is abundant evidence for a key role of glycogen in brain function. Here, we summarize the physiological brain functions that depend on glycogen, discuss glycogen metabolism in disease, and investigate how glycogen breakdown is regulated at the cellular and molecular levels.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Ogunleke A, Recur B, Balacey H, Chen HH, Delugin M, Hwu Y, Javerzat S, Petibois C. 3D chemical imaging of the brain using quantitative IR spectro-microscopy. Chem Sci 2018; 9:189-198. [PMID: 29629087 PMCID: PMC5869290 DOI: 10.1039/c7sc03306k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023] Open
Abstract
Three-dimensional (3D) histology is the next frontier for modern anatomo-pathology. Characterizing abnormal parameters in a tissue is essential to understand the rationale of pathology development. However, there is no analytical technique, in vivo or histological, that is able to discover such abnormal features and provide a 3D distribution at microscopic resolution. Here, we introduce a unique high-throughput infrared (IR) microscopy method that combines automated image correction and subsequent spectral data analysis for 3D-IR image reconstruction. We performed spectral analysis of a complete organ for a small animal model, a mouse brain with an implanted glioma tumor. The 3D-IR image is reconstructed from 370 consecutive tissue sections and corrected using the X-ray tomogram of the organ for an accurate quantitative analysis of the chemical content. A 3D matrix of 89 × 106 IR spectra is generated, allowing us to separate the tumor mass from healthy brain tissues based on various anatomical, chemical, and metabolic parameters. We demonstrate that quantitative metabolic parameters can be extracted from the IR spectra for the characterization of the brain vs. tumor metabolism (assessing the Warburg effect in tumors). Our method can be further exploited by searching for the whole spectral profile, discriminating tumor vs. healthy tissue in a non-supervised manner, which we call 'spectromics'.
Collapse
Affiliation(s)
- Abiodun Ogunleke
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Benoit Recur
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Hugo Balacey
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Hsiang-Hsin Chen
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| | - Maylis Delugin
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Yeukuang Hwu
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| | - Sophie Javerzat
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Cyril Petibois
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| |
Collapse
|
11
|
Krueger JM, Frank MG, Wisor JP, Roy S. Sleep function: Toward elucidating an enigma. Sleep Med Rev 2016; 28:46-54. [PMID: 26447948 PMCID: PMC4769986 DOI: 10.1016/j.smrv.2015.08.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/16/2015] [Accepted: 08/19/2015] [Indexed: 01/11/2023]
Abstract
Sleep function remains controversial. Individual perspectives frame the issue of sleep function differently. We briefly illustrate how sleep measurement and the evolution, tissue organization levels, molecular mechanisms, and regulation of sleep could influence one's view of sleep function. Then we discuss six viable theories of sleep function. Sleep serves host-defense mechanisms and conserves caloric expenditures, but these functions likely are opportunistic functions evolving later in evolution. That sleep replenishes brain energy stores and that sleep serves a glymphatic function by removing toxic byproducts of waking activity are attractive ideas, but lack extensive supporting experimental evidence. That sleep restores performance is experimentally demonstrated and has obvious evolutionary value. However, this hypothesis lacks experimentally verified mechanisms although ideas relating to this issue are presented. Finally, the ideas surrounding the broad hypothesis that sleep serves a connectivity/plasticity function are many and attractive. There is experimental evidence that connectivity changes with sleep, sleep loss, and with changing afferent input, and that those changes are linked to sleep regulatory mechanisms. In our view, this is the leading contender for the primordial function of sleep. However, much refinement of ideas and innovative experimental approaches are needed to clarify the sleep-connectivity relationship.
Collapse
Affiliation(s)
- James M Krueger
- College of Medical Sciences, Washington State University-Spokane, WA, USA.
