1
|
Wang S, Li E, Luo Z, Li X, Liu Z, Li W, Wang X, Qin JG, Chen L. Dietary yeast culture can protect against chronic heat stress by improving the survival, antioxidant capacity, immune response, and gut health of juvenile Chinese mitten crab (Eriocheir sinensis). AQUACULTURE 2025; 596:741910. [DOI: 10.1016/j.aquaculture.2024.741910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Theron IJ, Mason S, van Reenen M, Stander Z, Kleynhans L, Ronacher K, Loots DT. Characterizing poorly controlled type 2 diabetes using 1H-NMR metabolomics. Metabolomics 2024; 20:54. [PMID: 38734832 PMCID: PMC11088559 DOI: 10.1007/s11306-024-02127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION The prevalence of type 2 diabetes has surged to epidemic proportions and despite treatment administration/adherence, some individuals experience poorly controlled diabetes. While existing literature explores metabolic changes in type 2 diabetes, understanding metabolic derangement in poorly controlled cases remains limited. OBJECTIVE This investigation aimed to characterize the urine metabolome of poorly controlled type 2 diabetes in a South African cohort. METHOD Using an untargeted proton nuclear magnetic resonance metabolomics approach, urine samples from 15 poorly controlled type 2 diabetes patients and 25 healthy controls were analyzed and statistically compared to identify differentiating metabolites. RESULTS The poorly controlled type 2 diabetes patients were characterized by elevated concentrations of various metabolites associated with changes to the macro-fuel pathways (including carbohydrate metabolism, ketogenesis, proteolysis, and the tricarboxylic acid cycle), autophagy and/or apoptosis, an uncontrolled diet, and kidney and liver damage. CONCLUSION These results indicate that inhibited cellular glucose uptake in poorly controlled type 2 diabetes significantly affects energy-producing pathways, leading to apoptosis and/or autophagy, ultimately contributing to kidney and mild liver damage. The study also suggests poor dietary compliance as a cause of the patient's uncontrolled glycemic state. Collectively these findings offer a first-time comprehensive overview of urine metabolic changes in poorly controlled type 2 diabetes and its association with secondary diseases, offering potential insights for more targeted treatment strategies to prevent disease progression, treatment efficacy, and diet/treatment compliance.
Collapse
Affiliation(s)
- Isabella J Theron
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Zinandré Stander
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Katharina Ronacher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Du Toit Loots
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
3
|
Derkaczew M, Martyniuk P, Osowski A, Wojtkiewicz J. Cyclitols: From Basic Understanding to Their Association with Neurodegeneration. Nutrients 2023; 15:2029. [PMID: 37432155 DOI: 10.3390/nu15092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
One of the most common cyclitols found in eukaryotic cells-Myo-inositol (MI) and its derivatives play a key role in many cellular processes such as ion channel physiology, signal transduction, phosphate storage, cell wall formation, membrane biogenesis and osmoregulation. The aim of this paper is to characterize the possibility of neurodegenerative disorders treatment using MI and the research of other therapeutic methods linked to MI's derivatives. Based on the reviewed literature the researchers focus on the most common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Spinocerebellar ataxias, but there are also works describing other seldom encountered diseases. The use of MI, d-pinitol and other methods altering MI's metabolism, although research on this topic has been conducted for years, still needs much closer examination. The dietary supplementation of MI shows a promising effect on the treatment of neurodegenerative disorders and can be of great help in alleviating the accompanying depressive symptoms.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
4
|
Contreras A, Jones MK, Eldon ED, Klig LS. Inositol in Disease and Development: Roles of Catabolism via myo-Inositol Oxygenase in Drosophila melanogaster. Int J Mol Sci 2023; 24:4185. [PMID: 36835596 PMCID: PMC9967586 DOI: 10.3390/ijms24044185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Inositol depletion has been associated with diabetes and related complications. Increased inositol catabolism, via myo-inositol oxygenase (MIOX), has been implicated in decreased renal function. This study demonstrates that the fruit fly Drosophila melanogaster catabolizes myo-inositol via MIOX. The levels of mRNA encoding MIOX and MIOX specific activity are increased when fruit flies are grown on a diet with inositol as the sole sugar. Inositol as the sole dietary sugar can support D. melanogaster survival, indicating that there is sufficient catabolism for basic energy requirements, allowing for adaptation to various environments. The elimination of MIOX activity, via a piggyBac WH-element inserted into the MIOX gene, results in developmental defects including pupal lethality and pharate flies without proboscises. In contrast, RNAi strains with reduced levels of mRNA encoding MIOX and reduced MIOX specific activity develop to become phenotypically wild-type-appearing adult flies. myo-Inositol levels in larval tissues are highest in the strain with this most extreme loss of myo-inositol catabolism. Larval tissues from the RNAi strains have inositol levels higher than wild-type larval tissues but lower levels than the piggyBac WH-element insertion strain. myo-Inositol supplementation of the diet further increases the myo-inositol levels in the larval tissues of all the strains, without any noticeable effects on development. Obesity and blood (hemolymph) glucose, two hallmarks of diabetes, were reduced in the RNAi strains and further reduced in the piggyBac WH-element insertion strain. Collectively, these data suggest that moderately increased myo-inositol levels do not cause developmental defects and directly correspond to reduced larval obesity and blood (hemolymph) glucose.
Collapse
Affiliation(s)
- Altagracia Contreras
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Melissa K. Jones
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
- Genentech, South San Francisco, CA 94080, USA
| | - Elizabeth D. Eldon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Lisa S. Klig
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
5
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
6
|
Renal Transcriptome and Metabolome in Mice with Principal Cell-Specific Ablation of the Tsc1 Gene: Derangements in Pathways Associated with Cell Metabolism, Growth and Acid Secretion. Int J Mol Sci 2022; 23:ijms231810601. [PMID: 36142537 PMCID: PMC9502912 DOI: 10.3390/ijms231810601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in the hamartin (TSC1) or tuberin (TSC2) genes. Using a mouse model of TSC renal cystogenesis that we have previously described, the current studies delineate the metabolic changes in the kidney and their relation to alterations in renal gene expression. To accomplish this, we compared the metabolome and transcriptome of kidneys from 28-day-old wildtype (Wt) and principal cell-specific Tsc1 KO (Tsc1 KO) mice using targeted 1H nuclear magnetic resonance targeted metabolomic and RNA-seq analyses. The significant changes in the kidney metabolome of Tsc1 KO mice included reductions in the level of several amino acids and significant decreases in creatine, NADH, inosine, UDP-galactose, GTP and myo-inositol levels. These derangements may affect energy production and storage, signal transduction and synthetic pathways. The pertinent derangement in the transcriptome of Tsc1 KO mice was associated with increased collecting duct acid secretion, active cell division and the up-regulation of signaling pathways (e.g., MAPK and AKT/PI3K) that suppress the TSC2 GTPase-activating function. The combined renal metabolome and transcriptome alterations observed in these studies correlate with the unregulated growth and predominance of genotypically normal A-intercalated cells in the epithelium of renal cysts in Tsc1 KO mice.
