1
|
Contreras RG, Torres-Carrillo A, Flores-Maldonado C, Shoshani L, Ponce A. Na +/K +-ATPase: More than an Electrogenic Pump. Int J Mol Sci 2024; 25:6122. [PMID: 38892309 PMCID: PMC11172918 DOI: 10.3390/ijms25116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium pump, or Na+/K+-ATPase (NKA), is an essential enzyme found in the plasma membrane of all animal cells. Its primary role is to transport sodium (Na+) and potassium (K+) ions across the cell membrane, using energy from ATP hydrolysis. This transport creates and maintains an electrochemical gradient, which is crucial for various cellular processes, including cell volume regulation, electrical excitability, and secondary active transport. Although the role of NKA as a pump was discovered and demonstrated several decades ago, it remains the subject of intense research. Current studies aim to delve deeper into several aspects of this molecular entity, such as describing its structure and mode of operation in atomic detail, understanding its molecular and functional diversity, and examining the consequences of its malfunction due to structural alterations. Additionally, researchers are investigating the effects of various substances that amplify or decrease its pumping activity. Beyond its role as a pump, growing evidence indicates that in various cell types, NKA also functions as a receptor for cardiac glycosides like ouabain. This receptor activity triggers the activation of various signaling pathways, producing significant morphological and physiological effects. In this report, we present the results of a comprehensive review of the most outstanding studies of the past five years. We highlight the progress made regarding this new concept of NKA and the various cardiac glycosides that influence it. Furthermore, we emphasize NKA's role in epithelial physiology, particularly its function as a receptor for cardiac glycosides that trigger intracellular signals regulating cell-cell contacts, proliferation, differentiation, and adhesion. We also analyze the role of NKA β-subunits as cell adhesion molecules in glia and epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (R.G.C.); (A.T.-C.); (C.F.-M.); (L.S.)
| |
Collapse
|
2
|
Kim GH. Primary Role of the Kidney in Pathogenesis of Hypertension. Life (Basel) 2024; 14:119. [PMID: 38255734 PMCID: PMC10817438 DOI: 10.3390/life14010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Previous transplantation studies and the concept of 'nephron underdosing' support the idea that the kidney plays a crucial role in the development of essential hypertension. This suggests that there are genetic factors in the kidney that can either elevate or decrease blood pressure. The kidney normally maintains arterial pressure within a narrow range by employing the mechanism of pressure-natriuresis. Hypertension is induced when the pressure-natriuresis mechanism fails due to both subtle and overt kidney abnormalities. The inheritance of hypertension is believed to be polygenic, and essential hypertension may result from a combination of genetic variants that code for renal tubular sodium transporters or proteins involved in regulatory pathways. The renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS) are the major regulators of renal sodium reabsorption. Hyperactivity of either the RAAS or SNS leads to a rightward shift in the pressure-natriuresis curve. In other words, hypertension is induced when the activity of RAAS and SNS is not suppressed despite increased salt intake. Sodium overload, caused by increased intake and/or reduced renal excretion, not only leads to an expansion of plasma volume but also to an increase in systemic vascular resistance. Endothelial dysfunction is caused by an increased intracellular Na+ concentration, which inhibits endothelial nitric oxide (NO) synthase and reduces NO production. The stiffness of vascular smooth muscle cells is increased by the accumulation of intracellular Na+ and subsequent elevation of cytoplasmic Ca++ concentration. In contrast to the hemodynamic effects of osmotically active Na+, osmotically inactive Na+ stimulates immune cells and produces proinflammatory cytokines, which contribute to hypertension. When this occurs in the gut, the microbiota may become imbalanced, leading to intestinal inflammation and systemic hypertension. In conclusion, the primary cause of hypertension is sodium overload resulting from kidney dysregulation.
Collapse
Affiliation(s)
- Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Negussie YM, Getahun MS, Bekele NT. Factors associated with diabetes concordant comorbidities among adult diabetic patients in Central Ethiopia: a cross-sectional study. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1307463. [PMID: 38152283 PMCID: PMC10751332 DOI: 10.3389/fcdhc.2023.1307463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Background Diabetes comorbidities are a serious public health issue that raises the risk of adverse health effects and complicates diabetes management. It also harms emotional health, medication adherence, self-management, and general quality of life. However, evidence is scarce in Ethiopia, particularly in the study area. Thus, this study aimed to estimate the prevalence of diabetes concordant comorbidities and identify factors associated with the presence of concordant comorbidities among adult diabetic patients in central Ethiopia. Methods A health facility-based cross-sectional study was conducted among 398 adult diabetic patients. A computer-generated simple random sampling was used to select study participants. Data were collected using a structured data extraction checklist. The collected data were entered into Epi info version 7.2 and exported to SPSS version 27 for analysis. A binary logistic regression model was used to analyze the association between dependent and independent variables. An adjusted odds ratio with the corresponding 95% confidence interval was used to measure the strength of the association and statistical significance was declared at a p-value < 0.05. Result The prevalence of diabetes-concordant comorbidities was 41% (95% CI: 36.2-46.0). The multivariable logistic regression model showed that age 41-60 (AOR = 2.86, 95% CI: 1.60-5.13), place of residence (AOR = 2.22, 95% CI: 1.33-3.70), having type two diabetes (AOR = 3.30, 95% CI: 1.21-8.99), and having positive proteinuria (AOR = 2.64, 95% CI: 1.47-4.76) were significantly associated with diabetes concordant comorbidities. Conclusion The prevalence of diabetes-concordant comorbidities was relatively high. Age, place of residence, type of diabetes, and positive proteinuria were factors associated with diabetes-concordant comorbidities. Prevention, early identification, and proper management of diabetes comorbidities are crucial.
Collapse
|
4
|
Hong BV, Agus JK, Tang X, Zheng JJ, Romo EZ, Lei S, Zivkovic AM. Precision Nutrition and Cardiovascular Disease Risk Reduction: the Promise of High-Density Lipoproteins. Curr Atheroscler Rep 2023; 25:663-677. [PMID: 37702886 PMCID: PMC10564829 DOI: 10.1007/s11883-023-01148-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE OF REVIEW Emerging evidence supports the promise of precision nutritional approaches for cardiovascular disease (CVD) prevention. Here, we discuss current findings from precision nutrition trials and studies reporting substantial inter-individual variability in responses to diets and dietary components relevant to CVD outcomes. We highlight examples where early precision nutrition research already points to actionable intervention targets tailored to an individual's biology and lifestyle. Finally, we make the case for high-density lipoproteins (HDL) as a compelling next generation target for precision nutrition aimed at CVD prevention. HDL possesses complex structural features including diverse protein components, lipids, size distribution, extensive glycosylation, and interacts with the gut microbiome, all of which influence HDL's anti-inflammatory, antioxidant, and cholesterol efflux properties. Elucidating the nuances of HDL structure and function at an individual level may unlock personalized dietary and lifestyle strategies to optimize HDL-mediated atheroprotection and reduce CVD risk. RECENT FINDINGS Recent human studies have demonstrated that HDL particles are key players in the reduction of CVD risk. Our review highlights the role of HDL and the importance of personalized therapeutic approaches to improve their potential for reducing CVD risk. Factors such as diet, genetics, glycosylation, and gut microbiome interactions can modulate HDL structure and function at the individual level. We emphasize that fractionating HDL into size-based subclasses and measuring particle concentration are necessary to understand HDL biology and for developing the next generation of diagnostics and biomarkers. These discoveries underscore the need to move beyond a one-size-fits-all approach to HDL management. Precision nutrition strategies that account for personalized metabolic, genetic, and lifestyle data hold promise for optimizing HDL therapies and function to mitigate CVD risk more potently. While human studies show HDL play a key role in reducing CVD risk, recent findings indicate that factors such as diet, genetics, glycosylation, and gut microbes modulate HDL function at the individual level, underscoring the need for precision nutrition strategies that account for personalized variability to optimize HDL's potential for mitigating CVD risk.
Collapse
Affiliation(s)
- Brian V Hong
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Eduardo Z Romo
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Susan Lei
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Spitz RW, Loprinzi PD, Loenneke JP. Individuals with hypertension have lower plasma volume regardless of weight status. J Hum Hypertens 2023; 37:491-495. [PMID: 35568725 DOI: 10.1038/s41371-022-00705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
Increased plasma volume is often reported as a cause or symptom of hypertension in individuals with obesity. However, these individuals are often compared to normal weight normotensive individuals. Since higher plasma volumes have been reported in larger individuals, it is possible that plasma volume is actually lower in obese hypertensive individuals compared to normotensive obese individuals. This may be important for better understanding the clinical manifestation of hypertension between weight categories. National Health and Nutritional Examination Survey (cycles 1999-2018) data were used to examine the relationship between plasma (derived from the Straus formula), blood pressure (measured with an automated device) and body mass index. We observed an inverse relationship between estimated plasma volume and systolic (B = -1.68 (95% CI: -2.06, -1.30) mmHg), p < 0.0001), diastolic (B = -3.35 (95% CI: -3.61, -3.08) mmHg) p < 0.0001), and mean arterial pressure (B = -2.79 (95% CI: -3.05, -2.53) mmHg) p < 0.0001). The relationship between estimated plasma volume and diastolic blood pressure (interaction term: B = -0.069 (-0.10, -0.03), p < 0.0001) did depend on BMI. The "normal weight" group had the lowest slope and this slope was significantly different from the "obese" (B = -1.47 (95% CI: -1.88, -1.07)) and "overweight" (B = -1.11 (-1.55, -0.67)) groups. Plasma volume is lower in hypertensive individuals regardless of weight status, but this relationship is more pronounced among obese individuals.