| | - Marcos G Frank
- College of Medical Sciences, Washington State University-Spokane, WA, USA
| | - Jonathan P Wisor
- College of Medical Sciences, Washington State University-Spokane, WA, USA
| | - Sandip Roy
- Department of Electrical Engineering, Washington State University-Pullman, WA, USA
| |
Collapse
|
12
|
Petit JM, Magistretti P. Regulation of neuron–astrocyte metabolic coupling across the sleep–wake cycle. Neuroscience 2016; 323:135-56. [DOI: 10.1016/j.neuroscience.2015.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
|
13
|
Duran J, Guinovart JJ. Brain glycogen in health and disease. Mol Aspects Med 2015; 46:70-7. [PMID: 26344371 DOI: 10.1016/j.mam.2015.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
Abstract
Glycogen is present in the brain at much lower concentrations than in muscle or liver. However, by characterizing an animal depleted of brain glycogen, we have shown that the polysaccharide plays a key role in learning capacity and in activity-dependent changes in hippocampal synapse strength. Since glycogen is essentially found in astrocytes, the diverse roles proposed for this polysaccharide in the brain have been attributed exclusively to these cells. However, we have demonstrated that neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. However, these cells can store only minute amounts of glycogen, since the progressive accumulation of this molecule leads to neuronal loss. Loss-of-function mutations in laforin and malin cause Lafora disease. This condition is characterized by the presence of high numbers of insoluble polyglucosan bodies, known as Lafora bodies, in neuronal cells. Our findings reveal that the accumulation of this aberrant glycogen accounts for the neurodegeneration and functional consequences, as well as the impaired autophagy, observed in models of this disease. Similarly glycogen synthase is responsible for the accumulation of corpora amylacea, which are polysaccharide-based aggregates present in the neurons of aged human brains. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism is important under stress conditions and that neuronal glycogen accumulation contributes to neurodegenerative diseases and to aging-related corpora amylacea formation.
Collapse
Affiliation(s)
- Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Khowaja A, Choi IY, Seaquist ER, Öz G. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans. Metab Brain Dis 2015; 30:255-61. [PMID: 24676563 PMCID: PMC4392006 DOI: 10.1007/s11011-014-9530-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/12/2014] [Indexed: 01/31/2023]
Abstract
Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of (13)C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the (13)C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness.
Collapse
Affiliation(s)
- Ameer Khowaja
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, Department of Neurology, Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Elizabeth R. Seaquist
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Petit JM, Burlet-Godinot S, Magistretti PJ, Allaman I. Glycogen metabolism and the homeostatic regulation of sleep. Metab Brain Dis 2015; 30:263-79. [PMID: 25399336 PMCID: PMC4544655 DOI: 10.1007/s11011-014-9629-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named "glycogenetic" hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.
Collapse
Affiliation(s)
- Jean-Marie Petit
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland,
| | | | | | | |
Collapse
|
16
|
The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 2014; 47:122-53. [DOI: 10.1016/j.neubiorev.2014.08.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/27/2014] [Accepted: 08/02/2014] [Indexed: 12/14/2022]
|
17
|
Frank MG. Astroglial regulation of sleep homeostasis. Curr Opin Neurobiol 2013; 23:812-8. [PMID: 23518138 DOI: 10.1016/j.conb.2013.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022]
Abstract
Mammalian sleep is regulated by two distinct mechanisms. A circadian oscillator provides timing signals that organize sleep and wake across the 24 hour day. A homeostatic mechanism increases sleep drive and sleep amounts (or intensity) as a function of prior time awake. The cellular mechanisms of sleep homeostasis are poorly defined, but are thought to be primarily neuronal. According to one view, sleep homeostasis arises from interactions between subcortical neurons that register sleep pressure and other neurons that promote either sleep or wakefulness. Alternatively, sleep drive may arise independently among neurons throughout the brain in a use-dependent fashion. Implicit in both views is the idea that sleep homeostasis is solely the product of neurons. In this article, I discuss an emerging view that glial astrocytes may play an essential role in sleep homeostasis.
Collapse
Affiliation(s)
- Marcos G Frank
- University of Pennsylvania, Perelman School of Medicine, Department of Neuroscience, 215 Stemmler Hall, 35th & Hamilton Walk, Philadelphia, PA 19104-6074, United States.