Collapse
|
7
|
Chasapi SA, Karagkouni E, Kalavrizioti D, Vamvakas S, Zompra A, Takis PG, Goumenos DS, Spyroulias GA. NMR-Based Metabolomics in Differential Diagnosis of Chronic Kidney Disease (CKD) Subtypes. Metabolites 2022; 12:490. [PMID: 35736423 PMCID: PMC9230636 DOI: 10.3390/metabo12060490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic Kidney Disease (CKD) is considered as a major public health problem as it can lead to end-stage kidney failure, which requires replacement therapy. A prompt and accurate diagnosis, along with the appropriate treatment, can delay CKD's progression, significantly. Herein, we sought to determine whether CKD etiology can be reflected in urine metabolomics during its early stage. This is achieved through the analysis of the urine metabolic fingerprint from 108 CKD patients by means of Nuclear Magnetic Resonance (NMR) spectroscopy metabolomic analysis. We report the first NMR-metabolomics data regarding the three most common etiologies of CKD: Chronic Glomerulonephritis (IgA and Membranous Nephropathy), Diabetic Nephropathy (DN) and Hypertensive Nephrosclerosis (HN). Analysis aided a moderate glomerulonephritis clustering, providing characterization of the metabolic fluctuations between the CKD subtypes and control disease. The urine metabolome of IgA Nephropathy reveals a specific metabolism, reflecting its different etiology or origin and is useful for determining the origin of the disease. In contrast, urine metabolomes from DN and HN patients did not reveal any indicative metabolic pattern, which is consistent with their fused clinical phenotype. These findings may contribute to improving diagnostics and prognostic approaches for CKD, as well as improving our understanding of its pathology.
Collapse
Affiliation(s)
- Styliani A. Chasapi
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (S.A.C.); (E.K.); (A.Z.)
| | - Evdokia Karagkouni
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (S.A.C.); (E.K.); (A.Z.)
| | - Dimitra Kalavrizioti
- Department of Nephrology and Renal Transplantation, University Hospital of Patras, 26504 Patras, Greece; (D.K.); (S.V.)
| | - Sotirios Vamvakas
- Department of Nephrology and Renal Transplantation, University Hospital of Patras, 26504 Patras, Greece; (D.K.); (S.V.)
| | - Aikaterini Zompra
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (S.A.C.); (E.K.); (A.Z.)
| | - Panteleimon G. Takis
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, IRDB Building, London W120NN, UK
| | - Dimitrios S. Goumenos
- Department of Nephrology and Renal Transplantation, University Hospital of Patras, 26504 Patras, Greece; (D.K.); (S.V.)
| | - Georgios A. Spyroulias
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (S.A.C.); (E.K.); (A.Z.)
| |
Collapse
|
8
|
Liu W, Xiang J, Wu X, Wei S, Huang H, Xiao Y, Zhai B, Wang T. Transcriptome Profiles Reveal a 12-Signature Metabolic Prediction Model and a Novel Role of Myo-Inositol Oxygenase in the Progression of Prostate Cancer. Front Oncol 2022; 12:899861. [PMID: 35669435 PMCID: PMC9163567 DOI: 10.3389/fonc.2022.899861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Prostate adenocarcinoma (PRAD) is an extremely common type of cancer in the urinary system. Here, we aimed to establish a metabolic signature to identify novel targets in a predictive model of PRAD patients. A total of 133 metabolic differentially expressed genes (MDEGs) were identified with significant prognostic value. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct a 12-mRNA signature model, a metabolic prediction model (MPM), in 491 PRAD patients. The risk score of the MPM significantly predicted the progression of PRAD patients (p < 0.001, area under the curve (AUC) = 0.745). Furthermore, myo-inositol oxygenase (MIOX), the most prominently upregulated metabolic enzyme and hub gene in the protein-protein interaction network of the MPM, showed significant prognostic implications. Next, MIOX expression in normal prostate tissues was lower than in PRAD tissues, and high MIOX expression was significantly associated with disease progression (p = 0.005, HR = 2.274) in 81 PRAD patients undergoing first-line androgen receptor signaling inhibitor treatment from the Renji cohort. Additionally, MIOX was significantly involved in the abnormal immune infiltration of the tumor microenvironment and associated with the DNA damage repair process of PRAD. In conclusion, this study provides the first opportunity to comprehensively elucidate the landscape of prognostic MDEGs, establish novel prognostic modeling of MPM using large-scale PRAD transcriptomic data, and identify MIOX as a potential prognostic target in PRAD patients from multiple cohorts. These findings help manage risk assessment and provide valuable insights into treatment strategies for PRAD.
Collapse
Affiliation(s)
- Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Jianfeng Xiang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinrui Wu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haineng Huang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yu Xiao
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Sherkhane B, Kalvala AK, Arruri VK, Khatri DK, Singh SB. Renoprotective potential of myo-inositol on diabetic kidney disease: Focus on the role of the PINK1/Parkin pathway and mitophagy receptors. J Biochem Mol Toxicol 2022; 36:e23032. [PMID: 35243728 DOI: 10.1002/jbt.23032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 01/14/2023]
Abstract
Recent studies have emphasized the role of mitochondria in renal function as well as in renal injury. Poor mitochondrial quality control mechanisms including mitochondrial fusion, fission and mitophagy are major contributors for progression of diabetic renal injury. The current study is aimed to evaluate the protective role of myo-inositol (MI) against diabetic nephropathy (DN) by utilizing high glucose exposed NRK 52E cell and streptozotocin (STZ) induced DN model. MI supplementation (at doses 37.5 and 75 mg/kg) ameliorated albuminuria and enhanced the renal function as indicated significant improvement in urinary creatinine and urea levels. On the other hand, the western blot analysis of both in vitro and in vivo studies has revealed poor mitophagy in renal cells which was reversed upon myo-inositol treatment. Apart from targeting the canonical PINK1/Parkin pathway, we also focused on the role mitophagy receptors prohibitin (PHB) and NIP3-like protein (NIX). A significant reduction in expression of NIX and PHB2 was observed in renal tissue of diabetic control rats and high glucose exposed NRK 52E cells. Myo-inositol treatment resulted in positive modulation of PINK1/Parkin pathway as well as PHB2 and NIX. Myo-inositol also enhanced the mitochondrial biogenesis in renal tissue of diabetic rat by upregulating Nrf2/SIRT1/PGC-1α axis. The current study thus underlines the renoprotective effect myo-inositol, upregulation of mitophagy proteins and mitochondrial biogenesis upon myo-inositol treatment.