Collapse
Affiliation(s)
- Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, Mississippi, USA
| | - Paul D Loprinzi
- Department of Health, Exercise Science, and Recreation Management. Exercise and Memory Laboratory, The University of Mississippi, University, MS, Mississippi, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, Mississippi, USA.
| |
Collapse
|
6
|
Ameer OZ. Hypertension in chronic kidney disease: What lies behind the scene. Front Pharmacol 2022; 13:949260. [PMID: 36304157 PMCID: PMC9592701 DOI: 10.3389/fphar.2022.949260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a frequent condition encountered during kidney disease development and a leading cause in its progression. Hallmark factors contributing to hypertension constitute a complexity of events that progress chronic kidney disease (CKD) into end-stage renal disease (ESRD). Multiple crosstalk mechanisms are involved in sustaining the inevitable high blood pressure (BP) state in CKD, and these play an important role in the pathogenesis of increased cardiovascular (CV) events associated with CKD. The present review discusses relevant contributory mechanisms underpinning the promotion of hypertension and their consequent eventuation to renal damage and CV disease. In particular, salt and volume expansion, sympathetic nervous system (SNS) hyperactivity, upregulated renin–angiotensin–aldosterone system (RAAS), oxidative stress, vascular remodeling, endothelial dysfunction, and a range of mediators and signaling molecules which are thought to play a role in this concert of events are emphasized. As the control of high BP via therapeutic interventions can represent the key strategy to not only reduce BP but also the CV burden in kidney disease, evidence for major strategic pathways that can alleviate the progression of hypertensive kidney disease are highlighted. This review provides a particular focus on the impact of RAAS antagonists, renal nerve denervation, baroreflex stimulation, and other modalities affecting BP in the context of CKD, to provide interesting perspectives on the management of hypertensive nephropathy and associated CV comorbidities.
Collapse
Affiliation(s)
- Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Omar Z. Ameer,
| |
Collapse
|
7
|
Impact of different dietary sodium reduction strategies on blood pressure: a systematic review. Hypertens Res 2022; 45:1701-1712. [DOI: 10.1038/s41440-022-00990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
|
8
|
Kazmi I, Al-Maliki WH, Ali H, Al-Abbasi FA. Biochemical interaction of salt sensitivity: a key player for the development of essential hypertension. Mol Cell Biochem 2020; 476:767-773. [PMID: 33070283 DOI: 10.1007/s11010-020-03942-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Worldwide, more than 1 billion people have elevated blood pressure, with up to 45% of adults affected by the disease. In 2016 the global health study report on patients from 67 countries was released in Lancet, which identified hypertension as the world's leading cause for death and disability-adjusted years since 1990. This paper aims to analyze the pathophysiological connection between hemodynamic inflammatory reactions through sodium balance, salt sensitivity, and potential pathophysiological reactions. Besides, we explore how sodium consumption enhances the expression of transient receptor potential channel 3 (TrpC3) mRNA and facilitates the release of calcium inside immune cell groups, together with elevated blood pressure in essential hypertensive patients.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Waleed Hassan Al-Maliki
- Department of Pharmacology, College of Pharmacy, Umm Al Qura University, Mecca, Saudi Arabia
| | - Haider Ali
- Faculty of Medicine, Ala-Too International University, 720048, Bishkek, Kyrgyzstan
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Azemati B, Kelishadi R, Ahadi Z, Shafiee G, Taheri M, Ziaodini H, Qorbani M, Heshmat R. Association between junk food consumption and cardiometabolic risk factors in a national sample of Iranian children and adolescents population: the CASPIAN-V study. Eat Weight Disord 2020; 25:329-335. [PMID: 30311074 DOI: 10.1007/s40519-018-0591-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS Only a few studies have attempted to assess the relationship between junk food consumption and cardiometabolic risk factors in Iranian children and adolescents; therefore, the aim of our study was to determine the association between junk food intake and cardiometabolic risk factors in this population. STUDY DESIGN This is a cross-sectional study. METHODS A total of 14,400 students were selected from 30 provinces of Iran using multistage, stratified cluster sampling method. Information about student's lifestyle, health behaviors and health status was obtained through a validated questionnaire. Blood pressure was measured and anthropometric indices were calculated. Blood samples were drawn from 3,303 students for biochemical tests. In our study, sugar-sweetened beverages, salty snacks, sweets and fast foods were considered as junk foods. RESULTS The mean age of participants was 12.42 ± 2.97 years. Those with metabolic syndrome were more likely to live in urban areas (P = 0.004) and have higher BMI (P < 0.0001). Junk food intake was not related to metabolic syndrome; however, it was associated with increased odds of high BP (OR 1.23, 95% CI 1.09, 1.39), high SBP (OR 1.38, 95% CI 1.09, 1.75), and high DBP (OR 1.18, 95% CI 1.04, 1.35), overweight (OR 1.22, 95% CI 1.08, 1.39) and excess weight (OR 1.14, 95% CI 1.04, 1.25). CONCLUSIONS Junk food consumption plays an important role in childhood overweight and is related to high blood pressure in this population. LEVEL OF EVIDENCE Level III, case-control analytic studies.
Collapse
Affiliation(s)
- Bahar Azemati
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Next to Shariati Hospital, Jalal Al Ahmad Highway, Tehran, 1411713136, Iran
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Ahadi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Next to Shariati Hospital, Jalal Al Ahmad Highway, Tehran, 1411713136, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Next to Shariati Hospital, Jalal Al Ahmad Highway, Tehran, 1411713136, Iran
| | - MajZoubeh Taheri
- Office of Adolescents and School Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Hasan Ziaodini
- Health Psychology Department, Research Center of Education Ministry Studies, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Next to Shariati Hospital, Jalal Al Ahmad Highway, Tehran, 1411713136, Iran.
| |
Collapse
|
10
|
Orlov SN, Tverskoi AM, Sidorenko SV, Smolyaninova LV, Lopina OD, Dulin NO, Klimanova EA. Na,K-ATPase as a target for endogenous cardiotonic steroids: What's the evidence? Genes Dis 2020; 8:259-271. [PMID: 33997173 PMCID: PMC8093582 DOI: 10.1016/j.gendis.2020.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
With an exception of few reports, the plasma concentration of ouabain and marinobufagenin, mostly studied cardiotonic steroids (CTS) assessed by immunoassay techniques, is less than 1 nM. During the last 3 decades, the implication of these endogenous CTS in the pathogenesis of hypertension and other volume-expanded disorders is widely disputed. The threshold for inhibition by CTS of human and rodent α1-Na,K-ATPase is ∼1 and 1000 nM, respectively, that rules out the functioning of endogenous CTS (ECTS) as natriuretic hormones and regulators of cell adhesion, cell-to-cell communication, gene transcription and translation, which are mediated by dissipation of the transmembrane gradients of monovalent cations. In several types of cells ouabain and marinobufagenin at concentrations corresponding to its plasma level activate Na,K-ATPase, decrease the [Na+]i/[K+]i-ratio and increase cell proliferation. Possible physiological significance and mechanism of non-canonical Na+i/K+i-dependent and Na+i/K+i-independent cell responses to CTS are discussed.
Collapse
Affiliation(s)
- Sergei N Orlov
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia.,Siberian State Medical University, Tomsk, 634050, Russia
| | | | - Svetlana V Sidorenko
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| | - Larisa V Smolyaninova
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| | - Olga D Lopina
- MV Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Elizaveta A Klimanova
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| |
Collapse
|
11
|
Masuda T, Muto S, Fukuda K, Watanabe M, Ohara K, Koepsell H, Vallon V, Nagata D. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep 2020; 8:e14360. [PMID: 31994353 PMCID: PMC6987478 DOI: 10.14814/phy2.14360] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/25/2022] Open
Abstract
Most of the filtered glucose is reabsorbed in the early proximal tubule by the sodium-glucose cotransporter SGLT2. The glycosuric effect of the SGLT2 inhibitor ipragliflozin is linked to a diuretic and natriuretic effect that activates compensatory increases in fluid and food intake to stabilize body fluid volume (BFV). However, the compensatory mechanisms that are activated on the level of renal tubules remain unclear. Type 2 diabetic Goto-Kakizaki (GK) rats were treated with vehicle or 0.01% (in diet) ipragliflozin with free access to fluid and food. After 8 weeks, GK rats were placed in metabolic cages for 24-hr. Ipragliflozin decreased body weight, serum glucose and systolic blood pressure, and increased fluid and food intake, urinary glucose and Na+ excretion, urine volume, and renal osmolar clearance, as well as urine vasopressin and solute-free water reabsorption (TcH2O). BFV, measured by bioimpedance spectroscopy, and fluid balance were similar among the two groups. Urine vasopressin in ipragliflozin-treated rats was negatively and positively associated with fluid balance and TcH2O, respectively. Ipragliflozin increased the renal membrane protein expression of SGLT2, aquaporin (AQP) 2 phosphorylated at Ser269 and vasopressin V2 receptor. The expression of SGLT1, GLUT2, AQP1, and AQP2 was similar between the groups. In conclusion, the SGLT2 inhibitor ipragliflozin induced a sustained glucosuria, diuresis, and natriuresis, with compensatory increases in fluid intake and vasopressin-induced TcH2O in proportion to the reduced fluid balance to maintain BFV. These results indicate that the osmotic diuresis induced by SGLT2 inhibition stimulates compensatory fluid intake and renal water reabsorption to maintain BFV.