| |
Collapse
|
18
|
Naylor E, Aillon DV, Gabbert S, Harmon H, Johnson DA, Wilson GS, Petillo PA. Simultaneous real-time measurement of EEG/EMG and L-glutamate in mice: A biosensor study of neuronal activity during sleep. J Electroanal Chem (Lausanne) 2011; 656:106-113. [PMID: 27076812 DOI: 10.1016/j.jelechem.2010.12.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report on electroencephalograph (EEG) and electromyograph (EMG) measurements concurrently with real-time changes in L-glutamate concentration. These data reveal a link between sleep state and extracellular neurotransmitter changes in a freely-moving (tethered) mouse. This study reveals, for the first time in mice, that the extracellular L-glutamate concentration in the pre-frontal cortex (PFC) increases during periods of extended wakefulness, decreases during extended sleep episodes and spikes during periods of REM sleep. Individual sleep epochs (10 s in duration) were scored as wake, slow-wave (SW) sleep or rapid eye movement (REM) sleep, and then correlated as a function of time with measured changes in L-glutamate concentrations. The observed L-glutamate levels show a statistically significant increase of 0.86 ± 0.26 μM (p < 0.05) over 37 wake episodes recorded from all mice (n = 6). Over the course of 49 measured sleep periods longer than 15 min, L-glutamate concentrations decline by a similar amount (0.88 ± 0.37 μM, p < 0.08). The analysis of 163 individual REM sleep episodes greater than one min in length across all mice (n = 6) demonstrates a significant rise in L-glutamate levels as compared to the 1 min preceding REM sleep onset (RM-ANOVA, DF = 20, F = 6.458, p < 0.001). The observed rapid changes in L-glutamate concentration during REM sleep last only between 1 and 3 min. The approach described can also be extended to other regions of the brain which are hypothesized to play a role in sleep. This study highlights the importance of obtaining simultaneous measurements of neurotransmitter levels in conjunction with sleep markers to help elucidate the underlying physiological and ultimately the genetic components of sleep.
Collapse
Affiliation(s)
- Erik Naylor
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| | - Daniel V Aillon
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| | - Seth Gabbert
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| | - Hans Harmon
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| | - David A Johnson
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| | - George S Wilson
- Department of Chemistry, Malott Hall, Room 3027, University of Kansas, Lawrence, KS 66045, United States
| | - Peter A Petillo
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| |
Collapse
|
19
|
Petit JM, Tobler I, Kopp C, Morgenthaler F, Borbély AA, Magistretti PJ. Metabolic response of the cerebral cortex following gentle sleep deprivation and modafinil administration. Sleep 2010; 33:901-8. [PMID: 20614850 DOI: 10.1093/sleep/33.7.901] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES The main energy reserve of the brain is glycogen, which is almost exclusively localized in astrocytes. We previously reported that cerebral expression of certain genes related to glycogen metabolism changed following instrumental sleep deprivation in mice. Here, we extended our investigations to another set of genes related to glycogen and glucose metabolism. We also compared the effect of instrumentally and pharmacologically induced prolonged wakefulness, followed (or not) by 3 hours of sleep recovery, on the expression of genes related to brain energy metabolism. DESIGN Sleep deprivation for 6-7 hours. SETTING Animal sleep research laboratory. PARTICIPANTS Adults OF1 mice. INTERVENTIONS Wakefulness was maintained by "gentle sleep deprivation" method (GSD) or by administration of the wakefulness-promoting drug modafinil (MOD) (200 mg/kg i.p.). MEASUREMENTS AND RESULTS Levels of mRNAs encoding proteins related to energy metabolism were measured by quantitative real-time PCR in the cerebral cortex. The mRNAs encoding protein targeting to glycogen (PTG) and the glial glucose transporter were significantly increased following both procedures used to prolong wakefulness. Glycogenin mRNA levels were increased only after GSD, while neuronal glucose transporter mRNA only after MOD. These effects were reversed after sleep recovery. A significant enhancement of glycogen synthase activity without any changes in glycogen levels was observed in both conditions. CONCLUSIONS These results indicate the existence of a metabolic adaptation of astrocytes aimed at maintaining brain energy homeostasis during the sleep-wake cycle.