Collapse
Affiliation(s)
- Bhoomika Sherkhane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Anil Kumar Kalvala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Vijay Kumar Arruri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
10
|
Ghosh N, Das A, Biswas N, Mahajan SP, Madeshiya AK, Khanna S, Sen CK, Roy S. MYO-Inositol In Fermented Sugar Matrix Improves Human Macrophage Function. Mol Nutr Food Res 2022; 66:e2100852. [PMID: 35073444 PMCID: PMC9420542 DOI: 10.1002/mnfr.202100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Reactive oxygen species production by innate immune cells plays a central role in host defense against invading pathogens at wound-site. A weakened hos-defense results in persistent infection leading to wound chronicity. Fermented Papaya Preparation (FPP), a complex sugar matrix, bolstered respiratory burst activity and improved wound healing outcomes in chronic wound patients. The objective of the current study was to identify underlying molecular factor/s responsible for augmenting macrophage host defense mechanisms following FPP supplementation. METHODS AND RESULTS In depth LC-MS/MS analysis of cells supplemented with FPP led to identification of myo-inositol as a key determinant of FPP activity towards improving macrophage function. Myo-inositol, in quantities that is present in FPP, significantly improved macrophage respiratory burst and phagocytosis via de novo synthesis pathway of ISYNA1. Additionally, myo-inositol transporters, HMIT and SMIT1, played a significant role in such activity. Blocking these pathways using siRNA attenuated FPP-induced improved macrophage host defense activities. FPP supplementation emerges as a novel approach to increase intracellular myo-inositol levels. Such supplementation also modified wound microenvironment in chronic wound patients to augment myo-inositol levels in wound fluid. CONCLUSION These observations indicate that myo-inositol in FPP influences multiple aspects of macrophage function critical for host defense against invading pathogens. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nandini Ghosh
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amitava Das
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nirupam Biswas
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sanskruti P Mahajan
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amit K Madeshiya
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Savita Khanna
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Chandan K Sen
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sashwati Roy
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| |
Collapse
|
11
|
Paparo SR, Ferrari SM, Patrizio A, Elia G, Ragusa F, Botrini C, Balestri E, Guarneri F, Benvenga S, Antonelli A, Fallahi P. Myoinositol in Autoimmune Thyroiditis. Front Endocrinol (Lausanne) 2022; 13:930756. [PMID: 35837308 PMCID: PMC9273877 DOI: 10.3389/fendo.2022.930756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Myoinositol (Myo) is an isoform of inositol, a cyclic polyol with 6 hydroxyl groups. Myo is mainly derived from dietary intake while its endogenous production is generated from glucose by enzymatic reactions. Moreover, Myo is also synthesized de novo by catabolism of phosphatidylinositol (PI), phosphoinositides (PIP), and inositol phosphates (IP). Myo has a determinant role in thyroid function and autoimmune diseases as it regulates iodine organification and thyroid hormone biosynthesis by the formation of hydrogen peroxide (H2O2) in thyrocytes. Depletion of Myo that is involved in the thyroid stimulating hormone (TSH) signaling pathway, may cause the development of thyroid diseases such as hypothyroidism. TSH levels significantly decreased in patients with subclinical hypothyroidism, with or without autoimmune thyroiditis, after treatment with Myo plus Selenium (Myo+Se). In addition to TSH, antithyroid autoantibodies are reduced. This review summarizes the role of Myo in the thyroidal physiology and its role in the management of some thyroid diseases.
Collapse
Affiliation(s)
- Sabrina Rosaria Paparo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Fabrizio Guarneri
- Department of Clinical and Experimental Medicine - Dermatology, University of Messina, Messina, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine - Endocrinology, University of Messina, Messina, Italy
- Master Program on Childhood, Adolescent and Women’s Endocrine Health, University of Messina, Messina, Italy
- Interdepartmental Program of Molecular & Clinical Endocrinology and Women’s Endocrine Health, University Hospital Policlinico “G. Martino”, Messina, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
- *Correspondence: Alessandro Antonelli,
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Lepore E, Lauretta R, Bianchini M, Mormando M, Di Lorenzo C, Unfer V. Inositols Depletion and Resistance: Principal Mechanisms and Therapeutic Strategies. Int J Mol Sci 2021; 22:6796. [PMID: 34202683 PMCID: PMC8268915 DOI: 10.3390/ijms22136796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Inositols are natural molecules involved in several biochemical and metabolic functions in different organs and tissues. The term "inositols" refers to five natural stereoisomers, among which myo-Inositol (myo-Ins) is the most abundant one. Several mechanisms contribute to regulate cellular and tissue homeostasis of myo-Ins levels, including its endogenous synthesis and catabolism, transmembrane transport, intestinal adsorption and renal excretion. Alterations in these mechanisms can lead to a reduction of inositols levels, exposing patient to several pathological conditions, such as Polycystic Ovary Syndrome (PCOS), hypothyroidism, hormonal and metabolic imbalances, like weight gain, hyperinsulinemia, dyslipidemia, and metabolic syndrome. Indeed, myo-Ins is involved in different physiological processes as a key player in signal pathways, including reproductive, hormonal, and metabolic modulation. Genetic mutations in genes codifying for proteins of myo-Ins synthesis and transport, competitive processes with structurally similar molecules, and the administration of specific drugs that cause a central depletion of myo-Ins as a therapeutic outcome, can lead to a reduction of inositols levels. A deeper knowledge of the main mechanisms involved in cellular inositols depletion may add new insights for developing tailored therapeutic approaches and shaping the dosages and the route of administration, with the aim to develop efficacious and safe approaches counteracting inositols depletion-induced pathological events.