Collapse
Affiliation(s)
- Takahiro Masuda
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Shigeaki Muto
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Keiko Fukuda
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Minami Watanabe
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Ken Ohara
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and BiophysicsJulius‐von‐Sachs‐Institute of BiosciencesUniversity of WürzburgWürzburgBavariaGermany
| | - Volker Vallon
- Division of Nephrology and HypertensionDepartment of Medicine and PharmacologyUniversity of California San Diego &VA San Diego Healthcare SystemSan DiegoCAUSA
| | - Daisuke Nagata
- Division of NephrologyDepartment of Internal MedicineJichi Medical UniversityShimotsukeTochigiJapan
| |
Collapse
|
12
|
Upmanyu N, Dietze R, Bulldan A, Scheiner-Bobis G. Cardiotonic steroid ouabain stimulates steroidogenesis in Leydig cells via the α3 isoform of the sodium pump. J Steroid Biochem Mol Biol 2019; 191:105372. [PMID: 31042565 DOI: 10.1016/j.jsbmb.2019.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/29/2019] [Accepted: 04/26/2019] [Indexed: 11/28/2022]
Abstract
Cardiotonic steroids such as ouabain are potent inhibitors of the sodium pump and have been widely used for centuries in the treatment of congestive heart failure. In recent decades, however, they have also been identified as hormone-like molecules that trigger signaling cascades of physiological relevance by using the various sodium pump α subunit isoforms as receptors. The murine Leydig cell line MLTC-1 expresses both the ubiquitous, relatively ouabain-insensitive α1 isoform of the sodium pump and the ouabain-sensitive α3 isoform that is normally found in neuronal cells. The physiological relevance of the simultaneous presence of the two isoforms in Leydig cells has not been previously addressed. MLTC-1 Leydig cells contain lipid droplets (LDs) and are capable of progesterone biosynthesis when stimulated by luteinizing hormone (LH). When exposed to low nanomolar concentrations of ouabain, they respond with stimulation of Erk1/2, CREB, and ATF-1 phosphorylation, LD enlargement, and perilipin2 mobilization to the LDs. As a result, progesterone biosynthesis is augmented. Abrogation of α3 isoform expression by siRNA prevents all of the above responses, indicating that it is the hormone/receptor-like interaction of ouabain exclusively with this isoform that triggers the signaling events that normally occur when LH binds to its receptor. Considering that ouabain is produced endogenously and is found in seminal fluid, one can speculate that effects of this substance on germ and somatic cells of the testis might play a role in male reproductive physiology.
Collapse
Affiliation(s)
- Neha Upmanyu
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Raimund Dietze
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Ahmed Bulldan
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany.
| |
Collapse
|
13
|
Carrera P, Fernandez-Sedano I, Muñoz D, Caballero A. Desires matter! Desired attitudes predict behavioural intentions in people who think abstractly: the case of eating products without added salt / ¡Los deseos importan! Las actitudes deseadas predicen las intenciones de comportamiento en las personas que piensan de modo abstracto: El caso del consumo de alimentos sin sal añadida. INTERNATIONAL JOURNAL OF SOCIAL PSYCHOLOGY 2019. [DOI: 10.1080/02134748.2019.1583512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Othman F, Ambak R, Siew Man C, Mohd Zaki NA, Ahmad MH, Abdul Aziz NS, Baharuddin A, Salleh R, Aris T. Factors Associated with High Sodium Intake Assessed from 24-hour Urinary Excretion and the Potential Effect of Energy Intake. J Nutr Metab 2019; 2019:6781597. [PMID: 31192010 PMCID: PMC6525945 DOI: 10.1155/2019/6781597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 11/23/2022] Open
Abstract
Dietary consumption and other environmental factors are known factors associated with sodium intake. However, little is known about the influence of energy intake on this relationship. The aim of this study was to determine the risk factors associated with high sodium intake assessed from urine sodium excretion and the influence of energy intake. A nationwide, cross-sectional study was conducted from 2015 to 2016 among Malaysian health staff (MySalt 2015). A total of 1027 participants from 1568 targeted participants aged 18 years and older that were randomly selected were included in this study. Sodium intake was determined by measuring sodium excretion in the 24 hr urine test. Dietary, sociodemography, and anthropometry variables as associated risk factors were assessed. Multiple logistic regression models were used to determine the association between high sodium intake (≥2000 mg/day urinary sodium) and potential risk factors. The prevalence of high sodium intake in this study was 70.1% (n=733). High sodium intake was associated with male (OR 1.93, 95% confidence interval (CI) 1.41, 2.64), Bumiputera Sarawak ethnicity (OR 0.24, 95% CI 0.09, 0.62), and energy-adjusted sodium intake (mg/d) (OR 1.19, 95% CI 1.03-1.39). Our results suggested that sex, ethnicity, and energy-adjusted sodium consumption were strong risk factors associated with high sodium intake independent from energy and other potential confounding factors.
Collapse
Affiliation(s)
- Fatimah Othman
- Centre for Nutrition Epidemiology Research, Institute for Public Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Rashidah Ambak
- Centre for Nutrition Epidemiology Research, Institute for Public Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Cheong Siew Man
- Centre for Nutrition Epidemiology Research, Institute for Public Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Nor Azian Mohd Zaki
- Centre for Nutrition Epidemiology Research, Institute for Public Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Hasnan Ahmad
- Centre for Nutrition Epidemiology Research, Institute for Public Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Nur Shahida Abdul Aziz
- Centre for Nutrition Epidemiology Research, Institute for Public Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Azli Baharuddin
- Centre for Nutrition Epidemiology Research, Institute for Public Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Ruhaya Salleh
- Centre for Nutrition Epidemiology Research, Institute for Public Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Tahir Aris
- Centre for Nutrition Epidemiology Research, Institute for Public Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Lipphardt M, Koziolek MJ, Lehnig LY, Schäfer AK, Müller GA, Lüders S, Wallbach M. Effect of baroreflex activation therapy on renal sodium excretion in patients with resistant hypertension. Clin Res Cardiol 2019; 108:1287-1296. [DOI: 10.1007/s00392-019-01464-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
|
16
|
Maternal high-salt diet alters redox state and mitochondrial function in newborn rat offspring's brain. Br J Nutr 2018; 119:1003-1011. [PMID: 29502538 DOI: 10.1017/s0007114518000235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Excessive salt intake is a common feature of Western dietary patterns, and has been associated with important metabolic changes including cerebral redox state imbalance. Considering that little is known about the effect on progeny of excessive salt intake during pregnancy, the present study investigated the effect of a high-salt diet during pregnancy and lactation on mitochondrial parameters and the redox state of the brains of resulting offspring. Adult female Wistar rats were divided into two dietary groups (n 20 rats/group): control standard chow (0·675 % NaCl) or high-salt chow (7·2 % NaCl), received throughout pregnancy and for 7 d after delivery. On postnatal day 7, the pups were euthanised and their cerebellum, hypothalamus, hippocampus, prefrontal and parietal cortices were dissected. Maternal high-salt diet reduced cerebellar mitochondrial mass and membrane potential, promoted an increase in reactive oxygen species allied to superoxide dismutase activation and decreased offspring cerebellar nitric oxide levels. A significant increase in hypothalamic nitric oxide levels and mitochondrial superoxide in the hippocampus and prefrontal cortex was observed in the maternal high-salt group. Antioxidant enzymes were differentially modulated by oxidant increases in each brain area studied. Taken together, our results suggest that a maternal high-salt diet during pregnancy and lactation programmes the brain metabolism of offspring, favouring impaired mitochondrial function and promoting an oxidative environment; this highlights the adverse effect of high-salt intake in the health state of the offspring.
Collapse
|
17
|
Long-term diet-induced hypertension in rats is associated with reduced expression and function of small artery SKCa, IKCa, and Kir2.1 channels. Clin Sci (Lond) 2018; 132:461-474. [DOI: 10.1042/cs20171408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
Abdominal obesity and/or a high intake of fructose may cause hypertension. K+ channels, Na/K-ATPase, and voltage-gated Ca2+ channels are crucial determinants of resistance artery tone and thus the control of blood pressure. Limited information is available on the role of K+ transporters in long-term diet-induced hypertension in rats. We hypothesized that a 28-week diet rich in fat, fructose, or both, will lead to changes in K+ transporter expression and function, which is associated with increased blood pressure and decreased arterial function. Male Sprague–Dawley (SD) rats received a diet containing normal chow (Control), high-fat chow (High Fat), high-fructose in drinking water (High Fructose), or a combination of high-fat and high-fructose diet (High Fat/Fruc) for 28 weeks from the age of 4 weeks. Measurements included body weight (BW), systolic blood pressure (SBP), mRNA expression of vascular K+ transporters, and vessel myography in small mesenteric arteries (SMAs). BW was increased in the High Fat and High Fat/Fruc groups, and SBP was increased in the High Fat/Fruc group. mRNA expression of small conductance calcium-activated K+ channel (SKCa), intermediate conductance calcium-activated K+ (IKCa), and Kir2.1 inward rectifier K+ channels were reduced in the High Fat/Fruc group. Reduced endothelium-derived hyperpolarization (EDH)-type relaxation to acetylcholine (ACh) was seen in the High Fat and High Fat/Fruc groups. Ba2+-sensitive dilatation to extracellular K+ was impaired in all the experimental diet groups. In conclusion, reduced expression and function of SKCa, IKCa, and Kir2.1 channels are associated with elevated blood pressure in rats fed a long-term High Fat/Fruc. Rats fed a 28-week High Fat/Fruc provide a relevant model of diet-induced hypertension.