Collapse
Affiliation(s)
- Jean-Marie Petit
- Laboratory of Neuroenergetic and Cellular Dynamics, Brain Mind Institute, Life Science Faculty, EPFL, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
20
|
Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer R. Sleep and brain energy levels: ATP changes during sleep. J Neurosci 2010; 30:9007-16. [PMID: 20592221 PMCID: PMC2917728 DOI: 10.1523/jneurosci.1423-10.2010] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/17/2010] [Accepted: 05/21/2010] [Indexed: 01/06/2023] Open
Abstract
Sleep is one of the most pervasive biological phenomena, but one whose function remains elusive. Although many theories of function, indirect evidence, and even common sense suggest sleep is needed for an increase in brain energy, brain energy levels have not been directly measured with modern technology. We here report that ATP levels, the energy currency of brain cells, show a surge in the initial hours of spontaneous sleep in wake-active but not in sleep-active brain regions of rat. The surge is dependent on sleep but not time of day, since preventing sleep by gentle handling of rats for 3 or 6 h also prevents the surge in ATP. A significant positive correlation was observed between the surge in ATP and EEG non-rapid eye movement delta activity (0.5-4.5 Hz) during spontaneous sleep. Inducing sleep and delta activity by adenosine infusion into basal forebrain during the normally active dark period also increases ATP. Together, these observations suggest that the surge in ATP occurs when the neuronal activity is reduced, as occurs during sleep. The levels of phosphorylated AMP-activated protein kinase (P-AMPK), well known for its role in cellular energy sensing and regulation, and ATP show reciprocal changes. P-AMPK levels are lower during the sleep-induced ATP surge than during wake or sleep deprivation. Together, these results suggest that sleep-induced surge in ATP and the decrease in P-AMPK levels set the stage for increased anabolic processes during sleep and provide insight into the molecular events leading to the restorative biosynthetic processes occurring during sleep.
Collapse
Affiliation(s)
- Markus Dworak
- Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts 02132
| | - Robert W. McCarley
- Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts 02132
| | - Tae Kim
- Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts 02132
| | - Anna V. Kalinchuk
- Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts 02132
| | - Radhika Basheer
- Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts 02132
| |
Collapse
|
21
|
Morgenthaler FD, Lanz BR, Petit JM, Frenkel H, Magistretti PJ, Gruetter R. Alteration of brain glycogen turnover in the conscious rat after 5h of prolonged wakefulness. Neurochem Int 2009; 55:45-51. [PMID: 19428806 DOI: 10.1016/j.neuint.2009.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/23/2009] [Accepted: 02/27/2009] [Indexed: 02/04/2023]
Abstract
Although glycogen (Glyc) is the main carbohydrate storage component, the role of Glyc in the brain during prolonged wakefulness is not clear. The aim of this study was to determine brain Glyc concentration ([]) and turnover time (tau) in euglycemic conscious and undisturbed rats, compared to rats maintained awake for 5h. To measure the metabolism of [1-(13)C]-labeled Glc into Glyc, 23 rats received a [1-(13)C]-labeled Glc solution as drink (10% weight per volume in tap water) ad libitum as their sole source of exogenous carbon for a "labeling period" of either 5h (n=13), 24h (n=5) or 48 h (n=5). Six of the rats labeled for 5h were continuously maintained awake by acoustic, tactile and olfactory stimuli during the labeling period, which resulted in slightly elevated corticosterone levels. Brain [Glyc] measured biochemically after focused microwave fixation in the rats maintained awake (3.9+/-0.2 micromol/g, n=6) was not significantly different from that of the control group (4.0+/-0.1 micromol/g, n=7; t-test, P>0.5). To account for potential variations in plasma Glc isotopic enrichment (IE), Glyc IE was normalized by N-acetyl-aspartate (NAA) IE. A simple mathematical model was developed to derive brain Glyc turnover time as 5.3h with a fit error of 3.2h and NAA turnover time as 15.6h with a fit error of 6.5h, in the control rats. A faster tau(Glyc) (2.9h with a fit error of 1.2h) was estimated in the rats maintained awake for 5h. In conclusion, 5h of prolonged wakefulness mainly activates glycogen metabolism, but has minimal effect on brain [Glyc].
Collapse
Affiliation(s)
- Florence D Morgenthaler
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Scharf MT, Naidoo N, Zimmerman JE, Pack AI. The energy hypothesis of sleep revisited. Prog Neurobiol 2008; 86:264-80. [PMID: 18809461 DOI: 10.1016/j.pneurobio.2008.08.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 06/08/2008] [Accepted: 08/27/2008] [Indexed: 01/09/2023]
Abstract
One of the proposed functions of sleep is to replenish energy stores in the brain that have been depleted during wakefulness. Benington and Heller formulated a version of the energy hypothesis of sleep in terms of the metabolites adenosine and glycogen. They postulated that during wakefulness, adenosine increases and astrocytic glycogen decreases reflecting the increased energetic demand of wakefulness. We review recent studies on adenosine and glycogen stimulated by this hypothesis. We also discuss other evidence that wakefulness is an energetic challenge to the brain including the unfolded protein response, the electron transport chain, NPAS2, AMP-activated protein kinase, the astrocyte-neuron lactate shuttle, production of reactive oxygen species and uncoupling proteins. We believe the available evidence supports the notion that wakefulness is an energetic challenge to the brain, and that sleep restores energy balance in the brain, although the mechanisms by which this is accomplished are considerably more complex than envisaged by Benington and Heller.