Collapse
Affiliation(s)
- Elisa Lepore
- R&D Department, Lo.Li. Pharma, 00156 Rome, Italy;
| | - Rosa Lauretta
- Oncological Endocrinology Unit IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (R.L.); (M.B.); (M.M.)
| | - Marta Bianchini
- Oncological Endocrinology Unit IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (R.L.); (M.B.); (M.M.)
| | - Marilda Mormando
- Oncological Endocrinology Unit IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy; (R.L.); (M.B.); (M.M.)
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, La Sapienza University Polo Pontino, 04100 Latina, Italy;
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
- System Biology Group Lab, 00161 Rome, Italy
| |
Collapse
|
13
|
Bletsa E, Filippas-Dekouan S, Kostara C, Dafopoulos P, Dimou A, Pappa E, Chasapi S, Spyroulias G, Koutsovasilis A, Bairaktari E, Ferrannini E, Tsimihodimos V. Effect of Dapagliflozin on Urine Metabolome in Patients with Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:1269-1283. [PMID: 33592103 PMCID: PMC8063232 DOI: 10.1210/clinem/dgab086] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 01/01/2023]
Abstract
CONTEXT Inhibitors of sodium-glucose cotransporters-2 have cardio- and renoprotective properties. However, the underlying mechanisms remain indeterminate. OBJECTIVE To evaluate the effect of dapagliflozin on renal metabolism assessed by urine metabolome analysis in patients with type 2 diabetes. DESIGN Prospective cohort study. SETTING Outpatient diabetes clinic of a tertiary academic center. PATIENTS Eighty patients with hemoglobin A1c > 7% on metformin monotherapy were prospectively enrolled. INTERVENTION Fifty patients were treated with dapagliflozin for 3 months. To exclude that the changes observed in urine metabolome were merely the result of the improvement in glycemia, 30 patients treated with insulin degludec were used for comparison. MAIN OUTCOME MEASURE Changes in urine metabolic profile before and after the administration of dapagliflozin and insulin degludec were assessed by proton-nuclear magnetic resonance spectroscopy. RESULTS In multivariate analysis urine metabolome was significantly altered by dapagliflozin (R2X = 0.819, R2Y = 0.627, Q2Y = 0.362, and coefficient of variation analysis of variance, P < 0.001) but not insulin. After dapagliflozin, the urine concentrations of ketone bodies, lactate, branched chain amino acids (P < 0.001), betaine, myo-inositol (P < 0001), and N-methylhydantoin (P < 0.005) were significantly increased. Additionally, the urine levels of alanine, creatine, sarcosine, and citrate were also increased (P < 0001, P <0.0001, and P <0.0005, respectively) whereas anserine decreased (P < 0005). CONCLUSIONS Dapagliflozin significantly affects urine metabolome in patients with type 2 diabetes in a glucose lowering-independent way. Most of the observed changes can be considered beneficial and may contribute to the renoprotective properties of dapagliflozin.
Collapse
Affiliation(s)
- Evdoxia Bletsa
- Third Internal Medicine Department, General Hospital of Nikaia, Athens, Greece
| | | | - Christina Kostara
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | | | - Aikaterini Dimou
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | - Eleni Pappa
- Department of Internal Medicine, University of Ioannina, Ioannina, Greece
| | | | | | | | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|
14
|
Nizioł J, Ossoliński K, Tripet BP, Copié V, Arendowski A, Ruman T. Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based metabolome profiling of urine samples from kidney cancer patients. J Pharm Biomed Anal 2020; 193:113752. [PMID: 33197834 DOI: 10.1016/j.jpba.2020.113752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Kidney cancer is one of the most frequently diagnosed cancers of the urinary tract in the world. Despite significant advances in kidney cancer treatment, no urine specific biomarker is currently used to guide therapeutic interventions. In an effort to address this knowledge gap, metabolic profiling of urine samples from 50 patients with kidney cancer and 50 healthy volunteers was undertaken using high-resolution proton nuclear magnetic resonance spectroscopy (1H NMR) and silver-109 nanoparticle enhanced steel target laser desorption/ionization mass spectrometry (109AgNPET LDI MS). Twelve potential urine biomarkers of kidney cancer were identified and quantified using one-dimensional (1D) 1H NMR metabolomics. Seven mass spectral features which differed significantly in abundance (p < 0.05) between kidney cancer patients and healthy volunteers were also detected using 109AgNPET-based laser desorption/ionization mass spectrometry (LDI MS). This work provides a framework to expand biomarker discovery that could be used as useful diagnostic or prognostic of kidney cancer progression.
Collapse
Affiliation(s)
- Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland.