Collapse
|
18
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
19
|
Choudhary R, Bodakhe SH. Magnesium taurate prevents cataractogenesis via restoration of lenticular oxidative damage and ATPase function in cadmium chloride-induced hypertensive experimental animals. Biomed Pharmacother 2016; 84:836-844. [PMID: 27728893 DOI: 10.1016/j.biopha.2016.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 10/03/2016] [Indexed: 02/02/2023] Open
Abstract
Previously we found that hypertension potentiates the risk the cataractogenesis. In the present study, we investigated the protective effects of magnesium taurate (MgT) on hypertension and associated lenticular damages against cadmium chloride (CdCl2)-induced hypertensive animals. Male Sprague-Dawley albino rats (150-180g) were assigned to five experimental groups (n=6). Among the five groups, normal group received 0.3% carboxymethyl cellulose (10ml/kg/day, p.o.). Hypertension control group received CdCl2 (0.5mg/kg/day, i.p.). Tests and standard groups received MgT (3 and 6mg/kg/day, p.o.) and amlodipine (3mg/kg/day, p.o.) concurrently with CdCl2 respectively, for six consecutive weeks. Blood pressure, heart rate, and eyes were examined biweekly, and pathophysiological parameters in serum and eye lenses were evaluated after six weeks of the experimental protocol. The chronic administration of MgT concurrently with CdCl2 significantly restored the blood pressure, serum and lens antioxidants (CAT, SOD, GPx, and GSH), MDA level, and ions (Na+, K+, and Ca2+). Additionally, MgT treatment led to significant increase in the lens proteins (total and soluble), Ca2+ ATPase, and Na+K+ ATPase activity as compared to hypertension control group. Ophthalmoscope observations indicated that MgT treatments delayed the progression of cataract against the hypertensive state. The study shows that MgT prevents the progression of cataractogenesis via restoration of blood pressure, lenticular oxidative damages, and lens ATPase functions in the hypertensive state. The results suggest that MgT supplement may play a beneficial role to manage hypertension and associated cataractogenesis.
Collapse
Affiliation(s)
- Rajesh Choudhary
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, Chhattisgarh, India.
| |
Collapse
|
20
|
Hong F, Wu N, Zhao X, Tian Y, Zhou Y, Chen T, Zhai Y, Ji L. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice. J Biomed Mater Res A 2016; 104:2917-2927. [DOI: 10.1002/jbm.a.35831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Nan Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Xiangyu Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Yusheng Tian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Ting Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Yanyu Zhai
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Li Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| |
Collapse
|
21
|
Ghazi L, Dudenbostel T, Lin CP, Oparil S, Calhoun DA. Urinary sodium excretion predicts blood pressure response to spironolactone in patients with resistant hypertension independent of aldosterone status. J Hypertens 2016; 34:1005-10. [PMID: 26886564 PMCID: PMC5636624 DOI: 10.1097/hjh.0000000000000870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Resistant hypertension (RHTN), blood pressure (BP) at least 140/90 mmHg despite using at least three different medications, including a diuretic, is associated with high dietary sodium and hyperaldosteronism. Mineralocorticoid receptor antagonists are recommended for treatment of RHTN, however, BP response to these agents varies widely. In the current analysis, we assessed predictors of BP response to spironolactone in patients with RHTN. METHODS We retrospectively evaluated the BP response to adding spironolactone 12.5-25 mg to existing medications. A favorable BP response was defined as a reduction in SBP of at least 10 mmHg. Tested variables included baseline characteristics and biochemical parameters. RESULTS A total of 79 patients with RHTN were included in the analysis. Evaluated patients were more likely women (53.2%) and African-American (55.8%); were generally obese (76%) and were prescribed an average of four antihypertensive medications. Baseline SBP was 153.6 ± 22.3 mmHg; addition of spironolactone resulted in a mean reduction of 15.5 ± 20.7 mmHg. Patients with high urinary sodium excretion (≥200 mEq/24 h) had a significantly greater BP reduction compared with patients with normal excretion (<200 mEq/24 h) (P = 0.008). Multivariable analysis identified 24 h urinary sodium excretion as a significant predictor of BP response (P = 0.021) after controlling for potential confounders, including primary aldosteronism. CONCLUSION The antihypertensive effect of spironolactone is positively related to urinary sodium excretion regardless of aldosterone status. These findings suggest that mineralocorticoid receptor antagonists may be of preferential benefit in counteracting the BP effects of high dietary sodium.
Collapse
Affiliation(s)
- Lama Ghazi
- Department of Medicine and Cardiovascular Disease, Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tanja Dudenbostel
- Department of Medicine and Cardiovascular Disease, Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chee Paul Lin
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suzanne Oparil
- Department of Medicine and Cardiovascular Disease, Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A. Calhoun
- Department of Medicine and Cardiovascular Disease, Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
22
|
Zhang WB, Kwan CY. Pharmacological evidence that potentiation of plasmalemmal Ca(2+)-extrusion is functionally coupled to inhibition of SR Ca(2+)-ATPases in vascular smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:447-55. [PMID: 26842648 DOI: 10.1007/s00210-016-1209-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/05/2016] [Indexed: 11/28/2022]
Abstract
Cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic reticulum (SR) Ca(2+)-ATPases, causes slowly developing and subsequently diminishing characteristic contractions in vascular smooth muscle, and the second application of CPA has incompletely repeatable effects, depending on the vessel type. The objective of the present study was to examine the mechanisms underlying the significant decrease of CPA-induced contractions upon the second application. A pharmacological intervention of Ca(2+) extrusion process as a strategy was performed to modulate vasoconstrictor effects of CPA in rat aortic ring preparations. CPA-induced contractions, expressed as percentages of the contractions induced by KCl (80 mM), were significantly decreased from 44.1 ± 5.7 to 7.6 ± 1.8 % (P < 0.001) upon the second application. The contractions, however, were completely repeatable in the presence of vanadate, an inhibitor of ATPases, but not of ouabain, an inhibitor of Na(+)-pumps. Strikingly, CPA-induced contractions were sustained and completely repeatable in Na(+)-free and low Na(+) medium. Furthermore, we found that the contractions were completely repeatable in the presence of 2',4'-dichlorobenzamil, an inhibitor of the forward mode of Na(+)/Ca(2+) exchangers, but not of KBR7943, an inhibitor of the reverse mode of Na(+)/Ca(2+) exchangers. Our findings indicate that CPA by inducing a transient rise in cytosolic Ca(2+) level causes a long-lasting upregulation of plasma membrane (PM) Ca(2+) extruders and thus leads to a diminished contraction upon its second application in blood vessels. This suggests that there is a functional coupling between PM Ca(2+) extruders and SR Ca(2+)-ATPases in rat aortic smooth muscle cells.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.,Program in Neurosciences & Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Chiu-Yin Kwan
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada. .,Vascular Biology Research Group and Research Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan, 40402.
| |
Collapse
|
23
|
Orlov SN, Hamet P. Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways. Pflugers Arch 2014; 467:489-98. [PMID: 25479826 DOI: 10.1007/s00424-014-1650-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/27/2014] [Accepted: 11/07/2014] [Indexed: 01/11/2023]
Abstract
Our review focuses on the recent data showing that gene transcription and translation are under the control of signaling pathways triggered by modulation of the intracellular sodium/potassium ratio ([Na+]i/[K+]i). Side-by-side with sensing of osmolality elevation by tonicity enhancer-binding protein (TonEBP, NFAT5), [Na+]i/[K+]i-mediated excitation-transcription coupling may contribute to the transcriptomic changes evoked by high salt consumption. This novel mechanism includes the sensing of heightened Na+ concentration in the plasma, interstitial, and cerebrospinal fluids via augmented Na+ influx in the endothelium, immune system cells, and the subfornical organ, respectively. In these cells, [Na+]i/[K+]i ratio elevation, triggered by augmented Na+ influx, is further potentiated by increased production of endogenous Na+,K+-ATPase inhibitors documented in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sergei N Orlov
- Laboratory of Biological Membranes, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia,
| | | |
Collapse
|
24
|
Hodes A, Lichtstein D. Natriuretic hormones in brain function. Front Endocrinol (Lausanne) 2014; 5:201. [PMID: 25506340 PMCID: PMC4246887 DOI: 10.3389/fendo.2014.00201] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023] Open
Abstract
Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed.
Collapse
Affiliation(s)
- Anastasia Hodes
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lichtstein
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
25
|
Pavlovic D. The role of cardiotonic steroids in the pathogenesis of cardiomyopathy in chronic kidney disease. Nephron Clin Pract 2014; 128:11-21. [PMID: 25341357 DOI: 10.1159/000363301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiotonic steroids (CTS) are a new class of hormones that circulate in the blood and are divided into two distinct groups, cardenolides, such as ouabain and digoxin, and bufadienolides, such as marinobufagenin, telocinobufagin and bufalin. They have the ability to bind and inhibit the ubiquitous transport enzyme sodium potassium pump, thus regulating intracellular Na(+) concentration in every living cell. Although digoxin has been prescribed to heart failure patients for at least 200 years, the realization that CTS are endogenously produced has intensified research into their physiological and pathophysiological roles. Over the last two decades, substantial evidence has accumulated demonstrating the effects of endogenously synthesised CTS on the kidneys, vasculature and the heart. In this review, the current state of art and the controversies surrounding the manner in which CTS mediate their pathophysiological effects are discussed. Several potential therapeutic strategies have emerged as a result of our increased understanding of the role CTS play in health and disease.