Collapse
Affiliation(s)
- Matthew T Scharf
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine, Translational Research Building, Suite 2100, 125 S. 31st Street, Philadelphia, PA 19104-3403, USA.
| | | | | | | |
Collapse
|
23
|
Hänninen L, Hepola H, Raussi S, Saloniemi H. Effect of colostrum feeding method and presence of dam on the sleep, rest and sucking behaviour of newborn calves. Appl Anim Behav Sci 2008. [DOI: 10.1016/j.applanim.2007.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Dworak M, Diel P, Voss S, Hollmann W, Strüder HK. Intense exercise increases adenosine concentrations in rat brain: implications for a homeostatic sleep drive. Neuroscience 2007; 150:789-95. [PMID: 18031936 DOI: 10.1016/j.neuroscience.2007.09.062] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 09/25/2007] [Accepted: 10/04/2007] [Indexed: 11/19/2022]
Abstract
Intense exercise and sleep deprivation affect the amount of homeostatically regulated slow wave sleep in the subsequent sleep period. Since brain energy metabolism plays a decisive role in the regulation of behavioral states, we determined the concentrations of nucleotides and nucleosides: phosphocreatine, creatine, ATP, ADP, AMP, adenosine, and inosine after moderate and exhaustive treadmill exercise as well as 3 and 5 h of sleep deprivation and sleep in the rat brain using the freeze-clamp technique. High intensity exercise resulted in a significant increase of the sleep-promoting substance adenosine. In contrast, following sleep, inosine and adenosine levels declined considerably, with an accompanied increase of ADP after 3 h and ATP after 5 h. Following 3 h and 5 h sleep deprivation, ADP and ATP did not differ significantly, whereas inosine increased during the 3 and 5-h period. The concentrations of AMP, creatine and phosphocreatine remained unchanged between experimental conditions. The present results are in agreement with findings from other authors and suggest that depletion of cerebral energy stores and accumulation of the sleep promoting substance adenosine after high intensity exercise may play a key role in homeostatic sleep regulation, and that sleep may play an essential role in replenishment of high-energy compounds.
Collapse
Affiliation(s)
- M Dworak
- Institute of Motor Control and Movement Technique, German Sport University Cologne, Carl-Diem-Weg 6, 50933 Cologne, Germany.
| | | | | | | | | |
Collapse
|
25
|
Malleau AE, Duncan IJ, Widowski TM, Atkinson JL. The importance of rest in young domestic fowl. Appl Anim Behav Sci 2007. [DOI: 10.1016/j.applanim.2006.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Franken P, Gip P, Hagiwara G, Ruby NF, Heller HC. Glycogen content in the cerebral cortex increases with sleep loss in C57BL/6J mice. Neurosci Lett 2006; 402:176-9. [PMID: 16644123 DOI: 10.1016/j.neulet.2006.03.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 03/31/2006] [Indexed: 11/29/2022]
Abstract
We hypothesized that a function of sleep is to replenish brain glycogen stores that become depleted while awake. We have previously tested this hypothesis in three inbred strains of mice by measuring brain glycogen after a 6h sleep deprivation (SD). Unexpectedly, glycogen content in the cerebral cortex did not decrease with SD in two of the strains and was even found to increase in mice of the C57BL/6J (B6) strain. Manipulations that initially induce glycogenolysis can also induce subsequent glycogen synthesis thereby elevating glycogen content beyond baseline. It is thus possible that in B6 mice, cortical glycogen content decreased early during SD and became elevated later in SD. In the present study, we therefore measured changes in brain glycogen over the course of a 6 h SD and during recovery sleep in B6 mice. We found no evidence of a decrease at any time during the SD, instead, cortical glycogen content monotonically increased with time-spent-awake and, when sleep was allowed, started to revert to control levels. Such a time-course is opposite to the one predicted by our initial hypothesis. These results demonstrate that glycogen synthesis can be achieved during prolonged wakefulness to the extent that it outweighs glycogenolysis. Maintaining this energy store seems thus not to be functionally related to sleep in this strain.