| | - Krzysztof Ossoliński
- Department of Urology, John Paul II Hospital, Grunwaldzka 4 St., 36-100 Kolbuszowa, Poland
| | - Brian P Tripet
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Valérie Copié
- The Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Adrian Arendowski
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| |
Collapse
|
15
|
Shirakawa K, Sano M. Sodium-Glucose Co-Transporter 2 Inhibitors Correct Metabolic Maladaptation of Proximal Tubular Epithelial Cells in High-Glucose Conditions. Int J Mol Sci 2020; 21:ijms21207676. [PMID: 33081406 PMCID: PMC7589591 DOI: 10.3390/ijms21207676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023] Open
Abstract
Glucose filtered in the glomerulus is actively reabsorbed by sodium-glucose co-transporter 2 (SGLT2) in proximal tubular epithelial cells (PTEC) and passively returned to the blood via glucose transporter 2 (GLUT2). Healthy PTEC rely primarily on fatty acid beta-oxidation (FAO) for energy. In phase III trials, SGLT2 inhibitors improved outcomes in diabetic kidney disease (DKD). Tubulointerstitial renal fibrosis due to altered metabolic reprogramming of PTEC might be at the root of the pathogenesis of DKD. Here, we investigated the molecular mechanism of SGLT2 inhibitors’ renoprotective effect by examining transcriptional activity of Spp1, which encodes osteopontin, a key mediator of tubulointerstitial renal fibrosis. With primary cultured PTEC from Spp1-enhanced green fluorescent protein knock-in mice, we proved that in high-glucose conditions, increased SGLT2- and GLUT-mediated glucose uptake is causatively involved in aberrant activation of the glycolytic pathway in PTEC, thereby increasing mitochondrial reactive oxygen species (ROS) formation and transcriptional activation of Spp1. FAO activation did not play a direct role in these processes, but elevated expression of a tubular-specific enzyme, myo-inositol oxygenase, was at least partly involved. Notably, canagliflozin blocked overexpression of myo-inositol oxygenase. In conclusion, SGLT2 inhibitors exerted renoprotective effects by inhibiting aberrant glycolytic metabolism and mitochondrial ROS formation in PTEC in high-glucose conditions.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8431, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
16
|
Barrese V, Stott JB, Baldwin SN, Mondejar-Parreño G, Greenwood IA. SMIT (Sodium-Myo-Inositol Transporter) 1 Regulates Arterial Contractility Through the Modulation of Vascular Kv7 Channels. Arterioscler Thromb Vasc Biol 2020; 40:2468-2480. [PMID: 32787517 PMCID: PMC7505149 DOI: 10.1161/atvbaha.120.315096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: The SMIT1 (sodium:myo-inositol transporter 1) regulates myo-inositol movement into cells and responses to hypertonic stimuli. Alteration of myo-inositol levels has been associated with several diseases, including hypertension, but there is no evidence of a functional role of SMIT1 in the vasculature. Recent evidence showed that in the nervous system SMIT1 interacted and modulated the function of members of the Kv7 family of voltage-gated potassium channels, which are also expressed in the vasculature where they regulate arterial contractility. Therefore, in this study, we evaluated whether SMIT1 was functionally relevant in arterial smooth muscle. Approach and Results: Immunofluorescence and polymerase chain reaction experiments revealed that SMIT1 was expressed in rat renal and mesenteric vascular smooth muscle cells. Isometric tension recordings showed that incubation of renal arteries with raffinose and myo-inositol (which increases SMIT1 expression) reduced the contractile responses to methoxamine, an effect that was abolished by preincubation with the pan-Kv7 blocker linopirdine and by molecular knockdown of Kv7.4 and Kv7.5. Knockdown of SMIT1 increased the contraction of renal arteries induced by methoxamine, impaired the response to the Kv7.2–Kv7.5 activator ML213 but did not interfere with the relaxant responses induced by openers of other potassium channels. Proximity ligation assay showed that SMIT1 interacted with heteromeric channels formed by Kv7.4 and Kv7.5 proteins in both renal and mesenteric vascular smooth muscle cells. Patch-clamp experiments showed that incubation with raffinose plus myo-inositol increased Kv7 currents in vascular smooth muscle cells. Conclusions: SMIT1 protein is expressed in vascular smooth muscle cells where it modulates arterial contractility through an association with Kv7.4/Kv7.5 heteromers.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.).,Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, Italy (V.B.)
| | - Jennifer B Stott
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| | - Samuel N Baldwin
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| | - Gema Mondejar-Parreño
- Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Spain (G.M.-P.)
| | - Iain A Greenwood
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| |
Collapse
|
17
|
Sharma I, Deng F, Liao Y, Kanwar YS. Myo-inositol Oxygenase (MIOX) Overexpression Drives the Progression of Renal Tubulointerstitial Injury in Diabetes. Diabetes 2020; 69:1248-1263. [PMID: 32169892 PMCID: PMC7243294 DOI: 10.2337/db19-0935] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
Conceivably, upregulation of myo-inositol oxygenase (MIOX) is associated with altered cellular redox. Its promoter includes oxidant-response elements, and we also discovered binding sites for XBP1, a transcription factor of endoplasmic reticulum (ER) stress response. Previous studies indicate that MIOX's upregulation in acute tubular injury is mediated by oxidant and ER stress. Here, we investigated whether hyperglycemia leads to accentuation of oxidant and ER stress while these boost each other's activities, thereby augmenting tubulointerstitial injury/fibrosis. We generated MIOX-overexpressing transgenic (MIOX-TG) and MIOX knockout (MIOX-KO) mice. A diabetic state was induced by streptozotocin administration. Also, MIOX-KO were crossbred with Ins2 Akita to generate Ins2 Akita/KO mice. MIOX-TG mice had worsening renal functions with kidneys having increased oxidant/ER stress, as reflected by DCF/dihydroethidium staining, perturbed NAD-to-NADH and glutathione-to-glutathione disulfide ratios, increased NOX4 expression, apoptosis and its executionary molecules, accentuation of TGF-β signaling, Smads and XBP1 nuclear translocation, expression of GRP78 and XBP1 (ER stress markers), and accelerated tubulointerstitial fibrosis. These changes were not seen in MIOX-KO mice. Interestingly, such changes were remarkably reduced in Ins2 Akita/KO mice and, likewise, in vitro experiments with XBP1 siRNA. These findings suggest that MIOX expression accentuates, while its deficiency shields kidneys from, tubulointerstitial injury by dampening oxidant and ER stress, which mutually enhance each other's activity.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Pathology, Northwestern University, Chicago, IL
| | - Fei Deng
- Department of Pathology, Northwestern University, Chicago, IL
| | - Yingjun Liao
- Department of Pathology, Northwestern University, Chicago, IL
| | | |
Collapse
|
18
|
Facchinetti F, Appetecchia M, Aragona C, Bevilacqua A, Bezerra Espinola MS, Bizzarri M, D'Anna R, Dewailly D, Diamanti-Kandarakis E, Hernández Marín I, Kamenov ZA, Kandaraki E, Laganà AS, Monastra G, Montanino Oliva M, Nestler JE, Orio F, Ozay AC, Papalou O, Pkhaladze L, Porcaro G, Prapas N, Soulage CO, Stringaro A, Wdowiak A, Unfer V. Experts' opinion on inositols in treating polycystic ovary syndrome and non-insulin dependent diabetes mellitus: a further help for human reproduction and beyond. Expert Opin Drug Metab Toxicol 2020; 16:255-274. [PMID: 32129111 DOI: 10.1080/17425255.2020.1737675] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/28/2020] [Indexed: 01/05/2023]
Abstract
Introduction: This Experts' opinion provides an updated scientific support to gynecologists, obstetricians, endocrinologists, nutritionists, neurologists and general practitioners on the use of Inositols in the therapy of Polycystic Ovary Syndrome (PCOS) and non-insulin dependent (type 2) diabetes mellitus (NIDDM).Areas covered: This paper summarizes the physiology of Myo-Inositol (MI) and D-Chiro-Inositol (DCI), two important molecules present in human organisms, and their therapeutic role, also for treating infertility. Some deep differences between the physiological functions of MI and DCI, as well as their safety and intestinal absorption are discussed. Updates include new evidence on the efficacy exerted in PCOS by the 40:1 MI/DCI ratio, and the innovative approach based on alpha-lactalbumin to overcome the decreased therapeutic efficacy of Inositols in some patients.Expert opinion: The evidence suggests that MI, alone or with DCI in the 40:1 ratio, offers a promising treatment for PCOS and NIDDM. However, additional studies need to evaluate some still unresolved issues, such as the best MI/DCI ratio for treating NIDDM, the potential cost-effectiveness of reduced gonadotropins administration in IVF due to MI treatment, or the benefit of MI supplementation in ovulation induction with clomiphene citrate in PCOS patients.