Collapse
Affiliation(s)
- Davor Pavlovic
- Cardiovascular Division, King's College London, Rayne Institute, St. Thomas' Hospital, London, UK
| |
Collapse
|
26
|
Khundmiri SJ. Advances in understanding the role of cardiac glycosides in control of sodium transport in renal tubules. J Endocrinol 2014; 222:R11-24. [PMID: 24781255 DOI: 10.1530/joe-13-0613] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiotonic steroids have been used for the past 200 years in the treatment of congestive heart failure. As specific inhibitors of membrane-bound Na(+)/K(+) ATPase, they enhance cardiac contractility through increasing myocardial cell calcium concentration in response to the resulting increase in intracellular Na concentration. The half-minimal concentrations of cardiotonic steroids required to inhibit Na(+)/K(+) ATPase range from nanomolar to micromolar concentrations. In contrast, the circulating levels of cardiotonic steroids under physiological conditions are in the low picomolar concentration range in healthy subjects, increasing to high picomolar levels under pathophysiological conditions including chronic kidney disease and heart failure. Little is known about the physiological function of low picomolar concentrations of cardiotonic steroids. Recent studies have indicated that physiological concentrations of cardiotonic steroids acutely stimulate the activity of Na(+)/K(+) ATPase and activate an intracellular signaling pathway that regulates a variety of intracellular functions including cell growth and hypertrophy. The effects of circulating cardiotonic steroids on renal salt handling and total body sodium homeostasis are unknown. This review will focus on the role of low picomolar concentrations of cardiotonic steroids in renal Na(+)/K(+) ATPase activity, cell signaling, and blood pressure regulation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Division of Nephrology and HypertensionDepartment of MedicineDepartment of Physiology and BiophysicsUniversity of Louisville, 570 S. Preston Street, Louisville, Kentucky 40202, USADivision of Nephrology and HypertensionDepartment of MedicineDepartment of Physiology and BiophysicsUniversity of Louisville, 570 S. Preston Street, Louisville, Kentucky 40202, USA
| |
Collapse
|
27
|
Makino A, Firth AL, Yuan JXJ. Endothelial and smooth muscle cell ion channels in pulmonary vasoconstriction and vascular remodeling. Compr Physiol 2013; 1:1555-602. [PMID: 23733654 DOI: 10.1002/cphy.c100023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease.
Collapse
Affiliation(s)
- Ayako Makino
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
28
|
Ikewuchi JC, Ikewuchi CC, Ifeanacho MO, Igboh NM, Ijeh II. Moderation of hematological and plasma biochemical indices of sub-chronic salt-loaded rats by aqueous extract of the sclerotia of Pleurotus tuberregium (Fr) Sing's: implications for the reduction of cardiovascular risk. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:466-476. [PMID: 24055467 DOI: 10.1016/j.jep.2013.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The sclerotia of Pleurotus tuberregium are used in Southern Nigeria for the management of diabetes and hypertension, yet there is scarcity of information in the literature regarding the evaluation of the biochemical basis of its antihypertensive property, as well as the biochemical impact of its administration to the hypertensive. Thus, in this study, the ability of an aqueous extract of the sclerotia of Pleurotus tuberregium to moderate biochemical and hematological indices was investigated in normal and sub-chronic salt-loaded rats. MATERIALS AND METHODS The normal and treatment control groups received a diet consisting 100% of the commercial feed, while the test control, reference and test treatment groups received an 8% salt-loaded diet. The extract was orally administered daily at 100 and 200 mg/kg body weight; while the moduretics was administered at 1 mg/kg. The normal and test control groups received appropriate volumes of water by the same route. RESULTS On gas chromatographic analysis of the crude aqueous extract, 29 known flavonoids (mainly 47.71% kaempferol and 37.36% quercetin), four saponins (mainly 72.93% avenacin B1 and 26.80% avenacin A1), six hydroxycinnamic acid derivatives (mainly 57.57% p-coumaric and 42.10% caffeic acid), ten carotenoids (mainly 58.44% carotene and 28.16% lycopene) and seven phytosterols (mainly 98.16% sitosterol) were detected. Also detected were nine benzoic acid derivatives (mainly 44.19% ferulic acid and 25.92% rosmarinic acid), six lignans (mainly 70.88% galgravin and 22.69% retusin), three allicins (mainly 71.92% diallyl thiosulphinate and 23.68% methyl allyl thiosulphinate), seven glycosides (mainly 84.86% arbutin and 12.01% ouabain), 31 alkaloids (mainly 48.82% lupanine, 32.26% augustamine) and 24 terpenes (mainly 60.66% limonene and 6.52% geranyl acetate). Compared to test control, the treatment significantly, dose-dependently lowered (P < 0.05) the mean cell volume, atherogenic indices (cardiac risk ratio, atherogenic coefficient and atherogenic index of plasma), plasma alanine and aspartate transaminase activities, mean cell hemoglobin, sodium, bicarbonate, urea, blood urea nitrogen, triglyceride, total-, non-high density lipoprotein-, low density lipoprotein- and very low density lipoprotein cholesterol concentrations, and neutrophils, monocytes and platelets counts of the treated animals. However, it significantly, dose-dependently increased (P < 0.05) the hemoglobin concentration, mean cell hemoglobin, red cells and lymphocytes counts, plasma high density lipoprotein cholesterol, calcium, potassium, chloride, creatinine, albumin and total protein concentrations of the treated animals. CONCLUSIONS All these results support the use of the plant in traditional health care, for the management of hypertension, and highlight the cardio-protective potential of the sclerotia, whilst suggesting that its antihypertensive activity may be mediated through alteration of plasma levels of sodium and potassium, or increases in muscle tone brought about by changes in plasma calcium levels.
Collapse
Affiliation(s)
- Jude C Ikewuchi
- Department of Biochemistry, Faculty of Chemical Sciences, College of Natural and Applied Sciences, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Nigeria.
| | | | | | | | | |
Collapse
|
29
|
Krug AW, Tille E, Sun B, Pojoga L, Williams J, Chamarthi B, Lichtman AH, Hopkins PN, Adler GK, Williams GH. Lysine-specific demethylase-1 modifies the age effect on blood pressure sensitivity to dietary salt intake. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1809-20. [PMID: 23054827 PMCID: PMC3776098 DOI: 10.1007/s11357-012-9480-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/17/2012] [Indexed: 05/08/2023]
Abstract
How interactions of an individual's genetic background and environmental factors, such as dietary salt intake, result in age-associated blood pressure elevation is largely unknown. Lysine-specific demethylase-1 (LSD1) is a histone demethylase that mediates epigenetic regulation and modification of gene transcription. We have shown previously that hypertensive African-American minor allele carriers of the LSD1 single nucleotide polymorphism (rs587168) display blood pressure salt sensitivity. Our goal was to further examine the effects of LSD1 genotype variants on interactions between dietary salt intake, age, and blood pressure. We found that LSD1 single nucleotide polymorphism (rs7548692) predisposes to increasing salt sensitivity during aging in normotensive Caucasian subjects. Using a LSD1 heterozygous knockout mouse model, we compared blood pressure values on low (0.02 % Na(+)) vs. high (1.6 % Na(+)) salt intake. Our results demonstrate significantly increased blood pressure salt sensitivity in LSD1-deficient compared to wild-type animals with age, confirming our findings of salt sensitivity in humans. Elevated blood pressure in LSD1(+/-) mice is associated with total plasma volume expansion and altered renal Na(+) excretion. In summary, our human and animal studies demonstrate that LSD1 is a genetic factor that interacts with dietary salt intake modifying age-associated blood pressure increases and salt sensitivity through alteration of renal Na(+) handling.
Collapse
Affiliation(s)
- Alexander W Krug
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ikewuchi JC. Moderation of hematological and plasma biochemical indices of sub-chronic salt-loaded rats, by an aqueous extract of the leaves of Acalypha wilkesiana ‘Godseffiana’ Muell Arg (Euphorbiaceae). ASIAN PAC J TROP MED 2013; 6:37-42. [DOI: 10.1016/s1995-7645(12)60197-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 03/20/2012] [Accepted: 04/05/2012] [Indexed: 10/27/2022] Open
|
31
|
|
32
|
Abstract
The binding of Ca(2+) to two adjacent Ca(2+)-binding domains, CBD1 and CBD2, regulates ion transport in the Na(+)/Ca(2+) exchanger. As sensors for intracellular Ca(2+), the CBDs form electrostatic switches that induce the conformational changes required to initiate and sustain Na(+)/Ca(2+) exchange. Depending on the presence of a few key residues in the Ca(2+)-binding sites, zero to four Ca(2+) ions can bind with affinities between 0.1 to 20 μm. Importantly, variability in CBD2 as a consequence of alternative splicing modulates not only the number and affinities of the Ca(2+)-binding sites in CBD2 but also the Ca(2+) affinities in CBD1.