Collapse
Affiliation(s)
- Paul Franken
- Department of Biological Sciences, Stanford University, Stanford, CA, USA.
| | | | | | | | | |
Collapse
|
27
|
Sickmann HM, Schousboe A, Fosgerau K, Waagepetersen HS. Compartmentation of Lactate Originating from Glycogen and Glucose in Cultured Astrocytes. Neurochem Res 2005; 30:1295-304. [PMID: 16341591 DOI: 10.1007/s11064-005-8801-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Brain glycogen metabolism was investigated by employing isofagomine, an inhibitor of glycogen phosphorylase. Cultured cerebellar and neocortical astrocytes were incubated in medium containing [U-(13C)]glucose in the absence or presence of isofagomine and the amounts and percent labeling of intra- and extracellular metabolites were determined by mass spectrometry (MS). The percent labeling in glycogen was markedly decreased in the presence of isofagomine. Surprisingly, the percent labeling of intracellular lactate was also decreased demonstrating the importance of glycogen turnover. The decrease was limited to the percent labeling in the intracellular pool of lactate, which was considerably lower compared to that observed in the medium in which it was close to 100%. These findings indicate compartmentation of lactate derived from glycogenolysis and that derived from glycolysis. Inhibiting glycogen degradation had no effect on the percent labeling in citrate. However, the percent labeling of extracellular glutamine was slightly decreased in neocortical astrocytes exposed to isofagomine, indicating an importance of glycogen turnover in the synthesis of releasable glutamine. In conclusion, the results demonstrate that glycogen in cultured astrocytes is continuously synthesized and degraded. Moreover, it was found that lactate originating from glycogen is compartmentalized from that derived from glucose, which lends further support to a compartmentalized metabolism in astrocytes.
Collapse
Affiliation(s)
- Helle M Sickmann
- Department of Pharmacology and Pharmacotherapy, Danish University of Pharmaceutical Sciences, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
28
|
Gip P, Hagiwara G, Sapolsky RM, Cao VH, Heller HC, Ruby NF. Glucocorticoids influence brain glycogen levels during sleep deprivation. Am J Physiol Regul Integr Comp Physiol 2004; 286:R1057-62. [PMID: 14962825 DOI: 10.1152/ajpregu.00528.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether glucocorticoids [i.e., corticosterone (Cort) in rats] released during sleep deprivation (SD) affect regional brain glycogen stores in 34-day-old Long-Evans rats. Adrenalectomized (with Cort replacement; Adx+) and intact animals were sleep deprived for 6 h beginning at lights on and then immediately killed by microwave irradiation. Brain and liver glycogen and glucose and plasma glucose levels were measured. After SD in intact animals, glycogen levels decreased in the cerebellum and hippocampus but not in the cortex or brain stem. By contrast, glycogen levels in the cortex of Adx+ rats increased by 43% ( P < 0.001) after SD, while other regions were unaffected. Also in Adx+ animals, glucose levels were decreased by an average of 28% throughout the brain after SD. Intact sleep-deprived rats had elevations of circulating Cort, blood, and liver glucose that were absent in intact control and Adx+ animals. Different responses between brain structures after SD may be due to regional variability in metabolic rate or glycogen metabolism. Our findings suggest that the elevated glucocorticoid secretion during SD causes brain glycogenolysis in response to energy demands.