Collapse
Affiliation(s)
- Fabio Facchinetti
- Department of Obstetrics and Gynecology and Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Cesare Aragona
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosario D'Anna
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, Lille, France
- INSERM, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | | | - Imelda Hernández Marín
- Human Reproduction Department, Hospital Juárez de México, México City Mexico
- Facultad de Medicina, Universidad Nacional Autónoma De México (UNAM), México City, México
| | - Zdravko A Kamenov
- Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Eleni Kandaraki
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy
| | - Giovanni Monastra
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - John E Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Orio
- Department of Endocrinology, "Parthenope" University of Naples, Italy
| | - Ali Cenk Ozay
- Faculty of Medicine, Department of Obstetrics and Gynecology, Near East University, Nicosia Cyprus
- Near East University, Research Center of Experimental Health Sciences, Nicosia, Cyprus
| | - Olga Papalou
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Lali Pkhaladze
- Department of Gynecological Endocrinology, Ioseb Zhordania Institute of Reproductology, Tbilisi, Georgia
| | | | - Nikos Prapas
- 3rd Department of OB-GYNAE, Aristotle University of Thessaloniki, Thessaloniki Greece
- IVF Laboratory, IAKENTRO Fertility Centre, Thessaloniki, Greece
| | | | - Annarita Stringaro
- National Center for Drug Research and Evaluation - Italian National Institute of Health, Rome, Italy
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, Poland
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Gonzalez-Uarquin F, Rodehutscord M, Huber K. Myo-inositol: its metabolism and potential implications for poultry nutrition-a review. Poult Sci 2019; 99:893-905. [PMID: 32036985 PMCID: PMC7587644 DOI: 10.1016/j.psj.2019.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
Myo-inositol (MI) has gained relevance in physiology research during the last decade. As a constituent of animal cells, MI was proven to be crucial in several metabolic and regulatory processes. Myo-inositol is involved in lipid signaling, osmolarity, glucose, and insulin metabolism. In humans and rodents, dietary MI was assessed to be important for health so that MI supplementation appeared to be a valuable alternative for treatment of several diseases as well as for improvements in metabolic performance. In poultry, there is a lack of evidence not only related to specific species-linked metabolic processes but also about the effects of dietary MI on performance and health. This review intends to provide information about the meaning of dietary MI in animal metabolism as well as to discuss potential implications of dietary MI in poultry health and performance with the aim to identify open questions in poultry research.
Collapse
Affiliation(s)
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
20
|
Bogusławska J, Popławski P, Alseekh S, Koblowska M, Iwanicka-Nowicka R, Rybicka B, Kędzierska H, Głuchowska K, Hanusek K, Tański Z, Fernie AR, Piekiełko-Witkowska A. MicroRNA-Mediated Metabolic Reprograming in Renal Cancer. Cancers (Basel) 2019; 11:cancers11121825. [PMID: 31756931 PMCID: PMC6966432 DOI: 10.3390/cancers11121825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of renal cell cancer (RCC). We hypothesized that altered metabolism of RCC cells results from dysregulation of microRNAs targeting metabolically relevant genes. Combined large-scale transcriptomic and metabolic analysis of RCC patients tissue samples revealed a group of microRNAs that contribute to metabolic reprogramming in RCC. miRNAs expressions correlated with their predicted target genes and with gas chromatography-mass spectrometry (GC-MS) metabolome profiles of RCC tumors. Assays performed in RCC-derived cell lines showed that miR-146a-5p and miR-155-5p targeted genes of PPP (the pentose phosphate pathway) (G6PD and TKT), the TCA (tricarboxylic acid cycle) cycle (SUCLG2), and arginine metabolism (GATM), respectively. miR-106b-5p and miR-122-5p regulated the NFAT5 osmoregulatory transcription factor. Altered expressions of G6PD, TKT, SUCLG2, GATM, miR-106b-5p, miR-155-5p, and miR-342-3p correlated with poor survival of RCC patients. miR-106b-5p, miR-146a-5p, and miR-342-3p stimulated proliferation of RCC cells. The analysis involving >6000 patients revealed that miR-34a-5p, miR-106b-5p, miR-146a-5p, and miR-155-5p are PanCancer metabomiRs possibly involved in global regulation of cancer metabolism. In conclusion, we found that microRNAs upregulated in renal cancer contribute to disturbed expression of key genes involved in the regulation of RCC metabolome. miR-146a-5p and miR-155-5p emerge as a key “metabomiRs” that target genes of crucial metabolic pathways (PPP (the pentose phosphate pathway), TCA cycle, and arginine metabolism).
Collapse
Affiliation(s)
- Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Saleh Alseekh
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (S.A.); (A.R.F.)
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland; (M.K.); (R.I.-N.)
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland; (M.K.); (R.I.-N.)
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Katarzyna Głuchowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Zbigniew Tański
- Masovian Specialist Hospital in Ostroleka, 07-410 Ostroleka, Poland;
| | - Alisdair R. Fernie
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (S.A.); (A.R.F.)