Collapse
Affiliation(s)
- Mark Hilge
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University Basel, CH-4058 Basel, Switzerland.
| |
Collapse
|
33
|
Oberleithner H. A physiological concept unmasking vascular salt sensitivity in man. Pflugers Arch 2012; 464:287-93. [PMID: 22744228 PMCID: PMC3423571 DOI: 10.1007/s00424-012-1128-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 01/11/2023]
Abstract
About one third of the population worldwide is supposed to be salt sensitive which is a major cause for arterial hypertension later in life. For preventive actions it is thus desirable to identify salt-sensitive individuals before the appearance of clinical symptoms. Recent observations suggest that the vascular endothelium consists of two salt-sensitive barriers in series, the glycocalyx that buffers sodium and the endothelial cell membrane that contains sodium channels. Glycocalyx sodium buffer capacity and sodium channel activity are conversely related to each other. For proof of concept, a so-called salt provocation test (SPT) was developed that should unmask vascular salt sensitivity in humans at virtually any age. Nineteen healthy subjects, ranging from 25 to 63 years of age, underwent two series of 1-h blood pressure measurements after acute ingestion of a salt cocktail with or without addition of a sodium channel blocker effective in vascular endothelium. Differential analysis of the changes in diastolic blood pressure (net ∆DP) identified 12 individuals (63 %) as being salt resistant (net ∆DP = −0.05 ± 0.62 mmHg) and seven individuals (37 %) as being salt sensitive (net ∆DP = +6.98 ± 0.75 mmHg). Vascular salt sensitivity was not related to the age of the study participants. It is concluded that the SPT could be useful for identifying vascular salt sensitivity in humans already early in life.
Collapse
Affiliation(s)
- Hans Oberleithner
- Institute of Physiology II, University of Muenster, Robert-Koch-Strasse 27b, 48149, Muenster, Germany.
| |
Collapse
|
34
|
Neutralization of endogenous digitalis-like compounds alters catecholamines metabolism in the brain and elicits anti-depressive behavior. Eur Neuropsychopharmacol 2012; 22:72-9. [PMID: 21700431 DOI: 10.1016/j.euroneuro.2011.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/03/2011] [Accepted: 05/27/2011] [Indexed: 11/20/2022]
Abstract
Depressive disorders are among the world's greatest public health problems. Na(+), K(+)-ATPase is the established receptor for the steroidal digitalis-like compounds (DLC). Alteration in brain Na(+), K(+)-ATPase and DLC have been detected in depressive disorders raising the hypothesis of their involvement in these pathology. The present study was designed to further elaborate this hypothesis by investigating the behavioral and biochemical consequences of neutralization in brain DLC activity attained by anti-ouabain antibodies administrations, in normal Sprague-Dawley (SD) and in the Flinders Sensitive Line (FSL) of genetically depressed rats. Chronic i.c.v. administration of anti-ouabain antibodies to FSL rats elicited anti-depressive behavior. Administration of anti-ouabain antibodies intracerebroventriculary (i.c.v.) to SD rats significantly changed the levels of catecholamines and their metabolites in the hippocampus, ventral tegmentum and nucleus accumbence. These results are in accordance with the notion that endogenous DLC may be involved in the manifestation of depressive disorders and suggests that alteration in their levels may be of significant therapeutic value.
Collapse
|
35
|
Doğanlı C, Kjaer-Sorensen K, Knoeckel C, Beck HC, Nyengaard JR, Honoré B, Nissen P, Ribera A, Oxvig C, Lykke-Hartmann K. The α2Na+/K+-ATPase is critical for skeletal and heart muscle function in zebrafish. J Cell Sci 2012; 125:6166-75. [DOI: 10.1242/jcs.115808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Na+/K+-ATPase generates ion gradients across the plasma membrane, essential for multiple cellular functions. In mammals, four different Na+/K+-ATPase α-subunit isoforms are associated with characteristic cell-type expression profiles and kinetics. We found the zebrafish α2Na+/K+-ATPase associated with striated muscles and that α2Na+/K+-ATPase knockdown causes a significant depolarization of the resting membrane potential in slow-twitch fibers of skeletal muscles. Abrupt mechanosensory responses were observed in α2Na+/K+-ATPase deficient embryos, possibly linked to a postsynaptic defect. The α2Na+/K+-ATPase deficiency reduced the heart rate and caused a loss of left-right asymmetry in the heart tube. Similar phenotypes observed by knockdown of the Na+/Ca2+ exchanger indicated a role for the interplay between these two proteins on the observed phenotypes. Furthermore, proteomics identified up- and down-regulation of specific phenotype-related proteins, such as parvalbumin, CaM, GFAP and multiple kinases, thus highlighting a potential proteome change associated with the dynamics of α2Na+/K+-ATPase. Taken together, our findings display that zebrafish α2Na+/K+-ATPase is important for skeletal and heart muscle functions.
Collapse
|
36
|
Kapri-Pardes E, Katz A, Haviv H, Mahmmoud Y, Ilan M, Khalfin-Penigel I, Carmeli S, Yarden O, Karlish SJD. Stabilization of the α2 isoform of Na,K-ATPase by mutations in a phospholipid binding pocket. J Biol Chem 2011; 286:42888-99. [PMID: 22027833 DOI: 10.1074/jbc.m111.293852] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The α2 isoform of Na,K-ATPase plays a crucial role in Ca(2+) handling, muscle contraction, and inotropic effects of cardiac glycosides. Thus, structural, functional, and pharmacological comparisons of α1, α2, and α3 are of great interest. In Pichia pastoris membranes expressing human α1β1, α2β1, and α3β1 isoforms, or using the purified isoform proteins, α2 is most easily inactivated by heating and detergent (α2 ≫ α3 > α1). We have examined an hypothesis that instability of α2 is caused by weak interactions with phosphatidylserine, which stabilizes the protein. Three residues, unique to α2, in trans-membrane segments M8 (Ala-920), M9 (Leu-955), and M10 (Val-981) were replaced by equivalent residues in α1, singly or together. Judged by the sensitivity of the purified proteins to heat, detergent, "affinity" for phosphatidylserine, and stabilization by FXYD1, the triple mutant (A920V/L955F/V981P, called α2VFP) has stability properties close to α1, although single mutants have only modest or insignificant effects. Functional differences between α1 and α2 are unaffected in α2VFP. A compound, 6-pentyl-2-pyrone, isolated from the marine fungus Trichoderma gamsii is a novel probe of specific phospholipid-protein interactions. 6-Pentyl-2-pyrone inactivates the isoforms in the order α2 ≫ α3 > α1, and α2VFP and FXYD1 protect the isoforms. In native rat heart sarcolemma membranes, which contain α1, α2, and α3 isoforms, a component attributable to α2 is the least stable. The data provide clear evidence for a specific phosphatidylserine binding pocket between M8, M9, and M10 and confirm that the instability of α2 is due to suboptimal interactions with phosphatidylserine. In physiological conditions, the instability of α2 may be important for its cellular regulatory functions.
Collapse
Affiliation(s)
- Einat Kapri-Pardes
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Bogdan W, Jerzy W, Eugeniusz S, Joanna P, Marta G. Digoxin increases hydrogen sulfide concentrations in brain, heart and kidney tissues in mice. Pharmacol Rep 2011; 63:1243-7. [DOI: 10.1016/s1734-1140(11)70645-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 06/16/2011] [Indexed: 12/20/2022]
|
39
|
Rindler TN, Dostanic I, Lasko VM, Nieman ML, Neumann JC, Lorenz JN, Lingrel JB. Knockout of the Na,K-ATPase α₂-isoform in the cardiovascular system does not alter basal blood pressure but prevents ACTH-induced hypertension. Am J Physiol Heart Circ Physiol 2011; 301:H1396-404. [PMID: 21856916 DOI: 10.1152/ajpheart.00121.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The α(2)-isoform of Na,K-ATPase (α(2)) is thought to play a role in blood pressure regulation, but the specific cell type(s) involved have not been identified. Therefore, it is important to study the role of the α(2) in individual cell types in the cardiovascular system. The present study demonstrates the role of vascular smooth muscle α(2) in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model utilizing the Cre/LoxP system to generate a cell type-specific knockout of the α(2) in vascular smooth muscle cells using the SM22α Cre. We achieved a 90% reduction in the α(2)-expression in heart and vascular smooth muscle in the knockout mice. Interestingly, tail-cuff blood pressure analysis reveals that basal systolic blood pressure is unaffected by the knockout of α(2) in the knockout mice. However, knockout mice do fail to develop ACTH-induced hypertension, as seen in wild-type mice, following 5 days of treatment with ACTH (Cortrosyn; wild type = 119.0 ± 6.8 mmHg; knockout = 103.0 ± 2.0 mmHg). These results demonstrate that α(2)-expression in heart and vascular smooth muscle is not essential for regulation of basal systolic blood pressure, but α(2) is critical for blood pressure regulation under chronic stress such as ACTH-induced hypertension.