Collapse
Affiliation(s)
- Phung Gip
- Stanford Genome Technology Center, Stanford University, CA 94304-8307, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Zimmerman JE, Mackiewicz M, Galante RJ, Zhang L, Cater J, Zoh C, Rizzo W, Pack AI. Glycogen in the brain of Drosophila melanogaster: diurnal rhythm and the effect of rest deprivation. J Neurochem 2003; 88:32-40. [PMID: 14675147 DOI: 10.1046/j.1471-4159.2003.02126.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One function of sleep is thought to be the restoration of energy stores in the brain depleted during wakefulness. One such energy store found in mammalian brains is glycogen. Many of the genes involved in glycogen regulation in mammals have also been found in Drosophila melanogaster and rest behavior in Drosophila has recently been shown to have the characteristics of sleep. We therefore examined, in the fly, variation in the glycogen contents of the brain, the whole head and the body throughout the rest/activity cycle and after rest deprivation. Glycogen in the brain varies significantly throughout the day (p=0.001) and is highest during rest and lowest while flies are active. Glycogen levels in the whole head and body do not show diurnal variation. Brain glycogen drops significantly when flies are rest deprived for 3 h (p=0.034) but no significant differences are observed after 6 h of rest deprivation. In contrast, glycogen is significantly depleted in the body after both 3 and 6 h of rest deprivation (p<0.0001 and p<0.0001, respectively). Glycogen in the fly brain changes in relationship to rest and activity and demonstrates a biphasic response to rest deprivation similar to that observed in mammalian astrocytes in culture.
Collapse
Affiliation(s)
- John E Zimmerman
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4283, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Franken P, Gip P, Hagiwara G, Ruby NF, Heller HC. Changes in brain glycogen after sleep deprivation vary with genotype. Am J Physiol Regul Integr Comp Physiol 2003; 285:R413-9. [PMID: 12730076 DOI: 10.1152/ajpregu.00668.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sleep has been functionally implicated in brain energy homeostasis in that it could serve to replenish brain energy stores that become depleted while awake. Sleep deprivation (SD) should therefore lower brain glycogen content. We tested this hypothesis by sleep depriving mice of three inbred strains, i.e., AKR/J (AK), DBA/2J (D2), and C57BL/6J (B6), that differ greatly in their sleep regulation. After a 6-h SD, these mice and their controls were killed by microwave irradiation, and glycogen and glucose were quantified in the cerebral cortex, brain stem, and cerebellum. After SD, both measures significantly increased by approximately 40% in the cortex of B6 mice, while glycogen significantly decreased by 20-38% in brain stem and cerebellum of AK and D2 mice. In contrast, after SD, glucose content increased in all three structures in AK mice and did not change in D2 mice. The increase in glycogen after SD in B6 mice persisted under conditions of food deprivation that, by itself, lowered cortical glycogen. Furthermore, the strains that differ most in their compensatory response to sleep loss, i.e., AK and D2, did not differ in their glycogen response. Thus glycogen content per se is an unlikely end point of sleep's functional role in brain energy homeostasis.
Collapse
Affiliation(s)
- Paul Franken
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
The brain contains a small but significant amount of glycogen, which has long been considered to play an insignificant role in the brain. In this study, brain glycogen metabolism was measured using (13)C NMR spectroscopy at 9.4 T. Brain glycogen metabolism was modulated by hyperinsulinemia resulting in a net accumulation. The role of glycogen in maintaining brain function is unknown; one possibility is that it may serve as an endogenous glucose reservoir to protect the brain against severe hypoglycemia. To address this possibility, rats were subjected to insulin-induced moderate hypoglycemia and when the level of brain glucose approached zero, brain glycogen content began to decrease gradually, demonstrating utilization of this glucose reservoir. The brain glycogen signal never became undetectable, however, even during 2 hr of hypoglycemia. When plasma and brain glucose concentrations were restored, glycogen increased and the concentration exceeded the pre-hypoglycemic level by several-fold. The data suggest that brain glycogen can provide fuel for extended periods of time when glucose supply is inadequate. Furthermore, brain glycogen can rebound (super-compensate) after a single episode of hypoglycemia. We postulate that brain glycogen serves as an energy store during hypoglycemia and that it may participate in the creation of reduced physiological responses to hypoglycemia that are involved in a symptom often observed in patients with diabetes, hypoglycemia unawareness.
Collapse
Affiliation(s)
- In-Young Choi
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
32
|
Abstract
SUMMARY
The coupling between synaptic activity and glucose utilization(neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the `astrocyte–neuron lactate shuttle', is supported experimentally by a large body of evidence,which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron–glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity,involving by definition neuron–glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep–wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.
Collapse
Affiliation(s)
- Pierre J Magistretti
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland and Centre de Neurosciences Psychiatriques, CHUV, Departement de Psychiatrie, Site de Cery, CH1008 Prilly/Lausanne, Switzerland.
| |
Collapse
|