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
- Correspondence: ; Tel.: +48-22-5693810
| |
Collapse
|
21
|
Combined Inositol Hexakisphosphate and Inositol Supplement Consumption Improves Serum Alpha-Amylase Activity and Hematological Parameters in Streptozotocin-Induced Type 2 Diabetic Rats. Adv Pharmacol Sci 2019; 2019:4143137. [PMID: 31737067 PMCID: PMC6815611 DOI: 10.1155/2019/4143137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/28/2019] [Indexed: 01/17/2023] Open
Abstract
This study evaluated the effect of combined inositol hexakisphosphate (IP6) and inositol supplement on organ weight, intestinal ATPase activities, complete blood count, and serum analytes in streptozotocin (STZ)-induced type 2 diabetic rats. High-fat diet and a single intraperitoneal injection of streptozotocin (35 mg/kg body weight) were used to induce type 2 diabetes mellitus in Sprague–Dawley rats. The diabetic groups were then treated with either combined IP6 and inositol supplement or glibenclamide for four weeks. Organ weights, intestinal ATPase activities, complete blood count, serum α-amylase, total protein, albumin, and globulin content were determined. Pancreatic weight was significantly reduced while relative kidney and liver weights were elevated in the group treated with combined IP6 and inositol supplement compared to the nondiabetic control. Serum α-amylase activity for the glibenclamide and combination treated groups was significantly improved compared to that of the untreated diabetic group. Red cell distribution width percentage was significantly lower in the combination treated group compared to that in the untreated diabetic group, while intestinal ATPase activities were unaffected by the treatment regime. Combined IP6 and inositol supplement consumption may protect people with diabetes from increased risk of cardiovascular diseases due to the supplement's ability to maintain red cell distribution width percentage towards the normal control group.
Collapse
|
22
|
Antonowski T, Osowski A, Lahuta L, Górecki R, Rynkiewicz A, Wojtkiewicz J. Health-Promoting Properties of Selected Cyclitols for Metabolic Syndrome and Diabetes. Nutrients 2019; 11:E2314. [PMID: 31574903 PMCID: PMC6835238 DOI: 10.3390/nu11102314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Cyclitols play a particularly important role in cell functioning because they are involved in ion channel physiology, phosphate storage, signal transduction, cell wall formation, membrane biogenesis, osmoregulation and they have antioxidant activity. They are involved in the cell membranes as a phosphatidyl myo-inositol, an inositol triphosphate precursor, which acts as a transmitter that regulates the activity of several hormones, such as follicle-stimulating hormone, thyrotropin, and insulin. The aim of this paper is to characterize the selected cyclitols: myo-inositol, D-chiro-inositol, and D-pinitol in type-2 metabolic syndrome and diabetes treatment. Results and discussion: Cyclitols have certain clinical applications in the treatment of metabolic syndromes and are considered to be an option as a dietary supplement for the treatment or prevention of gestational diabetes mellitus and type-2 diabetes. Improved metabolic parameters observed after using cyclitols, like myo-inositol, in the treatment of polycystic ovary syndrome and type-2 diabetes suggest that they may have a protective effect on the cardiovascular system. Pinitol, together with myo-inositol,maybe responsible for improving lipid profiles by reducing serum triglyceride and total cholesterol. Pinitol is also well-researched and documented for insulin-like effects. Myo-inositol, D-chiro-inositol, and D-pinitol indicate a number of therapeutic and health-promoting properties.
Collapse
Affiliation(s)
- Tomasz Antonowski
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland.
| | - Adam Osowski
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland.
| | - Lesław Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Ryszard Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Andrzej Rynkiewicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
- Department of Cardiology and Cardiosurgery, School of Medicine, Collegium Medicum University of Warmia and Mazury, 10-082 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland.
| |
Collapse
|
23
|
He J, Gao HX, Yang N, Zhu XD, Sun RB, Xie Y, Zeng CH, Zhang JW, Wang JK, Ding F, Aa JY, Wang GJ. The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta Pharmacol Sin 2019; 40:86-97. [PMID: 29930278 DOI: 10.1038/s41401-018-0043-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023] Open
Abstract
Epalrestat is an inhibitor of aldose reductase in the polyol pathway and is used for the management of diabetic neuropathy clinically. Our pilot experiments and accumulated evidences showed that epalrestat inhibited polyol pathway and reduced sorbitol production, and suggested the potential renal protection effects of epalrestat on diabetic nephropathy (DN). To evaluate the protective effect of epalrestat, the db/db mice were used and exposed to epalrestat for 8 weeks, both the physiopathological condition and function of kidney were examined. For the first time, we showed that epalrestat markedly reduced albuminuria and alleviated the podocyte foot process fusion and interstitial fibrosis of db/db mice. Metabolomics was employed, and metabolites in the plasma, renal cortex, and urine were profiled using a gas chromatography-mass spectrometry (GC/MS)-based metabolomic platform. We observed an elevation of sorbitol and fructose, and a decrease of myo-inositol in the renal cortex of db/db mice. Epalrestat reversed the renal accumulation of the polyol pathway metabolites of sorbitol and fructose, and increased myo-inositol level. Moreover, the upregulation of aldose reductase, fibronectin, collagen III, and TGF-β1 in renal cortex of db/db mice was downregulated by epalrestat. The data suggested that epalrestat has protective effects on DN, and the inhibition of aldose reductase and the modulation of polyol pathway in nephritic cells be a potentially therapeutic strategy for DN.
Collapse
|
24
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
25
|
Villalba H, Shah K, Albekairi TH, Sifat AE, Vaidya B, Abbruscato TJ. Potential role of myo-inositol to improve ischemic stroke outcome in diabetic mouse. Brain Res 2018; 1699:166-176. [PMID: 30165043 DOI: 10.1016/j.brainres.2018.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
Abstract
Brain edema is one of the critical factors causing hightened disability and mortality in stroke patients, which is exaggerated further in diabetic patients. Organic osmolytes could play a critical role in the maintenance of cytotoxic edema. The present study was aimed to assess the role of myo-inositol, an organic osmolyte, on stroke outcome in diabetic and non-diabetic animals. In situ brain perfusion and acute brain slice methods were used to assess transport of myo-inositol across the blood-brain barrier and uptake by brain cells using non-diabetic (C57BL/6) and diabetic (streptozotocin-induced) mice, respectively. In vitro studies were conducted to assess the role of myo-inositol during and after ischemia utilizing oxygen glucose deprivation (OGD) and reperfusion. Further, the expression of transporters, such as SGLT6, SMIT1 and AQP4 were measured using immunofluorescence. Therapeutic efficacy of myo-inositol was evaluated in a transient middle cerebral artery occlusion (tMCAO) mouse model using non-diabetic (C57BL/6) and diabetic (db/db) mice. Myo-inositol release from and uptake in astrocytes and altered expression of myo-inositol transporters at different OGD timepoints revealed the role of myo-inositol and myo-inositol transporters during ischemia reperfusion. Further, hyperglycemic conditions reduced myo-inositol uptake in astrocytes. Interestingly, in in-vivo tMCAO, infarct and edema ratios following 24 h reperfusion decreased in myo-inositol treated mice. These results were supported by improvement in behavioral outcomes in open-field test, corner test and neurological score in both non-diabetic and db/db animals. Our data suggest that myo-inositol and myo-inositol transporters may provide neuroprotection during/following stroke both in non-diabetic and diabetic conditions.