Collapse
Affiliation(s)
- Tara N Rindler
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Rodriguez CJ, Bibbins-Domingo K, Jin Z, Daviglus ML, Goff DC, Jacobs DR. Association of sodium and potassium intake with left ventricular mass: coronary artery risk development in young adults. Hypertension 2011; 58:410-6. [PMID: 21788603 DOI: 10.1161/hypertensionaha.110.168054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High salt intake may affect left ventricular mass (LVM). We hypothesized that urinary sodium (UNa) and sodium/potassium ratio (UNa/K) are associated with LVM in a predominantly normotensive cohort of young adults. The Coronary Artery Risk Development in Young Adults (CARDIA) Study is a multicenter cohort of black and white men and women aged 30±3.6 years at the time of baseline echocardiographic examination (1990-1991). 2D guided M-mode LVM indexed to body size (grams per meter(2.7)) was calculated, and UNa and potassium excretion assessed (average of three 24-hour urinary samples, n=1042). Linear and logistic regression analysis was used. Participants were 57% women and 55% black. Only 4% were hypertensive. UNa, urinary potassium, and UNa/K ratios were (mean±SD) 175.6±131.0, 56.4±46.3, and 3.4±1.4 mmol/24 h, respectively. Participants in the highest versus the lowest UNa excretion quartile had the greatest LVM (37.5 versus 34.0 g/m(2.7); P<0.001). Adjusted for age, sex, education, and race, LVM averaged 0.945 g/m(2.7) higher per SD of UNa/K (P=0.001). The relationship between UNa/K and LVM persisted among 399 participants with repeat echocardiographic measures 5 years later. In logistic regression analysis adjusted for age, sex, education, and race, each SD higher baseline UNa/K was associated with 23% and 38% greater chances of being in the highest quartile of LVM at baseline (odds ratio: 1.23; P=0.005) and 5 years later (odds ratio: 1.38; P=0.02). A higher sodium/potassium excretion ratio is significantly related to cardiac structure, even among healthy young adults.
Collapse
|
41
|
Perry SF, Ellis K, Russell J, Bernier NJ, Montpetit C. Effects of chronic dietary salt loading on the renin angiotensin and adrenergic systems of rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2011; 301:R811-21. [PMID: 21697522 DOI: 10.1152/ajpregu.00244.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previous studies have demonstrated that chronic dietary salt loading causes hypertension and a decreased sensitivity of the systemic vasculature to α-adrenergic stimulation and other hypertensive stimuli (e.g. hypercapnia) in rainbow trout (Oncorhynchus mykiss). This reduced sensitivity to hypertensive stimuli is consistent with a possible blunting of homeostatic responses normally aimed at raising blood pressure. To test this idea, we examined the consequences of long-term salt feeding and the associated hypertension on the interactive capacities of the renin angiotensin system (RAS) and adrenergic systems to elevate blood pressure in trout. Secretion of catecholamines in response to a range of doses of homologous ANG II in vivo and in situ (using a perfused posterior cardinal vein preparation) was reduced in the salt-fed fish. The reduced sensitivity to ANG II could not be explained by alterations in stored catecholamine (adrenaline or noradrenaline) levels or the general responsiveness of the chromaffin cells to depolarizing stimuli (60 mmol/l KCl). Despite the decreased responsiveness of the chromaffin cells to ANG II, plasma catecholamines were increased to a greater extent in the salt-fed fish during acute hypoxia (a condition that activates the RAS). Interestingly, the pressor effects of ANG II in vivo were actually heightened in the salt-fed fish. The increased pressor response to exogenous ANG II was likely attributable to its direct interaction with vascular ANG II receptors because the effect persisted even after blockade of α-adrenergic receptors. Treating fish with the vascular smooth muscle relaxant papaverine caused similar reductions in blood pressure and increases in plasma ANG II levels regardless of diet. Similarly, inhibition of angiotensin converting enzyme with lisinopril reduced blood pressure equally in control and salt-fed fish. These results indicate that, while long-term dietary salt loading blunts the response of trout chromaffin cells to ANG II, the RAS itself appears to be unaffected. Indeed, the capacity of ANG II to elevate blood pressure is not compromised nor do fish exhibit a reduced capacity to mount an acute humoral adrenergic stress response during acute hypoxia.
Collapse
Affiliation(s)
- Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
42
|
Zhao D, Zhang J, Blaustein MP, Navar LG. Attenuated renal vascular responses to acute angiotensin II infusion in smooth muscle-specific Na+/Ca2+ exchanger knockout mice. Am J Physiol Renal Physiol 2011; 301:F574-9. [PMID: 21697239 DOI: 10.1152/ajprenal.00065.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies in smooth muscle-specific Na(+)/Ca(2+) exchanger-1 knockout (NCX1(sm-/-)) mice reveal reduced arterial pressure and impaired myogenic responses compared with heterozygous littermates. In this study, we determined renal function in male anesthetized NCX1(sm-/-) mice and NCX1 heterozygous (NCX1(+/-)) littermates before and during acute ANG II infusions. Systolic blood pressure in awake mice was lower in NCX1(sm-/-) mice compared with NCX1(+/-) mice (119 ± 4 vs. 131 ± 3 mmHg, P < 0.05). Acute ANG II infusions (5 ng·min(-1)·g(-1) body wt) increased mean arterial pressure in anesthetized NCX1(+/-) (109 ± 2 to 134 ± 3 mmHg, P < 0.001, n = 8) and NCX1(sm-/-) (101 ± 8 to 129 ± 8 mmHg, P < 0.01, n = 6) mice to a similar extent (Δ25 ± 1 vs. Δ28 ± 4 mmHg, P > 0.05). In response to ANG II infusions, PAH clearance (C(PAH)) decreased from 1.39 ± 0.27 to 0.98 ± 0.22 ml·min(-1)·g(-1) (P < 0.05) and glomerular filtration rate (GFR) was reduced from 0.50 ± 0.09 to 0.32 ± 0.06 ml·min(-1)·g(-1) (P < 0.05) in NCX1(+/-) mice. In contrast, the NCX1(sm-/-) did not exhibit significant reductions in either C(PAH) (1.16 ± 0.30 to 1.22 ± 0.34 ml·min(-1)·g(-1), P > 0.05) or GFR (0.48 ± 0.08 to 0.41 ± 0.05 ml·min(-1)·g(-1), P > 0.05) during acute ANG II infusions. Using flometry to measure renal blood flow continuously, NCX1(sm-/-) mice had significantly attenuated responses to ANG II infusions (-34.2 ± 3.9%, P < 0.05) compared with those in NCX1(+/-) mice (-48 ± 2%) or in wild-type mice (-69 ± 7%). These data indicate that renal vascular responses to ANG II are attenuated in NCX1(sm-/-) mice compared with NCX1(+/-) mice and that NCX1 contributes to the renal vasoconstriction response to acute ANG II infusions.
Collapse
Affiliation(s)
- Di Zhao
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane Univ. Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
43
|
Siman F, Stefanon I, Vassallo D, Padilha A. A low concentration of ouabain (0.18 µg/kg) enhances hypertension in spontaneously hypertensive rats by inhibiting the Na+ pump and activating the renin-angiotensin system. Braz J Med Biol Res 2010; 43:767-76. [DOI: 10.1590/s0100-879x2010007500061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/16/2010] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - I. Stefanon
- Universidade Federal do Espírito Santo, Brasil
| | - D.V. Vassallo
- Universidade Federal do Espírito Santo, Brasil; Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória, Brasil
| | | |
Collapse
|
44
|
Giachini FR, Tostes RC. Does Na+ really play a role in Ca2+ homeostasis in hypertension? Am J Physiol Heart Circ Physiol 2010; 299:H602-4. [PMID: 20543080 DOI: 10.1152/ajpheart.00542.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Pritchard TJ, Bowman PS, Jefferson A, Tosun M, Lynch RM, Paul RJ. Na(+)-K(+)-ATPase and Ca(2+) clearance proteins in smooth muscle: a functional unit. Am J Physiol Heart Circ Physiol 2010; 299:H548-56. [PMID: 20543086 DOI: 10.1152/ajpheart.00527.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Na(+)-K(+)-ATPase (NKA) can affect intracellular Ca(2+) concentration regulation via coupling to the Na(+)-Ca(2+) exchanger and may be important in myogenic tone. We previously reported that in mice carrying a transgene for the NKA alpha(2)-isoform in smooth muscle (alpha(2sm+)), the alpha(2)-isoform protein as well as the alpha(1)-isoform (not contained in the transgene) increased to similar degrees (2-7-fold). Aortas from alpha(2sm+) mice relaxed faster from a KCl-induced contraction, hypothesized to be related to more rapid Ca(2+) clearance. To elucidate the mechanisms underlying this faster relaxation, we therefore measured the expression and distribution of proteins involved in Ca(2+) clearance. Na(+)-Ca(2+) exchanger, sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), and plasma membrane Ca(2+)-ATPase (PMCA) proteins were all elevated up to approximately fivefold, whereas actin, myosin light chain, and calponin proteins were not changed in smooth muscle from alpha(2sm+) mice. Interestingly, the corresponding Ca(2+) clearance mRNA levels were unchanged. Immunocytochemical data indicate that the Ca(2+) clearance proteins are distributed similarly in wild-type and alpha(2sm+) aorta cells. In studies measuring relaxation half-times from a KCl-induced contraction in the presence of pharmacological inhibitors of SERCA and PMCA, we estimated that together these proteins were responsible for approximately 60-70% of relaxation in aorta. Moreover, the percent contribution of SERCA and PMCA to relaxation rates in alpha(2sm+) aorta was not significantly different from that in wild-type aorta. The coordinate expressions of NKA and Ca(2+) clearance proteins without change in the relative contributions of each individual protein to smooth muscle function suggest that NKA may be but one component of a larger functional Ca(2+) clearance system.