Collapse
Affiliation(s)
- Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
26
|
Do inositol supplements enhance phosphatidylinositol supply and thus support endoplasmic reticulum function? Br J Nutr 2018; 120:301-316. [PMID: 29859544 DOI: 10.1017/s0007114518000946] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review attempts to explain why consuming extra myoinositol (Ins), an essential component of membrane phospholipids, is often beneficial for patients with conditions characterised by insulin resistance, non-alcoholic fatty liver disease and endoplasmic reticulum (ER) stress. For decades we assumed that most human diets provide an adequate Ins supply, but newer evidence suggests that increasing Ins intake ameliorates several disorders, including polycystic ovary syndrome, gestational diabetes, metabolic syndrome, poor sperm development and retinopathy of prematurity. Proposed explanations often suggest functional enhancement of minor facets of Ins Biology such as insulin signalling through putative inositol-containing 'mediators', but offer no explanation for this selectivity. It is more likely that eating extra Ins corrects a deficiency of an abundant Ins-containing cell constituent, probably phosphatidylinositol (PtdIns). Much of a cell's PtdIns is in ER membranes, and an increase in ER membrane synthesis, enhancing the ER's functional capacity, is often an important part of cell responses to ER stress. This review: (a) reinterprets historical information on Ins deficiency as describing a set of events involving a failure of cells adequately to adapt to ER stress; (b) proposes that in the conditions that respond to dietary Ins there is an overstretching of Ins reserves that limits the stressed ER's ability to make the 'extra' PtdIns needed for ER membrane expansion; and (c) suggests that eating Ins supplements increases the Ins supply to Ins-deficient and ER-stressed cells, allowing them to make more PtdIns and to expand the ER membrane system and sustain ER functions.
Collapse
|
27
|
Abstract
This review describes the mechanistic, animal, and clinical data related to the use of inositols in midlife. It covers studies related to the mechanism of action of myo-inositol and D-chiro-inositol and randomized controlled trials conducted in postmenopausal women with metabolic syndrome and supports these data with the results of in vitro and animal studies on inositol in nephropathy and other related conditions. Recent advances related to biochemistry, pharmaceutical science, and genetics are discussed. It concludes that inositols have a potential role to play in maintaining metabolic health in postmenopausal women.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| | - Bharti Kalra
- Department of Obstetrics, Bharti Hospital, Karnal, Haryana, India
| |
Collapse
|
28
|
Dinicola S, Minini M, Unfer V, Verna R, Cucina A, Bizzarri M. Nutritional and Acquired Deficiencies in Inositol Bioavailability. Correlations with Metabolic Disorders. Int J Mol Sci 2017; 18:E2187. [PMID: 29053604 PMCID: PMC5666868 DOI: 10.3390/ijms18102187] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023] Open
Abstract
Communities eating a western-like diet, rich in fat, sugar and significantly deprived of fibers, share a relevant increased risk of both metabolic and cancerous diseases. Even more remarkable is that a low-fiber diet lacks some key components-as phytates and inositols-for which a mechanistic link has been clearly established in the pathogenesis of both cancer and metabolic illness. Reduced bioavailability of inositol in living organisms could arise from reduced food supply or from metabolism deregulation. Inositol deregulation has been found in a number of conditions mechanistically and epidemiologically associated to high-glucose diets or altered glucose metabolism. Indeed, high glucose levels hinder inositol availability by increasing its degradation and by inhibiting both myo-Ins biosynthesis and absorption. These underappreciated mechanisms may likely account for acquired, metabolic deficiency in inositol bioavailability.
Collapse
Affiliation(s)
- Simona Dinicola
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy.
| | - Mirko Minini
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy.
| | - Vittorio Unfer
- Department of Medical Sciences, IPUS-Institute of Higher Education, 5250 Chiasso, Switzerland.
| | - Roberto Verna
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
| | - Alessandra Cucina
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy.
- Policlinico Umberto I, viale del Policlinico 155, 00161 Rome, Italy.
| | - Mariano Bizzarri
- Department of Experimental Medicine, Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
29
|
Sharma I, Dutta RK, Singh NK, Kanwar YS. High Glucose-Induced Hypomethylation Promotes Binding of Sp-1 to Myo-Inositol Oxygenase: Implication in the Pathobiology of Diabetic Tubulopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:724-739. [PMID: 28208054 DOI: 10.1016/j.ajpath.2016.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/24/2022]
Abstract
The catabolic enzyme myo-inositol oxygenase (MIOX) is expressed in proximal tubules and up-regulated in the diabetic state. Previously, we reported its transcriptional and translation regulation by high glucose (HG), osmolytes, and fatty acids. However, its epigenetic regulation is unknown. Bisulfite sequencing revealed that both human and mouse MIOX promoters, enriched with CpG sites, are hypomethylated and unmethylated under HG ambience and hyperglycemic states associated with increased MIOX expression. Eletrophoretic mobility shift assays revealed increased binding of unmethylated oligos with nucleoproteins of cells maintained under HG. In addition, a strong binding of specificity protein (Sp)-1 transcription factor with MIOX promoter was observed under HG, especially with unmethylated Sp-1 oligo. Specificity of binding was established by supershift assays and treatment with the Sp-1 inhibitor mithramycin. Promoter analysis revealed an increase in luciferase activity under HG, which was reduced after mutation of the Sp-1-binding site. Sp1 siRNA treatment reduced mRNA and protein expression of Sp-1 and MIOX and generation of reactive oxygen species derived from NADPH oxidase (NOX)-4 and mitochondrial sources. In addition, there was reduced expression of hypoxia-inducible factor-1α relevant in the pathogenesis of diabetic nephropathy. Sp1 siRNA treatment reduced fibronectin expression, an extracellular matrix protein that is increased in diabetic nephropathy and tubulopathy. HG-induced MIOX expression was also reduced with the treatment of apelin-13, which deacetylates histones. Overall, these findings highlight the epigenetic regulation of MIOX in the pathogenesis of diabetic tubulopathy.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Rajesh K Dutta
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Neel K Singh
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois; Department of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|