Collapse
Affiliation(s)
- Tracy J Pritchard
- Molecular and Cellular Physiology, Univ. of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0576, USA
| | | | | | | | | | | |
Collapse
|
46
|
Riet JV', Ruiter RAC, Smerecnik C, Vries HD. Examining the Influence of Self-Efficacy on Message-Framing Effects: Reducing Salt Consumption in the General Population. BASIC AND APPLIED SOCIAL PSYCHOLOGY 2010. [DOI: 10.1080/01973531003738338] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Xue Z, Li B, Gu L, Hu X, Li M, Butterworth RF, Peng L. Increased Na, K-ATPase alpha2 isoform gene expression by ammonia in astrocytes and in brain in vivo. Neurochem Int 2010; 57:395-403. [PMID: 20447429 DOI: 10.1016/j.neuint.2010.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 03/28/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
In mouse astrocyte cultures identical to those used in the present study ammonia increases the production of ouabain-like compounds and Na, K-ATPase activity (Kala et al., 2000). Increased activity of Na, K-ATPase could be the result of enhanced production of ouabain-like compounds, since cultured rat astrocytes react to prolonged exposure to a high concentration of ouabain with an upregulation of the Na, K-ATPase alpha(1) isoform (Hosoi et al., 1997). However, unlike astrocytes in brain in vivo and mouse primary cultures, cultured rat astrocytes do not express the astrocyte-specific alpha(2) isoform, which shows a higher affinity for ouabain (EC(50) approximately 0.1 microM) than the alpha(1) isoform (EC(50) approximately 10 microM). In the present study we have investigated (i) effects of ammonia on mRNA and protein expression of alpha(1) and alpha(2) isoforms in primary cultures of mouse astrocytes; (ii) effects of hyperammonia obtained by urease injection on mRNA and protein expression of alpha(1) and alpha(2) isoforms in the brain in vivo; and (iii) effect on observed upregulation of gene expression of AG1478, an inhibitor of the EGF receptor-tyrosine kinase, PP1, an inhibitor of Src, and GM6001, an inhibitor of Zn(2+)-dependent metalloproteinases in the cultured cells. It was established that alpha(2) mRNA and protein expression, but not alpha(1) expression, was upregulated in cultured astrocytes by 1-4 days of exposure to 3 or 5 mM ammonia and that similar upregulation, contrasted by a downregulation of the neuronal alpha(3) subunit occurred in the hyperammonemic brain. Based on the effects of the inhibitors and literature data it is concluded that ammonia activates formation of an endogenous ouabain-like compound, which binds to the Na, K-ATPase, activating Src, which in turn stimulates the receptor-tyrosine kinase of the EGF receptor, leading to activation of the Ras, Raf, MEK pathway and phosphorylation of ERK(1/2), which eventually causes upregulation of alpha(2) gene expression.
Collapse
Affiliation(s)
- Zhanxia Xue
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Holthouser KA, Mandal A, Merchant ML, Schelling JR, Delamere NA, Valdes RR, Tyagi SC, Lederer ED, Khundmiri SJ. Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells. Am J Physiol Renal Physiol 2010; 299:F77-90. [PMID: 20427472 DOI: 10.1152/ajprenal.00581.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent investigations demonstrate increased Na/H exchanger-1 (NHE-1) activity and plasma levels of ouabain-like factor in spontaneously hypertensive rats. At nanomolar concentrations, ouabain increases Na-K-ATPase activity, induces cell proliferation, and activates complex signaling cascades. We hypothesize that the activity of NHE-1 and Na-K-ATPase are interdependent. To test whether treatment with picomolar ouabain regulates Na-K-ATPase through an NHE-1-dependent mechanism, we examined the role of NHE-1 in ouabain-mediated stimulation of Na-K-ATPase in kidney proximal tubule cell lines [opossum kidney (OK), HK-2, HKC-5, and HKC-11] and rat kidney basolateral membranes. Ouabain stimulated Na-K-ATPase activity and tyrosine phosphorylation in cells that express NHE-1 (OK, HKC-5, and HKC-11) but not in HK-2 cells that express very low levels of NHE-1. Inhibition of NHE-1 with 5 microM EIPA, a NHE-1-specific inhibitor, prevented ouabain-mediated stimulation of (86)Rb uptake and Na-K-ATPase phosphorylation in OK, HKC-5, and HKC-11 cells. Expression of wild-type NHE-1 in HK2 cells restored regulation of Na-K-ATPase by picomolar ouabain. Treatment with picomolar ouabain increased membrane expression of Na-K-ATPase and enhanced NHE-1-Na-K-ATPase alpha1-subunit association. Treatment with ouabain (1 microg x kg body wt(-1) x day(-1)) increased Na-K-ATPase activity, expression, phosphorylation, and association with NHE-1 increased in rat kidney cortical basolateral membranes. Eight days' treatment with ouabain (1 microg x kg body wt(-1) x day(-1)) resulted in increased blood pressure in these rats. These results suggest that the association of NHE-1 with Na-K-ATPase is critical for ouabain-mediated regulation of Na-K-ATPase and that these effects may play a role in cardioglycoside-stimulated hypertension.
Collapse
Affiliation(s)
- Kristine A Holthouser
- Department of Medicine/Kidney Disease Program, University of Louisville, Louisville, Kentucky, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Katz A, Lifshitz Y, Bab-Dinitz E, Kapri-Pardes E, Goldshleger R, Tal DM, Karlish SJD. Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J Biol Chem 2010; 285:19582-92. [PMID: 20388710 DOI: 10.1074/jbc.m110.119248] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are four isoforms of the alpha subunit (alpha1-4) and three isoforms of the beta subunit (beta1-3) of Na,K-ATPase, with distinct tissue-specific distribution and physiological functions. alpha2 is thought to play a key role in cardiac and smooth muscle contraction and be an important target of cardiac glycosides. An alpha2-selective cardiac glycoside could provide important insights into physiological and pharmacological properties of alpha2. The isoform selectivity of a large number of cardiac glycosides has been assessed utilizing alpha1beta1, alpha2beta1, and alpha3beta1 isoforms of human Na,K-ATPase expressed in Pichia pastoris and the purified detergent-soluble isoform proteins. Binding affinities of the digitalis glycosides, digoxin, beta-methyl digoxin, and digitoxin show moderate but highly significant selectivity (up to 4-fold) for alpha2/alpha3 over alpha1 (K(D) alpha1 > alpha2 = alpha3). By contrast, ouabain shows moderate selectivity ( approximately 2.5-fold) for alpha1 over alpha2 (K(D) alpha1 <or= alpha3 < alpha2). Binding affinities for the three isoforms of digoxigenin, digitoxigenin, and all other aglycones tested are indistinguishable (K(D) alpha1 = alpha3 = alpha2), showing that the sugar determines isoform selectivity. Selectivity patterns for inhibition of Na,K-ATPase activity of the purified isoform proteins are consistent with binding selectivities, modified somewhat by different affinities of K(+) ions for antagonizing cardiac glycoside binding on the three isoforms. The mechanistic insight on the role of the sugars is strongly supported by a recent structure of Na,K-ATPase with bound ouabain, which implies that aglycones of cardiac glycosides cannot discriminate between isoforms. In conclusion, several digitalis glycosides, but not ouabain, are moderately alpha2-selective. This supports a major role of alpha2 in cardiac contraction and cardiotonic effects of digitalis glycosides.
Collapse
Affiliation(s)
- Adriana Katz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Akimova OA, Tremblay J, Van Huysse JW, Hamet P, Orlov SN. Cardiotonic steroid-resistant alpha1-Na+,K+-ATPase rescues renal epithelial cells from the cytotoxic action of ouabain: evidence for a Nai+,Ki+ -independent mechanism. Apoptosis 2010; 15:55-62. [PMID: 19949978 DOI: 10.1007/s10495-009-0429-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanisms underlying the tissue-specific impact of cardiotonic steroids (CTS) on cell survival and death remain poorly understood. This study examines the role of Na(+),K(+)-ATPase alpha subunits in death of Madin-Darby canine kidney (MDCK) cells evoked by 24-h exposure to ouabain. MDCK cells expressing a variant of the alpha1 isoform, CTS-sensitive alpha1S, were stably transfected with a cDNA encoding CTS-resistant alpha1R-Na(+),K(+)-ATPase, whose expression was confirmed by RT-PCR. In mock-transfected and alpha1R-cells, maximal inhibition of (86)Rb influx was observed at 10 and 1000 muM ouabain, respectively, thus confirming high abundance of alpha1R-Na(+),K(+)-ATPase in these cells. Six-hour treatment of alpha1R-cells with 1000 muM ouabain led to the same elevation of the [Na(+)](i)/[K(+)](i) ratio that was detected in mock-transfected cells treated with 3 muM ouabain. However, in contrast to the massive death of mock-transfected cells exposed to 3 muM ouabain, alpha1R-cells survived after 24-h incubation with 1000 muM ouabain. Inversion of the [Na(+)](i)/[K(+)](i) ratio evoked by Na(+),K(+)-ATPase inhibition in K(+)-free medium did not affect survival of alpha1R-cells but increased their sensitivity to ouabain. Our results show that the alpha1R subunit rescues MDCK cells from the cytotoxic action of CTS independently of inhibition of Na(+),K(+)-ATPase-mediated Na(+) and K(+) fluxes and inversion of the [Na(+)](i)/[K(+)](i) ratio.
Collapse
Affiliation(s)
- Olga A Akimova
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Technopôle Angus, 2901 Rachel Est, Montreal, QC H1W 4A4, Canada.
| | | | | | | | | |
Collapse
|